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About This Manual 
This user's guide serves as a reference book for the TMS320C3x generation 
of digital signal processors, which includes the TMS320C30, TMS320C30-27, 
TMS320C30-40, TM S320C31, TMS320C31-27, TMS320C31-40, 
TMS320C31-50, TMS320LC31, and TMS320C31 PQA. Throughout the book, 
all references to 'C3x refer collectively to 'C30 and 'C31, and the TMS320C30 
and TMS320C31 refer to all speed variations unless an exception is noted. 
This document provides information to assist managers and 
hardwarelsoftware engineers in application development. 

How to Use This Book 
This revision of the TMS320C3x User's Guide incorporates the following 
changes: 

Q Updated reference list of publications 

Q lmproved description of repeat modes and interrupts in Chapter 6 

0 Description of power management modes in Chapter 6 

0 lmproved description of serial ports and DMA coprocessor in Chapter 8 

Description of power management instructions in Chapter 10 

Q Description of low-power-mode interrupt interface in Chapter 12 

Q More detailed information on MPSD emulator interface, signal timings, 
and connections between emulator and target system 

0 Current timing specification in Chapter 13 

Q TMS320C30PPM pinout, mechanical drawing, and timings in Chapter 13 

Q Development support description and deviceltool part numbers in 
Appendix B 

Data sheet for current military versions of the 'C3x in Appendix E 
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Notational Conventions 

Notational Conventions 

This document uses the following conventions: 

0 Program listings, program examples, interactive displays, filenames, and 
symbol names are shown in a special font. Examples use a bold version 
of the special font for emphasis. Here is a sample program listing: 

0011 0005 0001 . field 11 2 
0012 0005 0003 . field 31 4 
0013 0005 0006 .field 6, 3 
0014 0006 . even 
In syntax descriptions, the instruction, command, or directive is in a bold 
face font and parameters are in italics. Portions of a syntax that are in 
bold face should be entered as shown; portions of a syntax that are in 
italics describe the type of information that should be entered. Here is an 
example of a directive syntax: 

.asect "section name", address 

.asect is the directive. This directive has two parameters, indicated by 
section nameand address. When you use .asect, the first parameter must 
be an actual section name, enclosed in double quotes; the second 
parameter must be an address. 

0 Square brackets ( [ and ] ) identify an optional parameter. If you use an 
optional parameter, you specify the information within the brackets; you 
don't enter the brackets themselves. Here's an example of an instruction 
that has an optional parameter: 

LALK 16-bit constant [, shift] 

The LALK instruction has two parameters. The first parameter, 16-bit 
constant, is required. The second parameter, shift, is optional. As this 
syntax shows, if you use the optional second parameter, you must 
precede it with a comma. 

Square brackets are also used as part of the pathname specification for 
VMS pathnames; in this case, the brackets are actually part of the 
pathname (they are not optional). 

0 Braces ( {and) ) indicate a list. The symbol I (read as orj separates items 
within the list. Here's an example of a list: 

This provides three choices: *, *+, or *-. 
Unless the list is enclosed in square brackets, you must choose one item 
from the list. 
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IJ Some directives can have a varying number of parameters. For example, 
the .byte directive can have up to 100 parameters. The syntax for this 
directive is 

This syntax shows that .byte must have at least one value parameter, but 
you have the option of supplying additional value parameters separated 
by commas. 

Information About Cautions 

This book may contain cautions and warnings. 

A caution describes a situation that could potentially cause your system 
to behave unexpectedly. 

The information in a caution is provided for your information. Please read each 
caution carefully. 

Related Documentation From Texas Instruments 
The following books describe the TMS320 floating-point devices and related 
support tools. To obtain a copy of any of these TI documents, call the Texas 
lnstruments Literature Response Center at (800) 477-8924. When ordering, 
please identify the book by its title and literature number. 

TMS320 Floating-Point DSP Assembly Language Tools User's Guide 
(literature number SPRU035) describes the assembly language tools 
(assembler, linker, and other tools used to develop assembly language 
code), assembler directives, macros, common object file format, and 
symbolic debugging directives for the 'C3x and 'C4x generations of 
devices. 

TMS320 Floating-Point DSP Optimizing C Compiler User's Gulde 
(literature number SPRU034) describes the TMS320 floating-point C 
compiler. This C compiler accepts ANSI standard C source code and 
produces TMS320 assembly language source code for the 'C3x and 
'C4x generations of devices. 
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Related Documentation from Texas Instruments / References 

TMS320C3x C Source Debugger (literature number SPRU053) describes 
the 'C3x debugger for the emulator, evaluation module, and simulator. 
This book discusses various aspects of the debugger interface, including 
window management, command entry, code execution, data 
management, and breakpoints. It also includes a tutorial that introduces 
basic debugger functionality. 

TMS320 Family Development Support Reference Guide (literature number 
SPRUO11) describes the '320 family of digital signal processors and the 
various products that support it. This includes code-generation tools 
(compilers, assemblers, linkers, etc.) and system integration and debug 
tools (simulators, emulators, evaluation modules, etc.). This book also 
lists related documentation, outlines seminars and the university 
program, and provides factory repair and exchange information. 

TMS320 Third-Party Support Reference Guide (literature number 
SPRU052) alphabetically lists over 100 third parties who supply various 
products that serve the family of '320 digital signal processors, including 
software and hardware development tools, speech recognition, image 
processing, noise cancellation, modems, etc. 

References 

The publications in the following reference list contain useful information 
regarding functions, operations, and applications of digital signal processing 
(DSP). These books also provide other references to many useful technical 
papers. The reference list is organized into categories of general DSP, speech, 
image processing, and digital control theory and is alphabetized by author. 
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McGraw-Hill Company, Inc., 1979. 
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Brigham, E. Oran, The Fast Fourier Transform. Englewood Cliffs, NJ: 
Prentice-Hall, Inc., 1974. 

Burrus, C.S., and Parks, T.W., DR/FFTand Convolution Algorithms. New 
York, NY  John Wiley and Sons, Inc., 1984. 

Chassaing, R., and Horning , D., Digital Signal Processing with the 
TMS320C25. New York, NY: John Wiley and Sons, Inc., 1990. 

Digital Signal Processing Applications with the TMS320 Family, Vol. I. 
Texas Instruments, 1986; Prentice-Hall, Inc., 1987. 
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Introduction 

The TMS320C3x generation of digital signal processors (DSPs) are high-per- 
formance CMOS 32-bit floating-point devices in the TMS320 family of 
single-chip digital signal processors. Since 1982, when the TMS32010 was in- 
troduced, the TMS320 family, with its powerful instruction sets, high-speed 
number-crunching capabilities, and innovative architectures, has established 
itself as the industry standard. It is ideal for DSP applications. 

The 40-ns cycle time of the TMS320C31-50 allows it to execute operations at 
a performance rate of up to 60 million floating-point instructions per second 
(MFLOPS) and 30 million instructions per second (MIPS). This performance 
was previously available only on a supercomputer. The generation's perform- 
ance is further enhanced through its large on-chip memories, concurrent direct 
memory access (DMA) controller, and two external interface ports. 

This chapter presents the following major topics: 

Topic Page 



General Description 
s 

1 .I General Description 

The TMS320 family consists of five generations: TMS320Clx, TMS320C2x, 
TMS320C3xI TMS320C4x, and TMS320C5x (see Figure 1-1). The expan- 
sion includes enhancements of earlier generations and more powerful new 
generations of DSPs. 

The TMS320's internal busing and special DSP instruction set have the speed 
and flexibility to execute at up to 50 MFLOPS. The TMS320 family optimizes 
speed by implementing functions in hardware that other processors imple- 
ment through software or microcode. This hardware-intensive approach pro- 
vides power previously unavailable on a single chip. 

The emphasis on total system cost has resulted in a less expensive processor 
that can be designed into systems currently using costly bit-slice processors. 
Also, costlperformance selection is provided by the different processors in the 
TMS320C3x generation: 

a TMS320C30: 60-ns, single-cycle execution-time 

iJ TMS320C30-27: Lower cost; 74-ns, single-cycle execution time 

Q TMS320C30-40: Higher speed; 50-ns, single-cycle execution time 

Q TMS320C30-50: Highest speed; 40-ns, single-cycle execution time 

Q TMS320C31: Low cost; 60-ns, single-cycle execution time 

Q TMS320C31-27: Lower cost; 74-ns, single-cycle execution time 

Q TMS320C31-40: Low cost; 50-ns, single-cycle execution time 

IJ TMS320C31 PQA: Low cost; extended temperature; 60-ns, single-cycle 
execution time 

TMS320C3 1-50: Highest speed; 40-ns, single-cycle execution time 

Q TMS320LC31: Low power; 60-ns, single-cycle execution time, 
3.3-volt operation 

All of these processors are described in this user's guide. Essentially, their 
functionality is the same. However, electrical and timing characteristics vary 
(as described in Chapter 13); part numbering information is found in Section 
B.2 on page B-7. Throughout this book, TMS320C3x is used to refer to the 
TMS320C30 and TMS320C31 and all speed variations. TMS320C30 and 
TMS320C31 are used to refer to all speed variants of those processors where 
appropriate. Special references, such as TMS320C30-40, are used to note 
specific exceptions. 



General Description 

Figure 1 - 1. TMS320 Device Evolution 

Fixed-Point Generations Floating-point Generations 
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General Description 

The TMS320C30 and TMS320C31 can perform parallel multiply and arithme- 
tic logic unit (ALU) operations on integer or floating-point data in a single cycle. 
The processor also possesses a general-purpose register file, a program 
cache, dedicated auxiliary register arithmetic units (ARAU), internal dual-ac- 
cess memories, one DMA channel supporting concurrent 110, and a short ma- 
chine-cycle time. High performance and ease of use are products of thosefea- 
tures. 

General-purpose applications are greatly enhanced by the large address 
space, multiprocessor interface, internally and externally generated wait 
states, two external interface ports (one on the TMS320C31), two timers, two 
serial ports (one on the TMS320C31), and multiple interrupt structure. The 
TMS320C3x supports a wide variety of system applications from host proces- 
sor to dedicated coprocessor. 

High-level language is more easily implemented through a register-based ar- 
chitecture, large address space, powerful addressing modes, flexible instruc- 
tion set, and well-supported floating-point arithmetic. 



General Descri~tion 

Figure 1-2 is a functional block diagram that shows the interrelationships be- 
tween the various TMS320C3x key components. 

Figure 1-2. TMS320C3x Block Diagram 
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TMS320C30 Kev Features 

1.2 TMS320C30 Key Features 

Some key features of the TMS320C30 are listed below. 

0 Performance 

W TMS320C30 (33 MHz) 

60-ns, single-cycle instruction execution time 
m 33.3 MFLOPS 
m 16.7 MlPS 

m 74-ns, single-cycle instruction execution time 
27 MFLOPS 

m 13.5 MlPS 

50-ns, single-cycle instruction execution time 
m 40 MFLOPS 

20MlPS 

0 One 4K x 32-bit, single-cycle, dual-access, on-chip, read-only memory 
(ROM) block 

0 Two 1K x 32-bit, single-cycle, dual-access, on-chip, random access 
memory (RAM) blocks 

Q 64- x 32-bit instruction cache 

IJ 32-bit instruction and data words 

iJ 24-bit addresses 

0 40-132-bit floating-pointbnteger multiplier and ALU 

0 32-bit barrel shifter 

5 Eight extended-precision registers (accumulators) 

0 Two address generators with eight auxiliary registers and two auxiliary 
register arithmetic units 

Q On-chip DMA controller for concurrent I10 and CPU operation 

Q Integer, floating-point, and logical operations 

0 Two- and three-operand instructions 

Q Parallel ALU and multiplier instructions in a single cycle 



TMS320C30 Kev Features 

0 Block repeat capability 

0 Zero-overhead loops with single-cycle branches 

0 Conditional calls and returns 

0 Interlocked instructions for multiprocessing support 

a Two 32-bit data buses (24- and 13-bit address) 

Two serial ports to support 811 6124132-bit transfers 

a Two 32-bit timers 

a Two general-purpose external flags; four external interrupts 

181 -pin grid array (PGA) package; 1 -pm CMOS 
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1.3 TMS320C31 Key Features 
The TMS320C31 is a low-cost 32-bit DSP that offers the advantages of afloa- 
ting-point processor and ease of use. The TMS320C31 devices are object- 
code compatible with the TMS320C30. Aside from lacking a ROM block and 
having a single serial port, the TMS320C31 is functionally equivalent to the 
TMS320C30 but differs in its respective electrical and timing characteristics. 
Chapter 13 describes these differences in detail. 

a The TMS320C31 (33 MHz) features are identical to those of the 
TMS320C30 device, except that the TMS320C31 uses a subset of the 
TMS320C30's standard peripheral and memory interfaces. This main- 
tains the 33-MFLOPS performance of the TMS320C30's core CPU while 
providing the cost advantages associated with 132-pin plastic quad flat 
pack (PQFP) packaging. 

The TMS320C31-27 is the slower speed version of the TMS320C31. The 
TMS320C31-27 delivers 27 MFLOPS and runs at 27 MHz. The reduced 
speed allows you to realize an immediate system cost reduction by using 
slower off-chip memories and a lower-cost processor. 

Q The TMS320C31-40 is a high-speed version of the TMS320C31. The 
40-MHz TMS320C31-40 runs with 50-ns cycle time and offers up to 40 
MFLOPS in performance. 

The TMS320C31-50 is the highest-speed version of the TMS320C31. The 
50-MHz TMS320C31-50 runs with 40-ns cycle time and offers up to 50 
MFLOPS in performance. 

The TMS320C31 PQA (33 MHz) offers extended-temperature capabilities 
to TMS320C31 performance. The TMS320C31 PQA will operate at case 
temperatures ranging from -40" C to +85" C, making it a lower-cost floa- 
ting-point solution for industrial and extended-temperature commercial 
applications. 

The TMS320LC31 is the low-power version of the TMS320C31. The 
TMS320LC31 runs with 60-ns cycle time and offers up to 33 MFLOPS in 
performance at 3.3-volt operation. 

Some key features of the TMS320C31, including those which differentiate it 
from the TMS320C30, are summarized as follows: 

a Performance 

TMS320C31 (PQVPQA) 

60-ns, single-cycle instruction execution time 
33.3 MFLOPS 
16.7 MIPS (million instructions per second) 



TMS32OC31 Kev Features 

74-ns, single-cycle instruction execution time 
H 27 MFLOPS 
H 13.5 MlPS 

H 50-ns, single-cycle instruction execution time 
H 40 MFLOPS 
H 20MlPS 

40-ns, single-cycle instruction execution time 
H 50 MFLOPS 
H 25 MlPS 

H 60-ns, single-cycle instruction execution time 
H 33.3 MFLOPS 
H 16.7 MlPS 
H Low-power, 3.3 volt operation 
H Two power-down nodes; 2-MHz operation and idle 

0 Flexible boot program loader 

One serial port to support 8-11 6-124-132-bit transfers 

IJ 132-pin PQFP package, .8 pm CMOS 
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1.4 Typical Applications 

The TMS320family's versatility, real-time performance, and multiple functions 
offer flexible design approaches in a variety of applications, which are shown 
in Table 1-1. 

Table 1-1. Typical Applications of the TMS320 Family 

General-Purpose DSP Graphlcs/lmaglng Inrtrumentatlon 

Digital Filtering 
Convolution 
Correlation 
Hilbert Transforms 
Fast Fourier Transforms 
Adaptive Filtering 
Windowing 
Waveform Generation 

3-D Transformations Rendering Spectrum Analysis 
Robot Vision Function Generation 
lmage Transmission1Compression Pattern Matching 
Pattern Recognition Seismic Processing 
Image Enhancement Transient Analysis 
Homomorphic Processing Digital Filtering 
Workstations Phase-Locked Loops 
Animation/Digital Map 

VoiceISpeech Control Mllltary 

Voice Mail 
Speech Vocoding 
Speech Recognition 
Speaker Verification 
Speech Enhancement 
Speech Synthesis 
Text-to-Speech 
Neural Networks 

Disk Control 
Servo Control 
Robot Control 
Laser Printer Control 
Engine Control 
Motor Control 
Kalman Filtering 

Secure Communications 
Radar Processing 
Sonar Processing 
lmage Processing 
Navigation 
Missile Guidance 
Radio Frequency Modems 
Sensor Fusion 

Telecommunlcatlons Automotive 

Echo Cancellation 
ADPCM Transcoders 
Digital PBXs 
Line Repeaters 
Channel Multiplexing 
1 200- to 19200-bps Modems 
Adaptive Equalizers 
DTMF EncodingIDecoding 
Data Encryption 

FAX 
Cellular Telephones 
Speaker Phones 
Digital Speech 
Interpolation (DSI) 
X.25 Packet Switching 
Video Conferencing 
Spread Spectrum 
Communications 

Engine Control 
Vibration Analysis 
Antiskid Brakes 
Adaptive Ride Control 
Global Positioning 
Navigation 
Voice Commands 
Digital Radio 
Cellular Telephones 

Consumer lndustrlal 

Radar Detectors Robotics 
Power Tools Numeric Control 
Digital Audiom Security Access 
Music Synthesizer Power Line Monitors 
Toys and Games Visual Inspection 
Solid-state Answering Lathe Control 

Machines CAM 

Hearing Aids 
Patient Monitoring 
Ultrasound Equipment 
Diagnostic Tools 
Prosthetics 
Fetal Monitors 
MR Imaging 



TMS320C3x Architecture 

This chapter gives an architectural overview of the TMS320C3x processor. 

Major areas of discussion are listed below. 

Topic Page 



Architectural Overview 

2.1 Architectural Overview 

The TMS320C3x architecture responds to system demands that are based on 
sophisticated arithmetic algorithms and that emphasize both hardware and 
software solutions. High performance is achieved through the precision and 
wide dynamic range of the floating-point units, large on-chip memory, a high 
degree of parallelism, and the direct memory access (DMA) controller. 

Figure 2-1 is a block diagram of the TMS320C3x architecture. 



Figure 2-2. Central 

Central Processing Unit (CPU) 

Processing Unit (CPU) 

Disp = an 8-bit integer displacement carried in a program control instruction 
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Central Processing Unit (CPU) 

2.2.1 Muitlpller 

The multiplier performs single-cycle multiplications on 24-bit integer and 32-bit 
floating-point values. The TMS320C3x implementation of floating-point arith- 
metic allows for floating-point operations at fixed-point speeds via a 50-11s in- 
struction cycle and a high degree of parallelism. To gain even higher through- 
put, you can use parallel instructions to perform a multiply and ALU operation 
in a single cycle. 

When the multiplier performs floating-point multiplication, the inputs are 32-bit 
floating-point numbers, and the result is a 40-bit floating-point number. When 
the multiplier performs integer multiplication, the input data is 24 bits and yields 
a 32-bit result. Refer to Chapter 4 for detailed information on data formats and 
floating-point operation. 

2.2.2 Arithmetic Logic Unit (ALU) 

The ALU performs single-cycle operations on 32-bit integer, 32-bit logical, and 
40-bit floating-point data, including single-cycle integer and floating-point con- 
versions. Results of the ALU are always maintained in 32-bit integer or 40-bit 
floating-point formats. The barrel shifter is used to shift up to 32 bits left or right 
in a single cycle. Refer to Chapter 4 for detailed information on data formats 
and floating-point operation. 

Internal buses, CPUl/CPU2 and REGIlREG2, carry two operands from 
memory and two operands from the register file, thus allowing parallel multi- 
plies and addslsubtracts on four integer or floating-point operands in a single 
cycle. 

2.2.3 Auxiliary Register Arithmetic Units (ARAUs) 

Two auxiliary register arithmetic units (ARAUO and ARAU1) can generate two 
addresses in a single cycle. The ARAUs operate in parallel with the multiplier 
and ALU. They support addressing with displacements, index registers (IRO 
and IRl), and circular and bit-reversed addressing. Refer to Chapter 5 for a 
description of addressing modes. 



Central Processing Unit (CPU) 

2.2.4 CPU Register File 

The TMS320C3x provides 28 registers in a multiport register file that is tightly 
coupled to the CPU. All of these registers can be operated upon by the multipli- 
er and ALU and can be used as general-purpose registers. However, the regis- 
ters also have some special functions. For example, the eight extended-praci- 
sion registers are especially suited for maintaining extended-precision float- 
ing-point results. The eight auxiliary registers support a variety of indirect ad- 
dressing modes and can be used as general-purpose 32-bit integer and logical 
registers. The remaining registers provide such system functions as address- 
ing, stack management, processor status, interrupts, and block repeat. Refer 
to Chapter 6 for detailed information and examples of stack management and 
register usage. 

The register names and assigned functions are listed in Table 2-1. Following 
the table, the function of each register or group of registers is briefly described. 
Refer to Chapter 3 for detailed information on each of the CPU registers. 
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Table 2-1. CPU Registers 

Reglrter 
Name Assigned Function 

RO 
R1 
R2 
R3 
R4 
R5 
R6 
R7 

ARO 
AR 1 
AR2 
AR3 
AR4 
AR5 
AR6 
AR7 

DP 
I RO 
IR1 
BK 
SP 

ST 
I E 
IF 

IOF 

RS 
RE 
RC 

Extended-precision register 0 
Extended-precision register 1 
Extended-precision register 2 
Extended-precision register 3 
Extended-precision register 4 
Extended-precision register 5 
Extended-precision register 6 
Extended-precision register 7 

Auxiliary register 0 
Auxiliary register 1 
Auxiliary register 2 
Auxiliary register 3 
Auxiliary register 4 
Auxiliary register 5 
Auxiliary register 6 
Auxiliary register 7 

Data-page pointer 
lndex register 0 
lndex register 1 
Block size 
System stack pointer 

Status register 
CPUJDMA interrupt enable 
CPU interrupt flags 
It0 flags 

Repeat start address 
Repeat end address 
Repeat counter 

The extended-precision registers (R7-RO) are capable of storing and sup- 
porting operations on 32-bit integer and 40-bit floating-point numbers. Any in- 
struction that assumes the operands are floating-point numbers uses bits 
39-0. If the operands are either signed or unsigned integers, only bits 31-0 
are used; bits 39-32 remain unchanged. This is true for all shift operations. 
Refer to Chapter 4 for extended-precision register formats for floating-point 
and integer numbers. 

The 32-bit auxiliary registers (AR7-ARO) can be accessed by the CPU and 
modified by the two ARAUs. The primary function of the auxiliary registers is 
the generation of 24-bit addresses. They can also be used as loop counters 
or as 32-bit general-purpose registers that can be modified by the multiplier 
and ALU. Refer to Chapter 5 for detailed information and examples of the use 
of auxiliary registers in addressing. 
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The data page pointer (DP) is a 32-bit register. The eight LSBs of the data 
page pointer are used by the direct addressing mode as a pointer to the page 
of data being addressed. Data pages are 64K words long, with a total of 256 
pages. 

The 32-bit index registers (IRO, IR1) contain the value used by the ARAU to 
compute an indexed address. Refer to Chapter 5 for examples of the use of 
index registers in addressing. 

The ARAU uses the 32-bit block size register (BK) in circular addressing to 
specify the data block size. 

The system stack pointer (SP) is a 32-bit register that contains the address 
of the top of the system stack. The SP always points to the last element pushed 
onto the stack. A push performs a preincrement of the system stack pointer; 
a pop performs a postdecrement. The SP is manipulated by interrupts, traps, 
calls, returns, and the PUSH and POP instructions. Refer to Section 5.5 for in- 
formation about system stack management. 

The status register (ST) contains global information relating to the state of the 
CPU. Operations usually set the condition flags of the status register accord- 
ing to whether the result is 0, negative, etc. This includes register load and 
store operations as well as arithmetic and logical functions. When the status 
register is loaded, however, a bit-for-bit replacement is performed with the con- 
tents of the source operand, regardless of the state of any bits in the source 
operand. Therefore, following a load, the contents of the status register are 
identical to the contents of the source operand. This allows the status register 
to be easily saved and restored. See Table 3-2 for a list and definitions of the 
status register bits. 

The CPUIDMA interrupt enable register (IE) is a 32-bit register. The CPU 
interrupt enable bits are in locations 10-0. The DMA interrupt enable bits are 
in locations 26-1 6. A 1 in a CPUIDMA interrupt enable register bit enables the 
corresponding interrupt. A 0 disables the corresponding interrupt. Refer to 
subsection 3.1.8 for bit definitions. 

The CPU interrupt flag register (IF) is also a 32-bit register (see subsection 
3.1 -9). A 1 in a CPU interrupt flag register bit indicates that the corresponding 
interrupt is set. A 0 indicates that the corresponding interrupt is not set. 

The 110 flags register (IOF) controls the function of the dedicated external 
pins, XFO and XF1. These pins may be configured for input or output and may 
also be read from and written to. See subsection 3.1.1 0 for detailed informa- 
tion. 
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Central Processing Unit (CPU) 
I 

The repeat counter (RC) is a 32-bit register used to specify the number of 
times a block of code is to be repeated when performing a block repeat. When 
the processor is operating in the repeat mode, the 32-bit repeat start address 
register (RS) contains the starting address of the block of program memory 
to be repeated, and the 32-bit repeat end address register (RE) contains the 
ending address of the block to be repeated. 

The program counter (PC) is a 32-bit register containing the address of the 
next instruction to be fetched. Although the PC is not part of the CPU register 
file, it is a register that can be modified by instructions that modify the program 
flow. 



Memory Organization 

2.3 Memory Organization 

The total memory space of the TMS320C3x is 16M. (million) 32-bit words. Pro- 
gram, data, and I10 space are contained within this 16M-word address space, 
thus allowing tables, coefficients, program code, or data to be stored in either 
RAM or ROM. In this way, memory usage is maximized and memory space 
allocated as desired. 

2.3.1 RAM, ROM, and Cache 

Figure 2-3 shows how the memory is organized on the TMS320C3x. RAM 
blocks 0 and 1 are each 1 K x 32 bits. The ROM block, available only on the 
TMS320C30, is 4K x 32 bits. Each RAM and ROM block is capable of support- 
ing two CPU accesses in a single cycle. The separate program buses, data 
buses, and DMA buses allow for parallel program fetches, data reads and 
writes, and DMA operations. For example: the CPU can access two data val- 
ues in one RAM block and perform an external program fetch in parallel with 
the DMA loading another RAM block, all within a single cycle. 
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Memory Organization 

Figure 2-3. Memory Organization 

Instruction Register 

Available on TMS320C30 

A 64 x 32-bit instruction cache is provided to store often-repeated sections of 
code, thus greatly reducing the number of off-chip accesses necessary. This 
allowsfor code to be stored off-chip in slower, lower-cost memories. The exter- 
nal buses are also freed for use by the DMA, external memoryfetches, or other 
devices in the system. 

Refer to Chapter 3 for detailed information about the memory and instruction 
cache. 



Memory Organization 

2.3.2 Memory Maps 

The memory map depends on whether the processor is running in micropro- 
cessor mode (MCI~ or M C B U ~  = 0) or microcomputer mode (MCIW or 
M C B U ~  = 1). The memory maps for these modes are similar (see 
Figure 2-4 and Figure 2-5). Locations 800000h-801 FFFh are mapped to the 
expansion bus. When this region, available only on the TMS320C30, is ac- 
cessed, is active. Locations 802000h403FFFh are reserved. Loca- 
tions 804000h-805FFFh are mapped to the expansion bus. When this region, 
available only on the TMS320C30, is accessed, is active. Locations 
806000h-807FFFh are reserved. All of the memory-mapped peripheral bus 
registers are in Iccations 808000M097FFh. In both modes, RAM block 0 is 
located at addresses 809800M09BFFh, and RAM block 1 is located at ad- 
dresses 809COOM09FFFh. Locations 80AOOOh-OFFFFFFh are accessed 
over the external memory port (STRB active). 

In microprocessor mode, the 4K on-chip ROM (TMS320C30) or boot loader 
(TMS320C31) is not mapped into the TMS320C3x memory map. Locations 
Oh-OBFh consist of interrupt vector, trap vector, and reserved locations, all of 
which are accessed over the external memory port (STRB active). Locations 
OCOh-7FFFFFh are also accessed over the external memory port. 

In microcomputer mode, the 4K on-chip ROM (TMS320C30) or boot loader 
(TMS320C31) is mapped into locations Oh-OFFFh. There are 192 locations 
(Oh-OBFh) within this block for interrupt vectors, trap vectors, and a reserved 
space (TMS320C30). Locations 1000h-7FFFFFh are accessed over the ex- 
ternal memory port (-active). 

Section 3.2 on page 3-13 describes the memory maps in greater detail and 
provides the peripheral bus map and vector locations for reset, interrupts, and 
traps. 
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2-4. TMS320C30 Memory Maps 
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Figure 2-5. TMS320C31 Memory Maps 
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2.3.3 Memory Addressing Modes 

The TMS320C3x supports a base set of general-purpose instructions as well 
as arithmetic-intensive instructions that are particularly suited for digital signal 
processing and other numeric-intensive applications. Refer to Chapter 5 for 
detailed information on addressing. 

Five groups of addressing modes are provided on the TMS320C3x. Six types 
of addressing can be used within the groups, as shown in the following list: 

0 General addressing modes: 

Register. The operand is a CPU register. 
Short immediate. The operand is a 1 6-bit immediate value. 
Direct. The operand is the contents of a 24-bit address. 
Indirect. An auxiliary register indicates the address of the operand. 

0 Three-operand addressing modes: 

Register. Same as for general addressing mode. 
Indirect. Same as for general addressing mode. 

0 Parallel addressing modes: 

Register. The operand is an extended-precision register. 
Indirect. Same as for general addressing mode. 

a Long-immediate addressing mode. 

The Long-immediate operand is a 24-bit immediate value. 

0 Conditional branch addressing modes: 

Register. Same as for general addressing mode. 
PC-relative. A signed 16-bit displacement is added to the PC. 



Instruction Set Summary 

2.4 Instruction Set Summary 

Table 2-2 lists the TMS320C3x instruction set in alphabetical order. Each 
table entry shows the instruction mnemonic, description, and operation. Refer 
to Chapter 10 for a functional listing of the instructions and individual instruc- 
tion descriptions. 

Table 2-2. Instruction Set Summary 

Mnemonic Deacrlptlon Operation 
ABSF Absolute value of a floating-point number lsrd -. Rn 
ABSl 
ADDC 
ADDC3 
ADDF 
ADDF3 
ADD1 
ADD13 
AND 
AND3 
ANDN 
ANDN3 
ASH 

Bcond 

BcondD 

BR 
BRD 

CALL 

Legend: 

Absolute value of an integer 
Add integers with carry 
Add integers with carry (3 operand) 
Add floating-point values 
Add floating-point values (3 operand) 
Add integers 
Add integers (3 operand) 
Bitwise logical AND 
Bitwise logical AND (3 operand) 
Bitwise logical AND with complement 
Bitwise logical ANDN (3 operand) 
Arithmetic shift 

Arithmetic shift (3 operand) 

Branch conditionally (standard) 

Branch conditionally (delayed) 

Branch unconditionally (standard) 
Branch unconditionally (delayed) 

Call subroutine 

C carry 't 
cond condition code 
Dreg register address (any register) 
Rn register address (R7-RO) 
srcl three-operand addressing modes 

lsrd -, Dreg 
src + Dreg + C -+ Dreg 
srcl + src2 + C -, Dreg 
src + Rn -+ Rn 
srcl + src2 4 Rn 
src + Dreg -. Dreg 
srcl + src2 + -, Dreg 
Dreg AND src -, Dreg 
srcl AND src2 -, Dreg 
Dreg AND -, Dreg 
srcl AND srd -9 Dreg 
If count a 0: 

(Shifted Dreg left by count) -+ Dreg 
Else: 

(Shifted Dreg right by ]count/) 4 Dreg 
If count a 0: 

(Shifted src left by count) -, Dreg 
Else: 

(Shifted src right by Icountl) -, Dreg 
If cond = true: 

If Csrc is a register, Csrc 4 PC 
If Csrc is a value, Csrc + PC + PC 

Else, PC + 1 -, PC 
If cond = true: 

If Csrc is a register, Csrc 4 PC 
If Csrc is a value, Csrc + PC + 3 -, PC 

Else, PC + 1 -, PC 

Value -, PC 
Value -, PC 

PC+ 1 -TOS 
Value -.. PC 
Csrc conditional-branch addressing modes 
count shift value (general addressing modes) 
PC program counter 
src general addressing modes 
src2 three-operand addressing modes 
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Table 2-2. Instruction Set Summary (Continued) 

Mnemonlc Description Operation 

CALLcond Call subroutine conditionally If cond = true: 
PC t 1 -,TOS 
If Csrc is a register, Csrc -, PC 
If Csrc is a value, Csrc t PC + PC 

Else, PC + 1 -, PC 

CMPF Compare floating-point values 

CMPF3 Compare floating-point values 
(3 operand) 

CMPl Compare integers 

CMP13 Compare integers (3 operand) 

DBcond Decrement and branch conditionally 
(standard) 

DBcondD Decrement and branch conditionally 
(delayed) 

FIX Convert floating-point value to integer 

Set flags on Rn - src 

Set flags on srcl - s r d  

Set flags on Dreg - src 

Set flags on srcl - s r d  

ARn - 1 -, ARn 
If cond = true and ARn r: 0: 

If Csrc is a register, Csrc 4 PC 
If Csrc is a value, Csrc t PC + 1 -r PC 

Else, PC t 1 -, PC 

ARn - 1 -, ARn 
If cond = true and ARn r 0: 

If Csrc is a register, Csrc -, PC 
If Csrc is a value, Csrc + PC t 3 -. PC 

Else, PC t 1 - PC 

Fix (src) -, Dreg 

FLOAT Convert integer to floating-point value Float(src) -, Rn 

lACK Interrupt acknowledge 

IDLE Idle until interrupt 

LD E Load floating-point exponent 

Dummy read of src - 
IACK toggled low, then high 

PC+ 1 -.PC 
ldle until next interrupt 

LDF Load floating-point value src -, Rn 

LDFcond Load floating-point value conditionally If cond = true, src -. Rn 
Else, Rn is not changed 

LDFl Load floating-point value, interlocked Signal interlocked operation src -, Rn 

LDI Load integer src 4 Dreg 

LDl cond Load integer conditionally If cond = true, src -, Dreg 
Else, Dreg is not changed 

Legend: ARn auxiliary register n (AR7-ARO Rn register address (R7 - RO) 
Csrc conditional-branch addressing modes src general addressing modes 
cond condition code srcl threesperand addressing modes 
Dreg register address (any register) sf& threeoperand addressing modes 
PC program counter TOS top of stack 



Instruction Set Summary 

Table 2-2. Instruction Set Summary (Continued) 

Mnemonic Descrlptlon Operetion 

LDll Load integer, interlocked Signal interlocked operation src -+ Dreg 

LD M Load floating-point mantissa src (mantissa) -+ Rn (mantissa) 

LSH Logical shift 

LSH3 Logical shift (3-operand) 

MPYF Multiply floating-point values 

If count r 0: 
(Dreg left-shifted by count) -+ Dreg 

Else: 
(Dreg right-shifted by Icountl) -, Dreg 

If count r 0: 
(src left-shifted by count) -, Dreg 

Else: 
(src right-shifted by JcountJ) -+ Dreg 

srcx Rn - Rn 

M PYF3 Multiply floating-point value (3 operand) srcl x s r d  -, Rn 

MPYl Multiply integers src x Dreg -. Dreg 

MPY13 Multiply integers (3 operand) srcl x s r d  -r Dreg 

NEGB Negate integer with borrow 0- src-C -, Dreg 

NEGF Negate floating-point value 0-src-, Rn 

NEGl Negate integer 0 - src -, Dreg 

NOP No operation Modify ARn if specified 

NORM Normalize floating-point value Normalize (src) -, Rn 
- 

NOT Bitwise logical complement src 4 Dreg 

OR Bitwise logical OR Dreg OR src -. Dreg 

OR3 Bitwise logical OR (3 operand) srcl OR s r d  -. Dreg 

POP Pop integer from stack *SP-- -. Dreg 

POPF Pop floating-point value from stack *SP-- -. Rn 

PUSH Push integer on stack Sreg -. *++ SP 

PUSHF Push floating-point value on stack Rn -. *++ SP 

Legend: ARn auxiliary register n (AR7-ARO) SP stack pointer 
C carry bi Sreg register address (any register) 
Dreg register address (any register) src general addressing modes 
PC program counter srcl Joperand addressing modes 
Rn register address (R7-RO) src2 toperand addressing modes 
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Table 2-2. instruction Set Summary (Continued) 

Mnemonic Description Operation 
- -  - 

RETl cond Return from interrupt conditionally If cond = true or missing: 
*SP-- -- PC 
1 - ST (GIE) 

Else, continue 

RETScond Return from subroutine conditionally If cond = true or missing: 
*SP-- -- PC 

Else, continue 

RND Round floating-point value Round (src) - Rn 

ROL Rotate left Dreg rotated left 1 bit -- Dreg 

ROLC Rotate left through carry Dreg rotated left 1 bit through carry -, Dreg 

ROR Rotate right Dreg rotated right 1 bit - Dreg 

RORC Rotate right through carry Dreg rotated right 1 bit through carry -, Dreg 

RPTB Repeat block of instructions 

RPTS Repeat single instruction 

SlGl Signal, interlocked 

STF Store floating-point value 

src -c RE 
1 -- ST (RM) 
Next PC -- RS 

src -, RC 
1 - ST (RM) 
Next PC - RS 
Next PC -. RE 

Signal interlocked operation 
Wait for interlock acknowledge 
Clear interlock 

Rn -, Daddr 

STFl Store floating-point value, interlocked Rn -, Daddr 
Signal end of interlocked operation 

ST1 Store integer Sreg - Daddr 

STll Store integer, interlocked Sreg - Daddr 
Signal end of interlocked operation 

SUBB Subtract integers with borrow Dreg - src - C - Dreg 
Le~end: C carw bit RM repeat mode bit - 

cond condition code RS r e k t  start register 
Daddr destination memory address Rn register address (R7-RO) 
Dreg register address (any register) SP stack pointer 
GIE global interrupt enable register ST status register 
PC program counter Sreg register address (any register) 
RC repeat counter register src general addressing modes 
RE repeat interrupt register 
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Table 2-2. Instruction Set Summary (Concluded) 

Mnemonlc Descrlptlon Operation 

SUBB3 Subtract integers with borrow (3 operand) srcl - srd - C 4 Dreg 

SUBC Subtract integers conditionally If Dreg - src + 0: 
[(Dreg - src) << 11 OR 1 -. Dreg 
Else, Dreg << 1 -. Dreg 

SUBF Subtract floating-point values Rn - src + Rn 

SUBF3 Subtract floating-point values (3 operand) srcl - src2 -+ Rn 

SUB1 Subtract integers Dreg - src -, Dreg 

SUB13 Subtract integers (3 operand) srcl - srQ -, Dreg 

SUBRB Subtract reverse integer with borrow src - Dreg - C -. Dreg 

SUBRF Subtract reverse floating-point value src- Rn -, Rn 

SUBRl Subtract reverse integer src - Dreg + Dreg 

SWI Software interrupt Perform emulator interrupt sequence 

TRAPcond Trap conditionally If cond = true or missing: 
Next PC -, * ++ SP 
Trap vector N -. PC 
0 -, ST (QIE) 

Else, continue 

TSTB Test bit fields Dreg AND src 

TSTW Test bit fields (3 operand) srcl AND src2 

XOR Bi i ise exclusive OR Dreg XOR src + Dreg 

XOR3 B i i s e  exclusive OR (3 operand) srcl XOR src2 -, Dreg 

Legend: C cany bit Rn register address (R7310) 
cond condition code SP st&% pointer 
Dreg register address (any register) sn: general addressing modes 
GIE global interrupt enable register mi Soperand addressing modes 
N any trapvectw0-27 wc2 3operand addressing msdes 
PC program counter ST status register 
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2.5 Internal Bus Operation 

Much of the TMS320C3x's high performance is due to internal busing and par- 
allelism. The separate program buses (PADDR and PDATA), data buses 
(DADDRl, DADDR2, and DDATA), and DMA buses (DMAADDR and 
DMADATA) allow for parallel program fetches, data accesses, and DMA ac- 
cesses. These buses connect all of the physical spaces (on-chip memory, 
off-chip memory, and on-chip peripherals) supported by the TMS320C30. 
Figure 2-3 shows these internal buses and their connection to on-chip and off- 
chip memory blocks. 

The PC is connected to the 24-bit program address bus (PADDR). The instruc- 
tion register (IR) is connected to the 32-bit program data bus (PDATA). These 
buses can fetch a single instruction word every machine cycle. 

The 24-bit data address buses (DADDRI and DADDR2) and the 32-bit data 
data bus (DDATA) support two data memory accesses every machine cycle. 
The DDATA bus carries data to the CPU over the CPU1 and CPU2 buses. The 
CPU1 and CPU2 buses can carry two data memory operands to the multiplier, 
ALU, and register file every machine cycle. Also internal to the CPU are regis- 
ter buses REG1 and REG2, which can carry two data values from the register 
file to the multiplier and ALU every machine cycle. Figure 2-2 shows the buses 
internal to the CPU section of the processor. 

The DMA controller is supported with a 24-bit address bus (DMAADDR) and 
a32-bit data bus (DMADATA). These buses allow the DMA to perform memory 
accesses in parallel with the memory accesses occurring from the data and 
program buses. 



Parallel Instruction Set Summary 
L 

2.6 Parallel lnstruction Set Summary 

Table 2-3 lists the 'C3x instruction set in alphabetical order. Each table entry 
shows the instruction mnemonic, description, and operation. Refer to Section 
10.3 on page 10-14 for a functional listing of the instructions and individual 
instruction descriptions. 
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Table 2-3. Parallel Instruction Set Summary 

Mnemonic Description Operation 

Parallel Arithmetic With Store Instruction8 

ABSF Absolute value of a floating point 
II STF 

ABSl 
II ST1 

Absolute value of an integer 

Add floating point 

Add integer 

Bitwise logical AND 

Arithmetic shift 

FIX Convert floating point to integer 
II ST' 

FLOAT Convert integer to floating point 
II STF 

LD F Load floating point 
I1 STF 

LDI Load integer 
II ST1 

LSH3 Logical shift 
II ST1 

srcl t src2 -, dsfl 
11 src3 -* dsf2 

srcl t src2 -. dstl 
)I src3 -, ds12 

srcl AND src2 -, dstl 
)I src3 + dst2 

If count r 0: 
src2 << count - dstl 
11 src3 -+ dsf2 
Else: 
src2 >> Jcountl -, dstl 
11 src3 -, dst2 

Fix(src2) 4 dstl 
11 src3 - dst2 

Float(src2) 4 dstl 
11 src3 -+ dsf2 

src2 -, dstl 
( 1  src3 -, dst2 

src2 -, dstl 
11 src3 -, dsf2 

If count r 0: 
s r d  << count -, dstl 
)I s r d  -, dst2 
Else: 
src2 >> (count1 -, dstl 
)I src3 dsf2 

MPYF3 Multiply floating point srcl x src2 -, dstl 
11 STF I I src3 4 dsf2 

MPY13 Multiply integer srcl x src2 -, dstl 
11 ST1 ( 1  src3 + dst2 

Legend: count register addr ( R 7 4 0 )  srcl register addr (R74O) 
dstl register addr (R7-RO) srQ indirect addr (disp = 0, 1, IRO, IR1) 
dsa indirect addr (disp = 0, 1, IRO, IR1) s r d  register addr (R7-RO) 
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Table 2-3. Parallel Instruction Set Summary (Continued) 

Mnemonlc Descrlptlon Operation 

Parallel Arithmetic With Store lnstructlons (Concluded) 

NEGF Negate floating point & s r d  - dstl 
11 STF 11 src3 -, dsf2 

NEGl Negate integer 0 - src2 -, dstl 
11 ST1 11 src3 -, dsf2 

NOT 
- 

Complement srcl -r dsfl 
11 ST1 ( 1  src3 -r dsiz 

OR3 Bitwise logical OR srcl OR src2 -, dstl 
11 ST1 11 src3 -, dsf2 

STF Store floating point srcl -r dstl 
I1 STF 11 src3 -, dsf2 

ST1 Store integer srcl -, dstl 
11 ST1 11 src3 -, dsf2 

SUBF3 Subtract floating point srcl - src2 -+ dstl 
11 STF 11 src3 -, dsf2 

SUB13 Subtract integer srcl - src2 -, dstl 
I I ST1 11 s r a  -, ~ S Q  

XOR3 Bitwise exclusive OR srcl XOR s r d  + dsfl 
II ST1 11 src3 3 dsi;! 

Parallel Load lnstructlons 

LDF Load floating point src2 -, dstl 
II LDF 11 src4 -, dsiz 

LDI Load integer src2 -, dsfl 
11 LDI I( src4 -, dslz 

Parallel Multiply And Add/Subtract Instructions 

MPYF3 Multiply and add floating point opl xop2-,op3 
11 ADDF3 11 0p4 + Op5 4 op6 

MPYF3 Multiply and subtract floating point opt x op2 + op3 11 SUBF3 I( 0p4 - 0p5 4 op6 

MPY13 Multiply and add integer opl xop2-,op3 
11 ADD13 (1 Op4 + Op5 -, op6 

MPY13 Multiply and subtract integer opl x op2 + op3 
11 SUB13 )I Op4 - 0p5 -, op6 

Legend: dsfl register addr (R7-RO) op3 register addr (RO or R1) 
dst2 indirect addr (disp = 0, 1, IRO, IR1) op6 register addr (R2 or R3) 
opl , op2,0p4, and op5 Any two of these srcl register addr (R7-RO) 

operands must be specified using src2 indirect addr (disp = 0, 1, IRO, IR1) 
register addr; the remaining two src3 register addr (R7-RO) 
must be specified using indirect. 
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2.7 External Bus Operation 

The TMS320C30 provides two external interfaces: the primary bus and the ex- 
pansion bus. The TMS320C31 provides one external interface: the primary 
bus. Both primary and expansion buses consist of a 32-bit data bus and a set 
of control signals. The primary bus has a 24-bit address bus, whereas the ex- 
pansion bus has a 13-bit address bus. Both buses can be used to address ex- 
ternal programldata memory or I10 space. The buses also have an external - 
RDY signal for wait-state generation. You can insert additional wait states un- 
der software control. Refer to Chapter 7 for detailed information on external 
bus operation. 

2.7.1 External Interrupts 

The TMS320C3x supports four external interrupts (W3-lNT0)), a number of 
internal interrupts, and a nonmaskable external RESET signal. These can be 
used to interrupt either the DMA or the CPU. When the CPU responds to the - 
interrupt, the IACK pin can be used to signal an external interrupt acknowl- 
edge. Section 6.5 (beginning on page 6-1 8) covers RESET and interrupt pro- 
cessing. 

2.7.2 Interlocked-Instruction Signaling 

Two external I10 flags, XFO and XF1 , can be configured as input or output pins 
under software control. These pins are also used by the interlocked operations 
of the TMS320C3x. The interlocked-operations instruction group supports 
multiprocessor communication (see Section 6.4 on page 6-1 2 for examples of 
the use of interlocked instructions). 



2.8 Peripherals 

All TMS320C3x peripherals are controlled through memory-mapped registers 
on a dedicated peripheral bus. This peripheral bus is composed of a32-bit data 
bus and a 24-bit address bus. This peripheral bus permits straightforward 
communication to the peripherals. The TMS320C3x peripherals include two 
timers and two serial ports (only one serial port is available on the 
TMS320C31). Figure 2-6 shows the peripherals with associated buses and 
signals. Refer to Chapter 8 for detailed information on the peripherals. 

Figure 2-6. Peripheral Modules 
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2.8.1 Timers 

The two timer modules are general-purpose 32-bit timerlevent counters with 
two signaling modes and internal or external docking. Each timer has an I10 
pin that can be used as an input clock to the timer or as an output signal driven 
by the timer. The pin can also be configured as a general-purpose I10 pin. 

2.8.2 Serlal Ports 

The two bidirectional serial ports are totally independent. They are identical to 
a complementary set of control registers that control each port. Each serial 
port can be configured to transfer 8, 16, 24, or 32 bits of data per word. The 
clock for each serial port can originate either internally or externally. An inter- 
nally generated divide-down clock is provided. The serial port pins are confi- 
gurable as general-purpose 110 pins. The serial ports can also be configured 
as timers. A special handshake mode allows TMS320C3xs to communicate 
over their serial ports with guaranteed synchronization. 
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2.9 Direct Memory Access (DMA) 

The on-chip DMA controller can read from or write to any location in the 
memory map without interfering with the operation of the CPU. Therefore, the 
TMS320C3x can interface to slow external memories and peripherals without 
reducing throughput to the CPU. The DMA controller contains its own address 
generators, source and destination registers, and transfer counter. Dedicated 
DMA address and data buses minimize conflicts between the CPU and the 
DMA controller. A DMA operation consists of a block or single-word transfer 
to or from memory. Refer to Section 8.3 on page 8-43 for detailed information 
on the DMA controller. Figure 2-7 shows the DMA controller with associated 
buses. 

Figure 2-7. DMA Controller 
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2.10 TMS320C30 and TMS320C31 Differences 

This section addresses the major memory access differences between the 
TMS320C31 and the TMS320C30 devices. Observance of these consider- 
ations is critical for achieving design goal success. 

Table 2-4 shows these differences, which are detailed in the following subsec- 
tions. 

Table 24. Feature Set Comparison 

Feature TMS320C31 TMS320C30 

Datalprogram bus Primary bus: one bus composed of Two buses: 
a 32-bit data and a 24-bit address Primary bus: a 32-bit data and a 
bus 24-bit address 

Expansion bus: a 32-bit data and 
a 13-bit address 

Serial I10 ports 1 serial port (SPO) 2 serial ports (SPO, SPI) 

User programldata ROM Not available 4K words11 6K bytes 

Program boot loader User selectable Not available 

2.1 0.1 DataIProgram Bus Differences 

The TMS320C31 uses only the primary bus and reserves the memory space 
that was previously used for expansion bus operations. 

2.1 0.2 Serial-Port Differences 

Serial port 1 references in Section 8.2 are not applicable to the TMS320C31. 
The memory locations identified for the associated control registers and buff- 
ers are reserved. 

2.1 0.3 Reserved Memory Locations 

Table 2-5 identifies TMS320C31 reserved memory locations in addition to 
those shown in Figure 3-8 on page 3-1 6. 
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Table 2-5. TMS320C3 1 Reserved Memory Locations 

Feature TMS320C31 TMS320C30 

Ox000000-0~000FFF ~esewedt Microcomputer program/data ROM modet 

0 ~ ~ x 8 0 1  FFF Reserved Expansion bus MSTRB space 

O x 8 0 4 ~ x 8 0 5 F F F  Resewed Expansion bus space 

Ox808050 Resewed SP1 global-control register 

0~808052-0~808056 Reserved SP1 local-control registers 

0x808058 Reserved SP1 data-transmit buffer 

Ox80805C Resewed SP1 receive-transmit buffer 

0x808060 Reserved Expansion bus control register 
7 Applies to the MCBL and MC modes only. 

2.10.4 Effects on the IF and IE Interrupt Registers 

The bits associated with serial port 1 in the IE (interrupt enable) register and 
the IF (interrupt flag) register for the TMS320C30 are not applicable to the 
TMS320C31. Write only logic 0 data to IE register bits 6,7,22, and 23 and to 
IF register bits 6 and 7. Writing logic 1s to these bits produces unpredictable 
results. 

2.1 0.5 User ProgramlData ROM 

The user prograrnldata ROM that is available for the TMS320C30 device does 
not exist for the TMS320C31. Rather, the memory locations that were allo- 
cated to support user programldata ROM operations have been reserved on 
the TMS320C31 to support microcomputer/boot loader accessing. See 
Chapter 3 for more information on using the microcomputer/bwt loader func- 
tion. 

2.1 0.6 Development Considerations 

If you are developing application code using a TMS320C3x simulator, XDS, 
or ASMILNK, TI recommends that you modify the .cfm and .cmd files by re- 
moving these memory spaces from the tool's configured memory. This 
ensures that your developed application performs as expected when the 
TMS320C31 device is used. 
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2.11 System lntegration 

In summary, the TMS320C3x is a powerful DSP system that integrates an in- 
novative, high-performance CPU, two external interface ports, large memo- 
ries, and efficient buses to support its speed. A single chip contains this sys- 
tem, along with peripherals such as a DMA controller, two serial ports, and two 
timers. The TMS320C3x system is truly an affordable single-chip solution. 



CPU Registers, Memory, and Cache 

The central processing unit (CPU) register file contains 28 registers that can 
be operated on by the multiplier and arithmetic logic unit (ALU). Included in the 
register file are the auxiliary registers, extended-precision registers, and index 
registers. The registers in the CPU register file support addressing, float- 
ing-pointlinteger operations, stack management, processor status, block re- 
peats, and interrupts. 

The TMS320C3x provides a total memory space of 16M (million) 32-bit words 
containing program, data, and I10 space. Two RAM blocks of 1 K x  32 bits each 
and a ROM block of 4K x 32 bits (available only on the TMS320C30) permit 
two CPU accesses in a single cycle. The memory maps for the microcomputer 
and microprocessor modes are similar, except that the on-chip ROM is not 
used in the microprocessor mode. 

A 64- x 32-bit instruction cache stores often-repeated sections of code. This 
greatly reduces the number of off-chip accesses and allows code to be stored 
off-chip in slower, lower-cost memories. Three bits in the CPU status register 
control the clear, enable, or freeze of the cache. 

This chapter describes in detail each of the CPU registers, the memory maps, 
and the instruction cache. Major topics are as follows: 

Topic 
- - 

Page 
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3.1 CPU Register File 

The TMS320C3x provides 28 registers in a multipart register file that is tightly 
coupled to the CPU. The program counter (PC) is not included in the 28 regis- 
ters. All of these registers can be operated on by the multiplier and the ALU 
and can be used as general-purpose 32-bit registers. However, the registers 
also have some special functions for which they are particularly appropriate. 
For example, the eight extended-precision registers are especially suited for 
maintaining extended-precision floating-point results. The eight auxiliary reg- 
isters support a variety of indirect addressing modes and can be used as gen- 
eral-purpose 32-bit integer and logical registers. The remaining registers pro- 
vide system functions, such as addressing, stack management, processor 
status, interrupts, and block repeat. Refer to Chapter 5 for detailed information 
and examples of the use of CPU registers in addressing. 

Table 3-1 lists the registers names and assigned functions. 

Table 3-1. CPU Registers 

Register Asslgned Functlon Name 
RO Extended-precision register 0 
R1 Extended-precision register 1 
R2 Extended-precision register 2 
R3 Extended-precision register 3 
R4 Extended-precision register 4 
R5 Extended-precision register 5 
R6 Extended-precision register 6 
R7 Extended-precision register 7 

ARO Auxiliary register 0 
AR 1 Auxiliary register 1 
AR2 Auxiliary register 2 
AR3 Auxiliary register 3 
AR4 Auxiliary register 4 
AR5 Auxiliary register 5 
AR6 Auxiliary register 6 
AR7 Auxiliary register 7 

D P Data-page pointer 
IRO Index register 0 
IR1 Index register 1 
BK Block-size register 
SP System stack pointer 
ST Status register 
IE CPUIDMA interrupt enable 
IF CPU interrupt Rags 

IOF I10 flags 

RS Repeat start address 
RE Repeat end address 
RC Repeat counter 
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3.1 .I Extended-Precision Registers (R740)  

The eight extended-precision registers (R7-RO) are capable of storing and 
supporting operations on 32-bit integer and 40-bit floating-point numbers. 
These registers consist of two separate and distinct regions: 

IJ bits 39-32: dedicated to storage of the exponent (e) of the floating-point 
number. 

bits 31-0: store the mantissa of the floating-point number: 

bit 31 : sign bit (s) 
bits 30-0: the fraction (9 

Any instruction that assumes the operands are floating-point numbers uses 
bits 39-0. Figure 3-1 illustrates the storage of 40-bit floating-point numbers 
in the extended-precision registers. 

Figure 3-1. Extended-Precision Register Floating-Point Format 

39 32 31 30 

For integer operations, bits 31-0 of the extended-precision registers contain 
the integer (signed or unsigned). Any instruction that assumes the operands 
are either signed or unsigned integers uses only bits 31-0. Bits 39-32 remain 
unchanged. This is true for all shift operations. The storage of 32-bit integers 
in the extended-precision registers is shown in Figure 3-2. 

Figure 3-2. Extended-Precision Register Integer Format 

39 32 31 0 

I unchanged I signed or unsigned integer I 

Auxiliary Registers (AR7-ARO) 

The eight 32-bit auxiliary registers (AR7-ARO) can be accessed by the CPU 
and modified by the two Auxiliary Register Arithmetic Units (ARAUs). The pri- 
mary function of the auxiliary registers is the generation of 24-bit addresses. 
However, they can also be used as loop counters in indirect addressing or as 
32-bit general-purpose registers that can be modified by the multiplier and 
ALU. Refer to Chapter 5 for detailed information and examples of the use of 
auxiliary registers in addressing. 
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3.1.3 Data-Page Pointer (DP) 

The data-page pointer (DP) is a 32-bit register that is loaded using the LDP 
instruction. The eight LSBs of the data-page pointer are used by the direct ad- 
dressing mode as a pointer to the page of data being addressed. Data pages 
are 64K words long, with a total of 256 pages. Bits 31-8 are reserved; you 
should always keep these set to 0 (cleared). 

3.1.4 index Registers (IRO, IR1) 

The 32-bit index registers (IRO and IR1) are used by the ARAU for indexing 
the address. Refer to Chapter 5 for detailed information and examples of the 
use of index registers in addressing. 

3.1.5 Block Size Register (BK) 

The 32-bit block size register (BK) is used by the ARAU in circular addressing 
to specify the data block size (see Section 5.3 on page 5-24). 

3.1.6 System Stack Pointer (SP) 

The system stack pointer (SP) is a 32-bit register that contains the address of 
the top of the system stack. The SP always points to the last element pushed 
onto the stack. The SP is manipulated by interrupts, traps, calls, returns, and 
the PUSH, PUSHF, POP, and POPF instructions. Pushes and pops of the 
stack perform preincrement and postdecrement, respectively, on all 32 bits of 
the stack pointer. However, only the 24 LSBs are used as an address. Refer 
to Section 5.5 on page 5-31 for information about system stack management. 

3.1.7 Status Register (ST) 

The status register (ST) contains global information relating to the state of the 
CPU. Operations usually set the condition flags of the status register accord- 
ing to whether the result is 0, negative, etc. This includes register load and 
store operations as well as arithmetic and logical functions. When the status 
register is loaded, however, the contents of the source operand replace the 
current contents bit-for-bit, regardless of the state of any bits in the source op- 
erand. Therefore, following a load, the contents of the status register are iden- 
tically equal to the contents of the source operand. This allows the status regis- 
ter to be saved easily and restored. At system reset, 0 is written to this register. 
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Figure 3-3 shows the format of the status register. Table 3-2 defines the sta- 
tus register bits, their names, and their functions. 

Figure 3-3. Status Register 

Not#: 1) xx = resewed bit, read as 0 
2) R=read,W=write 
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Table 3 4  Status Register Bits Summary 

Bit Name Reset Value Functlon 
-- 

0t  C 0 Carry flag 

1 t V 0 Overflow flag 

2t Z 0 Zero flag 

3t N 0 Negative flag 

4t UF 0 Floating-point underflow flag 

5 t  LV 0 Latched overflow flag 

6t LU F 0 Latched floating-point underflow flag 

7 OVM 0 Overflow mode flag. This flag affects only the integer operations. If OVM 
= 0, the overflow mode is turned off; integer results that overflow are 
treated in no special way. If OVM = 1, 

a) integer results overflowing in the positive direction are set to the 
most positive 32-bit twos-complement number (7FFFFFFFh), and 

b) integer results overflowing in the negative direction are set to the 
most negative 32-bit twos-complement number (80000000h). 

Note that the function of V and LV is independent of the setting of OVM. 

8 RM 0 Repeat mode flag. If RM = 1, the PC is being modified in either the 
repeat-block or repeat-single mode. 

9 Reserved 0 Read as 0 

10 C F 0 Cache freeze. When CF = 1, the cache is frozen. If the cache is enabled 
(CE = I ) ,  fetches from the cache are allowed, but no modification of the 
state of the cache is performed. This function can be used to save fre- 
quently used code resident in the cache. At reset, 0 is written to this bit. 
Cache clearing (CC = 1) is allowed when CF = 0. 

0 Cache enable. CE = 1 enables the cache, allowing the cache to be used 
according to the least recently used (LRU) cache algorithm. CE = 0 dis- 
ables the cache; no update or modification of the cache can be per- 
formed. No fetches are made from the cache. This function is useful for 
system debugging. At system reset, 0 is written to this bit. Cache clear- 
ing (CC = 1) is allowed when CE = 0. 

12 CC 0 Cache clear. CC = 1 invalidates all entries in the cache. This bit is always 
cleared after it is written to and thus always read as 0. At reset, 0 is writ- 
ten to this bit. 

13 GIE 0 Global interrupt enable. If GIE = 1, the CPU responds to an enabled in- 
terrupt. If GIE = 0, the CPU does not respond to an enabled interrupt. 

15-14 Reserved 0 Read as 0 

31-1 6 Reserved 0-0 Value undefined 

t The seven condition flags (ST bits 6 4 )  are defined in Section 10.2 on page 10-10. 

3-6 
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3.1.8 CPUIDMA interrupt Enable Register (IE) 

The CPUIDMA interrupt enable register (IE) is a 32-bit register (see 
Figure 3-4). The CPU interrupt enable bits are in locations 1 0 4 .  The direct 
memory access (DMA) interrupt enable bits are in locations 26-16. A 1 in a 
CPUIDMA IE register bit enables the corresponding interrupt. A 0 disables the 
corresponding interrupt. At reset, 0 is written to this register. Table 3-3 defines 
the register bits, the bit names, and the bit functions. 

Figure 3-4. CPU/DMA Interrupt Enable Register (IE) 

EDlNT ETlNTl ETINTO ERINT1 EXINTI ERINTO EXINTO ElNT3 
(DMA) (DMA) (DMA) (DMA) (DMA) (DMA) (DMA) (DMA) 

Notes: 1) xx = reserved bit, read as 0 

2) R = read, W = write 
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Table 3-3. I€ Register Bits Summary 

Blt Name Reset Value Functlon 

0 ElNTO 0 Enable external interrupt 0 (CPU) 

1 ElNTl 0 Enable external interrupt 1 (CPU) 

2 El NT2 0 Enable external interrupt 2 (CPU) 

3 EINT3 0 Enable external interrupt 3 (CPU) 

4 EXINTO 0 Enable serial-port 0 transmit interrupt (CPU) 

5 ERINTO 0 Enable serial-port 0 receive interrupt (CPU) 

6 EX1 NTl 0 Enable serial-port 1 transmit interrupt (CPU) 

7 ERINT1 0 Enable serial-port 1 receive interrupt (CPU) 

8 ETINTO 0 Enable timer 0 interrupt (CPU) 

9 ETlNTl 0 Enable timer 1 interrupt (CPU) 

10 EDlNT 0 Enable DMA controller interrupt (CPU) 

15-11 Resewed 0 Value undefined 

16 ElNTO 0 Enable external interrupt 0 (DMA) 

17 ElNTl 0 Enable external interrupt 1 (DMA) 

18 EINT2 0 Enable external interrupt 2 (DMA) 

19 El NT3 0 Enable external interrupt 3 (DMA) 

20 EX1 NTO 0 Enable serial-port 0 transmit interrupt (DMA) 

21 ERINTO 0 Enable serial-port 0 receive interrupt (DMA) 

22 EXlNTl 0 Enable serial-port 1 transmit interrupt (DMA) 

23 ERINT1 0 Enable serial-port 1 receive interrupt (DMA) 

24 ETINTO 0 Enable timer 0 interrupt (DMA) 

25 ETlNTl 0 Enable timer 1 interrupt (DMA) 

26 EDlNT 0 Enable DMA controller interrupt (DMA) 

31 -27 Resewed 0-0 Value undefined 
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3.1.9 CPU Interrupt Flag Register (IF) 

Figure 3-5 shows the 32-bit CPU interrupt flag register (IF). A 1 in a CPU IF 
register bit indicates that the corresponding interrupt is set. The IF bits are set 
to 1 when an interrupt occurs. They may also be set to 1 through software to 
cause an interrupt. A 0 indicates that the corresponding interrupt is not set. If 
a 0 is written to an IF register bit, the corresponding interrupt is cleared. At re- 
set, 0 is written to this register. Table 3-4 lists the bit fields, bit-field names, and 
bit-field functions of the CPU IF register. 

Figure 3-5. CPU Interrupt- Flag Register (I9 

Notes: 1) xx = resewed bit, read as 0 

2) Rsread, W =write 

Table 3-4. IF Register Bits Summary 

Bit Name Reset Value Function 

0 l NTO 0 External interrupt 0 flag 

1 INTI 0 External interrupt 1 flag 

2 I NT2 0 External interrupt 2 flag 

3 I NT3 0 External interrupt 3 flag 

4 XI NTO 0 Serial-port 0 transmit interrupt flag 

5 RINTO 0 Serial-port 0 receive interrupt flag 

6 XINTl t 0 Serial-port 1 transmit interrupt flag 

7 RINTI t 0 Serial-port 1 receive interrupt flag 

8 TI NTO 0 Timer 0 interrupt flag 

9 TINT1 0 7mer 1 interrupt flag 

10 DINT 0 DMA channel interrupt flag 

31 -1 1 Reserved 0-0 Value undefined 

t Reserved on TMS320C31 
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3.1 .I 0 110 Flags Register (IOF) 

The I10 flags register (IOF) is shown in Figure 3-6 and controls the function 
of the dedicated external pins, XFO and XF1. These pins can be configured for 
input or output. The pins can also be read from and written to. At reset, 0 is 
written to this register. Table 3-5 shows the bit fields, bit-field names, and bit- 
field functions. 

Figure 3-6. I/O-Flag Register (100 

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0  
~ x x ~ x x ~ x x ~ x x ~ x x ~ x x ~ x x ~ x x ~  lNXFl IOUTXFll iIOXF1 lxx l  INXFO ~OUTXFO~ iIOXF0 Ixx] 

Notes: 1) xx = reserved bit, read as 0 

2) R = read, W =write 
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Table 3-5. IOF Register Bits Summary 

Blt Name Reset Value Functlon 

0 Resewed 0 Read as 0 

1 IIOXFO 0 If ~IOXFO = 0, XFO is configured as a general-purpose input pin. 
If IIOXFO = 1, XFO is configured as a general-purpose output pin. 

2 OUTXFO 0 Data output on XFO 

3 INXFO 0 Data input on XFO. A wriie has no effect. 

4 Reserved 0 Read as 0 

5 IIOXFI 0 If 1 1 0 ~ ~ 1  = 0, XF1 is configured as a general-purpose input pin. 
If IIOXF1 = 1, XF1 is configured as a general-purpose output pin. 

6 OUTXFl 0 Data output on XF1 

7 INXFI 0 Data input on XF1. A write has no effect. 

31-8 Reserved 0-0 Read as 0 

3.1 .I 1 Repeat-Count (RC) and Block-Repeat Registers (RS, RE) 

The 32-bit repeat start address register (RS) contains the starting address of 
the block of program memory to be repeated when the CPU is operating in the 
repeat mode. 

The 32-bit repeat end address register (RE) contains the ending address of 
the block of program memory to be repeated when the CPU is operating in the 
repeat mode. 

I i 

Note: RE < RS 

If RE < RS, the block of program memory will not be repeated, and the code 
will not loop backwards. However, the ST(RM) bit remains set to 1. 

The repeat-count register (RC) is a 32-bit register used to specify the number 
of times a block of code is to be repeated when a block repeat is performed. 
If RC contains the number n, the loop is executed n + 1 times. 

3.1.12 Program Counter (PC) 

The PC is a 32-bit register containing the address of the next instruction to be 
fetched. While the program counter register is not part of the CPU register file, 
it can be modified by instructions that modify the program flow. 
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3.1 -13 Resewed Bits and Compatibility 

To retain compatibility with future members of the TMS320C3xfamily of micro- 
processors, reserved bits that are read as 0 must be written as 0. A reserved 
bit that has an undefined value must not have its current value modified. In oth- 
er cases, you should maintain the reserved bits as specified. 
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3.2 Memory 

The TMS320C3xSs total memory space of 16M (million) 32-bit words contains 
program, data, and I10 space, allowing tables, coefficients, program code, or 
data to be stored in either RAM or ROM. In this way, you can maximize memory 
usage and allocate memory space as desired. 

RAM blocks 0 and 1 are each 1 K x 32 bits. The ROM block is 4Kx 32 bits. Each 
on-chip RAM and ROM block is capable of supporting two CPU accesses in 
a single cycle. The separate program buses, data buses, and DMA buses al- 
low for parallel program fetches, data readsbrites, and DMA operations. 
Chapter 9 covers this in detail. 

3.2.1 TMS320C3x Memory Maps 

The memory map depends on whether the processor is running in micropro- 
cessor mode (MCI~ or M C B U ~  = 0) or microcomputer mode (MCI~ or 
MCBIJW = 1). The memory maps for these modes are similar (see 
Figure 3-7). Locations 800000h through 801 FFFh are mapped to the expan- 
sion bus. When this region, available only on the TMS320C30, is accessed, 
MSTRB is active. Locations 802000h through 803FFFh are reserved. Loca- 
tions 804000h through 805FFFh are mapped to the expansion bus. When this 
region, available only on the TMS320C30, is accessed, is active. Lo- 
cations 806000h through 807FFFh are reserved. All of the memory-mapped 
peripheral registers are in locations 808000h through 8097FFh. In both 
modes, RAM block 0 is located at addresses 809800h through 809BFFh, and 
RAM block 1 is located at addresses 809C00h through 809FFFh. Memory lo- 
cations 80A000h through OFFFFFFh are accessed over the primary external 
memory port (m active). 

In microprocessor mode, the 4K on-chip ROM (TMS320C30) or boot loader 
(TMS320C31) is not mapped into the TMS320C3x memory map. As shown 
in Figure 3-7, locations Oh through 03Fh consist of interrupt vector, trap vec- 
tor, and reserved locations, all of which are accessed over the primary external 
memory port (STRB active). Interrupt and trap vector locations are shown in 
Figure 3-9. Locations 040h-7FFFFFh and 80AOOOL-FFFFFFh are also ac- 
cessed over the primary external memory port. 
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In microcomputer mode, the 4K on-chip ROM (TMS320C30) or boot loader 
(TMS320C31) is mapped into locations Oh through OFFFh. There are 192 lo- 
cations (Oh through BFh) within this block for interrupt vectors, trap vectors, 
and a reserved space. Locations 1000h-7FFFFFh are accessed over the pri- 
mary external memory port (STRB active). 



Figure 3-7. TMS320C30 Memory Maps 
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Figure 3-8. TMS320C3 1 Memory Maps 

Reset, Interrupt, Trap Vector, 
and Reserved Locations (04) 

(External STRB Active) 

External - 
STRB Active 

Reserved 
(32K Words) 

Peripheral Bus 
Memory-Mapped 

Registers 
(6K Words Internal) 

RAM Block 0 
(1 K Word Internal) 

RAM Block 1 
(1 K Word Internal) 

External - 
STRB Active 

> 

FFFh 
1 m  

Reserved for Boot 
Loader Operations 

Boot 1-3 locations are used by the boot-loader function. See Section 3.4 for 
a complete description. All reserved memory locations are described in 
Table 2-5 on page 2-31. 

809FFFh 
80A000h 

FFFOOOh 

FFFFFFh 

(b) Microcomputer/Boot Loader Mode 

809FFFh 
80A000h 

FFFFFFh 

(a) Microprocessor Mode 



Memory 

3.2.2 TMS320C31 Memory Maps 

Setting the TMS320C31 M C B U ~  pin determines the mode in which the 
TMS320C31 can function: 

0 Microprocessor mode ( M C B U ~  = 0), or 
0 Microcomputer/boot loader mode ( M C B U ~  = 1) 

The major difference between these two modes is their memory maps (see 
Figure 3-8). The program boot load feature is enabled when the M c B U ~  pin 
is driven high during reset. 

Figure 3-8 shows the memory locations (internal and external) used by the 
boot loader to load the source program. 

3.2.3 ResetIlnterrupUrap Vector Map 

The addresses for the reset, interrupt, and trap vectors are OOh-3FhI as shown 
in Figure 3-9. The reset vector contains the address of the reset routine. 

Microprocessor and Microcomputer Modes 

In the microprocessor mode of the TMS320C30 and TMS320C31 and the 
microcomputer mode of the TMS320C30, the interrupt and trap vectors stored 
in locations OMFh are the addresses of the starts of the respective interrupt 
and trap routines. For example, at reset, the content of memory location OOh 
(reset vector) is loaded into the PC, and execution begins from that address. 
See Figure 3-9. 

Microcomputer/Boot Loader Mode 

In the microwmputer/boot loader mode of the TMS320C31, the interrupt and 
trap vectors stored in locations 809FC1 h-809FFFh are branch instructions to 
the start of the respective interrupt and trap routines. See Figure 3-1 0. 
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Figure 3-9. Reset, Interrupt, and Trap-Vector Locations for the TMS320C30/TMS320C31 
Microprocessor Mode 
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t Reserved on TMS320C31 

I 1 

Note: Traps 28-31 

Traps 28-31 are reserved; do not use them. 
I 1 



Figure 3- 10. Interrupt and Trap Branch Instructions for the TMS320C3 1 Microcomputer 
Mode 
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Traps 28-31 are reserved; do not use them. 
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DINT 
I 
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3.2.4 Peripheral Bus Map 

The memory-mapped peripheral registers are located starting at address 
808000h. The peripheral bus memory map is shown in Figure 3-1 1. Each pe- 
ripheral occupies a l &word region of the memory map. Locations 808010h 
through 80801 Fh and locations 808070h through 8097FFh are reserved. 

Figure 3- 11. Peripheral Bus Memory Map 

8097FFh 

t Resewed on TMS320C31 

DMA Controller Registers 

(1 6) 

Resewed 

(1 6) 

Timer 0 Registers 

(16) 

Timer 1 Registers 

(1 6) 

Serial-Port 0 Registers 

(16) 

Serial-Port 1 ~egisterst 

(1 6) 

Primary and Expansion Port 
Registers (1 6) 

Resewed 
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3.3 Instruction Cache 

A 64 x 32-bit instruction cache facilitates maximum system performance by 
storing sections of code that can be fetched when the device repeatedly ac- 
cesses time-critical code. This reduces the number of off-chip accesses nec- 
essary and allows code to be stored off-chip in slower, lower-cost memories. 
The cache also frees external buses from program fetches so that they can be 
used by the DMA or other system elements. 

The cache can operate automatically, with no user intervention. Subsection 
3.3.2 describes a form of the least recently used (LRU) cache update algo- 
rithm. 

3.3.1 Cache Architecture 

The instruction cache (see Figure 3-1 2) contains 64 32-bit words of RAM; it 
is divided into two 32-word segments. Associated with each segment is a 
19-bit segment start address (SSA) register. For each word in the cache, there 
is a corresponding single bit: present (P) flag. 
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Figure 3-72. lnstruction Cache Architecture 

Segment Start P 
Address Registers Flags Segment Words 

LRU * * Stack 
Most Recently Used 
Segment Number 

SSA Register 0 

b--- 19 ----I Least Recently Used 
Segment Number 

Segment Word 30 

Segment Word 31 I 
SSA Register 1 1 

1 Segment 1 

When the CPU requests an instruction word from external memory, the cache 
algorithm checks to determine whether the word is already contained in the 
instruction cache. Figure 3-1 3 shows the partitioning of an instruction address 
as used by the cache control algorithm. The algorithm uses the1 9 most signifi- 
cant bits (MSBs) of the instruction address to select the segment; the five least 
significant bits (LSBs) define the address of the instruction word within the per- 
tinent segment. The algorithm compares the 19 MSBs of the instruction ad- 
dress with the two SSA registers. If there is a match, the algorithm checks the 
relevant P flag. The P flag indicates whether a word within a particular segment 
is already present in cache memory. 

Figure 3-73. Address Partitioning for Cache Control Algorithm 

segment start address instruction word 
(SSA) address within segment 

If there is no match, one of the segments must be replaced by the new data. 
The segment replaced in this circumstance is determined by the LRU algo- 
rithm. The LRU stack (see Figure 3-12) is maintained for this purpose. 



lnstmction Cache 

The LRU stack determines which of the two segments qualifies as the least 
recently used after each access to the cache; therefore, the stack contains ei- 
ther 0,1 or 1 ,O. Each time a segment is accessed, its segment number is re- 
moved from the LRU stack and pushed onto the top of the LRU stack. There- 
fore, the number at the top of the stack is the most recently used segment num- 
ber, and the number at the bottom of the stack is the least recently used seg- 
ment number. 

At system reset, the LRU stack is initialized with 0 at the top and 1 at the bot- 
tom. All P flags in the instruction cache are cleared. 

When a replacement is necessary, the least recently used segment is selected 
for replacement. Also, the 32 P flags for the segment to be replaced are set 
to 0, and the segment's SSA register is replaced with the 19 MSBs of the in- 
struction address. 

3.3.2 Cache Algorithm 

When the TMS320C3x requests an instruction word from external memory, 
one of two possible actions occurs: a cache hit or a cache miss. 

Q Cache Hit. The cache contains the requested instruction, and the follow- 
ing actions occur: 

1) The instruction word is read from the cache. 

2) The number of the segment containing the word is removed from the 
LRU stack and pushed to the top of the LRU stack, thus moving the 
other segment number to the bottom of the stack. 

Q Cache Miss. The cache does not contain the instruction. Following are 
the types of cache miss: 

Word miss. The segment address register matches the instruction ad- 
dress, but the relevant P flag is not set. The following actions occur in 
parallel: 

8 The instruction word is read from memory and copied into the 
cache. 

8 The number of the segment containing the word is removed from 
the LRU stack and pushed to the top of the LRU stack, thus mov- 
ing the other segment number to the bottom of the stack. 

8 The relevant P flag is set. 
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Segment miss. Neither of the segment addresses matches the in- 
struction address. The following actions occur in parallel: 

The least recently used segment is selected for replacement. The 
P flags for all 32 words are cleared. 

The SSA register for the selected segment is loaded with the 19 
MSBs of the address of the requested instruction word. 

The instruction word is fetched and copied into the cache. It goes 
into the appropriate word of the least recently used segment. The 
P flag for that word is set to 1. 

The number of the segment containing the instruction word is re- 
moved from the LRU stack and pushed to the top of the LRU 
stack, thus moving the other segment number to the bottom of the 
stack. 

Only instructions may be fetched from the program cache. All reads and writes 
of data in memory bypass the cache. Program fetches from internal memory 
do not modify the cache and do not generate cache hits or misses. The pro- 
gram cache is a single-access memory block. Dummy program fetches (i.e., 
following a branch) are treated by the cache as valid program fetches and can 
generate cache misses and cache updates. 

Take care when using self-modifying code. If an instruction resides in cache 
and the corresponding location in primary memory is modified, the copy of the 
instruction in cache is not modified. 

You can use the cache more efficiently by aligning program code on 32-word 
address boundaries. Do this with the ALIGN directive when coding assembly 
language. 

3.3.3 Cache Control Bits 
Three cache control bits are located in the CPU status register: 

IJ Cache Clear Bit (CC). Writing a 1 to the cache clear bit (CC) invalidates 
all entries in the cache. All P flags in the cache are cleared. The CC bit is 
always cleared after the cache is cleared. It is therefore always read as a 
0. At reset, the cache is cleared and 0 is written to this bit. 

IJ Cache Enable Bit (CE). Writing a 1 to this bit enables the cache. When 
enabled, the cache is used according to the previously described cache 
algorithm. Writing a 0 to the cache enable bit disables the cache; no up- 
dates or modification of the cache can be performed. Specifically, no SSA 
register updates are performed, no P flags are modified (unless CC = I ) ,  
and the LRU stack is not modified. Writing a 1 to CC when the cache is 
disabled clears the cache, and, thus, the P flags. No fetches are made 
from the cache when the cache is disabled. At reset, 0 is written to this bit. 
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Cache Freeze Bit (CF). When CF = 1, the cache is frozen. If, in addition, 
the cache is enabled, fetches from the cache are allowed, but no modifica- 
tion of the state of the cache is performed. Specifically, no SSA register 
updates are performed, no P flags are modified (unless CC = l), and the 
LRU stack is not modified. You can use this function to keep frequently 
used code resident in the cache. Writing a 1 to CC when the cache is fro- 
zen clears the cache, and, thus, the P flags. At reset, 0 is written to this bit. 

Table 3-6 defines the effect of the CE and CF bits used in combination. 

Table 3-6. Combined Effect of the CE and CF Bits 

CE CF Effect 

0 0 Cache not enabled 

0 1 Cache not enabled 

1 0 Cache enabled and not frozen 

1 1 Cache enabled and frozen 
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3.4 Using the TMS320C31 Boot Loader 

This section describes how to use the TMS320C31 microcomputer/boot load- 
er (MCBUf@)function. This feature is unique to the TMS320C31 and is not 
available on the TMS320C30 devices. The source code for the boot loader is 
supplied in Appendix G. 

3.4.1 Boot-Loader Operations 

The boot loader lets you load and execute programs that are received from a 
host processor, inexpensive EPROMs, or other standard memory devices. 
The programs to be loaded either reside in one of three memory mapped areas 
identified as Boot 1, Boot 2, and Boot 3 (see the shaded areas of Figure 3-8), 
or they are received by means of the serial port. 

User-definable byte, half-word, and word-data formats, as well as 32-bit fixed 
burst loads from the TMS320C31 serial port, are supported. See Section 8.2 
on page 8-13 for a detailed description of the serial-port operation. 

3.4.2 Invoking the Boot Loader 

The boot-loader function is selected by resetting the processor while driving 
the MCBUW pin high. Use interrupt pins m- lNTd to set the mode of the 
boot load operation. Figure 3-1 4 shows the flow of this operation, which de- 
pends on the mode selected (external memory or serial boot). Figure 3-1 5 
shows memory load operations; Figure 3-1 6 shows serial port load opera- 
tions. 
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Figure 3- 14. Boot-Loader-Mode Selection Flowchart 

MCBUMP = 1 
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Figure 3-1 5. Boot- Loader Memory-Load Flowchart 

I Branch to Address 
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Figure 3- 16. Boot- Loader Serial- Port Load- Mode Flowchart 

I Set up Serial Port 
for 32-Bit 

Fixed Burst Mode I I 
Wait for Serial / pm!nput / I 

Load Block Size Ll 
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Load Block Size I I 
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Block Loaded 

+ 
Begin Program Execution 

3.4.3 Mode Selection 

After reset, the loader mode is determined by polling the status of the 
INT3-INTO bits of the IF register. The bits are polled in the order described in 
the flowchart in Figure 3-1 4 on page 3-27. Table 3-7 lists the mode options 
and the interrupt that you can use to set the particular mode. The interrupt can 
be driven any time after the RESET pin has been deasserted. Unless only one 
interrupt flag bit is set (INTO, INTI, INT2, or INT3), the boot mode cannot be 
guaranteed. 
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Table 3-7. Loader Mode Selection 

~ c t i v e  Interrupt Loader Mode Memory Addresrer - 
INTO External memory Boot 1 address 0x001 000 
- 
l NTl External memory Boot 2 address 0x400000 
- 
I NT2 External memory Boot 3 address OxFFFOOO 
- 
I NT3 32-bit serial Serial port 0 

3.4.4 External Memory Loading 

Table 3-8 shows and describes the information that you must specify to define 
boot memory organization (8,16, or 32 bits), the code block size, the load des- 
tination address, and memory access timing control for the boot memory. You 
must specify this information before a source program can be externally 
loaded. 

This information must be specified in the first four locations of the Boot 1, Boot 
2, or Boot 3 areas. The header is followed by the data or program code that 
is the block size in length. 

Table 3-8. External Memory Loader Header 

Location Description Valid Data Entries 

0 Boot memory type (8, 16, or 32) Ox8,0x10, or 0x20 specified as a 32-bit number 

1 Boot memory configuration See Chapter 7 for valid bus-control register entries. 
(defined # of wait states, etc.) 

2 Program block size (blk) Any value 0 < blk < 224 

3 Destination address Any valid TMS320C31 24-bit address 

4 Program code starts here Any 32-bit data value or valid TMS320C3x instruction 

The loader fetches 32 bits of data for each specified location, regardless of 
what memory configuration width is specified. The data values must reside 
within or be written to memory, beginning with the value of least significance 
for each 32 bits of information. 

3.4.5 Examples of External Memory Loads 

Example 3-1, Example 3-2, and Example 3-3 show memory images for 
byte-wide, 16-bit-wide, and 32-bit-wide configured memory. 
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These examples assume the following: 

0 An INT6 signal was detected after reset was deasserted (signifying an ex- 
ternal memory load from Boot 1). 

0 The loader header resides at memory location 0x1 000 and defines the fol- 
lowing: 

I Boot memory type EPROMs that require two wait states and SWW = 11, 

A loader destination address at the beginning of the TMS320C31's in- 
ternal RAM Block 1, and 

A single block of memory that is 0x1 FF in length. 

Example 3-1. Byte- Wide Configured Memory 

Address Value Comments 
- - - -p -- - -- 

0x08 Memory width = 8 bits 

ox1 009 

0x1 OOA 

0x1 OOC 

0x1 00D 

0x1 00E 

Ox00 

0x58 Memory type = SWW = 11, WCNT = 2 

OxFF Program code size = 0x1 FF 

Ox00 Program load starting address = Ox809C00 

Ox9C 
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Example 3-2.16-Bit- Wide Configured Memory 

Address Value Comments 

0x1 0 Memory width = 16 

Ox0000 

Ox1 058 Memory type = SWW = 11, WCNT = 2 

Ox0000 

0x1 FF Program code size = 0x1 FF 

0x0000 

Ox9C00 Program load starting address = Ox809C00 

0x0080 

Example 3-3.32-Bit- Wide Configured Memory 

Address Value Comments 

0x1 000 Ox00000020 Memory width = 32 

Ox1 001 0x00001 058 Memory type = SWW = 11, WCNT = 2 

Ox1 002 0x000001 FF Program code size = 0x1 FF 

0x1 003 Ox00809C00 Program load starting address = Ox809C00 

After reading the header, the loader transfers blk, 32-bit words beginning at a 
specified destination address. Code blocks require the same byte and half- 
word ordering conventions. The loader can also load multiple code blocks at 
different address destinations. 

After loading all code blocks, the boot loader branches to the destination ad- 
dress of the first block loaded and begins program execution. Consequently, 
the first code block loaded should be a start-up routine to access the other 
loaded programs. 

Each code block has the following header: 

BLK size 1st location 
Destination address 2nd location 

End the loader function and begin execution of the first code block by append- 
ing the value of OxOOOOOOW to the last block. 
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3.4.6 Serial-Port Loading 

Boot loads, by way of the TMS320C31 serial port, are selected by driving the - 
INT3 pin active (low) following reset. The loader automatically configures the 
serial port for 32-bit fixed-burst-mode reads. It is interrupt-driven by the frame 
synchronization receive (FSR) signal. You cannot change this mode for boot 
loads. Your hardware must externally generate the serial-port clock and FSR. 

As in parallel loading, a header must precede the actual program to be loaded. 
However, you need only apply the block size and destination address because 
the loader and your hardware have predefined serial-port speed and data for- 
mat (i.e., skip data words 0 and 1 from Table 3-8). 

The transferred data-bit order must begin with the MSB and end with the LSB. 

3.4.7 interrupt and Trap-Vector Mapping 

Unlike the microprocessor mode, the microcomputer/boot-loader (MCBL) 
mode uses a dual-vectoring scheme to service interrupt and trap requests. 
Dual vectoring was implemented to ensure code compatibility with future ver- 
sions of TMS320C3x devices. 

In a dual-vectoring scheme, branch instructions to an address, rather than di- 
rect-interrupt vectoring, are used. The normal interrupt and trap vectors are 
defined to vector to the last 63 locations in the on-chip RAM, starting at address 
809FC1 h. When the loader is invoked, the last 63 locations in RAM Block 1 of 
the TMS320C31 are assumed to contain branch instructions to the interrupt 
source routines. 
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Table 3-9 shows the M C B V ~  mode interrupt and trap instruction memory 
maps. 

Table 3-9. TMS320C3 1 Interrupt and Trap Memory Maps 

Address Description - 
809FC1 l NTO 

809FC7 Reserved 

Reserved 

tlNTO 
- 
TI NTl - 
DINT0 

Reserved 

TRAPO - 
TRAP1 

8 0 9 F F M F F F  Reserved 
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3.4.8 Precautions 

The boot loader builds a one-word-deep stack, starting at location 809801 h. 

The interrupt flags are not reset by the boot-loader function. If pending inter- 
rupts are to be avoided when interrupts are enabled, clear the IF register be- 
fore enabling interrupts. 

The MCBUMP pin should remain high during the entire boot-loader execution, 
but it can be changed subsequently at any time. The TMS320C31 does not 
need to be reset after the MCBUW pin is changed. During the change, the 
TMS320C31 should not access addresses Oh-FFFh. 
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In the TMS320C3x architecture, data is organized into three fundamental 
types: integer, unsigned-integer, and floating-point. The terms integer and 
signed-integer are considered to be equivalent. The TMS320C3x supports 
short and single-precision formats for signed and unsigned integers. It also 
supports short, single-precision, and extended-precision formats for float- 
ing-point data. 

Floating-point operations make fast, trouble-free, accurate, and precise com- 
putations. Specifically, the TMS320C3x implementation of floating-point arith- 
metic facilitates floating-point operations at integer speeds while preventing 
problems with overflow, operand alignment, and other burdensome tasks 
common in integer operations. 

This chapter discusses in detail the data formats and floating-point operations 
supported in the TMS320C3x. Major topics in this section are as follows: 

Topic Page 
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4.1 lnteger Formats 

The TMS320C3x supports two integer formats: a 1 &bit short integer format 
and a 32-bit single-precision integer format. When extended-precision regis- 
ters are used as integer operands, only bits 31-0 are used; bits 39-32 remain 
unchangedandunused. 

4.1 .I Short-Integer Format 

The short integer format is a 16-bit two's complement integer format for imme- 
diate integer operands. For those instructions that assume integer operands, 
this format is sign-extended to 32 bits (see Figure 4-1). The range of an 
integer si, represented in the short integer format, is -215 s si s 215 - 1. In 
Figure 4-1, s = signed bit. 

Figure 4-1. Short lnteger Format and Sign Extension of Short Integers 

I I 
(a) Short lnteger Format 

31 16 15 0 

S S S S S S S S S S S S S S S S  I 
(b) Sign Extension of a Short lnteger 

4.1.2 Single-Precision lnteger Format 

In the single-precision integer format, the integer is represented in two's com- 
plement notation. The range of an integer sp, represented in the single-preci- 
sion integer format, is -231 s sp s 231 - 1. Figure 4-2 shows the single-preci- 
sion integer format. 

Figure 4-2. Single- Precision lnteger Format 
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4.2 Unsigned-Integer Formats 

The TMS320C3x supports two unsigned-integer formats: a 16-bit short format 
and a 32-bit single-precision format. In extended-precision registers, the un- 
signed-integer operands use only bits 31-0; bits 39-32 remain unchanged. 

4.2.1 Short Unsigned-Integer Format 

Figure 4-3 shows the1 6-bit, short, unsigned-integer format for immediate un- 
signed-integer operands. For those instructions that assume 
unsigned-integer operands, this format is zero-filled to 32 bits. In Figure 4-3, 
x = most significant bit (MSB) (1 or 0). 

Figure 4-3. Short Unsigned-Integer Format and Zero Fill 

(a)Short Unsigned-Integer Format 

(b) Zero Fill of a Short Unsigned Integer 

4.2.2 Single-Precision Unsigned-Integer Format 

In the single-precision unsigned-integer format, the number is represented as 
a 32-bit value, as shown in Figure 4-4. 

Figure 4-4. Single-Precision Unsigned-Integer Format 

Data Formats and Floating-point Operation 4-3 



Floating- Point Formats 
L 

4.3 Floating-Point Formats 

All TMS320C3x floating-point formats consist of three fields: an exponent field 
(e), a single-bit sign field (s), and a fraction field (f). These are stored as shown 
in Figure 4-5. The exponent field is atwo's complement number. The sign field 
and fraction field may be considered one unit and referred to as the mantissa 
field (man). The two's complement fraction is combined with the sign bi and 
the implied most significant bit to create the mantissa. The mantissa repre- 
sents a normalized two's complement number. A normalized representation 
implies a most significant nonsign bit, thus providing additional precision. The 
value of a floating-point number x as a function of the fields e, s, and f is given as 

x = 01 .f x 28 if s = 0, or if the leading 0 is the sign bit and the 
1 is the implied most significant nonsign bit 

10.f x 28 if s = 1, or if the leading 1 is the sign bit and the 
0 is the implied most significant nonsign bit 

0 if e = most negative two's complement 
value of the specified exponent field width 

Figure 4-5. Generic Floating-Point Format 

Note: e = exponent field 
s = single-bit sign field 
f = fraction field 

Three floating-point formats are supported on the TMS320C3x. The first is a 
short floating-point format for immediate floating-point operands, consisting of 
a 4-bit exponent, a sign bit, and an 11 -bit fraction. The second is a single-preci- 
sion format consisting of an &bit exponent, asign bit, and a 23-bit fraction. The 
third is an extended-precision format consisting of an &bit exponent, a sign 
bit, and a 31 -bit fraction. 

4.3.1 Short Floating-Point Format 

In the short floating-point format, floating-point numbers are represented by 
a two's complement 4-bit exponent field (e) and a two's complement 12-bit 
mantissa field (man) with an implied most significant nonsign bit. See 
Figure 4-6. 



Fl~atin~-Point Formats 

Figure 4-6. Short Floating-Point Format 

Operations are performed with an implied binary point between bits 11 and 10. 
When the implied most significant nonsign bit is made explicit, it is located to 
the immediate left of the binary point. The floating-point two's complement 
number x in the short floating-point format is given by the following: 

You must use the following reserved values to represent 0 in the short float- 
ing-point format: 

e = - 8  

The following examples illustrate the range and precision of the short float- 
ing-point format: 

Most Positive: x = (2 - 2-11) x 27 = 2.5594 x 102 
Least Positive: x =  1 x2-7=7.8125x 10-3 
Least Negative: x = (-1-2-11) x 2-7 = -7.81 63 x 1 0-3 
Most Negative: x=-2x27=-2.5600~ 102 
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4.3.2 Single-Precision Floating-Point Format 

In the single-precision format, the floating-point number is represented by an 
8-bit exponent field (e) and a two's complement 24-bit mantissa field (man) 
with an implied most significant nonsign bit. See Figure 4-7. 

Figure 4-7. Single- Precision Floating- Point Format 

Operations are performed with an implied binary point between bits 23 and 22. 
When the implied most significant nonsign bit is made explicit, it is located to 
the immediate left of the binary point. The floating-point number xis given by 
the following: 

You must use the following reserved values to represent 0 in the single-preci- 
sion floating-point format: 

The following examples illustrate the range and precision of the single-preci- 
sion floating-point format. 

Most Positive: x = (2 - 2-23) x 2127 = 3.4028234 x 1038 

Least Positive: x = 1 x 2-127 = 5.8774717 x l e g  

Least Negative: x = (-1-2-23) x 2-127 = - 5.8774724 x 1 6 9  

Most Negative: x = -2 x 2127 = -3.4028236 x 1038 

4.3.3 Extended-Precision Floating-Point Format 

In the extended-precision format, the floating-point number is represented by 
an 8-bit exponent field (e) and a 32-bit mantissa field (man) with an implied 
most significant nonsign bit. See Figure 4-8. 
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Figure 4-8. Extended-Precision Floating-Point Format 

Operations are performed with an implied binary point between bits 31 and 30. 
When the implied most significant nonsign bit is made explicit, it is located to 
the immediate left of the binary point. The floating-point number x is given by 
the following: 

You must use the following reserved values to represent 0 in the extended-pre- 
cision floating-point format: 

e = -128 

The following examples illustrate the range and precision of the extended-pre- 
cision floating-point format: 

Most Positive: x = (2 - 2-23) x 2127 = 3.4028234 x 1038 

Least Positive: x = 1 x 2-127 = 5.8774717541 x 1038 
Least Negative: x = (-1-231) x 2-127 = - 5.877471 7569 x 10-39 

Most Negative: x = -2 x 2127 = -3.4028236691 x 1038 
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4.3.4 Conversion Between Floating-Point Formats 

Floating-point operations assume several different formats for inputs and out- 
puts. These formats often require conversion from one floating-point format to 
another (e.g., short floating-point format to extended-precision floating-point 
format). Format conversions occur automatically in hardware, with no over- 
head, as a part of the floating-point operations. Examples of the four conver- 
sions are shown in Figure 4-9, Figure 4-1 0, Figure 4-1 1, and Figure 4-1 2. 
When a floating-point format 0 is converted to a greater-precision format, it is 
always converted to a valid representation of 0 in that format. In Figure 4-9, 
Figure 4-1 0, Figure 4-1 1 , and Figure 4-1 2, s = sign bit of the exponent, 

Figure 4-9. Converting From Short Floating-Point Format to Single-Precision 
Floating- Point Format 

(a) Short Floating-Point Format 

31 27 24 23 22 12 11 0 

s S s S X X X X  0 

(b) Single-Precision Floating-Point Format 

In this format, the exponent field is sign-extended, and the fraction field is filled 
with 0s. 

Figure 4- 10. Converting From Short Floating- Point Format to Extended- Precision 
Floating- Point Format 

(a) Short Floating-Point Format 

(b) Extended-Precision Floating-Point Format 

The exponent field in this format is sign-extended, and the fraction field is filled 
with 0s. 
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Figure 4 - 1  1. Converting From Single-Precision Floating-Point Format to 
Extended-Precision Floating-Point Format 

(a) Single-Precision Floating-Point Format 

(b) Extended-Precision Floating-Point Format 

The fraction field is filled with 0s. 

Figure 4- 12, Converting From Extended- Precision Floating-Point Format to 
Single- Precision Floating- Point Format 

(a) Extended-Precision Floating-Point Format 

(b) Single-Precision Floating-Point Format 

The fraction field is truncated. 
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4.4 Floating-Point Multiplication 

A floating-point number a can be written in floating-point format as in the fol- 
lowing formula: 

where: 
a(man) is the mantissa and a(exp) is the exponent. 

The product of a and b is c, defined as: 

where: 
c(man) = a(man) x b(man), and 
c(exp) = a(exp) + b(exp) 

During floating-point multiplication, source operands are always assumed to 
be in the single-precision floating-point format. If the source of the operands 
is in short floating-point format, it is extended to the single-precision float- 
ing-point format. If the source of the operands is in extended-precision float- 
ing-point format, it is truncated to single-precision format. These conversions 
occur automatically in hardware with no overhead. All results of floating-point 
multiplications are in the extended-precision format. These multiplications oc- 
cur in a single cycle. 

A flowchart for floating-point multiplication is shown in Figure 4-1 3. In step 1, 
the 24-bit source operand mantissas are multiplied, producing a 50-bit result 
c(man). (Note that input and output data are always represented as normal- 
ized numbers.) In step 2, the exponents are added, yielding c(exp). Steps 3 
through 6 check for special cases. Step 3 checks for whether c(man) in exten- 
ded-precision format is equal to 0. If c(man) is 0,  step 7 sets c(exp) to -128, 
thus yielding the representation for 0. 

Steps 4 and 5 normalize the result. If a right shift of 1 is necessary, then in step 
8, c(man) is right-shifted 1 bit, thus adding 1 to c(exp). If a right shift of 2 is nec- 
essary, then in step 9, c(man) is right-shifted 2 bits, thus adding 2 to c(exp). 
Step 6 occurs when the result is normalized. 

In step 10, c(man) is set in the extended-precision floating-point format. Steps 
11 through 16 check for special cases of c(exp). If c(exp) has overflowed (step 
11) in the positive direction, then step 14 sets c(exp) to the most positive exten- 
ded-precision format value. If c(exp) has overflowed in the negative direction, 
then step 14 sets c(exp) to the most negative extended-precision format value. 
If c(exp) has underflowed (step 12), then step 15 sets c to 0; that is, c(man) 
= 0 and c(exp) = -1 28. 
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Figure 4- 13. Flowchart for Floating- Point Multiplication 
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Example 4-1, Example 4-2, Example 4-3, Example 4-4, and Example 4-5 
illustrate how floating-point multiplication is performed on the TMS320C3x. 
For these examples, the implied most significant nonsign bit is made explicit. 

Example 4-1. Floating-Point Multiply (Both Mantissas = -2.0) 

Let: 
a = -2.0 x W(~XP) = 1 0.00000000000000000000000 x 2a(ex~) 

b = -2.0 x 2b(exp) = 10.00000000000000000000000 x 2b(ex~) 

where: 

a and b are both represented in binary form according to the normalized sing- 
le-precision floating-point format. 

Then: 

To place this number in the proper normalized format, it is necessary to shift 
the mantissa two places to the right and add 2 to the exponent. This yields: 

In floating-point multiplication, the exponent of the result may overflow. This 
can occur when the exponents are initially added or when the exponent is mo- 
dified during normalization. 

Example 4-2. Floating- Point Multiply (Both Mantissas = 1.5) 

Let: 

where a and b are both represented in binary form according to the single-pre- 
cision floating-point format. Then: 
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To place this number in the proper normalized format, it is necessary to shift 
the mantissa one place to the right and add 1 to the exponent. This yields: 

Example 4-3. Floating-Point Multiply (Both Mantissas = 1 .O) 

Let: 
a = 1.0 x 2a(exp) = 01 .0000000000000000000OOOO x 2a(exP) 

b = 1.0 x 2b(exP) = 01 .0000000000000000000OOOO x 2b(exp) 

where a and b are both represented in binary form according to the single-pre- 
cision floating-point format. Then: 

This number is in the proper normalized format. Therefore, no shift of the man- 
tissa or modification of the exponent is necessary. 

These examples have shown cases where the product of two normalized num- 
bers can be normalized with a shift of O,1, or 2. For all normalized inputs with 
the floating-point format used by the TMS320C3x, a normalized result can be 
produced by a shift of 0, 1, or 2. 

Example 4-4. Floating-Point Multiply Between Positive and Negative Numbers 

Let: 
a = 1 -0 x 2a(exp) = 01 .0000000000000000000OOOO x 2a(ex~) 

b = -2.0 x 2b(exp) = 10.00000000000000000000000 x 2b(exp) 

Then: 

01.00000000000000000000000 x 2a(exp) 
x 10.00000000000000000000000 x 2b(exp) 

1 1 1 0.0000000000000000000000000000000000000000000000 x 2 (a(exp) + b(exp)) 

The result is c = -2.0 x 2(a(ex~) + b(ex~)) 

Example 4-5. Floating-Point Multiply by 0 

All multiplications by a floating-point 0 yield a result of 0 (f = 0, s = 0, and exp 
= -128). 
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4.5 Floating-Point Addition and Subtraction 

In floating-point addition and subtraction, two floating-point numbers a and b 
can be defined as: 

The sum (or difference) of a and b can be defined as: 

The flowchart for floating-point addition is shown in Figure 4-1 4. Since this 
flowchart assumes signed data, it is also appropriate for floating-point subtrac- 
tion. In this figure, it is assumed that a(exp) s b(exp). In step 1, the source ex- 
ponents are compared, and c(exp) is set equal to the largest of the two source 
exponents. In step 2, d is set to the difference of the two exponents. In step 3, 
the mantissa with the smallest exponent, in this case a(man), is right-shifted 
d bits to align the mantissas. After the mantissas have been aligned, they are 
added (step 4). 

Steps 5 through 7 check for a special case of c(man). If c(man) is 0 (step 5), 
then c(exp) is set to its most negative value (step 8) to yield the correct repre- 
sentation of 0. If c(man) has overflowed c (step 6), then c(man) is right-shifted 
one bit, and 1 is added to c(exp). Otherwise, step 10 normalizes c by left-shift- 
ing c(man) and subtracting c(exp) by the number of leading non-significant 
sign bits (step 7). Steps 11 through 13 check for special cases of c(exp). If 
c(exp) has overflowed (step 11) in the positive direction, then step 14 sets 
c(exp) to the most positive extended-precision format value. If c(exp) has over- 
flowed (step 11) in the negative direction, then step 14 sets c(exp) to the most 
negative extended-precision format value. If c(exp) has underflowed (step 12), 
then step 15 sets c to 0; that is, c(man) = 0 and c(exp) = -1 28. 
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Figure 4- 14. Flowchart for Floating- Point Addition 
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Example 4-6, Example 4-7, Example 4-8, and Example 4-9 describe the 
floating-point addition and subtraction operations. It is assumed that the data 
is in the extended-precision floating-point format. 

Example 4-6. Floating- Point Addition 

In the case of two normalized numbers to be summed, let 

It is necessary to shift b to the right by 1 so that a and b have the same expo- 
nent. This yields: 

b = 0.5 = 00.1 000000000000000000000000000000 x 20 

Then: 

As in the case of multiplication, it is necessary to shift the binary point one place 
to the left and add 1 to the exponent. This yields: 

Example 4-7. Floating-Point Subtraction 

A subtraction is performed in this example. Let 

The operation to be performed is a-b. The mantissas are alread aligned be- 

lation of the upper bits, as shown below. 
Y cause the two numbers have the same exponent. The result is a arge cancel- 
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The result must be normalized. In this case, a left-shift of 31 is required. The 
exponent of the result is modified accordingly. The result is: 

Example 4-8. Floating- Point Addition With a 32- Bit Shift 

This example illustrates a situation where a full 32-bit shift is necessary to nor- 
malize the result. Let 

The operation to be performed is a + b. 

Normalizing the result requires a left-shift of 32 and a subtraction of 32 from 
the exponent. The result is: 

Example 4-9. Floating-Point Addition/Subtraction With Floating-Point 0 

When floating-point addition and subtraction are performed with a float- 
ing-point 0, the following identities are satisfied: 
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4.6 Normalization Using the NORM lnstruction 

The NORM instruction normalizes an extended-precision floating-point num- 
ber that is assumed to be unnormalized. See Example 4-1 0. Since the num- 
ber is assumed to be unnormalized, no implied most significant nonsign bit is 
assumed. The NORM instruction: 

1) Locates the most significant nonsign bit of the floating-point number, 
2) Left-shifts to normalize the number, and 
3) Adjusts the exponent. 

Example 4- 10. NORM Instruction 

Assume that an extended-precision register contains the value 

When the normalization is performed on a number assumed to be unnormal- 
ized, the binary point is assumed to be: 

man = 0.0000000000000000001 000000000001, exp = 0 

This number is then sign-extended one bit so that the mantissa contains 33 
bits. 

man = 00.0000000000000000001 000000000001, exp = 0 

The intermediate result after the most significant nonsign bit is located and the 
shift performed is: 

man = 01.000000000001 0000000000000000000, exp = -1 9 

The final 32-bit value output after removing the redundant bit is: 

man = 0000000000001 0000000000000000000, exp = -1 9 

The NORM instruction is useful for counting the number of leading 0s or lead- 
ing 1 s in a 32-bit field. If the exponent is initially 0, the absolute value of the final 
value of the exponent is the number of leading I s  or 0s. This instruction is also 
useful for manipulating unnormalized floating-point numbers. 

Given the extended-precision floating-point value a to be normalized, the nor- 
malization, norm (), is performed as shown in Figure 4-1 5. 
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Figure 4-15. Flowchart for NORM Instruction Operation 
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4.7 Rounding: The RND Instruction 

The RND instruction rounds a number from the extended-precision float- 
ing-point format to the single-precision floating-point format. Rounding is simi- 
lar to floating-point addition. Given the number a to be rounded, the following 
operation is performed first. 

c = a(man) x 2a(exP) + (1 x 2a(ex~)-24) 

Next, a conversion from extended-precision floating-point to single-precision 
floating-point format is performed. Given the extended-precision floating-point 
value, the rounding, rnd(), is performed as shown in Figure 4-16. 
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Figure 4-1 6. Flowchart for Floating-Point Rounding by the RND Instruction 
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4.8 Floating-Point-to-Integer Conversion 

Floating-point to integer conversion, using the FIX instructions, allows exten- 
ded-precision floating-point numbers to be converted to single-precision inte- 
gers in a single cycle. The floating-point to integer conversion of the value x 
is referred to here as fix(x). The conversion does not overflow if a, the number 
to be converted, is in the range 

-231 s a s 231 - 1 

First, you must be certain that 

If these bounds are not met, an overflow occurs. If an overflow occurs in the 
positive direction, the output is the most positive integer. If an overflow occurs 
in the negative direction, the output is the most negative integer. If a(exp) is 
within the valid range, then a(man), with implied bit included, is sign-extended 
and right-shifted (rs) by the amount 

This right-shift (rs) shifts out those bits corresponding to the fractional part of 
the mantissa. For example: 

If 0 s x < 1, then fix(x) = 0. 
If -1 s x c 0, then fix(x) = -1. 

The flowchart for the floating-point-to-integer conversion is shown in 
Figure 4-1 7. 
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Figure 4-1 7. Flowchart for Floating-Point-to-Integer Conversion by FIX Instructions 
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4.9 Integer-to-Floating-point Conversion 

Integer to floating-point conversion, using the FLOAT instruction, allows sing- 
le-precision integers to be converted to extended-precision floating-point 
numbers. The flowchart for this conversion is shown in Figure 4-1 8. 

Figure 4-18. Flowchart for Integer-to-Floating-Point Conversion by FLOAT Instructions 
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Addressing 

The TMS320C3x supports five groups of powerful addressing modes. Six 
types of addressing may be used within the groups, which allow access of data 
from memory, registers, and the instruction word. This chapter details the op- 
eration, encoding, and implementation of the addressing modes. It also dis- 
cusses the management of system stacks, queues, and dequeue8 in memory. 

These are the major topics in this chapter: 

Page 
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Types of Addressing 

Six types of addressing allow access of data from memory, registers, and the 
instruction word: 

Register 
a Direct 

Indirect 
a Short-immediate 
0 Long-immediate 

PC-relative 

Some types of addressing are appropriate for some instructions but not others. 
For this reason, the types of addressing are used in the five groups of address- 
ing modes as follows: 

General addressing modes (G): 

Register 
Direct 
Indirect 
Short-immediate 

a Three-operand addressing modes (T): 

Register 
lndirect 

a Parallel addressing modes (P): 

Register 
lndirect 

a Conditional-branch addressing modes (B): 

Register 
PC-relative 

The six types of addressing are discussed first, followed by the five groups of 
addressing modes. 
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5.1 .I Register Addressing 

In register addressing, a CPU register contains the operand, as shown in this 
example: 

ABSF R  1  ; R1 = ( ~ 1 1  

The syntax for the CPU registers, the assembler syntax, and the assigned 
function for those registers are listed in Table 5-1. 

Table 5-1. CPU Register Address/Assembler Syntax and Function 

Auembler A u i g  nod 
CPU Register Address Syntax Function 

OOh 
Olh 
02h 
03h 
04h 
05h 
06h 
07h 

08h 
09h 
OAh 
OBh 
OCh 
ODh 
OEh 
OFH 

1 Oh 
l l h  
12h 
13h 
14h 

ARO 
AR 1 
AR2 
AR3 
AR4 
AR5 
AR6 
AR7 

DP 
IRO 
IR1 
BK 
SP 

Extended-precision register 
Extended-precision register 
Extended-precision register 
Extended-precision register 
Extended-precision register 
Extended-precision register 
Extended-precision register 
Extended-precision register 

Auxiliary register 
Auxiliary register 
Auxiliary register 
Auxiliary register 
Auxiliary register 
Auxiliary register 
Auxiliary register 
Auxiliary register 

Data-page pointer 
Index register 0 
index register 1 
Block-size register 
Active stack pointer 

Status register 
CPUIDMA interrupt enable 
CPU interrupt flags 
110 flags 

Repeat start address 
Repeat end address 
Repeat counter 
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5.1.2 Direct Addressing 

In direct addressing, the data address is formed by the concatenation of the 
eight least significant bits of the data page pointer (DP) with the 16 least signifi- 
cant bits of the instruction word (expr). This results in 256 pages (64K words per 
page), giving the programmer a large address space without requiring a change 
of the page pointer. The syntax and operation for direct addressing are: 

Syntax: @expr 

Operation: address = DP concatenated with expr 

Figure 5-1 shows the formation of the data address. Example 5-1 is an 
instruction example with data before and after instruction execution. 

Figure 5- 1. Direct Addressing 

3 1 16 15 0 
Instruction 

Word I expr I 
1 

31 8 7 0 

X . . . X  X Page 

Page Pointer) 
31 24 23 (I 0 

0 O . . . O  0 address I 
3 1 A 0 

I operand I 
Example 5- 1. Direct Addressing 

ADD1 @ OBCDEh , R7 

Before Instruction: After Instruction: 

Data at 8ABCDEh = 12345678h Data at 8ABCDEh = 1 2345678h 
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5.1.3 lndirect Addressing 

lndirect addressing is used to specify the address of an operand in memory 
through the contents of an auxiliary register, optional displacements, and in- 
dex registers. Only the 24 least significant bits of the auxiliary registers and in- 
dex registers are used in indirect addressing. This arithmetic is performed by 
the auxiliary register arithmetic units (ARAUs) on these lower 24 bits and is un- 
signed. The upper eight bits are unmodified. 

The flexibility of indirect addressing is possible because the ARAUs on the 
TMS320C3x modify auxiliary registers in parallel with operations within the 
main CPU. lndirect addressing is specified by a five-bit field in the instruction 
word, referred to as the mod field. A displacement is either an explicit unsigned 
eight-bit integer contained in the instruction word or an implicit displacement 
of one. Two index registers, IRO and IR1, can also be used in indirect address- 
ing. In some cases, an optional addressing scheme using circular or bit-rev- 
ersed addressing can be used. The mechanism for generating addresses in 
circular addressing is discussed in Section 5.3 on page 5-24; bit-reversed is 
discussed in Section 5.4 on page 5-29. 
1 1 

Note: Auxiliary Register 

The auxiliary register (ARn) to be used is encoded in the instruction word ac- 
cording to its binary representation n (for example, AR3 is encoded as 11 2), 
not its register machine address (shown in Table 5-1). 

I 1 

Example 5-2.Auxiliary Register lndirect 

An auxiliary register (ARn) contains the address of the operand to be fetched. 
Operation: operand address = ARn 
Assembler Syntax: *ARn 
Modification Field: 11000 

ARn 

31 24 23 0 

x x address 

I operand I 

Table 5-2 lists the various kinds of indirect addressing, along with the value 
of the modification (mod) field, assembler syntax, operation, and function for 
each. The succeeding 17 examples show the operation for each kind of indi- 
rect addressing. Figure 5-2 shows the format in the instruction encoding. 
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Table 5-2. lndirect Addressing 

Mod Field Syntax Operation Description 

Indirect Addressing wlth Displacement 

00000 *+ARn(disp) addr = ARn + disp Wih  predisplacement add 

00001 *-ARn(disp) addr = ARn - disp With predisplacement subtract 

00010 *++ARn(disp) addr = ARn + disp With predisplacement add and modify 
ARn = ARn + disp 

00011 "-ARn(disp) addr = ARn - disp With predispiacement subtract and modify 
ARn = ARn - disp 

001 00 *ARn++(disp) addr = ARn With postdisplacement add and modify 
ARn = ARn + disp 

001 01 *ARn-- (disp) addr = ARn With postdisplacement subtract and modify 
ARn = ARn - disp 

001 10 *ARn++(disp)% addr = ARn With postdisplacement add and circular modify 
ARn = circ(ARn + disp) 

001 11 *ARn-- (disp)% addr = ARn Wrth postdiphcement subtract and circular 
ARn = circ(ARn - disp) modify 

Indirect Addresslng wlth Index Register IRO 

01 000 *+ARn(lRO) addr = ARn + IRO With preindex (IRO) add 

01 001 tARn(lR0) addr = ARn - IRO With preindex (IRO) subtract 

01010 *++ARn(lRO) addr = ARn + IRO With preindex (IRO) add and modify 
ARn = ARn + IRO 

01011 *--ARn(lRO) addr = ARn - IRO With preindex (IRO) subtract and modify 
ARn = ARn - IRO 

01 100 *ARn++ (IRO) addr = ARn With postindex (IRO) add and modify 
ARn = ARn + IRO 

011 01 *ARn--(IRO) addr= ARn With postindex (IRO) subtract and modify 
ARn = ARn - IRO 

01110 *ARn++(lRO)% addr = ARn With postindex (IRO) add and circular 
ARn = circ(ARn + IRO) modify 

01111 *ARn-- (IRO)% addr = ARn With postindex (IRO) subtract and circular 
ARn = circ(ARn) - IRO modify 

Legend: addr memory address ++ add and modify 
ARn auxiliary register ARO-AR7 -- subtract and modify 
circ() address in circular addressing % where circular addressing is performed 
disp displacement 
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Table 5-2. Indirect Addressing (Continued) 

Mod Fleld Svntax O~eratlon Descrl~t lon 

lndirect Addressing with index Reglster IR1 

10000 *+ARn(lRl) addr = ARn + IR1 Wih preindex (IR1) add 

10001 *-ARn(lR1) addr = ARn - IR1 With preindex (IR1) subtract 

10010 *++ARn(lRl) addr = ARn + IR1 Wih preindex (IR1) add 
ARn = ARn + lR1 and modify 

10011 *--ARn(lR1) addr = ARn - IR1 Wih preindex (IR1) subtract 
ARn = ARn - IR1 and modify 

101 00 *ARn ++ (lR1) addr = ARn With postindex (IR1) add 
ARn = ARn + lR1 and modify 

10101 *ARn--(IRl) addr = ARn With postindex (IR1) subtract 
ARn = ARn - IR1 and modify 

10110 * A h + +  (IRl)% addr = ARn Wih postindex (IR1) add 
ARn = circ(ARn + IR1) and circular modify 

10111 *ARn--(IRl)% addr = ARn With postindex (IR1) subtract 
ARn = circ(ARn - IR1) and circular modify 

Indirect Addressing (Speclal Cases) 

addr = ARn Indirect 

11001 *ARn++ (lR0)B addr = ARn With postindex (IRO) add 
ARn = B(ARn + IRO) and bit-reversed modify 

Legend: addr memory address circ() address in circular addressing 
ARn auxiliary register ARO-AR7 ++ add and modify 
B where bit-reversed addressing is performed % where circular addressing is performed 

Example 5-3, Example 5 4 ,  Example 5-5, Example 5-6, Example 5-7, 
Example 5-8, Example 5-9, Example 5-1 0, Example 5-1 1, Example 5-1 2, 
Example 5-1 3, Example 5-1 4, Example 5-1 5, Example 5-1 6, 
Example 5-1 7, Example 5-1 8, and Example 5-1 9 exemplify indirect addres- 
sing in Table 5-2. 

Figure 5-2. Instruction Encoding Format 

Most Significant Bit Least Significant Bit 

5 Bits 3 Bits 0, 5, or 8 Bits 
t disp field may not exist in some instructions 
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L 

Example 5-3. lndirect With Predisplacement Add 

The address of the operand to be fetched is the sum of an auxiliary register 
(ARn) and the displacement (disp). The displacement is either an eight-bit un- 
signed integer contained in the instruction word or an implied value of 1. 

Operation: operand address = ARn + disp 
Assembler Syntax: *+ ARn(disp) 
Modification Field: 00000 

3 1 24 23 0 

ARn x x address I 
1 

3 1 & 0 

I operand I 
Example 5-4. lndirect With Predisplacement Subtract 

The address of the operand to be fetched is the contents of an auxiliary register 
(ARn) minus the displacement (disp). The displacement is either an eight-bit 
unsigned integer contained in the instruction word or an implied value of 1. 

Operation: operand address = ARn - disp 
Assembler Syntax: *- ARn(disp) 
Modification Field: 00001 

ARn 4 x X I  address I 

31 & 0 

I operand I 
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Example 5-5. lndirect With Predisplacement Add and Modify 

The address of the operand to be fetched is the sum of an auxiliary register 
(ARn) and the displacement (disp). The displacement is either an eight-bit 
unsigned integer contained in the instruction word or an implied value of 1. 
After the data is fetched, the auxiliary register is updated with the address gen- 
erated. 

Operation: operand address = ARn t disp 
ARn = ARn t disp 

Assembler Syntax: *+t ARn (disp) 
Modification Field: 0001 0 

3 1 24 23 0 

ARn x x addreas J 
I m 

31 0 

I operand I 
Example 5-6. Indirect With Predisplacement Subtract and Modify 

The address of the operand to be fetched is the contents of an auxiliary register 
(ARn) minus the displacement (disp). The displacement is either an eight-bii 
unsigned integer contained in the instruction word or an implied value of 1. Af- 
ter the data is fetched, the auxiliary register is updated with the address gener- 
ated. 

Operation: operand address = ARn - disp 
ARn = ARn - disp 

Assembler Syntax: *-- ARn(disp) 
Modification Field: 0001 1 

3 1 24 23 0 

ARn x x address 1 
I 7 

3 1 1 0 

I operand I 
Addressing 5-9 



Types of Addressing 

Example 5-7. Indirect With Postdisplacement Add and Modify 

The address of the operand to be fetched is the contents of an auxiliary register 
(ARn). After the operand is fetched, the displacement (disp) is added to the 
auxiliary register. The displacement is either an eight-bit unsigned integer con- 
tained in the instruction word or an implied value of 1. 

Operation: operand address = ARn 
ARn = ARn + disp 

Assembler Syntax: *ARn ++ (disp) 
Modification Field: 001 00 

31 24 23 0 

ARn x x address 

t 
I 

31 0 

I operand 1 

Example 5-8. lndirect With Postdisplacement Subtract and Modify 

The address of the operand to be fetched is the contents of an auxiliary register 
(ARn). After the operand is fetched, the displacement (disp) is subtracted from 
the auxiliary register. The displacement is either an eight-bit unsigned integer 
contained in the instruction word or an implied value of 1. 

Operation: operand address = ARn 
ARn = ARn - disp 

Assembler Syntax: *ARn -- (disp) 
Modification Field: 001 01 

3 1 24 23 0 

ARn x x address I 
9 I 

31 0 

I operand I 
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Example 5-9. Indirect With Postdisplacement Add and Circular Modify 

The address of the operand to be fetched is the contents of an auxiliary register 
(ARn). After the operand is fetched, the displacement (disp) is added to the 
contents of the auxiliary register using circular addressing. This result is used 
to update the auxiliary register. The displacement is either an eight-bit un- 
signed integer contained in the instruction word or an implied value of 1. 

Operation: operand address = ARn 
ARn = circ(ARn + disp) 

Assembler Syntax: *ARn ++ (disp)% 
Modification Field: 00110 

ARn x x address I 
T I 

31 0 

I operand I 

Example 5- 10. lndirect With Postdisplacement Subtract and Circular Modify 

The address of the operand to be fetched is the contents of an auxiliary register 
(ARn). After the operand is fetched, the displacement (disp) is subtracted from 
the contents of the auxiliary register using circular addressing. This result is 
used to update the auxiliary register. The displacement is either an eight-bit 
unsigned integer contained in the instruction word or an implied value of 1. 

Operation: operand address = ARn 
ARn = circ(ARn - disp) 

Assembler Syntax: *ARn -- (disp)% 
Modification Field: 001 11 

31 24 23 0 

ARn x x address 

? 

3 1 0 

operand 

Addressing 5-1 1 
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Example 5- 1 1. Indirect With Preindex Add 

The address of the operand to be fetched is the sum of an auxiliary register 
(ARn) and an index register (IRO or IR1). 

Operation: operand address = ARn + IRm 
Assembler Syntax: *+ ARn(1Rm) 

Modification Field: 

3 1 24 23 0 

ARn x x address I 
I 

31 0 

I operand 1 
Example 5- 12. lndirect With Preindex Subtract 

The address of the operand to be fetched is the difference of an auxiliary regis- 
ter (ARn) and an index register (IRO or IR1). 

Operation: operand address = ARn - IRm 

Assembler Syntax: *- ARn(lRm) 

Modification Field: 01001 i f m = O  
10001 i f m = 1  

31 24 23 0 

ARn x x address I 
1 

3 1 24 23 0 I 
(-1 

31 0 

I operand J 
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Example 5-1 3. lndirect With Preindex Add and Modify 

The address of the operand to be fetched is the sum of an auxiliary register 
(ARn) and an index register (IRO or IR1). After the data is fetched, the auxiliary 
register is updated with the address generated. 

Operation: operand address = ARn t IRm 
ARn = ARn t IRm 

Assembler Syntax: *t+ ARn(lRm) 
Modification Field: 01010 i f m = O  

10010 i f m = 1  

31 24 23 0 

ARn x x address 

31 24 23 0 

IRm x x index 

31 0 

operand 

Example 5- 14. Indirect With Preindex Subtract and Modify 

The address of the operand to be fetched is the difference between an auxiliary 
register (ARn) and an index register (IRO or IR1). The resulting address be- 
comes the new contents of the auxiliary register. 

Operatlon: operand address = ARn - IRm 
ARn = ARn - IRm 

Assembler Syntax: *--ARn(lRm) 
Modification Field: 01011 i fm=O 

10011 i f m = 1  

3 1 24 23 0 

IRm x x index 

31 0 

I operand I 

Addressing 5-1 3 
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Example 5- 15. Indirect With Postindex Add and Modify 

The address of the operand to be fetched is the contents of an auxiliary register 
(ARn). After the operand is fetched, the index register (IRO or IR1) is added 
to the auxiliary register. 

Operation: operand address = ARn 
ARn = ARn t IRm 

Assembler Syntax: *ARn tt (IRm) 
Modification Field: 01100 i fm = 0 

10100 i fm = 1 

3 1 24 23 0 

ARn x x address 
t I 

3 1 24 23 0 

X index 

31 1 0  

operand 

Example 5-1 6. lndirect With Postindex Subtract and Modij/ 

The address of the operand to be fetched is the contents of an auxiliary register 
(ARn). After the operand is fetched, the index register (IRO or IR1) is sub- 
tracted from the auxiliary register. 

Operation: operand address = ARn 
ARn = ARn - IRm 

Assembler Syntax: *ARn -- (IRm) 
Modification Fleld: 01101 i f m = O  

10101 i f m = 1  

31 24 23 0 

ARn x x address 

IRm x x index 

3 1 0 

operand 
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Example 5 - 1  7. Indirect With Postindex Add and Circular Modify 

The address of the operand to be fetched is the contents of an auxiliary register 
(ARn). After the operand is fetched, the index register (IRO or IR1) is added 
to the auxiliary register. This value is evaluated using circular addressing and 
replaces the contents of the auxiliary register. 

Operation: operand address = ARn 
ARn = circ(ARn + IRm) 

Assembler Syntax: *ARn ++ (IRm)% 
Modification Field: 01110 if m = 0 

10110 i fm = 1 

31 24 23 0 

ARn x x address 

7 I 
31 24 23 0 

IRm x x index 

31 

operand 

Example 5 - 1  8. lndirect With Postindex Subtract and Circular Modify 

The address of the operand to be fetched is the contents of an auxiliary register 
(ARn). After the operand is fetched, the index register (IRO or IR1) is sub- 
tracted from the auxiliary register. This result is evaluated using circular ad- 
dressing and replaces the contents of the auxiliary register. 

Operation: operand address = ARn 
ARn = circ(ARn - IRm) 

Assembler Syntax: *ARn -- (IRm)% 
Modification Field: 01111 if m = 0 

10111 if m = 1 

3 1 24 23 0 

ARn x x address 
I 

31 24 23 0 

IRm x x index (-1 -----t. 4 
31 1 0  

operand 

Addressing 5-1 5 
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Example 5-1 9. Indirect With Postindex Add and Bit-Reversed Modjfy 

The address of the operand to be fetched is the contents of an auxiliary register 
(ARn). After the operand is fetched, the index register (IRO) is added to the 
auxiliary register. This addition is performed with a reverse-carry propagation 
and can be used to yield a bit-reversed (B) address. This value replaces the 
contents of the auxiliary register. 

Operation: operand address = ARn 
ARn = B(ARn + IRO) 

Assembler Syntax: *ARn ++ (IR0)B 
Modification Field: 1 1 001 

3 1 24 23 0 

ARn x x address I 
T 

31 24 23 0 

IRm x x index 

3 1 

I operand I 
5.1.4 Short-Immediate Addressing 

In short-immediate addressing, the operand is a 16-bit immediate value con- 
tained in the 16 least significant bits of the instruction word (expr). Depending 
on the data types assumed for the instruction, the short-immediate operand 
can be a two's complement integer, an unsigned integer, or a floating-point 
number. This is the syntax for this mode: 

Syntax: expr 
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Example 5-20 illustrates before- and after-instruction data. 

Example 5-20. Short-Immediate Addressing 

SUB1 1,RO 

Before Instructlon: 

RO = Oh 

After Instruction: 

RO = OFFFFFFFFh 

5.1.5 Long-Immediate Addressing 

In long-immediate addressing, the operand is a 24-bit immediate value wn- 
tained in the 24 least significant bits of the instruction word (expr). This is the 
syntax for this mode: 

Syntax: expr 

Example 5-21 illustrates before- and after-instruction data. 

Example 5-2 1.  Long-Immediate Addressing 

BR 8000h 

Before Instruction: After Instruction: 

PC = 8000h 

5.1.6 PC-Relative Addressing 

Program counter (PC)-relative addressing is used for branching. It adds the 
contents of the 16 or 24 least significant bits of the instruction word to the PC 
register. The assembler takes the src (a label or address) specified by the user 
and generates a displacement. If the branch is a standard branch, this dis- 
placement is equal to [label - (instruction address +I)]. If the branch is a 
delayed branch, this displacement is equal to [label - (instruction ad- 
dress+ 3)]. 

The displacement is stored as a 16-bit or 24-bit signed integer in the least sig- 
nificant bits of the instruction word. The displacement is added to the PC during 
the pipeline decode phase. Notice that because the PC is incremented by 1 
in the fetch phase, the displacement is added to this incremented PC value. 

Syntax: expr (src) 

Example 5-22 illustrates before- and after-instruction data. 

Addressing 5-1 7 
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Example 5-22. PC-Relative Addressing 

BU NEWPC; pc=1001h, NEWPC label = 1005h, displacement = 3 

Before lnstruction 
decode phase: 

After lnstruction 
execution phase: 

The 24-bit addressing mode encodes the program control instructions (for ex- 
ample, BR, BRD, CALL, RPTB, and RPTBD). Depending on the instruction, 
the new PC value is derived by adding a 24-bit signed value in the instruction 
word with the present PC value. Bit 24 determines the type of branch (D = 0 
for a standard branch or D = 1 for a delayed branch). Some of the instructions 
are encoded in Figure 5-3. 

Figure 5-3. Encoding for 24-Bit PC-Relative Addressing Mode 

(a) BR, BRD: unconditional branches (standard and delayed) 

0 1 1 0 0 0 0101 displacement I 
(b) CALL: unconditional subroutine call 

0 1 1  0 0 0 1 1 0 1  displacement I 
(c) RPTB: repeat block 

31 25 24 23 0 

0 1 1 0 0 1 O)O( displacement i 
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5.2 Groups of Addressing Modes 

Six types of addressing (covered in Section 5.1, beginning on page 5-2) form 
these four groups of addressing modes: 

Q General addressing modes (G) 
Q Three-operand addressing modes (T) 
a Parallel addressing modes (P) 
Q Conditional-branch addressing modes (B) 

5.2.1 General Addressing Modes 

Instructions that use the general addressing modes are general-purpose in- 
structions, such as ADDI, MPYF, and LSH. Such instructions usually have this 
form: 

dst operation src -. dst 

where the destination operand is signified by dst and the source operand by 
src, operation defines an operation to be performed on the operands using the 
general addressing modes. Bits 31 -29 are 0, indicating general addressing 
mode instructions. Bits 22 and 21 specify the general addressing mode (G) 
field, which defines how bits 15-0 are to be interpreted for addressing the src 
operand. 

Options for bits 22 and 21 (G field) are as follows: 

0 0 register (all CPU registers unless specified otherwise) 
0 1 direct 
1 0 indirect 
1 1 immediate 

If the src and dstfields contain register specifications, the value in these fields 
contains the CPU register addresses as defined by Table 5-1 on page 5-3. 
For the general addressing modes, the following values of ARn are valid: 

Figure 5-4 shows the encoding for the general addressing modes. The nota- 
tion mod indicates the modification field that goes with the ARn field. Refer to 
Table 5-2 on page 5-6 for further information. 

Addressing 5-1 9 
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Figure 5-4. Encoding for General Addressing Modes 

31 29 28 2322 21 20 1615 1110 8 7  5 4  0  

I I I G I Destination 1 Source Operands I 

5.2.2 Three-Operand Addressing Modes 

0 0 0 0 0 0 0 0 0 0 0  

direct 

modn ARn disp 

immediate 

Instructions that use the three-operand addressing modes, such as 
ADD13, LSH3, CMPF3. or XOR3, usually have this form: 

0  0  0  

0 0 0  

0  0  0  

0  0  0  

SRC1 operation SRC2 -. dst 

0  0  

0  1  

1 0  

1 1  

operation 

operation 

operation 

operation 

where the destination operand is signified by dstand the source operands by 
SRC1 and SRC2; operation defines an operation to be performed. Note that 
the 3 can be omitted from three-operand instructions. 

dst 

dst 

dst 

dst 

Bits 31-29 are set to the value of 001, indicating three-operand addressing 
mode instructions. Bits 22 and 21 specify the three-operand addressing mode 
(T) field, which defines how bits 15-0 are to be interpreted for addressing the 
SRC operands. Bits 1 5 8  define the SRCl address; bits 7-0 define the SRC2 
address. Options for bits 22 and 21 (T) are as follows: 

0 0 register register 
0 1 indirect register 
1 0  register indirect 
1 1  indirect indirect 

Figure 5-5 shows the encoding for three-operand addressing. If the SRCl 
and SRC2 fields use the same auxiliary register, both addresses are correctly 
generated. However, only the value created by the SRC1 field is saved in the 
auxiliary register specified. The assembler issues a warning if you specify this 
condition. 

The following values of ARn and ARm are valid: 
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The notation modm or modn indicates that the modification field goes with the 
ARm or ARn field, respectively. Refer to Table 5-2 on page 5-6 for further 
information. 

In indirect addressing of the three-operand addressing mode, displacements 
(if used) are allowed to be 0 or 1, and the index registers (IRO and IR1) can be 
used. The displacement of 1 is implied and is not explicitly coded in the instruc- 
tion word. 

Figure 5-5. Encoding for Three-Operand Addressing Modes 

0  0  1 operation 0  0  dst 0 0 0  srcl 0  0  0  src2 

0  0  1 operation 0  1 dst rnodn ARn 0  0  0  src2 
I 

0  0  1 operation 1 0  dst 0 0  0  srcl modn ARn 

0  0  1 operation 1 1 dst rnodn I ARn modm ARrn 

5.2.3 Parallel Addressing Modes 

Instructions that use parallel addressing, indicated by 11 (two vertical bars), al- 
low the most parallelism possible. The destination operands are indicated as 
d l  and d2, signifying dsfl and dst2, respectively (see Figure 5-6). The source 
operands, signified by srcl and src2, use the extended-precision registers. 
Operation refers to the parallel operation to be performed. 

Figure 5-6. Encoding for Parallel Addressing Modes 

1 0  1 operation I P I d l  I d2 I srcl I src2 I rnodn I ARn 1 modm I ARrn 

Addressing 5-21 
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The parallel addressing mode (P) field specifies how the operands are to be 
used, that is, whether they are source or destination. The specific relationship 
between the P field and the operands is detailed in the description of the indi- 
vidual parallel instructions (see Chapter 10). However, the operands are al- 
ways encoded in the same way. Bits 31 and 30 are set to the value of 10, indi- 
cating parallel addressing mode instructions. Bits 25 and 24 specify the paral- 
lel addressing mode (P) field, which defines how bits 21-0 are to be interpreted 
for addressing the src operands. Bits 21-19 define the srcl address, bits 
18-1 6 define the src2 address, bits 15-8 the src3 address, and bits 7-0 the 
src4 address. The notations modn and modm indicate which modification field 
goes with which ARn or ARm (auxiliary register) field, respectively. Following 
is a list of the parallel addressing operands: 

0 srcl 0 s srcl s 7 (extended-precision registers RO-R7) 
IJ src2 0 s src2 s 7 (extended-precision registers R&R7) 
IJ d l  If 0, dsn is RO. If 1, dsfl is R1. 
IJ d2 If 0, dst2 is R2. If 1, dsf2 is R3. 
0 p 0 s  P s 3  
0 src3 indirect (disp = 0, 1, IRO, IR1) 
0 src4 indirect (disp = 0, 1, IRO, IR1) 

As in the three-operand addressing mode, indirect addressing in the parallel 
addressing mode allows for displacements of 0 or 1 and the use of the index 
registers (IRO and IR1). The displacement of 1 is implied and is not explicitly 
coded in the instruction word. 

In the encoding shown for this mode in Figure 5-6 on page 5-21, if the src3 
and src4 fields use the same auxiliary register, both addresses are correctly 
generated, but only the value created by the src3 field is saved in the auxiliary 
register specified. The assembler issues a warning if you specify this condi- 
tion. 
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5.2.4 Conditional-Branch Addresslng Modes 

Instructions using the conditional-branch addressing modes (Bcond, BcondD, 
CALLcond, DBcond, and DBconuD) can perform avariety of conditional oper- 
ations. Bits 31-27 are set to the value of 011 01, indicating conditional-branch 
addressing mode instructions. Bit 26 is set to 0 or 1 ; 0 selects DBcond, 1 se- 
lects Bcond. Selection of bit 25 determines the conditional-branch addressing 
mode (B). If B = 0, register addressing is used; if B = 1, PC-relative addressing 
is used. Selection of bit 21 sets the type of branch: D = 0 for a standard branch 
or D = 1 for a delayed branch. The condition field(conu) specifies the condition 
checked to determine what action to take, that is, whether to branch (see 
Chapter 10 for a list of condition codes). Figure 5-7 shows the encoding for 
conditional-branch addressing. 

Figure 5-7. Encoding for Conditional-Branch Addressing Modes 

DB cond (D): 

0 1 1 0 1 1 B  ARn D  cond 0 0 0 0 0 0 0 0 0 0 0  

0 1 1 0 1 1 B  ARn D  cond immediate (PC relative) 

Bcond (D): 

CALLcond: 

31 27 26 25 24 22 21 20 16 15 

h 

0 1 1 0 1 0 B 0 0 0 D  
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O 1 1 1 O O B O O O O  

0 1 1 1 0 0 B  

0 1 1 0 1 0 B 0 0 0 D  cond immediate (PC relative) . 
cond 0 0 0 0 0 0 0 0 0 0 0 ~  src reg 

I 

0 0 0  0  

cond 

cond 

0 0 0 0 0 0 0 0 0 0 0 )  src reg 

immediate (PC relative) 
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5.3 Clrcular Addressing 

Many algorithms, such as convolution and correlation, require the implemen- 
tation of acircular buffer in memory. In convolution and correlation, the circular 
buffer is used to implement a sliding window that contains the most recent data 
to be processed. As new data is brought in, the new data overwrites the oldest 
data. Key to the implementation of a circular buffer is the implementation of a 
circular addressing mode. This section describes the circular addressing 
mode of the TMS320C3x. 

The block size register (BK) specifies the size of the circular buffer. By labeling 
the most significant 1 of the BK register as bit N, with N s 15, you can find the 
address immediately following the bottom of the circular buffer by concatenat- 
ing bits 31 through N + 1 of a user-selected register (ARn) with bits N through 
0 of the BK register. The address of the top of the buffer is referred to as the 
effective base (EB) and can be found by concatenating bits 31 through N + 1 
of ARn, with bits N through 0 of EB being 0. 

Figure 5-8 illustrates the relationships between the block size register (BK), 
the auxiliary registers (ARn), the bottom of the circular buffer, the top of the cir- 
cular buffer, and the index into the circular buffer. 

A circular buffer of size R must start on a K-bit boundary (that is, the K LSBs 
of the starting address of the circular buffer must be 0), where K is an integer 
that satisfies 2K> R. Since the value R must be loaded into the BK register, 
K r N + 1. For example, a 31-word circular buffer must start at an address 
whose five LSBs are 0 (that is, 9-, 
and the value 31 must be loaded into the BK register. 
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Figure 5-8. Flowchart for Circular Addressing 
Most significant 1  at location N, where N  s 15 

31 N t 1  N  0 

I 
3, N + l  J N  0 

1  (N LSB8 
BK 0 .  . . 0  

of BK) 

0 

0 .  . . o  H. . . H  
1  (N LSB8 

of BK) 
Top of Bufter + 1  

Bottom of Buffer t 1  

Legend: ARn auxiliary register n 
EB effectivebase 
L low-order bits 
LSB least significant bit 

BK blocksize register 
H high-order bits 
L' new low-order bits 
N  bit value 

Addressing 
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In circular addressing, index refers to the N LSBs of the auxiliary register se- 
lected, and step is the quantity being added to or subtracted from the auxiliary 
register. Follow these two rules when you use circular addressing: 

0 The step used must be less than or equal to the block size. The step size 
is treated as an unsigned integer. 

a The first time the circular queue is addressed, the auxiliary register must 
be pointing to an element in the circular queue. 

The algorithm for circular addressing is as follows: 

If 0 5 index t step < BK: 
index = index t step. 

Else if index t step r BK: 
index = index t step - BK. 

Else if index t step < 0: 
index = index t step t BK. 

Figure 5-9 shows how the circular buffer is implemented and illustrates the re- 
lationship of the quantities generated and the elements in the circular buffer. 

Figure 5-9. Circular Buffer Implementation 

Addreor Data 

31 N t 1  N  0 

Effective Base (EB) O . . . O  I 
MSBs of ARn 

Top of Circular Buffer 

Element 1 

Auxiliary Register (ARn) L . . . L  1 
MSBsofARn LSBsofARn 

3 1  N + l  N 0 

H . . . H  LSBs BK Last Element + 1  

MSBs of ARn 

-.. Element (N LSBs of ARn) 
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Example 5-23 shows circular addressing operation. Assuming that all ARs 
are four bits, let ARO = 0000, and BK = 01 1 0 (block size of 6). Example 5-23 
shows a sequence of modifications and the resulting value of ARO. 
Example 5-23 also shows how the pointer steps through the circular queue 
with a variety of step sizes (both incrementing and decrementing). 

Example 5-23. Circular Addressing 

*ARO++ (5)% ; ARO = 0 (Othvalue) 
*ARO + + (2)% ; ARO = 5 (1st value) 
*ARO- - (3)% ; ARO = 1 (2nd value) 
*AR0++(6)% ; ARO = 4 (3rd value) 
*ARO- -% ; ARO = 4 (4th value) 
*ARO ; ARO = 3 (5th value) 

Value 

0th - 
2nd + 

Element 0 

Element 1 

Element 2 

Element 3 
1 

Element 4 

Element 5 (Last Element) 

Last Element t 1 
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Circular addressing is especially useful for the implementation of FIR filters. 
Figure 5-1 0 shows one possible data structure for FIR filters. Note that the ini- 
tial value of ARO points to h(N-I), and the initial value of AR1 points to x(0). 
Circular addressing is used in the TMS320C3x code for the FIR filter shown 
in Example 5-24. 

Figure 5- 10. Data Structure for FIR Filters 

Impulse Response 

+ ARl 

Example 5-24. FIR Filter Code Using Circular Addressing 
* Initialization 
* 

LDI NIBK 
LDI HIARO 
LDI XIAR1 

* 

; Load block size. 
; Load pointer to impulse response. 
;Load pointer to bottom of input 
; sample buffer . 

TOP LDF IN, R3 ;Read input sample. 
STF R3, *ARl++% ;Store with other samples, 

;and point to top of buffer. 
LDF 0,RO ;Initialize RO. 
LDF O,R2 ;Initialize R2. 

* 
* Filter 
* 

RPTS N-1 ;Repeat next instruction. 
MPYF3 *ARO++%,*AR1++%IRO 

1 1  ADDF3 ROlR2,R2 ;Multiply and accumulate. 
ADDF R01R2 ;Last product accumulated. 

* 
STF R2 ,Y ;Save result. 
B TOP ;Repeat. 
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5.4 Bit-Reversed Addressing 

Bit-reversed addressing on the TMS320C3x enhances execution speed and 
program memory for FFT algorithms that use a variety of radices. The base 
address of bit-reversed addressing must be located on a boundary of the size 
of the table. For example, if IRO = 2 ~ 1 ,  the n LSBs of the base address must 
be 0. The base address of the data in memory must be on a 2" boundary. One 
auxiliary register points to the physical location of a data value. IRO specifies 
one-half the size of the FFT; that is, the value contained in IRO must be equal 
to 2 ~ 1 ,  where n is an integer and the FFT size is 2". When you add IRO to the 
auxiliary register by using bit-reversed addressing, addresses are generated 
in a bit-reversed fashion. 

To illustrate this kind of addressing, assume eight-bit auxiliary registers. Let 
AR2 contain the value 01 10 0000 (96). This is the base address of the data in 
memory. Let IRO contain the value 0000 1000 (8). Example 5-25 shows a se- 
quence of modifications of AR2 and the resulting values of AR2. 

Example 5-25. Bit-Reversed Addressing 

; AR2 = 0110 0000 (0th value) 
; AR2 = 0110 1000 (let value) 
; AR2 = 0110 0100 (2nd value) 
; AR2 = 0110 1100 (3rd value) 
; AR2 = 0110 0010 (4th value) 
; AR2 = 0110 1010 (5th value) 
; AR2 = 0110 0110 (6th value) 
; AR2 = 0110 1110 (7th value) 

Table 53 shows the relationship of the index steps and the four LSBs of AR2. 
You can find the four LSBs by reversing the bit pattern of the steps. 
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Table 5-3. Index Steps and Bit-Reversed Addressing 

Step Bit Pattern Bit-Reversed Pattern Bit-Reversed Step 
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5.5 System and User Stack Management 
The TMS320C3x provides a dedicated system stack pointer (SP) for building 
stacks in memory. The auxiliary registers can also be used to build a variety 
of more general linear lists. This section discusses the implementation of the 
following types of linear lists: 

IJ Stack 

The stack is a linear list for which all insertions and deletions are made at 
one end of the list. 

Queue 

The queue is a linear list for which all insertions are made at one end of the 
list and all deletions are made at the other end. 

IJ Dequeue 

The dequeue is a double-ended queue linear list for which insertions and 
deletions are made at either end of the list. 

5.5.1 System Stack Pointer 

The system stack pointer (SP) is a 32-bit register that contains the address of 
the top of the system stack. The system stack fills from low-memory address 
to high-memory address (see Figure 5-11). The SP always points to the last 
element pushed onto the stack. A push performs a preincrement, and a pop 
performs a postdecrement of the system stack pointer. 

The program counter is pushed onto the system stack on subroutine calls, 
traps, and interrupts. It is popped from the system stack on returns. The sys- 
tem stack can be pushed and popped using the PUSH, POP, PUSHF, and 
POPF instructions. 

Figure 5-1 1. System Stack Configuration 

Low Memory 

Bottom of Stack 

Top of Stack 

Pee)  - 
SP + 

High Memory 
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5.5.2 Stacks 

Stacks can be built from low to high memory or high to low memory. Two cases 
for each type of stack are shown. Stacks can be built using the preincrementl 
decrement and postincrementldecrement modes of modifying the auxiliary 
registers (AR). Stack growth from high-to-low memory can be implemented in 
two ways: 

CASE 1 : Stores to memory using *--ARn to push data onto the stack and 
reads from memory using *ARn ++ to pop data off the stack. 

CASE 2: Stores to memory using *ARn--to push data onto the stack and 
reads from memory using * ++ARn to pop data off the stack. 

Figure 5-12 illustrates these two cases. The only difference is that in case 1, 
the AR always points to the top of the stack, and in case 2, the AR always points 
to the next free location on the stack. 

Figure 5- 12. implementations of High-to-Low Memory Stacks 

ARn - 
Case 1 

Low Memory 

ARn - 
Case 2 

Low Memory 

High Memory High Memory 

Stack growth from low-to-high memory can be implemented in two ways: 

CASE 3: Stores to memory using *++ARn to push data onto the stack and 
reads from memory using *ARn--to pop data off the stack. 

CASE 4: Stores to memory using *ARn ++ to push data onto the stack and 
reads from memory using *--ARn to pop data off the stack. 

Figure 5 1  3 shows these two cases. In case 3, the AR always points to the top 
of the stack. In case 4, the AR always points to the next free location on the 
stack. 
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Figure 5-1 3. implementations of  Low-to-High Memory Stacks 
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5.5.3 Queues 

A queue is like a FIFO. The implementation of queues is based on the manipu- 
lation of auxiliary registers. Two auxiliary registers are used: one to mark the 
front of the queue from which data is popped (or dequeued) and the other to 
mark the rear of the queue where data is pushed. With proper management 
of the auxiliary registers, the queue can also be circular. (A queue is circular 
when the rear pointer is allowed to point to the beginning of the queue memory 
after it has pointed to the end of the queue memory.) 
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The TMS320C3x provides a complete set of constructs that facilitate software 
and hardware control of the program flow. Software control includes repeats, 
branches, calls, traps, and returns. Hardware control includes operations, 
reset, and interrupts. Because programming includes a variety of constructs, 
you can select the one suited for your particular application. 

Several interlocked operations instructions provide flexible multiprocessor 
support and, through the use of external signals, a powerful means of 
synchronization. They also guarantee the integrity of the communication and 
result in a high-speed operation. 

The TMS320C3x supports a nonmaskable external reset signal and a number 
of internal and external interrupts. These functions can be programmed for a 
particular application. 

This chapter discusses the following major topics: 

Topic Page 
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6.1 Repeat Modes 

The repeat modes of the TMS320C3x can implement zero-overhead looping. 
For many algorithms, most execution time is spent in an inner kernel of code. 
Using the repeat modes allows these time-critical sections of code to be ex- 
ecuted in the shortest possible time. 

The TMS320C3x provides two instructions to support zero-overhead looping: 

RPTB (repeat a block of code). RPTB repeats execution of a block of code 
a specified number of times. 

0 RPTS (repeat a single instruction). RPTS fetches a single instruction once 
and then repeats its execution a number of times. Since the instruction is 
fetched only once, bus traffic is minimized. 

RPTB and RPTS are four-cycle instructions. These four cycles of overhead 
occur during the initial execution of the loop. All subsequent executions of the 
loop have no overhead (zero cycle). 

Three registers (RS, RE, and RC) are associated with the updating of the pro- 
gram counter (PC) when it is updated in a repeat mode. Table 6-1 describes 
these registers. 

Table 6 1 .  Repeat-Mode Registers 

Reglster Functlon 

RS Repeat Start Address Register. Holds the address of the first instruc- 
tion of the block of code to be repeated. 

RE Repeat End Address Register. Holds the address of the last instruc- 
tion of the block of code to be repeated. 

RC Repeat Count Register. Contains one less than the number of times 
the block remains to be repeated. For example, to execute a block 
N times, load N-1 into RC. 

-- -- -- -- - - - -- 

For correct operation of the repeat modes, you must correctly initialize all of 
the above-mentioned registers. 
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6.1.1 Repeat-Mode Control Bits 

Two bits are important to the operation of RPTB and RPTS: 

IJ RM bit. The repeat-mode flag (RM) bit in the status register specifies 
whether the processor is running in the repeat mode. 

RM = 0 indicates standard instruction fetching mode. 
RM = 1 indicates repeat-mode instruction fetches. 

IJ S bit. The S bit is internal to the processor and cannot be programmed, 
but this bit is necessary to fully describe the operation of RPTB and RPTS. 

S = 0 indicates standard instruction fetches. 
S = 1 and RM = 1 indicates repeat-single instruction fetches. 

6.1.2 Repeat-Mode Operation 

Information in the repeat-mode registers and associated control bits controls 
the modification of the PC during repeat-mode fetches. The repeat modes 
compare the contents of the RE register (repeat end address register) with the 
PC after the execution of each instruction. If they match and the repeat counter 
(RC) is nonnegative, the RC is decremented, the PC is loaded with the repeat 
start address, and the processing continues. The fetches and appropriate sta- 
tus bits are modified as necessary. Note that the RC is never modified when 
the RM flag is 0. 

The repeat counter should be loaded with a value one less than the number 
of times to execute the block; for example, an RC value of 4 would execute the 
block five times. The detailed algorithm for the update of the PC is shown in 
Example 6-1. 

Note: Maximum Number of Repeats 

The maximum number of repeats occurs when RC = 8000 0000h. This re- 
sults in 8000 0001 h repetitions. The minimum number of repeats occurs 
when RC = 0. This results in one repetition. 

RE should be greater than or equal to RS (RE a RS). Otherwise, the code 
will not repeat even though the RM bit remains set to 1. 

By writing a 0 into the repeat counter or writing 0 into the RM bit of the status 
register, you can stop the repeating of the loop before completion. 
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Re~eat  Modes 

Example 6- 1. Repeat-Mode Control Algorithm 

if RM == 1 
if S == 1 
if first time through 
fetch instruction from memory 

else 
fetch instruction from IR 

RC - 1 - RC 
if RC < 0 

0 - ST(RM) 
0 - S  
PC + 1 - PC 
else if S == 0 
fetch instruction from memory 

if PC == RE 
RC - 1 4 RC 

if RC r 0 
RS - PC 

else if RC < 0 
0 - ST(RM) 
0 - S  
PC + 1 - PC 

; If in repeat mode (RPTB or RPTS) 
; If RPTS 
; 1f this is the first fetch 
; Fetch instruction from memory 
: If not the first fetch 
; Fetch instruction from IR 
; Decrement RC 
; If RC is negative 
; Repeat single mode completed 
; Turn off repeat-mode bit 
; Clear S 
; Increment PC 
; If RPTB 
; Fetch instruction from memory 
; If this is the end of the block 
; Decrement RC 
; If RC is not negative 
; Set PC to start of block 
; If RC is negative 
; Turn off repeat mode bits 
; Clear S 
; Increment PC 

6.1.3 RPTB Instruction 

The RPTB instruction repeats a block of code a specified number of times. 

The number of times to repeat the block is the RC (repeat count) register value 
plus one. Because the execution of RPTB does not load the RC, you must load 
this register yourself. The RC register must be loaded before the RPTB instruc- 
tion is executed. A typical setup of the block repeat operation is shown in 
Example 6-2. 

Example 6-2. RPTB Operation 
LDI 15,RC ; Load repeat counter with 15 
RPTB ENDLOOP ; Execute the block of code 

STLOOP ; from STLOOP to ENDLOOP 16 times 

ENDLOOP 
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Using the repeat-block mode of modifying the PC facilitates analysis of what 
would happen in the case of branches within the block. Assume that the next 
value of the PC will be either PC + 1 or the contents of the RS register. It is thus 
apparent that this method of block repeat allows much branching within the 
repeated block. Execution can go anywhere within the user's code via inter- 
rupts, subroutine calls, etc. For proper modification of the loop counter, the last 
instruction of the loop must be fetched. You can stop the repeating of the loop 
prior to completion by writing a 0 to the repeat counter or writing a 0 to the RM 
bit of the status register. 

6.1.4 RPTS Instruction 

An RPTS src instruction repeats the instruction following the RPTS src + 1 
times. Repeats of a single instruction initiated by RPTS are not interruptible, 
because the RPTS fetches the instruction word only once and then keeps it 
in the instruction register for reuse. An interrupt would cause the instruction 
word to be lost. Refetching the instruction word from the instruction register 
reduces memory accesses and, in effect, acts as a one-word program cache. 
If you need a single instruction that is repeatable and interruptible, you can use 
the RPTB instruction. 

When RPTS src is executed, the following sequence of operations occurs: 

1) PC+l- .RS 
2) PC+1 -.RE 
3) 1 -. RM status register bit 
4) 1 -. S bit 
5) src -. RC (repeat count register) 

The RPTS instruction loads all registers and mode bits necessary for the oper- 
ation of the single-instruction repeat mode. Step 1 loads the start address of 
the block into RS. Step 2 loads the end address into the RE (end address of 
the block). Since this is a repeat of a single instruction, the start address and 
the end address are the same. Step 3 sets the status register to indicate the 
repeat mode of operation. Step 4 indicates that this is the repeat single-instruc- 
tion mode of operation. Step 5 loads src into RC. 
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6.1.5 Repeat-Mode Restrictions 

Since the block repeat modes modify the program counter, other instructions 
cannot modify the program counter at the same time. There are two restric- 
tions: 

IJ The last instruction in the block (or the only instruction in a block of 
size 1) cannot be a Bcond, BR, DBcond, CALL, CALLcond, TRAPcond, 
RETlcond, RETScond, IDLE, RPTB, or RPTS. Example 6-3 shows an in- 
correctly placed standard branch. 

IJ None of the last four instructions from the bottom of the block (or the only 
instruction in a block of size 1) can be a BconoD, BRD, or DBconoD. 
Example 6-4 shows an incorrectly placed delayed branch. 

I 1 

Note: Rule Violation 

If either of these rules is violated, the PC will be undefined. 
1 I 

Example 6-3. lncorrectly Placed Standard Branch 
L D I  15,RC ; Load repeat counter w i t h  15 
RPTB ENDLOOP ; Execute the block of code 

STLOOP ; f r o m  STLOOP t o  ENDLOOP 1 6  t imes  

ENDLOOP BR OOPS ; This branch violates ru le  1 

Example 6-4. lncorrectly Placed Delayed Branch 
L D I  15,RC ; Load repeat counter w i t h  15 
RPTB ENDLOOP ; Execute block o f  code 

STLOOP ; from STLOOP t o  ENDLOOP 1 6  t imes 

BRD OOPS ; This branch violates ru le  2 
ADDF 
MPYF 

ENDLOOP SUBF 

6.1.6 RC Register Value After Repeat Mode Completes 

For the RPTB instruction, the RC register normally decrements to 0000 OOOOh 
unless the block size is 1 ; in that case, it decrements to FFFF FFFFh. However, 
if the RPTB instruction using a block size of 1 has a pipeline conflict in the 
instruction being executed, the RC register decrements to 0000 0000h. 
Example 6-5 illustrates a pipeline conflict. Refer to Chapter 9 for pipeline in- 
formation. 
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RPTS normally decrements the RC register to FFFF FFFFh. However, if the 
RPTS has a pipeline conflict on the last cycle, the RC register decrements to 
0000 0000h. 

r 

Note: Number of Repetitions 

In any case, the number of repetitions is always RC + 1. 
I 1 

Example 6-5. Pipeline Conflict in an RPTB Instruction 
EDC .word40000000h; 

LDP EDC 
LDI @EDC,ARO 
LDI 15,RC i 
RPTB ENDLOOP ; 

ENDLOOPLDI *ARO, RO ; 
I 

i 
i 
i 

The program ia located in 4000000Fh 

Load repeat counter with 15 
Execute block of code 
The *ARO read conflicts with 
the instruction fetching 
Then RC decrements to 0 
If cache is enabled, RC decrements 
to FFFF FFFFh 

6.1.7 Nested Block Repeats 

Block repeats (RPTB) can be nested. Since the registers RS, RE, RC, and ST 
control the repeat-mode status, these registers must be saved and restored 
in order to nest block repeats. For example, if you write an interrupt service 
routine that requires the use of RPTB, it is possible that the interrupt asso- 
ciated with the routine may occur during repeated execution of a block. The 
interrupt service routine can check the RM bit to determine whether the block 
repeat mode is active. If this RM is set, the interrupt routine should save ST, 
RS, RE, and RC, in that order. The interrupt routine can then perform a block 
repeat. Before returning to the interrupted routine, the interrupt routine should 
restore RC, RE, RS, and ST, in that order. If the RM bit is not set, you don't need 
to save and restore these registers. 

The order in which the registers are savedlrestored is important to guarantee 
correct operation. The ST register should be restored last, after the RC, RE, 
and RS registers. ST should be restored after restoring RC, because the RM 
bit cannot be set to 1 if the RC register is 0 or-1. For this reason, if you execute 
a POP ST instruction (with ST (RM bit) = 1) while RC = 0, the POP instruction 
recovers all the ST register bits but not the RM bit that stays at 0 (repeat mode 
disabled). Also, RS and RE should be correctly set before you activate the re- 
peat mode. 

The RPTS instruction can be used in a block repeat loop if the proper registers 
are saved. 
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6.2 Delayed Branches 

The TMS320C3x offers three main types of branching: standard, delayed, and 
conditional delayed. 

Standard branches empty the pipeline before performing the branch; this 
guarantees correct management of the program counter and results in a 
TMS320C3x branch taking four cycles. Included in this class are repeats, 
calls, returns, and traps. 

Delayed branches on the TMS320C3x do not empty the pipeline, but rather 
guarantee that the next three instructions will execute before the program 
counter is modified by the branch. The result is a branch that requires only a 
single cycle, thus making the speed of the delayed branch very close to that 
of the optimal block repeat modes of the TMS320C3x. However, unlike block 
repeat modes, delayed branches may be used in situations other than looping. 
Every delayed branch has a standard branch counterpart that is used when 
a delayed branch cannot be used. The delayed branches of the TMS320C3x 
are BcondD, BRD, and DBcondD. 

Conditional delayed branches use the conditions that exist at the end of the 
instruction immediately preceding the delayed branch. They do not depend on 
the instructions following the delayed branch. The condition flags are set by 
a previous instruction only when the destination register is one of the exten- 
ded-precision registers (RO-R7) or when one of the compare instructions 
(CMPF, CMPF3, CMPI, CMP13, TSTB, or TSTB3) is executed. Delayed 
branches guarantee that the next three instructions will execute, regardless 
of other pipeline conflicts. 

When a delayed branch is fetched, it remains pending until the three subse- 
quent instructions are executed. None of the three instructions that follow a 
delayed branch can be any of the following (see Example 6-6): 

Bcond DBcondD 

BcondD IDLE 

BR RETl cond 

BRD RETScond 

CALL RPTB 

CALLcond RPTS 

DBcond TRAPcond 

Delayed branches disable interrupts until the three instructions following the 
delayed branch are completed. This is independent of whether the branch is 
taken. 
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8 1 

Note: Incorrect Use of Delayed Branches 

If delayed branches are used incorrectly, the PC will be undefined. 
I 1 

Example 6-6. Incorrectly Placed Delayed Branches 
B1: BD L1 

NOP 
NOP 

B2 : B L2 
NOP 
NOP 
NOP 

; Thie branch ie incorrectly placed. 

Program Flow Control 
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6.3 Calls, Traps, and Returns 

Calls and traps provide a means of executing a subroutine or function while 
providing a return to the calling routine. 

The CALL, CALLcond, and TRAPcond instructions store the value of the PC 
on the stack before changing the PC's contents. The stack thus provides a re- 
turn using either the RETScond or RETlcond instruction. 

IJ The CALL instruction places the next PC value on the stack and places 
the src (source) operand into the PC. The srcis a 24-bit immediate value. 
Figure 6-1 shows CALL response timing. 

The CALLcond instruction is similar to the CALL instruction (above) ex- 
cept for the following: 

It executes only if a specific condition is true (the 20 conditionmn- 
cluding unconditional-are listed in Table 10-9 on page 10-13). 

The src is either a PC-relative displacement or is in register-addres- 
sing mode. 

The condition flags are set by a previous instruction only when the destina- 
tion register is one of the extended-precision registers (RGR7) or when 
one of the compare instructions (CMPF, CMPF3, CMPI, CMP13, TSTB, or 
TSTB3) is executed. 

IJ TheTRAPcondinstruction also executes only if a specific condition is true 
(same conditions as for the CALLcond instruction). When executing, the 
following actions occur: 

1) Interrupts are disabled with 0 written to bit GIE of the ST. 

2) The next PC value is stored on the stack. 

3) A vector is retrieved from one of the addresses 20h to 3Fh and is 
loaded into the PC. 

The particular address is identified by a trap number in the instruction. 
Using the RETlcond to return re-enables interrupts. 

0 RETScond returns execution from any of the above three instructions by 
popping the top of the stack to the PC. To execute, the specified condition 
must be true. Conditions are the same as for the CALLcond instruction. 

IJ RETlcond returns from traps or calls like the RETScond (above) with the 
addition that RETlcond also sets the GIE bit of the status register, which 
enables all interrupts whose enabling bit is set to 1. Conditions are the 
same as for the CALLcond instruction. 
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Calls and traps accomplish the same functional task (that is, a subfunction is 
called and executed, and control is then returned to the calling function). Traps 
offer several advantages. Among them are the following: 

Interrupts are automatically disabled when a trap is executed. This allows 
critical code to execute without risk of being interrupted. Thus, traps are 
generally terminated with a RETlcond instruction to re-enable interrupts. 

0 You can use traps to indirectly call functions. This is particularly beneficial 
when a kernel of code contains the basic subfunctions to be used by appli- 
cations. In this case, the functions in the kernel can be modified and relo- 
cated without the need to recompile each application. 

Figure 6- 1. CALL Response Timing 

Fetch CALL Decode CALL Read CALL Execute CALL Fetch First 

H3 

ADDR Vector Address 

Data 
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6.4 lnterlocked Operations 

Among the most common multiprocessing configurations is the sharing of 
global memory by multiple processors. In order for multiple processors to ac- 
cess this global memory and share data in a coherent manner, some sort of 
arbitration or handshaking is necessary. This requirement for arbitration is the 
purpose of the TMS320C3x interlocked operations. 

The TMS320C3x provides a flexible means of multiprocessor support with five 
instructions, referred to as interlocked operations. Through the use of external 
signals, these instructions provide powerful synchronization mechanisms. 
They also guarantee the integrity of the communication and result in a high- 
speed operation. The interlocked-operation instruction group is listed in 
Table 6-2. 

Table 6-2. lnterlocked Operations 

Mnemonic Description operation 

LDFl Load floating-point value into a register, Signal interlocked 
interlocked src -., dst 

LDll Load integer into a register, interlocked Signal interlocked 
src -, dst 

SlGl Signal, interlocked Signal interlocked 
Clear interlock 

STFI Store floating-point value to memory, src - dst 
interlocked Clear interlock 

STll Store integer to memory, interlocked src -, dst 
Clear interlock 

The interlocked operations use the two external flag pins, XFO and XF1. XFO 
must be configured as an output pin; XF1 is an input pin. When configured in 
this manner, XFO signals an interlock operation request, and XF1 acts as an 
acknowledge signal for the requested interlocked operation. In this mode, XFO 
and XF1 are treated as active-low signals. 

The external timing for the interlocked loads and stores is the same as for stan- 
dard loads and stores. The interlocked loads and stores may be extended like - 
standard accesses by using the appropriate ready signal (RDYint or XRDYint). - 
(RDYint and XRDYint are a combination of external ready input and software 
wait states. Refer to Chapter 7, External Bus Operation, for more information 
on ready generation.) 
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The LDFl and LDll instructions perform the following actions: 

1) Simultaneously set XFO to 0 and begin a read cycle. The timing of XFO is 
similar to that of the address bus during a read cycle. 

2) Execute an LDF or LDI instruction and extend the read cycle until XF1 is - - 
set to 0 and a ready (RDYint or XRDYid is signaled. 

3) Leave XFO set to 0 and end the read cycle. 

The readlwrite operation is identical to any other readlwrite cycle except for 
the special use of XFO and XF1. The src operand for LDFl and Loll is always 
a direct or indirect memory address. XFO is set to 0 only if the src is located -- 
off-chip; that is, STRB, MSTRB, or IOSTRB is active, or the src is one of the 
on-chip peripherals. If on-chip memory is accessed, then XFO is not asserted, 
and the operation is as an LDF or LDI from internal memory. 

The STFl and STll instructions perform the following operations: 

1) Simultaneously set XFO to 1 and begin a write cycle. The timing of XFO is 
similar to that of the address bus during a write cycle. 

2) Execute an STF or ST1 instruction and extend the write cycle until a ready 
( m i n t  or m i n t )  is signaled. 

As in the case for LDFl and LDII, the dstof STFl and STll affects XFO. If dst 
is located off-chip (m, m, or is active) or the dst is one of 
the on-chip peripherals, XFO is set to 1. If on-chip memory is accessed, then 
XFO is not asserted and the operations are as an STF or ST1 to internal 
memory. 

The SlGl instruction functions as follows: 

1) Sets XFO to 0. 
2) Idles until XF1 is set to 0. 
3) Sets XFO to 1 and ends the operation. 

While the LDFI, LDII, and SlGl instructions are waiting for XF1 to be set to 0, - 
you can interrupt them. LDFl and LDll require a ready signal (RDYint or' 
XRDYint) in order to be interrupted. Because interrupts are taken on bus cycle 
boundaries (see Section 6.6), an interrupt may be taken any time after a valid 
ready. This allows you to implement protection mechanisms against deadlock 
conditions by interrupting an interlocked load that has taken too long. Upon re- 
turn from the interrupt, the next instruction is executed. The STFl and STll 
instructions are not interruptible. Since the STFl and STll instructions com- 
plete when ready is signaled, the delay until an interrupt can occur is the same 
as for any other instruction. 
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Interlocked operations can be used to implement a busy-waiting loop, to 
manipulate a multiprocessor counter, to implement a simple semaphore 
mechanism, or to perform synchronization between two TMS320C3xs. The 
following examples illustrate the usefulness of the interlocked operations in- 
structions. 

Example 6-7 shows the implementation of a busy-waiting loop. If location 
LOCK is the interlock for a critical section of code, and a nonzero means the 
lock is busy, the algorithm for a busy-waiting loop can be used as shown. 

Example 6-7. Busy- Waiting Loop 

L D I  1,RO ; Pu t  1 i n t o  RO 

L1: L D I I  @LOCKIR1 ; In ter locked operation begun 
; Contents o f  LOCK - R 1  

ST11 R o t  @LOCK ; P u t  RO ( =  1) i n t o  LOCK, XFO = 1 
; Inter locked operation ended 

BNZ L1 ; Keep t r y ing  u n t i l  LOCK = 0 

Example 6-8 shows how a location COUNT may contain a count of the num- 
ber of times a particular operation needs to be performed. This operation may 
be performed by any processor in the system. If the count is 0, the processor 
waits until it is nonzero before beginning processing. The example also shows 
the algorithm for modifying COUNT correctly. 

Example 6-8. Multiprocessor Counter Manipulation 

C T : O R  4, IOF i 

i 
L D I I  @COUNT,Rl i 

i 
BZ CT i 

SUB1 1 , R l  I 

ST11 R l ,  @COUNT ; 

i 

XFO = 1 
Interlocked operation ended 
I ~ ~ t e r l o c k e d  operation begun 
Contents of COUNT -, R 1  

If COUNT = 0, keep t r y ing  
Decrement R 1  (= COUNT) 

Update COUNT, XFO = 1 
Interlocked operation ended 

Figure 6-2 illustrates multiple TMS320C3xs sharing global memory and using 
the interlocked instructions as in Example 6-9, Example 6-10, and 
Example 6-1 1 . 
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Figure 6-2. Multiple TMS320C3xs Sharing Global Memory 

Global Memory 

TMS320C3x #I 

It might sometimes be necessary for several processors to access some 
shared data or other common resources. The portion of code that must access 
the shared data is called a critical section. 

To ease the programming of critical sections, semaphores may be used. 
Semaphores are variables that can take only non-negative integer values. 
Two primitive, indivisible operations are defined on semaphores (with S being 
a semaphore): 

P ( S ) :  P: if ( S  == 0 ) ,  go t o  P 

else S - 1 -' S 

Indivisibility of V(S) and P(S) means that when these processes access and 
modify the semaphore S, they are the only processes accessing and modify- 
ing S. 

To enter a critical section, a P operation is performed on a common sema- 
phore, say S (S is initialized to 1). The first processor performing P(S) will be 
able to enter its critical section. All other processors are blocked because S 
has become 0. After leaving its critical section, the processor performs aV(S), 
thus allowing another processor to execute P(S) successfully. 
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The TMS320C3x code for V(S) is shown in Example 6-9; code for P(S) is 
shown in Example 6-1 0. Compare the code in Example 6-10 to the code in 
Example fj-8. 

Example 69. lmplementation of V(S) 

V: LDII @S,RO ; Interlocked read of S begins (XFO = 0) 
; Contents of S - RO 

ADD1 1,RO ; Increment RO ( =  S) 
ST11 RO,@S ; Update S, end interlock (XFO = 0) 

Example 6 1  0. Implementation of P(S) 

P: OR 4,IOF ; End interlock (XFO = 1) 
NOP ; Avoid potential pipeline conflicts when 

; executing out of cache, on-chip memory 
; or zero wait-state memory 

LDII @S,RO ; Interlocked read of S begins 
; Contents of S + RO 

BZ P ; If S = 0, go to P and try again 
SUB1 1,RO ; Decrement RO ( =  S) 
ST11 RO,@S ; Update S, end interlock (XFO = 1) 

The SlGl operation can synchronize, at an instruction level, multiple 
TMS320C3xs. Consider two processors connected as shown in Figure 6-3. 
The code for the two processors is shown in Example 6-1 1. 

Figure 6-3. Zero-Logic Interconnect of TMS320C3xs 
TMS320C3x #I TMS320C3x #2 

XFO ----, XF1 

Processor #I runs until it executes the SIGI. It then waits until processor #2 
executes a SIGI. At this point, the two processors have synchronized and con- 
tinue execution. 
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Example 6-1 1.  Code to Synchronize Two TMS320C3xs at the Software Level 

Tme Code for TMS320C3x U1 Code for TMS320C3x U2 

a 

SlGl 

I 
(WAIT 

I 
Synchronization Occurs - SlGl 

Program Flow Control 
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6.5 Reset Operation 

The TMS320C3x supports a nonmaskable external reset signal (RESET), 
which is used to perform system reset. This section discusses the reset opera- 
tion. 

At powerup, the state of the TMS320C3x processor is undefined. You can use 
the RESET signal to place the processor in a known state. This signal must 
be asserted low for ten or more H I  clock cycles to guarantee a system reset. 
H I  is an output clock signal generated by the TMS320C3x (see Chapter 13 
for more information). 

Reset affects the other pins on the device in either asynchronous or asynchro- 
nous manner. The synchronous reset is gated by the TMS320C3x's internal 
clocks. The asynchronous reset directly affects the pins and is faster than the 
synchronous reset. Table 6-3 shows the state of the TMS320C3x's pins after 
RESET = 0. Each pin is described according to whether the pin is reset syn- 
chronously or asynchronously. 



Reset Operation 

Table 6-3. Pin Operation at Reset 

Slgnal # Plnr Operation at Reset 

Prlmary Interface (61 Plns) 

D31 -DO 32 Synchronous reset; placed in high-impedance state 

A23-A0 24 Synchronous reset; placed in high-impedance state 

Rrn  1 Synchronous reset; deasserted by going to a high level 

STRB 1 Synchronous reset; deasserted by going to a high level 

RDY 

HOLD 

HOLDA 

1 Reset has no effect. 

1 Reset has no effect. 

1 Reset has no effect. 

Expansion lnterface (49 ~ i n s ) t  

XD31 -XDO 32 Synchronous reset; placed in high-impedance state 

XA12-XAO 13 Synchronous reset; placed in high-impedance state 

X R ~  1 Synchronous reset; placed in high-impedance state 

MSTRB 1 Synchronous reset; deasserted by going to a high level 

IOSTRB 1 Synchronous reset; deasserted by going to a high level 

XRDY 1 Reset has no effect. 

Control Signals (9 Pins) 

RESET 1 Reset input pin 

INT3-INTO 4 Reset has no effect. 

IACK 1 Synchronous reset; deasserted by going to a high level 

M C I ~  or 1 Reset has no effect. 
MCBUW 

XF1-XFO 2 Asynchronous reset; placed in high-impedance state 

'f Present only on TMS320C30 
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Table 6-3. Pin Operation at Reset (Continued) 

Signal # Plns Operation at Reset 

Serial Port 0 Signals (6 Pins) 

CLKXO 1 Asynchronous reset; placed in high-impedance state 

DXO 1 Asynchronous reset; placed in high-impedance state 

FSXO 1 Asynchronous reset; placed in high-impedance state 

CLKRO 1 Asynchronous reset; placed in high-impedance state 

DRO 1 Asynchronous reset; placed in high-impedance state 

FSRO 1 Asynchronous reset; placed in high-impedance state 

Serlai Port 1 Signals (6 Pins) t 

CLKXl 1 Asynchronous reset; placed in high-impedance state 

DX1 1 Asynchronous reset; placed in high-impedance state 

FSX1 1 Asynchronous reset; placed in high-impedance state 

CLKR1 1 Asynchronous reset; placed in high-impedance state 

DR1 1 Asynchronous reset; placed in high-impedance state 

FSR1 1 Asynchronous reset; placed in high-impedance state 

Timer 0 Signal (1 Pin) 

TCLKO 1 Asynchronous reset; placed in high-impedance state 

Timer 1 Signal (1 Pin) 

TCLKl 1 Asynchronous reset; placed in high-impedance state 

Supply and Oscillator Signals (29 Pins) 

VDD (3-0) 4 Reset has no effect. 

IODVDD (1,O) 2 Reset has no effect. 

ADVDD (loo) 2 Reset has no effect. 

PDVDD 1 Reset has no effect. 

DDVDD (1 $0) 2 Reset has no effect. 

MDVDD 1 Reset has no effect. 

vss (3-0) 4 Reset has no effect. 

t Present only on TMS320C30 
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Table W. Pin Operation at Reset (Continued) 

Slgnal # Plns Operation at Reset 

Dvss (3-0) 2 Reset has no effect. 

cvss (1 $0) 2 Reset has no effect. 

~VSS 1 Reset has no effect. 

VEEP 1 Reset has no effect. 

SUBS 1 Reset has no effect. 

X i  1 Reset has no effect. 

X2lCLKI N 1 Reset has no effect. 

HI  1 Synchronous reset. Will go to its initial state when makes a 1 to 0 
transition. See Chapter 13. 

H3 1 Synchronous reset. Will go to its initial state when RESEf makes a 1 to 0 
transition. See Chapter 13. 

Emulation, Test, and Reserved (18 Pins) 

EMU0 1 Undefined 

EMU1 1 Undefined 

EMU2 1 Undefined 

EMU3 1 Undefined 

 EMU^/^ 1 Undefined 

EMU$ 1 Undefined 

 EMU^^ 1 Undefined 

RSVO~ 1 Undefined 

RSVl t 1 Undefined 

R S V ~ ~  1 Undefined 

R S V ~ ~  1 Undefined 

RSV4t 1 Undefined 

RSVB~ 1 Undefined 

RSV6t 1 Undefined 

R S V ~ ~  1 Undefined 

R S V ~ ~  1 Undefined 

RSVS~  1 Undefined 

RSVl0t 1 Undefined 

t Present only on TMS320C30 
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At system reset, the following additional operations are performed: 

a The peripherals are reset. This is asynchronous operation. The peripheral 
reset is described in Chapter 8. 

The external bus control registers are reset. The reset values of the control 
registers are described in Chapter 7. 

The following CPU registers are loaded with 0: 

ST (CPU status register) 
IE (CPUIDMA interrupt enable flags) 
IF (CPU interrupt flags) 
IOF (110 flags) 

a The reset vector is read from memory location Oh and loaded into the PC. 
This vector contains the start address of the system reset routine. 

Execution begins. Refer to Example 11 -1 on page 11 -3 for an illustration 
of a processor initialization routine. 

Multiple TMS320C3xs driven by the same system clock may be reset and syn- 
chronized. When the 1 to 0 transition of -occurs, the processor is placed 
on a well-defined internal phase, and all of the TMS320C3xs will come up on 
the same internal phase. 

Unless otherwise specified, all registers are undefined after reset. 



Interrupts 

6.6 lnterrupts 

The TMS320C3x supports multiple internal and external interrupts, which can 
be used for a variety of applications. This section discusses the operation of 
these interrupts. 

A functional diagram of the logic used to implement the external interrupt 
inputs is shown in Figure 6-4; the logic for internal interrupts is similar. Addi- 
tional information regarding internal interrupts can be found in Chapter 8. 

Figure 6 4 .  lnterrupt Logic Functional Diagram 

Internal lnterrupt 
Set Signal EINTn(CPU) 

lnterrupt 
Flag (n) 

Set a 

r RESET. 
lnternal lnterrupt 

Clear/Acknowledge 
Signal 

EINTn(DMA) 

To 
Control 
Section 

External interrupts are synchronized internally, as illustrated by the three flip- 
flops clocked by HI  and H3. Once synchronized, the interrupt input will set the 
corresponding interrupt flag register (IF) bit if the interrupt is active. 

External interrupts are latched internally on the falling edge of HI  (see Chapter 
13 for timing information). An external interrupt must be held low for at least 
one H1/H3 cycle to be recognized by the TMS320C3x. lnterrupts should be 
held low for only one or two H1 falling edges. If the interrupt is held low for three 
or more HI falling edges, multiple interrupts may be recognized. 

6.6.1 lnterrupt Vector Table 

Table 6-4 and Table 6-5 contain the interrupt vectors. In the microprocessor 
mode of the TMS320C30 and the TMS320C31 (Table 6-4) and the microcom- 
puter mode of the TMS320C31 (Table 6-S), the interrupt vectors contain the 
addresses of interrupt service routines that should start executing when an in- 
terrupt occurs. On the other hand, in the microcomputer/boot loader mode of 
the TMS320C31, the interrupt vector contains a branch instruction to the start 
of the interrupt service routine. 
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Table 6 4 .  Reset, Interrupt, and Trap-Vector Locations for the TMS320C30/TMS320C3 1 
Microprocessor Mode 

Address Routine 

OOh 

01 h 

02h 

03h 

04h 

05h 

06h 

07h 

08h 

09h 

OAh 

OBh 

OCh 

1 Fh 

RESET 

l NTO 

INTI 

I NT2 

I NT3 

XI NTO 

RlNTO 

XI NTI t 

RINTI t 

TINT0 

TINT1 

DINT 

Reserved 

20h TRAP 0 

3Bh TRAP 27 

3Ch TRAP 28 (Reserved) 

3Dh TRAP 29 (Reserved) 

3Eh TRAP 30 (Reserved) 

3Fh TRAP 31 (Reserved) 

Reserved on TMS320C31 



Table 6-5. Reset, Interrupt, and Trap Vector Locations for the TMS320C3 1 Microcomputer 
Boot Mode 

Address Deocrlptlon - 
809FC1 l NTO 

809FC7 Reserved 

809FC8 Reserved 
- 

809FC9 TINT0 

809FCA TINT1 

809FCB DINT0 

809FCC809FDF Reserved 

809FEO imm 
809FE1 mxm 

809FFB TRAP27 

809FFG809FFF Reserved 

6.6.2 Interrupt Prioritization 

When two interrupts occur in the same clock cycle or when two previously 
received interrupts are waiting to be serviced, one interrupt will be serviced be- 
fore the other. The CPU handles this prioritization by servicing the interrupt 
with the least priority. Table 6-6 shows the priorities assigned to the reset and 
interrupt vectors. 

The CPU controls all prioritization of interrupts (see Table &6 for reset and in- 
terrupt vector locations and priorities). 
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Table 6-6. Reset and lnterrupt Vector Priorities 

Reset or Vector 
lnterrupt Location Priority Function 

RESET Oh 0 External reset signal input on the RESET pin 
- 
l NTO l h  1 External interrupt on the INTO pin 
- 
INTl 2h 2 External interrupt on the lNTl pin 
- 
INT2 3h 3 External interrupt on the INT2 pin 
- 
I NT3 4h 4 External interrupt on the INT3 pin 

XINTO 5h 5 Internal interrupt generated when serial-port 0 transmit buffer is empty 

RlNTO 6h 6 Internal interrupt generated when serial-port 0 receive buffer is full 

X I N T ~ ~  7h 7 Internal interrupt generated when serial-port 1 transmit buffer is empty 

RINTI~ 8h 8 Internal interrupt generated when serial-port 1 receive buffer is full 

TINTO 9h 9 Internal interrupt generated by timer 0 

TINT1 OAh 10 Internal interrupt generated by timer 1 

DINT OBh 11 Internal interrupt generated by DMA controller 0 

t Reserved on TMS320C31 

6.6.3 lnterrupt Control Bits 

Four CPU registers contain bits used to control interrupt operation: 

C] Status Register (ST) 

The CPU global interrupt enable bit (GIE) located in the CPU status regis- 
ter (ST) controls all maskable CPU interrupts. When this bit is set to 1, the 
CPU responds to an enabled interrupt. When this bit is cleared to 0, all 
CPU interrupts are disabled. Refer to subsection 3.1.7 on page 3-4 for 
more information. 

CPUIDMA lnterrupt Enable Register (IE) 

This register individually enablesldisables CPU and DMA (external, serial 
port, and timer) interrupts. Refer to subsection 3.1.8 on page 3-7 for more 
information. 

IJ CPU lnterrupt Flag Register (IF) 

This register contains interrupt flag bits that indicate the corresponding in- 
terrupt is set. Refer to subsection 3.1.9 on page 3-9 for more information. 



0 DMA Global Control Register 

Interrupts to the DMA are controlled by the synchronization bits of the 
DMA global control register. DMA interrupts are independent of the ST 
(GIE) bit. 

lnterrupt Flag Register Behavior 

When an external interrupt occurs, the corresponding bit of the IF register is 
set to 1. When the CPU or DMA controller processes this interrupt, the corre- 
sponding interrupt flag bit is cleared by the internal interrupt acknowledge sig- 
nal. It should be noted, however, that if lNTn is still low when the interrupt ac- 
knowledge signal occurs, the interrupt flag bit will be cleared for only one cycle - 
and then set again because lNTn is still low. Accordingly, it is theoretically pos- 
sible that, depending on when the IF register is read, this bit may be 0 even 
though lNTn is 0. When the TMS320C3x is reset, 0 is written to the interrupt 
flag register, thereby clearing all pending interrupts. 

The interrupt flag register bits may be read and written under software control. 
Writing a 1 to an IF register bit sets the associated interrupt flag to 1. Similarly, 
writing a 0 resets the corresponding interrupt flag to 0. In this way, all interrupts 
may be triggered andlor cleared through software. Since the interrupt flags 
may be read, the interrupt pins may be polled in software when an interrupt-dri- 
ven interface is not required. 

Internal interrupts operate in a similar manner. In the IF register, the bit corre- 
sponding to an internal interrupt may be read and written through software. 
Writing a 1 sets the interrupt latch; writing a 0 clears it. All internal interrupts 
are one H11H3 cycle in length. 

The CPU global interrupt enable bit (GIE), located in the CPU status register 
(ST), controls all CPU interrupts. All DMA interrupts are controlled by the DMA 
global interrupt enable bit, which is not dependent on ST(GIE) and is local to 
the DMA. The DMA global interrupt enable bit is dependent, in part, on the 
state of the DMA SYNC bits. It is not directly accessible through software (see 
Chapter 8). The AND of the interrupt flag bit and the interrupt enables is then 
connected to the interrupt processor. 

6.6.4 lnterrupt Processing 

The 'C3x allows the CPU and DMA coprocessor to respond to and process in- 
terrupts in parallel. Figure 6-5 on page 6-28 shows interrupt processing flow; 
for exact sequence, refer to Table 6-7 on page 6-29. 
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L 

Figure 6-5. lnterrupt Processing 

Yes 

lnterrupt Is 

Disable lnterrupts 
GlE+ 0 

Clear lnterrupt Flag c 
I Complete All Fetched Instructions / 

1 PC + lnterrupt Vector I 

lnterrupt Is 
a DMA lnterrupt 

Clear lnterrupt Flag e 
DMA Continues Y 

CPU Starts Executing ISR Routine s 
I 1 

Note: CPU and DMA Interrupts 

CPU and DMA interrupts are acknowledged (responded to by the CPU) on 
instruction fetch boundaries only. If instruction fetches are halted because 
of pipeline conflicts or execution of RPTS loops, CPU and DMA interrupts are 
not acknowledged until instruction fetching continues. 

I 1 



Table 6-7. Interrupt Latency 

Cycle Description Fetch Decoda Read Exocute 

1 Recognize interrupt in single-cycle fetched prog prog a prog a-1 prog a-2 
(prog a + 1) instruction. a t 1  

2 Temporarily disable interrupt until GIE is cleared. - interrupt prog a prog a-1 

3 Read the interrupt vector table. - - interrupt prog a 

4 Clear Interrupt flag; clear GIE bit; store return address - - - interrupt 
to stack. 

5 Pipeline begins to fill with ISR instruction. isrl - - - 
6 Pipeline continues to fill with ISR instruction. isr2 isrl - - 

7 Pipeline continues to fill with ISR instruction. isr3 isr2 isrl - 
8 Execute first instruction of interrupt service routine, isr4 isr3 isr2 isrl 

In the CPU interrupt processing cycle (left side of Figure 6-5), the correspond- 
ing interrupt flag in the IF register is cleared, and interrupts are globally dis- 
abled (GIE = 0). The CPU completes all fetched instructions. The current PC 
is pushed to the top of the stack. The interrupt vector is fetched and loaded into 
the PC, and the CPU starts executing the first instruction in the interrupt ser- 
vice routine (ISR). 

If you wish to make the interrupt service routine interruptible, you can set the 
GIE bit to 1 after entering the ISR. 

The DMA interrupt processing cycle (right side of Figure 6-5) is similar to that 
of the CPU. After the pertinent interrupt flag is cleared, the DMA coprocessor 
proceeds according to the status of the SYNC bits in the DMA coprocessor 
global control register. 

The interrupt acknowledge (IACK) instruction can be used to signal externally 
that an interrupt has been serviced. If external memory is specified in the oper- 
and, IACK drives the lACK pin and performs a dummy read. The read is per- 
formed from the address specified by the IACK instruction operand. IACK is 
typically placed in the early portion of an interrupt service routine. However, 
it may be better suited at the end of the interrupt service routine or be totally 
unnecessary. 

Note the following: 

Interrupts are disabled during an RPTS and during a delayed branch (until 
the three instructions following a delayed branch are completed). Inter- 
rupts are held until after the branch. 
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Q When an interrupt occurs, instructions currently in the decode and read 
phases continue regular execution. This is not the case for an instruction 
in the fetch phase: 

If the interrupt occurs in the first cycle of the fetch of an instruction, the 
fetched instruction is discarded (not executed), and the address of 
that instruction is pushed to the top of the system stack. 

If the interrupt occurs after first cycle of the fetch (in the case of a multi- 
cycle fetch due to wait states), that instruction is executed, and the ad- 
dress of the next instruction to be fetched is pushed to the top of the 
system stack. 

6.6.5 CPU Interrupt Latency 

CPU interrupt latency, defined as the time from the acknowledgement of the 
interrupt to the execution of the first interrupt service routine (ISR) instruction, 
is at least eight cycles. This is explained in Table 6-7 on page 6-29, where the 
interrupt is treated as an instruction. It assumed that all of the instructions are 
single-cycle instructions. 

6.6.6 CPUIDMA Interaction 

If the DMA is not using interrupts for synchronization of transfers, it will not be 
affected by the processing of the CPU interrupts. Detected interrupts are re- 
sponded to by the CPU and DMA on instruction fetch boundaries only. Since 
instruction fetches are halted due to pipeline conflicts or when executing 
instructions in an RPTS loop, interrupts will not be responded to until instruc- 
tion fetching continues. It is therefore possible to interrupt the CPU and DMA 
simultaneously with the same or different interrupts and, in effect, synchronize 
their activities. For example, it may be necessary to cause a high-priority DMA 
transfer that avoids bus conflicts with the CPU (that is, that makes the DMA 
higher priority than the CPU). This may be accomplished by using an interrupt 
that causes the CPU to trap to an interrupt routine that contains an IDLE 
instruction. Then if the same interrupt is used to synchronize DMA transfers, 
the DMA transfer counter can be used to generate an interrupt and thus return 
control to the CPU following the DMA transfer. 

Since the DMA and CPU share the same set of interrupt flags, the DMA may 
clear an interrupt flag before the CPU can respond to it. For example, if the 
CPU interrupts are disabled, the DMAcan respond to interrupts and thus clear 
the associated interrupt flags. 



6.6.7 TMS320C3x interrupt Considerations 

Give careful consideration to TMS320C3x interrupts, especially if you make 
modifications to the status register when the global interrupt enable (GIE) bit 
is set. This can result in the GIE bit being erroneously set or reset as described 
in the following paragraphs. 

The GIE bit is set to 0 by an interrupt. This can cause a processing error if any 
code following within two cycles of the interrupt recognition attempts to read 
or modify the status register. For example, if the status register is being pushed 
onto the stack, it will be stored incorrectly if an interrupt was acknowledged two 
cycles before the store instruction. 

When an interrupt signal is recognized, the TMS320C3x continues executing 
the instructions already in the readand decode phases in the pipeline. Howev- 
er, because the interrupt is acknowledged, the GIE bit is reset to 0, and the 
store instruction already in the pipeline will store the wrong status register 
value. 

For example, if the program is like this: 

. . . 
NOP 

interrupt recognized ->LDI @V-ADDR, AR1 
MPYI *ARl, RO 
PUSH ST . . . 
POP ST 

the PUSH ST instruction will save the ST contents in memory, which includes 
GIE = 0. Since the device is expected to have GIE = 1, the POP ST instruction 
will put the wrong status register value into the ST. 

A similar situation may occur if the GIE bit = 1 and an instruction executes that 
is intended to modify the other status bits and leave the GIE bit set. In the 
above example, this erroneous setting would occur if the interrupt were recog- 
nized two cycles before the POP ST instruction. In that case, the interrupt 
would clear the GIE bit, but the execution of the POP instruction would set the 
GIE bit. Since the interrupt has been recognized, the interrupt service routine 
will be entered with interrupts enabled, rather than disabled as expected. 

One solution is to use traps. For example, you can use TRAP 0 to reset GIE 
and use TRAP 1 to set GIE. This is accomplished by making TRAP 0 and 
TRAP 1 be the instructions RETS and RETI, respectively. 
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Another alternative incorporates the following code fragment, which protects 
against modifying or saving of the status register by disabling interrupts 
through the interrupt enable register: 

PUSH I E  i 
LDI 0, I E  ; 
NOP ; 
NOP ; 
AND ODFFFh, S T  ; 
POP I E  ; 

; 
; 
; 

save IE register Added instructions to 
C l e a r  IE register avoid pipeline problems 

2 NOPs or useful instructions 

S e t  GIE = 0 Instruction that reads or 
writes to ST register. 
Added instruction 
to avoid pipeline 
problems. 

6.6.8 TMS320C30 Interrupt Considerations 

The TMS320C30 has two unique exceptions to the interrupt operation. 

0 The status register global interrupt enable (GIE) bit may be erroneously 
reset to 0 (disabled setting) if all of the following conditions are true: 

H A conditional trap instruction (TRAPcond) has been fetched, 
H The condition for the trap is false, and 
H A pipeline conflict has occurred, resulting in a delay in the decode or 

read phases of the instruction. 

During the decode phase of a conditional trap, interrupts are temporarily 
disabled to ensure that the trap will execute before a subsequent interrupt. 
If a pipeline conflict occurs and causes a delay in execution of the condi- 
tional trap, the interrupt disabled condition may become the last known 
condition of the GIE bit. In the case that the trap condition is false, inter- 
rupts will be permanently disabled until the GIE bit is intentionally set. The 
condition does not present itself when the trap condition is true, because 
normal operation of the instruction causes the GIE to be reset, and stan- 
dard coding practice will set the GIE to 1 before the trap routine is exited. 
Several instruction sequences that can cause pipeline conflicts have been 
found: 

LDI mem, SP 

TRAPcond n 

LDI mem, SP 

NOP 

TRAPcond n 
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ST1 SP , mem 
TRAPcond n 
ST1 - I  * M Y  
LDI I RY 

I 1 LD1 *ARz , Rw 
TRAPcond n 

Other similar conditions may also cause a delay in the execution. There- 
fore, the following solution is recommended to avoid or rectify the problem. 

Insert two NOP instructions immediately prior to the TRAPcond instruc- 
tion. One NOP is insufficient in some cases, as illustrated in the second 
bulleted item, above. This eliminates the opportunity for any pipeline con- 
flicts in the immediately preceding instructions and enables the conditional 
trap instruction to execute without delays. 

0 Asynchronous accesses to the interrupt flag register (IF) can cause the 
TMS320C3x to fail to recognize and service an interrupt. This may occur 
when an interrupt is generated and is ready to be latched into the IF regis- 
ter on the same cycle that the IF is being written to by the CPU. Note that 
logic operations (AND, OR, XOR) may write to the IF register. 

The logic currently gives the CPU write priority; consequently, the as- 
serted interrupt might be lost. This is particularly true if the asserted inter- 
rupt has been generated internally (for example, a direct memory access 
(DMA) interrupt). This situation can arise as a result of a decision to poll 
certain interrupts or a desire to clear pending interrupts due to a long pulse 
width. In the case of a long pulse width, the interrupt may be generated 
after the CPU responds to the interrupt and attempts to automatically clear 
it by the interrupt vector process. 

The recommended solution is not to use the interrupt polling technique but 
to design the external interrupt inputs to have pulse widths of between 1 
and 2 instruction cycles. The alternative to strict polling is to periodically 
enable and disable the interrupts that would be polled, thereby allowing 
the normal interrupt vectoring to take place; that automatically clears the 
interrupt flag without affecting other interrupts. If you need to clear a pend- 
ing interrupt, it is recommended that you use a memory location to indicate 
that the interrupt is invalid. Then the interrupt service routine can read that 
location, clear it (if the pending interrupt is invalid), and return immediately. 
The following code fragments show how a dummy interrupt due to a long 
interrupt pulse might be handled: 

ISR-n : PUSH ST 
PUSH DP 
PUSH RO 
LDI OI  DP 

i 
; Save registers 
; 
; Clear Data Page Pointer 
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LDI @DUMMY-INT, RO ; If DUMMY-INT is 0 or positive, 
BNN ISR-n-START ; go to ISR-n-START 
ST1 DP, @DUMMY-INT ; Set DUMMY-INT 0 
POP RO ; 
POP DP i 
POP ST ; Housekeeping, return from interrupt 
RETI , 

ISR-n-START: 

LDI INT-Fn, RO 
AND IF, RO 
BZ ISR-n-END 
LDI 0, DP 
LDI OFFFFh, RO 
ST1 RO, @DUMMY-INT 

ISR-n-END: 
POP RO 
POP DP 
POP ST 
RETI 

; Normal interrupt service routine 
; Code goes here 
I 

; If ones in IF reg match 
; INT-Fn, exit ISR 
; Otherwise clear 
; DP and set 
; DUMMY-INT negative & exit 

; 
; Exit ISR 

6.6.9 Prioritization and Control 

The CPU controls all prioritization of interrupts (see Table 6-8 for reset and in- 
terrupt vector locations and priorities). If the DMA is not using interrupts for 
synchronization of transfers, it will not be affected by the processing of the 
CPU interrupts. Detected interrupts are responded to by the CPU and DMA 
on instruction fetch boundaries only. If instruction fetches are halted due to 
pipeline conflicts or when executing instructions in an RPTS loop, interrupts 
will not be responded to until instruction fetching continues. It is therefore pos- 
sible to interrupt the CPU and DMA simultaneously with the same or different 
interrupts and, in effect, synchronize their activities. For example, it may be 
necessary to cause a high-priority DMA transfer that avoids bus conflicts with 
the CPU, that is, make the DMA higher priority than the CPU. This may be ac- 
complished by using an interrupt that causes the CPU to trap to an interrupt 
routine that contains an IDLE instruction. Then if the same interrupt is used to 
synchronize DMA transfers, the DMA transfer counter can be used to generate 
an interrupt, thereby returning control to the CPU following the DMA transfer. 

Since the DMA and CPU share the same set of interrupt flags, the DMA can 
clear an interrupt flag before the CPU can respond to it. For example, if the 
CPU interrupts are disabled, the DMA can respond to interrupts and thus clear 
the associated interrupt flags. 



Table 6-8. Reset and Interrupt Vector Locations 

Reset or Vector 
Interrupt Location Priority Function 

RESET Oh 0 External reset signal input on the RESET pin 
- - 
I NTO l h  1 External interrupt input on the INTO pin 
- - 
INTI 2h 2 External interrupt input on the INTI pin 
- 
I NT2 3h 3 External interrupt input on the pin 
- - 
I NT3 4h 4 External interrupt input on the INT3 pin 

Rl NTO 

XlNTl t 

5h 5 Internal interrupt generated when serial-port 0 transmit 
buffer is empty 

6h 6 Internal interrupt generated when serial-port 0 receive 
buffer is full 

7h 7 Internal interrupt generated when serial-port 1 transmit 
buffer is empty 

8h 8 Internal interrupt generated when serial-port 1 receive 
buffer is full 

TI NTO 9h 9 Internal interrupt generated by timer 0 

TINT1 OAh 10 Internal interrupt generated by timer 1 

DINT OBh 11 Internal interrupt generated by DMA controller 0 

3 Resewed on TMS320C31 
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6.7 TMS320LC31 Power Management Modes 

The TMS320LC31 CPU has been enhanced by the addition of two power man- 
agement modes: 

0 IDLE2, and 
LOPOWER. 

The H I  instruction clock is held high until one of the four external interrupts is 
asserted. In IDLE2 mode, the TMS320C31 behaves as follows: 

0 No instructions are executed. 

Q The CPU, peripherals, and internal memory retain their previous states. 

0 The primary bus output pins are idle: 

The address lines remain in their previous states, 
The data lines are in the high-impedance state, and 
The output control signals are inactive. 

Q When the device is in the functional (non-emulation) mode, the clocksstop 
with H1 high and H3 low (see Figure 6-6). 

Q The 'C31 will remain in IDLE2 until one of the four external interrupts 
(INT3-INTO) is asserted for at least one H I  cycle. When one of the four 
interrupts is asserted, the clocks start after a delay of one H I  cycle. When 
the clocks restart, they may be in the opposite phase (that is, H I  may be 
high if H3 was high before the clocks were stopped; H3 may be high if H1 
was previously high). The H I  and H3 clocks will remain 180" out of phase 
with each other (see Figure 6-7). 

0 For one of the four external interrupts to be recognized and serviced by 
the CPU during the IDLE2 operation, the interrupt must be asserted for 
less than three cycles but more than two cycles. 

The instruction following the IDLE2 instruction will not be executed until 
after the return from interrupt instruction (RETI) is executed. 

When the device is in emulation mode, the H i  and H3 clocks will continue 
to run normally and the CPU will operate as if an IDLE instruction had been 
executed. The clocks continue to run for correct operation of the emulator. 
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Figure 6-6. IDLE2 Timing 
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Figure 6-7. Interrupt Response Timing After IDLE2 Operation 
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6.7.2 LOPOWER 

In the LOPOWER (low power) mode, the CPU continues to execute instruc- 
tions, and the DMA can continue to perform transfers, but at a reduced clock 
rate of CLKlN frequency 

16 

A TMS320C31 with a CLKIN frequency of 32 MHz will perform identically to 
a 2 MHz TMS320C31 with an instruction cycle time of 1,000 ns. 

Figure 6-8. LOP0 WER Timing 

During the read phase of the. . . 
LOPOWER instruction (Figure 6-8) 

MAXSPEED instruction (Figure 6-9) 

CLKIN 
LOPOWER Read 

The TMS320C31 . . . 
slows to 111 6 of full-speed operation. 

resumes full-speed operation. - 

1 32 CLKlN w 

Figure &9. MAXSPEED Timing 
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External Bus Operation 

Memories and external peripheral devices are accessible through two external 
interfaces on the TMS320C30: 

0 the primary bus, and 
a the expansion bus. 

On the TMS320C31, one bus, the primary bus, is available to access external 
memories and peripheral devices. You can control wait-state generation, per- 
mitting access to slower memories and peripherals, by manipulating 
memory-mapped control registers associated with the interfaces and by using 
an external input signal. 

Major topics discussed in this chapter are listed below. 

Topic Page 
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7.1 External Interface Control Registers 
The TMS320C30 provides two external interfaces: the primary bus and the ex- 
pansion bus. The TMS320C31 provides one external interface: the primary 
bus. The primary bus consists of a 32-bit data bus, a 24-bit address bus, and 
a set of control signals. The expansion bus consists of a 32-bit data bus, a 
13-bit address bus, and a set of control signals. Both buses support soft- 
ware-controlled wait states and an external ready input signal, and both buses 
are useful for data, program, and 110 accesses. 

Access is determined by an active strobe signal (m, m, or IOSTRB). 
When a primary bus access is performed, STRB is low. The expansion bus of 
the TMS320C30 supports two types of accesses: 

0 Memory access signalled by MSTRB low. The timing for an MSTRB ac- 
cess is the same as that of the STRB access on the primary bus. 

0 External peripheral device access is signaled by IOSTRB low. 

Each of the buses (primary and expansion) has an associated control register. 
These registers are memory-mapped as shown in Figure 7-1. 

Figure 7- 1.  Memory- Mapped External Interface Control Registers 
Peripheral 
Address 

808060h 

808061 h 

t Resewed on the TMS320C31 
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7.1 .I Primary-Bus Control Register 

The primary bus control register is a 32-bit register that contains the control 
bits for the primary bus (see Figure 7-2). Table 7-1 lists the register bits with 
the bit names and functions. 

Figure 7-2, Primary-Bus Control Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
x x x x x x  BNKCMP WTCNT SWW HI2 NOHOL 

W w W w R M I W W W W W W W W W w R M I R I W W w  WW R 

NOTE: xx = resewed bit, read as 0. 
R = read, W = write. 
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Table 7-1. Primary-Bus Control Register Bits Summary 

Blt Name Reset Value Function 

0 HOLDST x t Hold status bit. This bit signals whether the port is being held 
(HOLDST = 1) or is not being held (HOLDST = 0). This status bii is valid 
whether the port has been held via hardware or software. 

1 NOHOLD 0 Port hold signal. NOHOLD allows or disallows the port to be held by an 
external HOLD signal. When NOHOLD = 1, the TMS320C3x takes over 
the external bus and controls it, regardless of serviced or ending re- 
quests b external devices. No hold acknowledge (H LDA) is asserted Y6 4 
when a H LD is received. However, it is asserted if an internal hold is 
generated (HI2 = 1). NOHOLD is set to 0 at reset. 

4-3 SWW 

7-5 WTCNT 

0 Internal hold. When set (HIZ = I), the port is put in hold mode. This is 
equivalent to the external HOLD signal. By forcing a high-impedance 
condition, the TMS320C3x can relinquish the external memory port 
through software. HOLDA goes low when the port is placed in the 
high-impedance state. HI2 is set to 0 at reset. 

11 Software wait mode. In conjunction with WTCNT, this two-bit field de- 
fines the mode of wait-state generation. It is set to 1 1 at reset. 

11 1 Software wait mode. This three-bit field specifies the number of cycles 
to use when in software wait mode for the generation of internal wait 
states. The range is 0 (WTCNT = 0 0 0) to 7 (WTCNT= 1 1 1) H1/H3 
cycles. It is set to 1 1 1 at reset. 

1 2-8 10000 Bank compare. This five-bit field specifies the number of MSBs of the 
BNKCMP address to be used to define the bank size. It is set to 1 0 0 0 0 at reset. 

31 -1 3 Reserved 0-0 Read as 0. 
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7.1.2 Expansion-Bus Control Register 

The expansion-bus control register is a 32-bit register that contains control bits 
for the expansion bus (see Figure 7-3 and Table 7-2). 

Figure 7-3. fipansion-Bus Control Register 

NOTE: xx = reserved bit, read as 0. 
R = read, W r mite. 

Table 7-2. Expansion-Bus Control Register Bits Summary 

Reset 
Blt Name Value 

2-0 Reserved 000 Read as 0. 

4-3 SWW 11 Software wait-state generation. In conjunction with the WTCNT, this 
two-bit field defines the mode of wait-state generation. It is set to 1 1 
at reset. 

7-5 WTCNT 111 Software wait mode. This three-bit field specifies the number of cycles 
to use when in software wait mode for the generation of internal wait 
states. The range is 0 (WTCNT = 0 0 0) to 7 (WTCNT = 1 1 1) HlIH3 
clock cycles. It is set to 1 1 1 at reset. 

31-8 Reserved 0-0 Read as 0. 
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7.2 External Interface Timing 

This section discusses functional timing of operations on the primary bus and 
the expansion bus, the TMS320C3x's two independent parallel buses. 
Detailed timing specifications for all TMS320C3x signals are contained in Sec- 
tion 13.6 on page 13-31. 

The parallel buses implement three mutually exclusive address spaces distin- -- 
guished through the use of three separate control signals: STRB, MSTRB, and 
IOSTRB. The STRB signal controls accesses on the primary bus, and the 
MSTRB and IOSTRB control accesses on the expansion bus. Since the two 
buses are independent, you can make two accesses in parallel. 

With the exception of bank switching and the external HOLD function (dis- 
cussed later in this section), timing of primary bus cycles and MSTRB expan- 
sion bus cycles are identical and are discussed collectively. The acronym 
(M)STRB is used in references that pertain equally to STRB and m. Sim- 
ilarly, ( x ) R ~ ,  (X)A, ()OD, and are used to symbolize the equivalent 
primary and expansion bus signals. The IOSTRB expansion bus cycles are 
timed differently and are discussed independently. 

7.2.1 Primary-Bus Cycles 

All bus cycles comprise integral numbers of H I  clock cycles. One H I  cycle is 
defined to be from one falling edge of H I  to the next falling edge of HI. For 
full-speed (zero wait-state) accesses, writes require two HI  cycles and reads 
one cycle; however, if the read follows a write, the read requires two 
cycles.This applies to both the primary bus and the MSTRB expansion bus ac- 
cess. Recall that, internally (from the perspective of the CPU and DMA), writes 
require only one cycle if no accesses to that interface are in progress. The fol- 
lowing discussions pertain to zero wait-state accesses unless otherwise spe- 
cified. 

The (M)STRB signal is low for the active portion of both reads and writes. The 
active portion lasts one H I  cycle. Additionally, before and after the active por- 
tion ((M)STRB low) of writes only, there is a transition cycle of HI. This transi- 
tion cycle consists of the following sequence: 

1) (M)STRB is high. 

2) If required, (x)R/W changes state on HI  rising. 

3) If required, address changes on HI  rising if the previous HI  cycle was the 
active portion of a write. If the previous HI  cycle was a read, address 
changes on H I  falling. 
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Figure 7-4 illustrates a read-read-write sequence for (M)STRB active and no 
wait states. The data is read as late in the cycle as possible to allow maximum 
access time from address valid. Note that although external writes require two 
cycles, internally (from the perspective of the CPU and DMA) they require only 
one cycle if no accesses to that interface are in progress. In the typical timing 
for all external interfaces, the (x)R/W strobe does not change until (M)STRB 
or IOSTRB goes inactive. 

Figure 7-4. Read-Read-Write for (M)STRB = 0 

I 1 

Note: Back-to-Back Read Operations 

(M)STRB will remain low during back-to-back read operations. 
I 8 

External Bus Operation 
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Figure 7-5 illustrates a write-write-read sequence for (M)STRB active and no 
wait states. The address and data written are held valid approximately 
one-half cycle after (M)STRB changes. 

Figure 7-5. Write- Write-Read for (M)STRB = 0 
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Figure 7 4  illustrates a read cycle with one wait state. Since (X)RDY = 1, the 
read cycle is extended. (M)STRB, (x)R/W, and (X)A are also extended one 
cycle. The next time (X)RDY is sampled, it is 0. 

Figure 7-6. Use of Wait States for Read for (M)STRB = 0 
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Figure 7-7 illustrates a write cycle with one wait state. Since initially (X)RDY = 
1, the write cycle is extended. (M)STRB, ( x ) R ~ ,  and (X)A are extended one 
cycle. The next time (X)RDY is sampled, it is 0. 

Figure 7-7. Use of Wait States for Write for (M)STRB = 0 
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7.2.2 Expansion-Bus I10 Cycles 

In contrast to primary bus and MSTRB cycles, IOSTRB reads and writes are 
both two cycles in duration (with no wait states) and exhibit the same timing. 
During these cycles, address always changes on the falling edge of HI ,  and 
IOSTRB is low from the rising edge of the first H I  cycle to the rising edge of 
the second HI cycle. The IOSTRB signal always goes inactive (high) between 
cycles, and X R ~  is high for reads and low for writes. 

Figure 7-8 illustrates read and write cycles when IOSTRB is active and there 
are no wait states. For IOSTRB accesses, reads and writes require a minimum 
of two cycles. Some off-chip peripherals might change their status bits when 
read or written to. Therefore, it is important to maintain valid addresses when 
communicating with these peripherals. For reads and writes when IOSTRB is 
active, IOSTRB is completely framed by the address. 

Figure 7-8. Read and Write for IOSTRB = 0 

, - 
IOSTRB 

I 

I 

XA 
0 I 

XD Write Data 
I I I 
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Figure 7-9 illustrates a read with one wait state when IOSTRB is active, and 
Figure 7-1 0 illustrates a write with one wait state when IOSTRB is active. For 
each wait state added, IOSTRB, X R ~ ,  and XA are extended one clock cycle. 
Writes hold the data on the bus one additional cycle. The sampling of XRDY 
is repeated each cycle. 

Figure 7-9. Read With One Wait State for IOSTRB = 0 
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Figure 7-10. Write With One Wait State for IOSTRB = 0 
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Figure 7-1 1, Figure 7-1 2, Figure 7-1 3, Figure 7-1 4, Figure 7-1 5, 
Figure 7-16, Figure 7-17, Figure 7-1 8, Figure 7-1 9, Figure 7-20, and 
Figure 7-21 illustrate the various transitions between memory reads and 
writes, and I/O writes over the expansion bus. 

Figure 7-1 1. Memory Read and 170 Write for Expansion Bus 
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Figure 7-12. Memory Read and I/O Read for Expansion Bus 
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Figure 7-1 3. Memory Write and I/O Write for Expansion Bus 
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Figure 7-1 4. Memory Write and I/O Read for Expansion Bus 

0 I I 
I 

MSTRB I , , a I 
0 , I , I I , 

8 
8 

I I 

X4 Memory Address I10 Address 

- 
XRDY 

External Bus Operation 



External Interface Timing 
L 

Figure 7-15. 1/O Write and Memory Write for Expansion Bus 
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Figure 7-16. 1/O Write and Memory Read for Expansion Bus 
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Figure 7-1 7. 1/O Read and Memory Write for Expansion Bus 

MSTRB 0 6 1 I 0 

I I I I , 
1 , 0 0 

I , , I I 0 I 

I10 Address Memory Address 
1 

I 1 I I 0 0 6 I 1 
, 



External Interface Timing 

Figure 7-18. 1/O Read and Memory Read for Expansion Bus 
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Figure 7-19. 1/O Write and I/O Read for Expansion Bus 
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Figure 7-20. 170 Write and 170 Write for Expansion Bus 
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Figure 7-21. 1/O Read and I/O Read for Expansion Bus 
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Figure 7-22 and Figure 7-23 illustrate the signal states when a bus is inactive 
(after an IOSTRB or (M)STRB access, respectively). The strobes ( m ,  
MSTRB and m) and go to 1. The address is undefined, and the 
ready signal &m or m) is ignored. 

Figure 7-22. Inactive Bus States for WB 
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Figure 7-23. Inactive Bus States for WB and MSTRB 
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Figure 7-24 illustrates the timing for and m. is an external 
asynchronous input. There is a minimum of one cycle delay from the time when 
the processor recognizes = 0 until = 0. When HOLDA = 0, the 
address, data buses, and associated strobes are placed in a high-impedance 
state. All accesses occurring over an interface are complete before a hold is 
acknowledged. 

Figure 7-24. HOLD and HOLDA Timing 
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7.3 Programmable Wait States 

You can control wait-state generation by manipulating memory-mapped con- 
trol registers associated with both the primary and expansion interfaces. Use 
the WTCNTfield to load an internal timer, and use the SWW field to select one 
of the following four modes of wait-state generation: 

0 External RDY 
WTCNT-generated m w t c n t  

a Logical-AND of RDY and m w t c n t  
IJ Logical-OR of RDY and m w t c n t  

- 
The four modes are used to generate the internal ready signal, RDYint, that - 
controls accesses. As long as RDYint = 1, the current external access is - 
delayed. When RDYint = 0, the current access completes. Since the use of 
programmable wait states for both external interfaces is identical, only the pri- 
mary bus interface is described in the following paragraphs. 
- 
RDYwcnt is an internally generated ready signal. When an external access is 
begun, the value in WTCNT is loaded into acounter. WTCNT can be any value 
from 0 through 7. The counter is decremented every HUH3 clock cycle until 
it becomes 0. Once the counter is set to 0, it remains set to 0 until the next ac- - 
cess. While the counter is nonzero, RDYMcnt = 1. While the counter is 0, - 
RDYMcnt = 0. 
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- -- 
When SWW = 0 0, RDYint depends only on RDY. RDYMCnt is ignored. 
Table 7-3 is the truth table for this mode. 

Table 7-3. Wait-State Generation When S WW = 0 0 
- - 

RDY RDYwtcnt RDYint 

- - - 
When SWW = 0 1, RDYint depends only on RDYMcnt. RDY is ignored. 
Table 7-4 is the truth table for this mode. 

Table 7-4. Wait-State Generation When SWW = 0 I 
- - 

RDY RDYwtcnt RDYint 

When SWW = 1 0, mint is the logical-OR (electrical-AND, since these sig- - - 
rials are low true) of RDY and RDYwcnt (see Table 7-5). 

Table 7-5. Wait-State Generation When SWW = I 0 
- - 

RDY RDYwtcnt RDYint 

- 
When SWW = 1 1, RDYint is the logical-AND (electrical-OR, since these sig- - - 
rials are low true) of RDY and RDYwcnt. The truth table for this mode is 
Table 7-6. 

Table 7-6. Wait-State Generation When SWW = 1 1 
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7.4 Programmable Bank Switching 

Programmable bank switching allows you to switch between external memory 
banks without externally inserting wait states due to memories that require 
several cycles to turn off. Bank switching is implemented on the primary bus 
and not on the expansion bus. 

The size of a bank is determined by the number of bits specified to be ex- 
amined on the BNKCMP field of the primary bus control register (see 
Table 7-1 on page 7-4). For example (see Figure 7-25), if BNKCMP = 16, 
the 16 MSBs of the address are used to define a bank. Since addresses are 
24 bits, the bank size is specified by the eight LSBs, yielding a bank size of 256 
words. If BNKCMP a 16, only the 16 MSBs are compared. Bank sizes from 28 
= 256 to 224 = 16M are allowed. Table 7-7 summarizes the relationship be- 
tween BNKCMP, the address bits used to define a bank, and the resulting bank 
size. 

Figure 7-25. BNKCMP Example 

b- 24-bit address 1 

b-, Number of bits to compare --* Defines bank size 4 

Table 7-7. BNKCMP and Bank Size 

BNKCMP MSBs Defining a Bank Bank Size (32-Bit Words) 

00000 None 224= 16M 
00001 23 223=8M 
0001 0 23-22 222=4M 
0001 1 23-2 1 2z1 = 2M 
001 00 23-20 2% 1 M 
001 01 23-1 9 21% 512K 
001 10 23--18 2l8= 256K 
001 11 23-1 7 217= 128K 
01 000 23-1 6 216=64K 
01 001 23-1 5 215=32K 
01 01 0 23- 1 4 214= 16K 
01 01 1 23-1 3 213=8K 
01100 23-22 212=4K 
01101 23- 1 1 211=2K 
01110 23-1 2 2 1 0 ~ 1  K 
01111 23-9 29 =512 
10000 23--8 28 = 256 
10000-1 11 11 Reserved Undefined 
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The TMS320C3x has an internal register that contains the MSBs (as defined 
by the BNKCMP field) of the last address used for a read or write over the pri- 
mary interface. At reset, the register bits are set to 0. If the MSBs of the address 
being used for the current primary interface read do not match those contained 
in this internal register, a read cycle is not asserted for one HlIH3 clock cycle. 
During this extra clock cycle, the address bus switches over to the new ad- 
dress, but STRB is inactive (high). The contents of the internal register are re- 
placed with the MSBs being used for the current read of the current address. 
If the MSBs of the address being used for the current read match the bits in 
the register, a normal read cycle takes place. 

If repeated reads are performed from the same memory bank, no extra cycles 
are inserted. When a read is performed from adifferent memory bank, memory 
conflicts are avoided by the insertion of an extra cycle. This feature can be dis- 
abled by setting BNKCMP to 0. The insertion of the extra cycle occurs only 
when a read is performed. The changing of the MSBs in the internal register 
occurs for all reads and writes over the primary interface. 

Figure 7-26 illustrates the addition of an inactive cycle when switches be- 
tween banks of memory occur. 

Figure 7-26, Bank-Switching Example 
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Peripherals 

The TMS320C3x features two timers, two serial ports (one on the 
TMS320C31), and an on-chip direct memory access (DMA) controller. These 
peripheral modules are controlled through memory-mapped registers located 
on the dedicated peripheral bus. 

The DMA controller is used to perform input/output operations without interfer- 
ing with the operation of the CPU. Therefore, it is possible to interface the 
TMS320C3x to slow external memories and peripherals (ADS, serial ports, 
etc.) without reducing the computational throughput of the CPU. The result is 
improved system performance and decreased system cost. 

Major topics discussed in this chapter on peripherals are listed below. 

Topic Page 
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8.1 Timers 

The TMS320C3x timer modules are general-purpose, 32-bit, timerlevent 
counters, with two signaling modes and internal or external clocking (see 
Figure 8-1). You can use the timer modules to signal to the TMS320C3xor the 
external world at specified intervals or to count external events. With an inter- 
nal clock, you can use the timer to signal an external A/D converter to start a 
conversion, or it can interrupt the TMS320C3x DMA controller to begin a data 
transfer. The timer interrupt is one of the internal interrupts. With an external 
clock, the timer can count external events and interrupt the CPU after a speci- 
fied number of events. Each timer has an I10 pin that you can use as an input 
clock to the timer, an output clock signal, or a general-purpose I10 pin. 

Figure 8-1. Timer Block Diagram 

7 Internal ClocklP 
Counter (32-bit) I r n a l  Cloct 
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I Period Register (31-0) Counter Register I 
Comparator 

Period = Counter 

Pulse Generator n 
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Three memory-mapped registers are used by each timer: 

IJ Global-Control Register 

The global-control register determines the operating mode of the timer, 
monitors the timer status, and controls the function of the 110 pin of the timer. 

C] Period Register 

The period register specifies the timer's signaling frequency. 
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IJ Counter Register 

The counter register contains the current value of the incrementing count- 
er. You can increment the timer on the rising edge or the falling edge of the 
input clock. The counter is zeroed and can cause an internal interrupt 
whenever its value equals that in the period register. The pulse generator 
generates two types of external clock signals: pulse or clock. The memory 
map for the timer modules is shown in Figure 8-2. 

Figure 8-2. Memory-Mapped Timer Locations 

8.1.1 Tlmer Global-Control Register 

Perlpheml A d d n u  

Tlmer 0 Tlmer 1 

808020h 808030h 

The timer global control register is a 32-bit register that contains the global and 
port control bits for the timer module. Table 8-1 defines this register's bits, 
names, and functions. Bits 3-0 are the port control bits; bits 11 -6 are the tim- 
er global control bits. Figure 8-3 shows the 32-bit register. Note that at reset, 
all bits are set to 0 except for DATIN (which is set to the value read on TCLK). 
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Figure 8-3. Timer Global-Control Register 

R = Read, W = Write, xx = reserved bit, read as 0 

Table 8-1. Timer Global-Control Register Bits Summary 

Bits Name Reset Value Function 

0 FUNC 0 

2 DATOUT 0 

3 DATl N x t  

5-4 Reserved 0-0 

6 GO 0 

FUNC controls the function of TCLK. If FUNC = 0, TCLK is confi- 
gured as a general-purpose digital I10 port. If FUNC = 1, TCLK is 
configured as a timer pin (see Figure 8-4 for a description of the 
relationship between FUNC and CLKSRC). 

If FUNC = 0 and CLKSRC = 0, TCLK is configured as a general- 
purpose I10 pin. In this case,-if I/O = 0, TCLK is configured as a 
general-purpose input pin. If I10 = 1, TCLK is configured as a gen- 
eral-purpose output pin. 

DATOUT drives TCLK when the TMS320C3x is in 110 port mode. 
You can use DATOUT as an input to the timer. 

Data input on TCLK or DATOUT. A write has no effect. 

Read as 0. 

The GO bit resets and starts the timer counter. When GO = 1 and 
the timer is not held, the counter is zeroed and begins increment- 
ing on the next rising edge of the timer input clock. The GO bit is 
cleared on the same rising edge. GO = 0 has no effect on the 
timer. 

Counter hold signal. When this bit is 0, the counter is disabled and 
held in its current state. If the timer is driving TCLK, the state of 
TCLK is also held. The internal divide-by-two counter i s s o  held 
so that the counter can continue where it left off when HLD is set to 
1. You can read and modify the timerregisters while the timer is 
being held. RESET has priorityover HLD. Table 6-2 shows the 
effect of writing to GO and HLD. 

ClocklPulse mode control. When c/F = 1, clock mode is chosen, 
and the signaling of the TSTAT flag and external output will have a 
50 percent duty cycle. When C/P = 0, the status flag and external 
output will be active for one H I  cycle during each timer period (see 
Figure 8-5 on page 8-7). 
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Table 8-1. Timer Global-Control Register Bits Summary (Continued) 

Bits Name Reset Value Function 

9 CLKSRC 0 Specifies the source of the timer clock. When CLKSRC = 1, an inter- 
nal clock with frequency equal to one-half of the H I  frequency is 
used to increment the counter. The INV bit has no effect on the inter- 
nal clock source. When CLKSRC = 0, you can use an external signal 
from the TCLK pin to increment the counter. The external clock is 
synchronized internally, thus allowing external asynchronous clock 
sources that do not exceed the specified maximum allowable exter- 
nal clock frequency. This will be less than f(H1)/2. (See Figure 8-4 
for a description of the relationship between FUNC and CLKSRC). 

Inverter control bit. If an external clock source is used and INV = 1, the 
external clock is inverted as it goes into the counter. If the output of the 
pulse generator is routed to TCLK and INV = 1, the output is inverted 
before it goes to TCLK (see Figure 8-1). If INV = 0, no Inversion is 
performed on the input or output of the timer. The INV bi has no effect, 
regardless of its value, when TCLK is used in I10 port mode. 

11 TSTAT 0 This bit indicates the status of the timer. It tracks the output of the 
uninverted TCLK pin. This flag sets a CPU interrupt on a transition from 
0 to 1. A write has no effect. 

31-1 2 Resewed 0-0 Read as 0. 

t x = 0 o r 1  
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Figure 8 4 .  Timer Modes as Defined by CLKSRC and FUNC 
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Figure 8-5. Timer Timing 

I( =I period register/f(CLKSRC) 

t t t 
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(a) TSTAT and timer output (INV = 0) when C/F = 0 (pulse mode) 

I. 4 period register/f(CLKSRC) I - 2 x period register/f(CLKSRC) -Y 

TINT TINT 
(b) TSTAT and timer output (INV = 0) when C/p = 1 (clock mode) 

The rate of timer signaling is determined by the frequency of the timer input 
clock and the period register. The following equations are valid with either an 
internal or an external timer clock: 

f(pu1se mode) = f(timer clock) / period register 

f(clock mode) = f(timer clock) / (2 x period register) 

Note: Period Register 

If the period register equals 0, refer to Section 8.1.2. 

Table 8-2 shows the result of a write using specified values of the GO and 
bits in the global control register. 

Peripherals 
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Table 8-2. Result of a Write of Specified Values of GO and TD 
- 

GO HLD Result 

0 0 All timer operations are held. No reset is performed. (Reset value) 

0 1 Timer proceeds from state before write. 

1 0 All timer operations are held, including zeroing of the counter. The 
GO bit is not cleared until the timer is taken out of hold. 

1 1 Timer resets and starts. 

8.1.2 Timer Period and Counter Registers 

The 32-bit timer period register is used to specify the frequency of the timer 
signaling. The timer counter register is a 32-bit register, which is reset to 0 
whenever it increments to the value of the period register. Both registers are 
set to 0 at reset. 

Certain boundary conditions affect timer operation. These conditions are listed 
below: 

When the period and counter registers are 0, the operation of the timer is 
dependent upon the CIF mode selected. In pulse mode (CIF = 0), TSTAT 
is set and remains set. In clock mode (Clp = I ) ,  the width of the cycle is 
2/f(H I ) ,  and the external clocks are ignored. 

0 When the counter register is not 0 and the period register = 0, the counter 
will count, roll over to 0, and then behave as described above. 

IJ When the counter register is set to avalue greater than the period register, 
the counter may overflow when being incrernented. Once the counter 
reaches its maximum 32-bit value (OFFFFFFFFh), it simply clocks over to 
0 and continues. 

Writes from the peripheral bus override register updates from the counter and 
new status updates to the control register. 

8.1.3 Timer Pulse Generation 

The timer pulse generator (see Figure 8-1 on page 8-2) can generate sever- 
al external signals. You can invert these signals with the INV bit. The two basic 
modes are pulse mode and clock mode, as shown in Figure 8-5 on page 8-7. 
In both modes, an internal clock source f (timer clock) has a frequency of 
f(H1)/2, and an externally generated clock source f (timer clock) can have a 
maximum frequency of f(H1)/2.6. Refer to timer timing in subsection 13.5.16 
on page 13-66. In pulse mode (CI~ = O), the width of the pulse is llf(H1). 
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Figure 8-6 provides some examples of the TCLKx output when the period reg- 
ister is set to various values and clock or pulse mode is selected. 

Figure 8-6. Timer Output Generation Examples 

(a) INV = 0,  C p  = 0 (Pulse Mode) 
Timer Period = 1 
Also, 
INV = 0,  C F  = 1 (Clock Mode) 
Timer Period = 0 

(b) INV = 0,  C p  = 0 (Pulse Mode) 
Timer Period = 2 

(c) INV = 0, C p  = 0 (Pulse Mode) 
Timer Period = 3 

(d) INV = 0,  C p  = 1 (Clock Mode) 
Timer Period = 1 

(e) INV = 0, C p  = 1 (Clock Mode) 
Timer Period = 2 

(f) INV = 0, C p  = 1 (Clock Mode) 
Timer Period = 3 
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8.1.4 Timer Operation Modes 

The timer can receive its input and send its output in several different modes, 
depending upon the setting of CLKSRC, FUNC, and il0. The four timer modes 
of operation are defined as follows: 

a If CLKSRC = 1 and FUNC = 0, the timer input comes from the internal 
clock. The internal clock is not affected by the INV bit. In this mode, TCLK 
is connected to the 110 port control, and you use TCLK as a general-pur- 
pose 110 pin (see Figure 8-7). lf 510 = 0, TCLK is configured as a general- 
purpose input pin whose state you can read in DATIN. DATOUT has no 
effect on TCLK or DATIN. If i / 0  = 1, TCLK is configured as a 
general-purpose output pin. DATOUT is placed on TCLK and can be read 
in DATIN. 

Figure 8-7. Timer I/O Port Configurations 
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If CLKSRC = 1 and FUNC = 1, the timer input comes from the internal 
clock, and the timer output goes to TCLK. This value can be inverted using 
INV, and you can read in DATIN the value output on TCLK. 

IJ If CLKSRC = 0 and FUNC = 0, the timer is driven according to the status 
of the 510 bit. If TI0 = 0, the timer input comes from TCLK. This value can 
be inverted using INV, and you can read in DATIN the value of TCLK. lf 110 
= 1, TCLK is an output pin. Then, TCLK and the timer are both driven by 
DATOUT. All 040-1 transitions of DATOUT increment the counter. INV has 
no effect on DATOUT. You can read in DATIN the value of DATOUT. 

a If CLKSRC = 0 and FUNC = 1, TCLK drives the timer. If INV = 0, all 040-1 
transitions of TCLK increment the counter. If INV = 1, all 1 -to-0 transitions 
of TCLK increment the counter. You can read in DATIN the value of TCLK. 
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Figure 8-4 on page 8-6 shows the four timer modes of operation. 

8.1.5 Timer Interrupts 

A timer interrupt is generated whenever the TSTAT bit of the timer control reg- 
ister changes from a 0 to a 1. The frequency of timer interrupts depends on 
whether the timer is set up in pulse mode or clock mode. 

a In pulse mode, the interrupt frequency is determined by the following 
equation: 

f(timer clock) , where 
f(interru~t) = period register 

f(interrupt) = timer frequency 
f(timer clock) = interrupt frequency 

In clock mode, the interruptfrequency is determined by the following equa- 
tion: 

f(timer clock) where 
f(interru~t) = 2 x period register ' 

f(interrupt) = timer frequency 
f(timer clock) = interrupt frequency 

The timer counter is automatically reset to 0 whenever it is equal to the value 
in the timer period register. You can use the timer interrupt for either the CPU 
or the DMA. Interrupt enable control for each timer, for either the CPU or the 
DMA, is found in the CPUIDMA interrupt enable register. Refer to subsection 
3.1.8 on page 3-7 for more information on the CPU/DMA interrupt enable 
register. 

When a timer interrupt occurs, a change in the state of the corresponding 
TCLK pin will be observed if FUNC = 1 and CLKSRC = 1 in the timer global- 
control register. The exact change in the state depends on the state of the 
c/F bit. 

Peripherals 8-1 1 
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8.1.6 Timer Inltialization/Reconfiguratlon 

The timers are controlled through memory-mapped registers located on the 
dedicated peripheral bus. Following is the general procedure for initializing 
and/or reconfiguring the timers: 

1) ~ a l t  the timer by clearing the G O M ~  bits of the timer global-control regis- 
ter. To do this, write a 0 to the timer global-control register. Note that the 
timers are halted on RESET. 

- 
2) Configure the timer via the timer global-control register (with GO = HLD 

= 0 ), the timer counter register, and timer period register, if necessary. 

3) Start the timer by setting the  GO/^ bits of the timer global-control 
register. 
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8.2 Serial Ports 

The TMS320C30 has two totally independent bidirectional serial ports. Both 
serial ports are identical, and there is a complementary set of control registers 
in each one. Only one serial port is available on the TMS320C31. You can con- 
figure each serial port to transfer 8,16,24, or 32 bits of data per word simulta- 
neously in both directions. The clock for each serial port can originate either 
internally, via the serial port timer and period registers, or externally, via a 
supplied clock. An internally generated clock is a divide-down of the clockout 
frequency, f(H1). A continuous transfer mode is available, which allows the se- 
rial port to transmit and receive any number of words without new synchroniza- 
tion pulses. 

Eight memory-mapped registers are provided for each serial port: 

0 Global-control register 
Q Two control registers for the six serial I10 pins 
0 Three receiveltransmit timer registers 
0 Data-transmit register 
0 Data-receive register 

The global-control register controls the global functions of the serial port and 
determines the serial-port operating mode. Two port control registers control 
the functions of the six serial port pins. The transmit buffer contains the next 
complete word to be transmitted. The receive buffer contains the last complete 
word received. Three additional registers are associated with the transmivre- 
ceive sections of the serial-port timer. A serial-port block diagram is shown in 
Figure 8-8 on page 8-1 4, and the memory map of the serial ports is shown in 
Figure 8-9 on page 8-1 5. 
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Figure 8-8, Serial-Port Block Diagram 

Receive Section 

Timer (1 6) 

Bit Counter 
(811 6/24/32) 

RSR 
(32) 

L 

t t 
DR DR 

r- Transmit Section 1 

Bit Counter 
(811 6/24/32) 



Serial Ports 

Figure 8-9. Memory-Mapped Locations for the Serial Ports 

Sorlrl SerlaI 
Port 0 Port 1 t 
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t Resewed locations on the TMS320C31 

8.2.1 Serial-Port Global-Control Reglster 
The serial-port global-control register is a 32-bit register that contains the glob- 
al control bits for the serial port. Table 8 4  defines the register bits, bit names, 
and bit functions. The register is shown in Figure 8-1 0. 

Table 8-3. Serial-Port Global-Control Register Bits Summary 

Blt Name Reset Value Function 

0 RRDY 0 If RRDY = 1, the receive buffer has new data and is ready to be read. A 
three H1N3 cycle delay occurs from the loading of DRR to RRDY = 1. The 
rising edge of this signal sets RINT. If RRDY= 0 at reset, the receive buffer 
does not have new data since the last read. RRDY = 0 at reset and after 
the receive buffer is read. 

1 XRDY 1 If XRDY = 1, the transmit buffer has written the last bit of data to the shifter 
and is ready for a new word. A three Hl/H3 cycle delay occurs from the 
loading of the transmit shifter until XRDY is set to 1. The rising edge of this 
signal sets XINT. If XRDY=O, the transmit buffer has not written the last 
bit of data to the transmit shifter and is not ready for a new word. XRDY = 
1 at reset. 

2 FSXOUT 0 This bit configures the FSX pin as an input (FSXOUT = 0) or an output 
(FSXOUT = 1). 
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Table 8-3. Serial-Port Global-Control Register Bits Summary (Continued) 

Bit Name Reset Value Function 

3 XSREMPTY 0 

4 RSRFULL 0 

5 HS 

6 XCLKSRCE 

7 RCLKSRCE 

8 XVAREN 

9 RVAREN 

10 XFSM 

11 RFSM 

12 CLKXP 0 

If XSREMPTY = 0, the transmit shift register is empty. If XSREMPTY = 1, 
the transmit shift register is not empty. Reset or XRESET causes this bit 
to = 0. 

If RSRFULL = 1, an overrun of the receiver has occurred. In continuous 
mode, RSRFULLis set to 1 when both RSR and DRR are full. In noncontin- 
uous mode, RSRFULL is set to 1 when RSR and DRR are full and a new 
FSR is received. A read causes this bit to be set to 0. This bit can be set 
to 0 only by a system reset, a serial-port receive reset (RRESET = I), or 
a read. When the receiver tries to set RSRFULL to 1 at the same time that 
the global register is read, the receiver will dominate, and RSRFULL is set 
to 1. If RSRFULL = 0, no overrun of the receiver has occurred. 

If HS = 1, the handshake mode is enabled. If HS = 0, the handshake mode 
is disabled. 

If XCLKSRCE = 1, the internal transmit clock is used. If XCLKSRCE = 0, 
the external transmit clock is used. 

If RCLKSRCE = 1, the internal receive clock is used. If RCLKSRCE = 0, 
the external receive clock is used. 

This bit specifies fixed (XVAREN = 0) or variable (XVAREN = 1) data rate 
signaling when transmitting. With afixed data rate, FSX is active for at least 
one XCLK cycle and then goes inactive before transmission begins. With 
variable data rate, FSX is active while all bits are being transmitted. When 
you use an external FSX and variable data rate signaling, the DX pin Is driv- 
en by the transmitter when FSX is held active or when a word is being 
shifted out. 

This bit specifies fixed (RVAREN = 0) or variable (RVAREN = 1) data rate 
signaling when receiving. With a fixed data rate, FSR is active for at least 
one RCLK cycle and then goes inactive before the reception begins. With 
variable data rate, FSR is active while all bits are being received. 

Transmit frame sync mode. Configures the port for continuous mode oper- 
ation(XFSM = 1) or standard mode (XFSM = 0). In continuous mode, only 
the first word of a block generates a sync pulse, and the rest are simply 
transmitted continuously to the end of the block. In standard mode, each 
word has an associated sync pulse. 

Receive frame sync mode. Configures the port for continuous mode 
(RFSM =1) or standard mode (RFSM = 0) operation. In continuous mode, 
only the first word of a block generates a sync pulse, and the rest are simply 
received continuously without expectation of another sync pulse. In stan- 
dard mode, each word received has an associated sync pulse. 

CLKX polarity. If CLKXP = 0, CLKX is active high. If CLKXP = 1, CLKX is 
active low. 
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Table 8-3. Serial-Port Global-Control Register Bits Summary (Continued) 

Blt Name Reset Value Functlon 

CLKRP CLKR polarity. If CLKRP = 0, CLKR is active (high). If CLKRP =1, CLKR 
is active (low). 

DX polarity. If DXP = 0, DX is active (high). If DXP = 1, DX is active (low). DXP 

DRP 

FSXP 

DR polarity. If DRP = 0, DR is active (high). If DRP = 1, DR is active (low). 

FSX polarity. If FSXP = 0, FSX is active (high). If FSXP = 1, FSX Is 
active (low). 

FSRP FSR polarity. If FSRP = 0, FSR is active (high). If FSRP = 1, FSR is 
active (low). 

These two bits define the word length of serial data transmitted. All data 
is assumed to be right-justified in the transmit buffer when fewer than 32 
bits are specified. 

0  0 - - - 8  bib 1 0 - - 2 4  b b  
0  1 --- 16 bib 1  1  --- 32 bits 

XLEN 

RLEN These two bits define the word length of serial data received. All data is 
right-justified in the receive buffer. 

0  0  --- 8  bits 1 0  --- 24 bits 
0  1 --- 16 bits 1  1  --- 32 b b  

Transmit timer interrupt enable. If XTlNT = 0, the transmit timer interrupt 
is disabled. If XTlNT = 1, the transmit timer interrupt is enabled. 

Transmit interrupt enable. If XINT = 0, the transmit interrupt is disabled. If 
XINT= 1, the transmit interrupt is enabled. Note that the CPU receive flag 
XINT and the serial port-to-DMA interrupt (EXINTO in the IE register) is the 
OR of the enabled transmit timer interrupt and the enabled transmit inter- 
rupt. 

RTl NT 

RlNT 

Receive timer interrupt enable. If RTINT = 0, the receive timer interrupt is 
disabled. If RTlNT = 1, the receive timer interrupt is enabled. 

Receive interrupt enable. If RlNT = 0, the receive interrupt is disabled. If 
RINT= 1, the receive interrupt is enabled. Note that the CPU receive flag 
RINTand the serial-port-to-DMA interrupt (ERINTO in the IE register) is the 
OR of the enabled receive timer interrupt and the enabled receive inter- 
rupt. 

XRESET Transmit reset. If XRESET = 0, the transmit side of the serial port is reset. 
To take the transmit side of the serial port out of reset, set XRESET to 1. 
However, do not set XRESET to 1 until at least three cycles after XRESET 
goes inactive. This applies only to system reset. Setting XRESET to 0 does 
not change the contents of any of the serial-port control registers. It places 
the transmitter in a state corresponding to the beginning of aframe of data. 
Resetting the transmitter generates a transmit interrupt. Reset this bit dur- 
ing the time the mode of the transmitter is set. You can toggle XFSM with- 
out resetting the global-control register. 
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Table 8-3. Serial-Port Global-Control Register Bits Summary (Concluded) 

Bit Name Reset Value Function 

27 RRESET 0 Receive reset. If RRESET = 0, the receive side of the serial port is reset. 
To take the receive side of the serial port out of reset, set RRESET to 1. 
Setting RRESET to 0 does not change the contents of any of the serial- 
port control registers. It places the receiver in a state corresponding to the 
beginning of aframe of data. Reset this bit at the same time that the mode 
of the receiver is set. RFSM can be toggled without resetting the global- 
control register. 

31 -28 Reserved 0 4  Read as 0. 

Figure S- 10. Serial-Port Global-Control Register 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

xx xx ac xx RRRSE EESET RIN RTINT XINT XTlNT RLEN XLEN FSRP FSXP I 
w w w w  w w w  w w  w w w  

R = Read, W = Write, xx = reserved bit, read as 0 

8.2.2 FSX/DX/CLKX Port-Control Register 

This 32-bit port control register controls the function of the serial port FSX, DX, 
and CLKX pins. At reset, all bits are set to 0. Table 8-4 defines the register bits, 
bit names, and functions. Figure 8-1 1 shows this port control register. 
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Table 8 4 .  FSWDWCLKX Port-Control Register Bits Summary 

Bit Name Reset Value Function 

0 CLKXFUNC 

2 CLKXDATOUT 

3 CLKXDATIN 

4 DXFUNC 

6 DXDATOUT 

7 DXDATIN 

8 FSXFUNC 

10 FSXDATOUT 

11 FSXDATIN 

31 -1 2 Reserved 

CLKXFUNC controls the function of CLKX. If CLKXFUNC = 0, 
CLKX is configured as a general-purpose digital I10 port. If 
CLKXFUNC = 1, CLKX is a serial port pin. 

If CLKX i10 _= 0, CLKX is configured as a general-purpose input 
pin. If CLKX I10 = 1, CLKX is configured as a general-purpose out- 
put pin. 

Data output on CLKX. 

Data input on CLKX. A write has no effect. 

DXFUNC controls the function of DX. If DXFUNC = 0, DX is config- 
ured as a general-purpose digital 110 port. If DXFUNC = 1, DX is 
a serial port pin. 

If DX TI0 = 0, DX is configured as a general-purpose input pin. If 
DX I10 = 1, DX is configured as a general-purpose output pin. 

Data output on DX. 

Data input on DX. A write has no effect. 

FSXFUNC controls the function of FSX. If FSXFUNC = 0, FSX is 
configured as a general-purpose digital I10 port. If FSXFUNC = 1, 
FSX is a serial port pin. 

If FSXJIO = 0, FSX is configured as a general-purpose input pin. 
If FSX I10 = 1, FSX is configured as a general-purpose output pin. 

Data output on FSX. 

Data input on FSX. A write has no effect. 

Read as 0. 

Figure 8- 1 1. FSWDWCLKX Port-Control Register 

. . .  - 

FSX fSX FSX DX DX DX DX CUOC CLKX C - W  CUO( 
X X a c X X X X  DATOUT VO FUNC DATlN DATOUT VO FUNC DATlN DATOUT I10 FUNC 

R F W W W  R w W F W  R F W F W F W  

R = Read, W = Write, xx = resewed bit, read as 0 
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8.2.3 FSR/DR/CLKR Port-Control Register 

This 32-bit port control register is controlled by the function of the serial port 
FSR, DR, and CLKR pins. At reset, all bits are set to 0. Table 8-5 defines the 
register bits, the bit names, and functions. Figure 8-1 2 illustrates this port con- 
trol register. 

Table 8-5. FSR/DR/CLKR Port-Control Register Bits Summary 

Bit Name Reset Value Function 
0 CLKRFUNC 0 CLKRFUNC controls the function of CLKR. If CLKRFUNC=O, 

CLKR is configured as a general-purpose digital I10 port. If 
CLKRFUNC = 1, CLKR is a serial port pin. 

1 CLKR~IO 0 If CLKR~IO = 0, CLKR is configured as a general-purpose input pin. 
If CLKRIIO = 1, CLKR is configured as ageneral-purpose output pin. 

2 CLKRDATOUT 0 Data output on CLKR. 

3 CLKRDATIN x Data input on CLKR. A write has no effect. 

4 DRFUNC 0 DRFUNC controls the function of DR. If DRFUNC = 0, DR is 
configured as ageneral-purpose digital I10 port. If DRFUNC = 1, DR 
is a serial port pin. 

5 D R ~ I O  0 If ~ ~ 1 1 0  =o, DR is configured as a general-purpose input pin. 
If DRIIO = 1, DR is configured as a general-purpose output pin. 

6 DRDATOUT 0 Data output on DR 

7 DRDATIN x t Data input on DR. A write has no effect. 

8 FSRFUNC 0 FSRFUNC controls the function of FSR. If FSRFUNC = 0, FSR is 
configured as a general-purpose digital I10 port. If 
FSRFUNC= 1, FSR is a serial port pin. 

9 FSRi10 0 If FSR ~/O=O, FSR is configured as a general-purpose input pin. If 
FSR I10 = 1, FSR is configured as a general-purpose output pin. 

10 FSRDATOUT 0 Data output on FSR 

11 FSRDATIN x Data input on FSR. A write has no effect. 

31-1 2 Reserved 0-0 Read as 0. 

Figure 8-1 2. FSR/DR/CL KR Port-Control Register 

CLKR cU(R c-U(R CLKR 
DATlN DATOUT I10 FUNC 

R = Read, W = Write, xx = resewed bit, read as 0 
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8.2.4 Recelverrransmit Timer-Control Register 

A 32-bit receivehransmit timer control register contains the control bits for the 
timer module. At reset, all bits are set to 0. Table 8-6 lists the register bits, bit 
names, and functions. Bits 5-0 control the transmitter timer. Bits 11 -6 control 
the receiver timer. Figure 8-13 shows the register. The serial port receive1 
transmit timer function is similar to timer module operation. It can be consid- 
ered a 16-bit-wide timer. Refer to Section 8.1 on page 8-2 for more informa- 
tion on timers. 

Table 8-6. Receive/Transmit Timer-Control Register 

Blt Name Reset Value 

0 XGO 0 

1 XHLD 

3 XCLKSRC 0 

4 Reserved 0 

5 XTSTAT 0 

6 RGO 0 

7 RHLD 0 

Functlon 

The XGO bit resets and starts the transmit timer counter. When XGO 
is set to 1 and the timer is not held, the counter is zeroed and begins 
incrementing on the next rising edge of the timer input clock. The XGO 
bit is cleared on the same rising edge. Writing 0 to XGO has no effect 
on the transmit timer. 

Transmit counter hold signal. When this bit is set to 0, the counter is dis- 
abled and held in its current state. The internal divide-by-two co- 
is also held so that the counter will continue where it left off when XHLD 
is set to 1. You can read and modify the timer registers while the timer 
is being held. RESET has priority over XHLD. 

XClock/Pulse mode control. When XC/F= I, the clock mode is chosen. 
The signaling of the status flag and external output has a 50 percent 
duty cycle. When XCIP = 0, the status flag and external output are ac- 
tive for one CLKOUT cycle during each timer period. 

This bit specifies the source of the transmit timer clock. When 
XCLKSRC = 1, an internal clock with frequency equal to one-half the 
CLKOUT frequency is used to increment the counter. When XCLKSRC 
= 0, you can use an external signal from the CLKX pin to increment the 
counter. The external clock source is synchronized internally, thus al- 
lowing for external asynchronous clock sources that do not exceed the 
specified maximum allowable external clock frequency, that is, less 
than f(H1)/2.6. 

Read as zero. 

This bit indicates the status of the transmit timer. It tracks what would 
be the output of the uninverted CLKX pin. This flag sets a CPU interrupt 
on a transition from 0 to 1. A write has no effect. 

The RGO bit resets and starts the receive timer counter. When RGO 
is set to 1 and the timer is not held, the counter is zeroed and begins 
incrementing on the next rising edge of the timer input clock. The RGO 
bit is cleared on the same rising edge. Writing 0 to RGO has no effect 
on the receive timer. 

Receive counter hold signal. When this bit is set to 0, the counter is dis- 
abled and held in its current state. The internal divide-by-two counter 
is also held so that the counter will continue where it left off when RHLD 
is set to 1. You can read and modify the timer registers while the timer 
is being held. RESET has priority over RHLD. 
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Table 8-6. Receive/Tansmit Timer-Control Register (Concluded) 

9 RCLKSRC 

Bit Name Reset Value Function 
8 RC/P 0 RClock/Pulse mode control. When RCIP = 1, the clock mode is cho- 

sen. The signaling of the status flag and external output has a 50 per- 
cent duty cycle. When RCIP = 0, the status flag and external output 
are active for one CLKOUT cycle during each timer period. 

This bit specifies the source of the receive timer clock. When 
RCLKSRC = 1, an internal clock with frequency equal to one-half the 
CLKOUT frequency is used to increment the counter. When 
RCLKSRC = 0, you can use an external signal from the CLKR pin to 
increment the counter. The external clock source is synchronized in- 
ternally, thus allowing for external asynchronous clock sources that 
do not exceed the specified maximum allowable external clock fre- 
quency, that is, less than f(H1)/2.6. 

10 Reserved 

11 RTSTAT 

Read as zero. 

This bit indicates the status of the receive timer. It tracks what would 
be the output of the uninverted CLKR pin. This flag sets a CPU inter- 
rupt on a transition from 0 to 1. A write has no effect. 

31-12 Reserved 0-0 Read as 0. 

Figure 8-1 3. Receive/Transmit Timer-Control Register 
31 30 28 28 27 26 25 24 23 22 21 20 19 18 17 16 

a t x x x x o t a c  ac XX XX XX XX YX XX XX XX X X Y X Y X  

R = Read, W = Write, xx= resewed bit, read as 0 

8.2.5 Receiverrransmit Timer-Counter Register 

The receivehransmit timer counter register is a 32-bit register (see 
Figure 8-1 4). Bits 15-0 are the transmit timer counter, and bits 31 -1 6 are the 
receive timer counter. Each counter is cleared to 0 whenever it increments to 
the value of the period register (see Section 8.2.6). It is also set to 0 at reset. 

Figure 8-74. Receiveflransmit Timer Counter Register 
3 1 16 

I Receive Counter I 

Transmit Counter 

NOTE: All bits are readtwrite. 
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8.2.6 Receive/Transmit Timer-Period Register 

The receivehransmit timer period register is a 32-bit register (see 
Figure 8-1 5). Bits 15-0 are the timer transmit period, and bits 31 -1 6 are the 
receive period. Each register is used to specify the period of the timer. It is also 
cleared to 0 at reset. 

Figure 8-1 5. Receivenransmit Timer-Period Register 
31 16 

Receive Period 

15 0 

I Transmit Period I 
Note: All bits are readlwrite, 

8.2.7 Data-Transmit Register 

When the data-transmit register (DXR) is loaded, the transmitter loads the 
word into the transmit shift register (XSR), and the bits are shifted out. The 
delay from a write to DXR until an FSX occurs (or can be accepted) is two 
CLKX cycles. The word is not loaded into the shift register until the shifter is 
empty. When DXR is loaded into XSR, the XRDY bit is set, specifying that the 
buffer is available to receive the next word. Four tap points within the transmit 
shift register are used to transmit the word. These tap points correspond to the 
four data word sizes and are illustrated in Figure 8-1 6. The shift is a left-shift 
(LSB to MSB) with the data shifted out of the MSB corresponding to the appro- 
priate tap point. 

Figure 8-1 6. Transmit Buffer Shift Operation 

.- Shift Direction + 

32-bit 24-bit 16-bit 8-bit 
word tap word tap word tap word tap 
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8.2.8 Data-Receive Register 

When serial data is input, the receiver shifts the bits into the receive shift regis- 
ter (RSR). When the specified number of bits are shifted in, the data-receive 
register (DRR) is loaded from RSR, and the RRDY status bit is set. The receiv- 
er is double-buffered. If the DRR has not been read and the RSR is full, the 
receiver is frozen. New data coming into the DR pin is ignored. The receive 
shifter will not write over the DRR. The DRR must be read to allow new data 
in the RSR to be transferred to the DRR. When a write to DRR occurs at the 
same time that an RSR to DRR transfer takes place, the RSR to DRR transfer 
has priority. 

Data is shifted to the left (LSB to MSB). Figure 8-1 7 illustrates what happens 
when words less than 32 bits are shifted into the serial port. In this figure, it is 
assumed that an &bit word is being received and that the upper three bytes 
of the receive buffer are originally undefined. In the first portion of the figure, 
byte a has been shifted in. When byte b is shifted in, byte a is shifted to the left. 
When the data receive register is read, both bytes a and b are read. 

Figure 8-1 7. Receive Buffer Shift Operation 

.- Shift Direction - 

After Byte b 

3 1 24 23 16 15 8 7 0 

8.2.9 Serial-Port Operation Configurations 

Several configurations are provided for the operation of the serial port clocks 
and timer. The clocks for each serial port can originate either internally or exter- 
nally. Figure 8-1 8 shows serial port clocking in the I10 mode (CLKRFUNC = 
0) when CLKX is either an input or an output. Figure a1 9 shows clocking in 
the serial-port mode (CLKRFUNC=l). Both figures use a transmit section for 
an example. The same relationship holds for a receive section. 

After Byte a X X X a 
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Figure 8-78. Serial-Port Clocking in I/O Mode 

Internal External I 
T S T A T  lfltel'Ilal I 

D A T O U T  I 
DATlN 

CLKRFUNC = 0 (I10 Mode) 
CLKXIIO = 1 (CLKX, an Output) 
XCLKSRC = 1 (Internal CLK for Timer) 
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CLKRFUNC = 0 (I10 Mode) 
CLKXIIO = 0 ( C W ,  an Input) 
XCLKSRC = 1 (Internal CLK for Timer) 

(c) 

lnternal External I 

nmer in 

DATAOUT 
DATlN 

CLKRFUNC r 0 (110 Mode) 
c ~ l l o  s 1 (CLKX, an Output) 
XCLKSRC s 0 (External CLK for Timer) 

lnternal 1 External 

DATOuT DATlN (NC)- 

CLKRFUNC = 0 (I10 Mode) 
CLKXItO = 0 (CLKX, an Input) 
XCLKSRC = 0 (External CLK for Timer) 

(dl 
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Figure 8- 19. Serial- Port Clocking in Serial- Port Mode 

Internal, External . .. 

TSTAT I 
I 

DATOUT (NC) 7 1 INV 
DATlN 

Internal External 
I 
I 
I 

DATlN 
DATOUT (NC) -4 

CLKRFUNC = 1 (Serial-Port Mode) CLKRFUNC = 1 (Serial-Port Mode) 
XCLKSRCE = 1 (Output Serial-Port CLK) XCLKSRCE = 0 (Input Serial-Port CLK) 
XCLKSRC = 0 or 1 XCLKSRC = 1 (Internal CLK for Timer) 

(a) (b) 

Internal I External 

TSTAT I ++ ~ i r n e r h  I 

L p p  CLW 
DATOUT (NC) - 

FUNC = 1 (Serial-Port Mode) 
XCLKSRCE = 0 (Input Serial-Port CLK) 
XCLKSRC = 0 (External CLK for Timer) 

(4 

8.2.1 0 Serial-Port Timing 

The forrrula for calculating the frequency of the serial-port clock with an inter- 
nally generated clock is dependent upon the operation mode of the serial-port 
timers, defined as 

f (pulse mode) = f (timer clock)lperiod register 

f (clock mode) = f (timer clock)/(2 x period register) 

An internally generated clock source f(timer clock) has a maximum frequency 
of f(H1)/2. An externally generated serial-port clock f (timer clock) (CLKX or 
CLKR) has a maximum frequency of less than f(H1)/2.6. See serial port timing 
in Table 13-27 on page 13-58. Also, see subsection 8.1.3 on page 8-8 for in- 
formation on timer pulse/clock generation. 
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Transmit data is clocked out on the rising edge of the selected serial-port clock. 
Receive data is latched into the receive shift register on the falling edge of the 
serial-port clock. All data is transmitted and loaded MSB first and right-justi- 
fied. If fewer than 32 bits are transferred, the data are right-justified in the 32-bit 
transmit and receive buffers. Therefore, the LSBs of the transmit buffer are 
the bits that are transmitted. 

The transmit ready (XRDY) signal specifies that the data-transmit register 
(DXR) is available to be loaded with new data. XRDY goes active as soon as 
the data is loaded into the transmit shift register (XSR). The last word may still 
be shifting out when XRDY goes active. If DXR is loaded before the last word 
has completed transmission, the data bits transmitted are consecutive; that is, 
the LSB of the first word immediately precedes the MSB of the second, with 
all signaling valid as in two separate transmits. XRDY goes inactive when DXR 
is loaded and remains inactive until the data is loaded into the shifter. 

The receive ready (RRDY) signal is active as long as a new word of data is 
loaded into the data receive register and has not been read. As soon as the 
data is read, the RRDY bit is turned off. 

When FSX is specified as an output, the activity of the signal is determined 
solely by the internal state of the serial port. If afixed data rate is specified, FSX 
goes active when DXR is loaded into XSR to be transmitted out. One serial- 
clock cycle later, FSX turns inactive, and data transmission begins. If avariable 
data rate is specified, the FSX pin is activated when the data transmission be- 
gins and remains active during the entire transmission of the word. Again, the 
data is transmitted one clock cycle after it is loaded into the data transmit 
register. 

An input FSX in the fixed data rate mode should go active for at least one serial 
clock cycle and then inactive to initiate the data transfer. The transmitter then 
sends the number of bits specified by the LEN bits. In the variable data-rate 
mode, the transmitter begins sending from the time FSX goes active until the 
number of specified bits has been shifted out. In the variable data-rate mode, 
when the FSX status changes prior to all the data bits being shifted out, the 
transmission completes, and the DX pin is placed in a high-impedance state. 
An FSR input is exactly complementary to the FSX. 

When using an external FSX, if DXR and XSR are empty, a write to DXR results 
in a DXR-to-XSR transfer. This data is held in the XSR until an FSX occurs. 
When the external FSX is received, the XSR begins shifting the data. If XSR 
is waiting for the external FSX, a write to DXR will change DXR, but a DXR-to- 
XSR transfer will not occur. XSR begins shifting when the external FSX is re- 
ceived, or when it is reset using XRESET. 
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Continuous Transmit and Receive Modes 

When continuous mode is chosen, consecutive writes do not generate or ex- 
pect new sync pulse signaling. Only the first word of a block begins with an ac- 
tive synchronization. Thereafter, data continues to be transmitted as long as 
new data is loaded into DXR before the last word has been transmitted. As 
soon as TXRDY is active and all of the data has been transmitted out of the 
shift register, the DXpin is placed in a high-impedance state, and asubsequent 
write to DXR initiates a new block and a new FSX. 

Similarly with FSR, the receiver continues shifting in new data and loading 
DRR. If the data-receive buffer is not read before the next word is shifted in, 
you will lose subsequent incoming data. You can use the RFSM bit to terminate 
the receive-continuous mode. 

Handshake Mode 

The handshake mode (HS = 1) allows for direct connection between proces- 
sors. In this mode, all data words are transmitted with a leading 1 (see 
Figure 8-20). For example, if an eight-bit word is to be transmitted, the first bit 
sent is a 1, followed by the eight-bit data word. 

In this mode, once the serial port transmits a word, it will not transmit another 
word until it receives a separately transmitted zero bit. Therefore, the 1 bit that 
precedes every data word is, in effect, a request bit. 

Figure 8-20. Data Word Format in Handshake Mode 
7- Data Word (8 Bits) -7 
I I 

leading 1 

After a serial port receives a word (with the leading 1) and that word has been 
read from the DRR, the receiving serial port sends a single 0 to the transmitting 
serial port. Thus, the single 0 bit acts as an acknowledge bit (see Figure 8-21). 
This single acknowledge bit is sent every time the DRR is read, even if the DRR 
does not contain new data. 

Figure 8-2 1. Single Zero Sent as an Acknowledge Bit 

Dx ? single 0 
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When the serial port is placed in the handshake mode, the insertion and dele- 
tion of a leading 1 for transmitted data, the sending of a 0 for acknowledgement 
of received data, and the waiting for this acknowledge bit are all performed au- 
tomatically. Using this scheme, it is simple to connect processors with no exter- 
nal hardware and to guarantee secure communication. Figure 8-22 is a typi- 
cal configuration. 

In the handshake mode, FSX is automatically configured as an output. Contin- 
uous mode is automatically disabled. After a system reset or XRESET, the 
transmitter is always permitted to transmit. The transmitter and receiver must 
be reset when entering the handshake mode. 

Figure 8-22, Direct Connection Using Handshake Mode 

8.2.11 Serial-Port Interrupt Sources 

A serial port has the following interrupt sources: 

0 The transmit timer interrupt: The rising edge of XTSTAT causes a sing- 
le-cycle interrupt pulse to occur. When XTlNT is 0, this interrupt pulse is 
disabled. 

rn The receive timer interrupt: The rising edge of RTSTAT causes a single- 
cycle interrupt pulse to occur. When RTINT is 0, this interrupt pulse is dis- 
abled. 

The transmitter interrupt: Occurs immediately following a DXR-to-XSR 
transfer. The transmitter interrupt is a single-cycle pulse. When the 
serial-port global-control register bit XINT is 0, this interrupt pulse is dis- 
abled. 

0 The receiver interrupt: Occurs immediately following an RSR to DRR 
transfer. The receiver interrupt is a single-cycle pulse. When the 
serial-port global-control register bit RINT is 0, this interrupt pulse is 
disabled. 

The transmit timer interrupt pulse is ORed with the transmitter interrupt pulse to create 
the CPU transmit interrupt flag XINT. The receive timer interrupt pulse is ORed with the 
receiver interrupt pulse to create the CPU receive interrupt flag RINT. 
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8.2.1 2 Serial-Port Functional Operation 

The following paragraphs and figures illustrate the functional timing of the vari- 
ous serial-port modes of operation. The timing descriptions are presented with 
the assumption that all signal polarities are configured to be positive, that is, 
CLKXP = CLKRP = DXP = DRP = FSXP = FSRP = 0. Logical timing, in situa- 
tions where one or more of these polarities are inverted, is the same except 
with respect to the opposite polarity reference points, that is, rising vs. falling 
edges, etc. 

These discussions pertain to the numerous operating modes and configura- 
tions of the serial-port logic. When it is necessary to switch operating modes 
or change configurations of the serial port, you should do so only when 
XRESET or RRESET are asserted (low), as appropriate. Therefore, when 
transmit configurations are modified, XRESET should be low, and when re- 
ceive configurations are modified, RRESET should be low. When you use 
handshake mode, however, since the transmitter and receiver are interrelated, 
you should make any configuration changes with XRESET and RRESET both 
low. 

All of the serial-port operating configurations can be broadly classified in two 
categories: fixed data-rate timing and variable data-rate timing. The following 
paragraphs discuss fixed and variable data-rate operation and all of their vari- 
ations. 

Fixed Data-Rate Timing Operation 

Fixed data-rate serial-port transfers can occur in two varieties: burst mode and 
continuous mode. In burst mode, transfers of single words are separated by 
periods of inactivity on the serial port. In continuous mode, there are no gaps 
between successive word transfers; the first bit of a new word is transferred 
on the next CLWR pulse following the last bit of the previous word. This oc- 
curs continuously until the process is terminated. 

In burst mode with fixed data-rate timing, FSWFSR pulses initiate transfers, 
and each transfer involves a single word. With an internally generated FSX 
(see Figure 8-23), transmission is initiated by loading DXR. In this mode, 
there is a delay of approximately 2.5 CLKX cycles (depending on CLKX and 
H I  frequencies) from the time DXR is loaded until FSX occurs. With an exter- 
nal FSX, the FSX pulse initiates the transfer, and the 2.5-cycle delay effectively 
becomes a setup requirement for loading DXR with respect to FSX. Therefore, 
in this case, you must load DXR no later than three CLKX cycles before FSX 
occurs. Once the XSR is loaded from the DXR, an XlNT is generated. 
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Figure 8-23. Fixed Burst Mode 

C L W ~  m 
FSWFSX (External) 

FSX (Internal) I 1 

DXR Loaded XlNT RlNT 

In receive operations, once a transfer is initiated, FSR is ignored until the last 
bit. For burst-mode transfers, FSR must be low during the last bit, or another 
transfer will be initiated. After a full word has been received and transferred to 
the DRR, an RlNT is generated. 

In fixed data-rate mode, you can perform continuous transfers even if R/XFSM 
= 0, as long as properly timed frame synchronization is provided, or as long 
as DXR is reloaded each cycle with an internally generated FSX (see 
Figure 8-24). 

Figure 8-24. Fixed Continuous Mode With Frame Sync 

CLWR 
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DRDX ----------- x X AN X 81 x :/ X BN X C I  X 

T 
DXR Loaded XlNT 

DXR Loaded Load DXR Load DXR 
Read DRR Read DRR 
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For receive operations and with externally generated FSX, once transfers 
have begun, frame sync pulses are required only during the last bit transferred 
to initiate another contiguous transfer. Otherwise, frame sync inputs are ig- 
nored. Therefore, continuous transfers will occur if frame sync is held high. 
With an internally generated FSX, there is a delay of approximately 2.5 CLKX 
cycles from the time DXR is loaded until FSX occurs. This delay occurs each 
time DXR is loaded; therefore, during continuous transmission, the instruction 
that loads DXR must be executed by the N-3 bit for an Kbit transmission. 
Since delays due to pipelining may vary, you should incorporate a conserva- 
tive margin of safety in allowing for this delay. 

Once the process begins, an XlNT and an RlNT are generated at the begin- 
ning of each transfer. The XlNT indicates that the XSR has been loaded from 
DXR and can be used to cause DXR to be reloaded. To maintain continuous 
transmission in fixed rate mode with frame sync, especially with an internally 
generated FSX, DXR must be reloaded early in the ongoing transfer. 

The RlNT indicates that afull word has been received and transferred into the 
DRR. RlNT is therefore commonly used to indicate an appropriate time to read 
DRR. 

Continuous transfers are terminated by discontinuing frame sync pulses or, in 
the case of internally generated FSX, not reloading DXR. 

You can accomplish continuous serial-port transfers without the use of frame 
sync pulses if RKFSM are set to 1. In this mode, operation of the serial port 
is similar to continuous operation with frame sync, except that a frame sync 
pulse is involved only in the first word transferred, and no further frame sync 
pulses are used. Following the first word transferred (see Figure 8-25), no in- 
ternal frame sync pulses are generated, and frame sync inputs are ignored. 
Additionally, you should set RKFSM prior to or during the first word trans- 
ferred; you must set RKFSM no later than the transfer of the N-1 bit of the first 
word, except for transmit operations. For transmit operations in the fixed data- 
rate mode, XFSM must be set no later than the N-2 bit. You must clear 
RKFSM no later than the N-1 bit to be recognized in the current cycle. 
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Figure 8-25. Fixed Continuous Mode Without Frame Sync 
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Timing of RlNT and XlNT and data transfers to and from DXR and DRR, re- 
spectively, are the same as in fixed data-rate continuous mode with frame 
sync. This mode of operation also exhibits the same delay of 2.5 CLKX cycles 
after DXR is loaded before an internal FSX is generated. As in the case of wn- 
tinuous operation in fixed data-rate mode with frame sync, you must reload 
DXR no later than transmission of the I\C3 bit. 

When you use continuous operation in fixed data-rate mode, WXFSM can be 
set and cleared as desired, even during active transfers, to enable or disable 
the use of frame sync pulses as dictated by system requirements. Under most 
conditions, the effect of changing the state of WXFSM occurs during the trans- 
fer in which the WXFSM change was made, provided the change was made 
early enough in the transfer. For transmit operations with internal FSX in fixed 
data-rate mode, however, a one-word delay occurs before frame sync pulse 
generation resumes when clearing XFSM to 0 (see Figure 8-26). Therefore, 
in this case, one additional word is transferred before the next FSX pulse is 
generated. Also note that, as discussed previously, the clearing of XFSM is 
recognized during the transmission of the word currently being transmitted as 
long as XFSM is cleared no later than the N-1 bit. The setting of XFSM is rec- 
ognized as long as XFSM is set no later than the N-2 bit. 
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Variable Data-Rate Timing Operation 

Variable data-rate timing also supports operation in either burst or continuous 
mode. Burst-mode operation with variable data-rate timing is similar to burst- 
mode operation with fixed data-rate timing. With variable data-rate timing (see 
Figure 8-27), however, FSWR and data timing differ slightly at the beginning 
and end of transfers. Specifically, there are three major differences between 
fixed and variable data-rate timing: 

FSWR pulses typically last for the entire transfer interval, although FSR 
and external FSX are ignored after the first bit transferred. FSWR pulses 
in fixed data-rate mode typically last only one C L W R  cycle but can last 
longer. 

Q Data transfer begins during the C L W R  cycle in which FSWR occurs, 
rather than the C L W R  cycle following FSWR, as is the case with fixed 
data-rate timing. 

With variable data-rate timing, frame sync inputs are ignored until the end 
of the last bit transferred, rather than the beginning of the last bit trans- 
ferred, as is the case with fixed data-rate timing. 
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Figure 8-27. Variable Burst Mode 
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When you transmit continuously in variable data-rate mode with frame sync, 
timing is the same as for fixed data-rate mode, except for the differences be- 
tween these two modes as described under Variable Data-Rate Timing Opera- 
tion. The only other exception is that you must reload DXR no later than the 
N-4 bit to maintain continuous operation of the variable data-rate mode (see 
Figure 8-28); you must reload DXR no later than the N3 bit to maintain con- 
tinuous operation of the fixed data-rate mode. 

Figure 8-28. Variable Continuous Mode With Frame Sync 
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Continuous operation in variable data-rate mode without frame sync (see 
Figure 8-29) is also similar to continuous operation without frame sync in fixed 
data-rate mode. As with variable data-rate mode continuous operation with 
frame sync, you must reload DXR no later than the lU-4 bit to maintain continu- 
ous operation. Additionally, when R/XFSM is set or cleared in the variable da- 
ta-rate mode, you must make the modification no later than the N-1 bit for the 
result to be affected in the current transfer, 
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Figure 8-29. Variable Continuous Mode Without Frame Sync 
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8.2.1 3 Serial-Port Initialization/Reconfiguration 

The serial ports are controlled through memory-mapped registers on the dedi- 
cated peripheral bus. Following is a general procedure for initializing andlor 
reconfiguring the serial ports. 

1) Halt the serial port by clearing theXRESETand/or RRESET bits of theser- 
ial-port global-control register. To do this, write a 0 to the serial-port global- 
control register. Note that the serial ports are halted on RESET. 

2) Configure the serial port via the serial-port global-control register (with 
XRESET = RRESET = 0) and the FSWDWCLKX and FSRIDWCLKR port- 
control registers. If necessary, configure the receivehransmit registers: -- 
timer control (with XHLD = RHLD = 0), timer counter, and timer period. Re- 
fer to subsection 8.2.1 4 for more information. 

3) Start the serial port operation by setting the XRESET and RRESET bits - 
of the serial-port global-control register and the XHLD and RHLD bits of 
the serial-port receivehransmit timer-control register, if necessary. 

8.2.1 4 TMS320C3x Serial-Port Interface Examples 

In addition to the examples presented in this section, DMA/serial port initializa- 
tion examples can be found in Example 8-6 and Example 8-7 on pages 8-59 
and 8-61, respectively. 
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8.2.14.1 Handshake Mode Example 

When handshake mode is used, the transmit (FSWDSICLKX) and receive 
(FSRIDRICLKR) signals transmit and receive data, respectively. In other 
words, even if the TMS320C3x serial port is receiving data only with hand- 
shake mode, the transmit signals are still needed to transmit the acknowledge 
signal. This is the serial port register setup for the TMS320C3x serial port 
handshake communication, as shown in Figure 8-22 on page 8-29: 

Global control = 0 1 1 x0x0xxxx00000000xx0 1 1 00 1 00b 
Transmit port control = 01 11 h 
Receive port control = 01 11 h 
S p r t  timer control = OFh 
S g r t  timer count = Oh 
S p r t  timer period z 01 h (if two C3xs have the same 

system clock) 

x = user-configurabie 

Since the FSX is set as an output and continuous mode is disabled when hand- 
shake mode is selected, you should set the XFSM and RFSM bits to 0 and the 
FSXOUT bit to 1 in the global control register. You should set the XRESET, 
RRESET, and HS bits to 1 in order to start the handshake communication. You 
should set the polarity of the serial port pins active (high) for simplification. Al- 
though the CLWCLKR can be set as either input or output, you should set 
the CLKX as output and the CLKR as input. The rest of the bits are user-confi- 
gurable as long as both serial ports have consistent setup. 

You need the serial port timer only if the CLKX or CLKR is configured as an 
output. Since only the CLKX is configured as an output, you should set the tim- 
er control register to OFh. When the serial port timer is used, you should also 
set the serial timer register to the proper value for the clock speed. The serial 
port timer clock speed setup is similar to the TMS320C3x timer. Refer to Sec- 
tion 8.1 on page 8-2 for detailed information on timer clock generation. 

The maximum clock frequency for serial transfers is F(CLKIN)/4 if the internal 
clock is used and F(CLKIN)15.2 if an external clock is used. Therefore, if two 
TMS320C3xs have the same system clock, the timer period register should 
be set equal to or greater than 1, which makes the clock frequency equal to 
F(CLKIN)/8. 

Example 8-1 and Example 8-2 are serial port register setups for the above 
case. (Assume two TMS320C3xs have the same system clock.) 
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Example 8- 1. Serial-Port Register Setup # 1 

Global control = OEBC0064h; 32 bits, fixed data rate, burst mode, 
~ransmit port control = Olllh ; FSX (output), CLKX (output) = F(CLKIN)/B 
Receive port control = Olllh ; CLKR (input), handshake mode, transmit 
Sgort timer control = OFh; and receive interrupt is enabled. 
Sgort timer count = Oh 
Sqort timer period r Olh 

Example 8-2. Serial-Port Register Setup #2 

Global control = OC000364h; 8 bits, variable data rate, burst mode, 
Transmit port control = Olllh; FSX (output), CLKX (output) = f(CLKIN)/24 
Receive port control = Olllh ; CLKR (input), handshake mode, transmit 
Sgort timer control = OFh; and receive interrupt is disabled. 
Sgort timer count = Oh 
Sgort timer period r Olh 

Since the data has a leading 1 and the acknowledge signal is a 0 in the hand- 
shake mode, the TMS320C3x serial port can distinguish between the data and 
the acknowledge signal. Therefore, even if the TMS320C3x serial port re- 
ceives the data before the acknowledge signal, the data will not be misinter- 
preted as the acknowledge signal and be lost. In addition, the acknowledge 
signal is not generated until the data is read from the data receive register 
(DRR). Therefore, the TMS320C3x will not transmit the data and the acknowl- 
edge signal simultaneously. 

8.2.14.2 CPU Transfer With Serial-Port Transmit Polling Method 

Example 8-3 sets up the CPU to transfer data (1 28 words) from an array buffer 
to the serial port 0 output register when the previous value stored in the serial 
port output register has been sent. Serial port 0 is initialized to transmit 32-bit 
data words with an internally generated frame sync and a bit-transfer rate of 
8H1 cycles/bit. 
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Example 8-3. CPU Transfer With Serial-Port Transmit Polling Method 

TITLE: CPU TRANSFER WITH SERIAL-PORT TRANSMIT POLLING METHOD 
* 

.GLOBAL START . DATA 
SOURCE .WORD -ARRAY 

.BSS -ARRAY,128 ; DATA ARRAY LOCATED IN .BSS SECTION 
; THE UNDERSCORE USED IS JUST TO MAKE IT 
; ACCESSIBLE FROM C (OPTIONAL) 

SPORT .WORD 808040H ; SERIAL-PORT GLOBAL CONTROL REG ADDRESS 
SPRESET .WORD 008C0044 ; SERIAL-PORT RESET 
SGCCTRL .WORD 048C0044H ; SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION 
SXCTRL .WORD lllH ; SERIAL-PORT TX PORT CONTROL REG INITIALIZATION 
STCTRL .WORD OOFH ; SERIAL-PORT TIMER CONTROL REG INITIALIZATION 
STPERIOD .WORD OOOOOOO2h ; SERIAL-PORT TIMER PERIOD 
RESET .WORD OH ; SERIAL-PORT TIMER RESET VALUE 

.TEXT 
START LDP RESET ; LOAD DATA PAGE POINTER 

ANDN 10HIIE ; DISABLE SERIAL-PORT TRANSMIT INTERRUPT TO CPU 

* SERIAL PORT INITIALIZATION 
LDI @SPORT,ARl 
LDI @RESET,RO 
LDI 4,IRO 
ST1 RO,*+ARl(IRO) ; SERIAL-PORT TIMER RESET 
LDI @SPRESET,RO 
ST1 RO, *AR1 ; SERIAL-PORT RESET 
LDI @SXCTRL,RO ; SERIAL-PORT TX CONTROL REG INITIALIZATON 
ST1 RO,*+AR1(3) 
LDI @STPERIOD,RO ; SERIALPORT TIMER PERIOD INITIALIZATION 
ST1 RO,*+AR1(6) 
LDI @STCTRL,RO ; SERIAL-PORT TIMER CONTROL REG INITIALIZATION 
ST1 RO,*+AR1(4) 
LDI @SGCCTRLIRO ; SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION 
ST1 RO, *AR1 

* CPU WRITES THE FIRST WORD 

LDI @SOURCE,ARO 
LDI *ARO++,Rl 
ST1 Rl,*+AR1(8) 

* CPU WRITES 127 WORDS TO THE SERIAL PORT OUTPUT REG 

LDI 8, IRO 
LDI 2,RO 
LDI 126,RC 
RPTB LOOP 

WAIT AND *ARl,RO,R2 
BZ WAIT 

LOOP ST1 Rl,*+ARl(IRO) 
I I LDI *++ARO(l),Rl 

BU $ 
.END 

; WAIT UNTIL XRDY BIT = 1 
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8.2.14.3 Serial AIC Interface Example 

The TLC320C4x analog interface chips (AIC) from Texas Instruments offer a 
zero-glue-logic interface to the TMS320C3x family of DSPs. The interface is 
shown in Figure 8-30 as an example of the TMS320C3x serial-port configura- 
tion and operation. 

Figure 8-30. TMS320C3x Zero-Glue- Logic lnterface to TLC3204x Example 
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4 +-- Analog 
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DX IN- 
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The TMS320C3x resets the AIC through the external pin XFO. It also gener- 
ates the master clock for the AIC through the timer 0 output pin, TCLKO. (Pre- 
cise selection of a sample rate may require the use of an external oscillator 
rather than the TCLKO output to drive the AIC MCLK input.) In turn, the AIC 
generates the CLKRO and CLKXO shift clocks as well as the FSRO and FSXO 
frame synchronization signals. 

A typical use of the AIC requires an 8-kHz sample rate of the analog signal. 
If the clock input frequency to the TMS320C3x device is 30 MHz, you should 
load the following values into the serial port and timer registers. 

Serial Port: 
Port global control register: OE970300h 
FSWDWCLKX port control register 000001 11 h 
FSR/DR/CLKR port control register 000001 11 h 

Timer: 
Timer global control register 
Timer period register 

8.2.14.4 Serial A/D and D/A lnterface Example 

The DSP201/2 and DSP101/2 family of D/As and AIDS from Burr Brown also 
offer a zero-glue-logic interface to the TMS320C3x family of DSPs. The inter- 
face is shown in Example 8-4. This interface is used as an example of the 
TMS320C3x serial-port configuration and operation. 
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Example 8-4. TMS320C3x Zero-Glue-Logic Interface to Burr Brown N D  and D/A 

The DSPI 02 AID is interfaced to the TMS320C3x serial port receive side; the 
DSP202 D/A is interfaced to the transmit side. The AIDS and DIAs are hard- 
wired to run in cascade mode. In this mode, when the TMS320C3x initiates a 
convert command to the AID via the TCLKO pin, both analog inputs are con- 
verted into two 16-bit words, which are concatenated to form one 32-bit word. 
The AID signals the TMS320C3x via the AID'S SYNC signal (connected to the 
TMS320C3x FSRO pin) that serial data is to be transmitted. The 32-bit word 
is then serially transmitted, MSB first, out the SOUTAserial pin of the DSPl02 
to the DRO pin of the TMS320C3x serial port. The TMS320C3x is programmed 
to drive the analog interface bit clock from the CLKXO pin of the TMS320C3x. 
The bit clock drives both the AID'S and DIA's XCLK input. The TMS320C3x 
transmit clock also acts as the input clock on the receive side of the 
TMS320C3x serial port. Since the receive clock is synchronous to the internal 
clock of the TMS320C3x, the receive clock can run at full speed (that is, 
f(H1)/2). 

Burr Brown DSPlO2 N D  Burr Brown DSP202 DIA 
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Similarly, on receiving a convert command, the pipelined DIA converts the last 
word received from the TMS320C3x and signals the TMS320C3x via the 
SYNC signal (connected to the TMS320C3x FSXO pin) to begin transmitting 
a 32-bit word representing the two channels of data to be converted. The data 
transmitted from the TMS320C3x DXO pin is input to both the SlNA and SlNB 
inputs of the DIA as shown in the figure. 

The TMS320C3x is set up to transfer bits at the maximum rate of about eight 
Mbps, with a dual-channel sample rate of about 44.1 kHz. Assuming a32-MHz 
CLKIN, you can configure this standard-mode fixed-data-rate signaling inter- 
face by setting the registers as described below: 

Serial Port: 
Port global-control register: OEBC0040h 
FSWDWCLKX port-control register 000001 1 1 h 
FSR/DR/CLKR port-control register 00000111 h 
Receivehransmit timer-control register OOOOOOOFh 

Timer: 
Timer global-control register 
Timer period register 
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8.3 DMA Controller 

The TMS320C3x has an on-chip direct memory access (DMA) controller that 
reduces the need for the CPU to perform inputloutput functions. The DMA con- 
troller can perform inputloutput operations without interfering with the opera- 
tion of the CPU. Therefore, it is possible to interface the TMS320C3x to slow 
external memories and peripherals (A/Ds, serial ports, etc.) without reducing 
the computational throughput of the CPU. The result is improved system per- 
formance and decreased system cost. 

A DMA transfer consists of two operations: a read from a memory location and 
a write to a memory location. The DMA controller can read from and write to 
any location in the TMS320C3x memory map. This includes all 
memory-mapped peripherals. The operation of the DMA is controlled with the 
following set of memory-mapped registers: 

a DMA global-control register 
IJ DMA source-address register 
a DMA destination-address register 
0 DMA transfer-counter register 

Table 8-7 shows these registers, their memory-mapped addresses, and their 
functions. Each of these DMA registers is discussed in the succeeding subsec- 
tions. 
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Table 8-7. Memory-Mapped Locations for a DMA Channel 

Peripheral 
Register Addreaa 

DMA Global Control (See Table 8-8) 

Reserved 

Resewed 

Reserved 808003h 

DMA Source Address (see subsection 8.3.2) 

Reserved 

DMA Destination Address (see subsection 8.3.2) 808006 h 

Reserved 808007h 

DMA Transfer Counter (see subsection 8.3.3) 808008 h 

Reserved 808009h 

Reserved 

Reserved 

Reserved 80800C h 

Resewed 

Resewed 

Reserved 80800Fh 
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Table 8-8. DMA Global-Control Register Bits 

Bit Name Reset Value Function 

START These bits control the state in which the DMA starts and stops. The 
DMA may be stopped without any loss of data (see Table 8-9). 

These bits indicate the status of the DMA and change every cycle 
(see Table 8-1 0). 

STAT 

INCSRC 

DECSRC 

If INCSRC = 1, the source address is incremented after every read. 

If DECSRC = 1, the source address is decremented after every 
read. If INCSRC = DECSRC, the source address is not modified 
after a read. 

INCDST 

DECDST 

If INCDST = 1, the destination address is incremented after every 
write. 

If DECDST = 1, the destination address is decremented after every 
write. If INCDST = DECDST, the destination address is not modified 
after a write. 

SYNC The SYNC bits determine the timing synchronization between the 
events initiating the source and the destination transfers. The inter- 
pretation of the SYNC bits is shown in Table 8-11. 

The TC bit affects the operation of the transfer counter. If TC = 0, 
transfers are not terminated when the transfer counter becomes 0. 
If TC = 1, transfers are terminated when the transfer counter be- 
comes 0. 

TClNT If TClNT = 1, the DMA interrupt is set when the transfer counter 
makes a transition to 0. If TClNT = 0, the DMA interrupt is not set 
when the transfer counter makes a transition to 0. 

Reserved Read as 0. 

Note: When the DMA completes a transfer, the START bits remain in 11 (base 2). The DMAstarts when the START b i  are set 
to 11 and one of the following conditions applies: 

0 The transfer counter is set to a value different from 0x0, or 
a The TC bit is set to 0. 
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Table 8-9. START Bits and Operation of the DMA (Bits 0-1) 

START Function 

0 0 DMA read or write cycles in progress will be completed; any data read will 
be ignored. Any pending read or write will be cancelled. The DMA is reset 
so that when it starts a new transaction begins; that is, a read is per- 
formed. (Reset value) 

0 1 If a read or write has begun, it is completed before it stops. If a read or 
write has not begun, no read or write is started. 

1 0 If a DMA transfer has begun, the entire transfer is completed (including 
both read and write operations) before stopping. If a transfer has not be- 
gun, none is started. 

1 1 DMA starts from reset or restarts from the previous state. 

Table 8-1 0. STAT Bits and Status of the DMA (Bits 2-3) 

STAT Function 
- 

0 0 DMA is being held between DMA transfer (between a write and read). 
This is the value at reset. (Reset value) 

0 1 DMA is being held in the middle of a DMA transfer, that is, between a read 
and a write. 

1 0 Reserved. 

1 1 DMA busy; that is, DMA is performing a read or write or waiting for a 
source or destination synchronization interrupt. 

Table 8-1 1.  SYNC Bits and Synchronization of the DMA (Bits 8-9) 

SYNC Function 
- 

0 0 No synchronization. Enabled interrupts are ignored. (Reset value) 

0 1 Source synchronization. A read is performed when an enabled interrupt 
occurs. 

1 0 Destination synchronization. A write is performed when an enabled inter- 
rupt occurs. 

1 1 Source and destination synchronization. A read is performed when an 
enabled interrupt occurs. A write is then performed when the next en- 
abled interrupt occurs. 
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8.3.1 DMA Global-Control Register 

The global-control register controls the state in which the DMA controller oper- 
ates. This register also indicates the status of the DMA, which changes every 
cycle. Source and destination addresses can be incremented, decremented, 
or synchronized using specified global-control register bits. At system reset, 
all bits in the DMA control register are cleared to 0. Table 8-8 on page 8-45 
lists the register bits, names, and functions. Figure 8-31 shows the bit config- 
uration of the global-control register. 

Figure 8-3 1.  DMA Global-Control Register 

R = Read, W = Write, xx = reserved bit, read as 0 

8.3.2 Destination- and Source-Address Registers 

The DMA destination-and-source address registers are 24-bit registers whose 
contents specify destination and source addresses. As specified by control 
bits DECSRC, INCSRC, DECDST, and INCDST of the DMA global-control 
register, these registers are incremented and decremented at the end of the 
corresponding memory access, that is, the source register for a read and the 
destination register for a write. On system reset, 0 is written to these registers. 

8.3.3 Transfer-Counter Register 

The transfer-counter register is a 24-bit register, controlled by a 24-bit counter 
that counts down. The counter decrements at the beginning of a DMA memory 
write. In this way, it can control the size of a block of data transferred. The trans- 
fer counter register is set to 0 at system reset. When the TClNT bit of DMA 
global-control register is set, the transfer-counter register will cause a DMA in- 
terrupt flag to be set upon count down to 0. 

8.3.4 CPUIDMA Interrupt-Enable Register 

The CPUIDMA interrupt enable register (IE) is a 32-bit register located in the 
CPU register file. The CPU interrupt enable bits are in locations 10-1. The 
DMA interrupt-enable bits are in locations 26-1 6. A 1 in a CPUIDMA interrupt- 
enable register bit enables the corresponding interrupt. A 0 disables the corre- 
sponding interrupt. At reset, 0 is written to this register. 

Peripherals 8-47 



DMA Controller 

Table 8-1 2 lists the bits, names, and functions of the CPUIDMA interrupt en- 
able register. Figure 8-32 shows the IE register. The priorii and decoding 
schemes of CPU and DMA interrupts are identical. Note that when the DMA 
receives an interrupt, this interrupt is acted upon according to the SYNC field 
of the DMA control register. Also note that an interrupt can affect the DMA but 
not the CPU and can affect the CPU but not the DMA. Refer to subsection 3.1.8 
on page 3-7 and to Chapter 6. 

Table 8-12, CPU/DMA Interrupt-Enable Register Bits 

Blt Name 

0 ElNTO 

1 EINT1 

2 EINT2 

3 EINT3 

4 EXINTO 

5 ERINTO 

6 EXlNTl 

7 ERINT1 

8 ETINTO 

9 ETlNTl 

10 EDlNT 

15-11 Reserved 

16 ElNTO 

17 ElNTl 

18 ElNT2 

19 EINT3 

20 EX1 NTO 

2 1 ERINTO 

22 EXlNTl 

23 ERlNTl 

24 ETINTO 

25 ETlNTl 

26 EDlNT 

31-27 Reserved 

Functlon 

Enable external interrupt 0 (CPU) 
Enable external interrupt 1 (CPU) 

Enable external interrupt 2 (CPU) 
Enable external interrupt 3 (CPU) 

Enable serial-port 0 transmit interrupt (CPU) 
Enable serial-port 0 receive interrupt (CPU) 

Enable serial-port 1 transmit interrupt (CPU) 

Enable serial-port 1 receive interrupt (CPU) 
Enable timer 0 interrupt (CPU) 
Enable timer 1 interrupt (CPU) 
Enable DMA controller interrupt (CPU) 

Read as 0 

Enable external interrupt 0 (DMA) 
Enable external interrupt 1 (DMA) 
Enable external interrupt 2 (DMA) 

Enable external interrupt 3 (DMA) 

Enable serial-port 0 transmit interrupt (DMA) 

Enable serial-port 0 receive interrupt (DMA) 

Enable serial-port 1 transmit interrupt (DMA) 

Enable serial-port 1 receive interrupt (DMA) 

Enable timer 0 interrupt (DMA) 
Enable timer 1 interrupt (DMA) 
Enable DMA controller interrupt (DMA) 

Read as 0 
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Figure 8-32. CPU/DMA Interrupt-Enable Register 

xxxxna txx  EDINT n - 1 ~ 1  ~ N T O  ERINTI EXINTI ERINTO EXINTO € 1 ~ ~ 3  EINTZ € 1 ~ 1 1  EINTO 
(CPU) (CPU) (CPU) (CPU) (CPU) (CW) (CW) (Cw) (CW) (Cf'u) (CPU) 

Note: xx = Reserved bii, read as 0 
R = read, W = write 

8.3.5 DMA Memory Transfer Operation 

Each DMA memory transfer consists of two parts: 

0 Read data from the address specified by the DMA source register 

0 Write data that has been read to the address specified by the DMA desti- 
nation register 

A transfer is complete only when the read and wriie are complete. You can stop 
a transfer by setting the START bits to the desired value. When the DMA is re- 
started (START = 1 I), it completes any pending transfer. 

At the end of a DMA read, the source address is modified as specified by the 
SRCINC and SRCDEC bits of the DMA global-control register. At the end of 
a DMA write, the destination address is modified as specified by the DSTINC 
and DSTDEC bits of the DMA global control register. At the end of every DMA 
write, the DMA transfer counter is decremented. 

DMA on-chip reads and writes (reads and writes from on-chip memory and pe- 
ripherals) are single-cycle. DMA off-chip reads are two cycles. The first cycle 
is the external read, and the second cycle loads the DMA register. The external 
read cycle is identical to a CPU read cycle. DMA off-chip writes are identical 
to CPU off-chip writes. If the DMA has been started and is transferring data 
over either external bus, you should not modify the bus-control register asso- 
ciated with that bus. If you must modify the bus-control register (see Chapter 
7), stop the DMA, make the modification, and then restart the DMA. Failure to 
do this may produce an unexpected zero-wait-state bus access. 
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Through the 24-bit source and destination registers, the DMA is capable of ac- 
cessing any memory-mapped location in the TMS320C3x memory map. 
Table 8-13, Table 8-14, and Table 8-15 show the number of cycles a DMA 
transfer requires, depending on whether the source and destination are on- 
chip memory and peripherals, the external port, or the I10 port. T represents 
the number of transfers to be performed, Cr represents the number of wait- 
states for the source read, and C, represents the number of wait-states for the 
destination write. Each entry in the table represents the total cycles required 
to do the T transfers, assuming that there are no pipeline conflicts. 

Accompanying each table is afigure illustrating the timing of the DMA transfer. 
IRI and IW( represent single-cycle reads and writes, respectively. JR.RJ and 
IW.WI represent multicycle reads and writes. ICrI and IC,I show the number 
of wait cycles for a read and write. 

Table 8-13. DMA Timing When Destination Is On-Chip 

- -- 

Source Destination On-Chlp 

-- - 

Expansion Bus (2 + C, + 1) T 

Legend: 
T = Number of transfers 
Cr = Source-read wait states 
C, = Destination-write wait states 
JRI = Single-cycle reads 
IWJ = Single-cycle writes 
IR.RI = Multicycle reads 
IW.WI = Multicycle writes 
I I I = Internal register cycle 

19 12 17 

Source On-Chip 

Destination On-Chip 

Source Primary BUS 

Destination On-Chip 

Source Expansion Bus 

Destination On-Chip 

18 5 

R I I R ( 1 R I : : : : : : : : : : : : :  . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  
I w I I w I I w I : : : : : : : : : : : :  

R . F ( . R :  1 1  I R . R . R : I  I 1 R . R . R : I J  : : : : 
I C r ) : :  ) G I : :  ) C r )  : :  : : :  . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . . .  . . , Iw/  : : : IwI  : : : IwI  : : : 

R . R . R :  1 1  I R . R . R : I (  I R . R . R : I ~  : : : : 
: ( C r (  : ( C r )  : :  ) C r l  : :  : : :  . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  

: :  : ( w ( : : :  J w J  J w J  : :  

Cycles (HI) 13 6 10 1 14 11 7 2 15 8 16 9 3 4 
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Table 8- 14. DMA Timing When Destination Is a Primary Bus 

Source Destlnatlon P r l m a ~  Bus 

Cycles (HI) 

Source on-chip 

Destination Primary Bus 

Source Primary BUS 

Destination Primary Bus 

Source Expansion Bus 

Destination Primary Bus 
- 

On-Chip 1 + (2 + Cw) T 

Primary (2 + Cr + 2 + &) T 
Bus 

Expansion (2 + Cr + 2 + Cw) 
BUS + ( 2 +  &+max(l,Cr - Cw+ 

l))(T- 1) 

1 2  3 

Legend: 

T = Number of transfers 
Cr = Source-read wait states 
C,,, = Destination-write wait states 
IRI = Single-cycle reads 
IWI = Singlecycle writes 
IR.RJ = Multicycle reads 
(W.WI = Multicycle writes 
1 I ( = Internal register cycle 

R I I R I : : I R I  . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  
lw.w.w,w)w.w.w.w~w.w.w.w( : : : : : 
: : I % [  : [ & I  : I & (  : : : :  : 

R . R . R :  I I : : : .R .R .R : 1 1  : : : : : : . 
I C r I : : : : :  I C r I  : :  : : : :  . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  
: : : (w,w.w.wI : : : Iw.w.w.wl : : 
: : : : : I & I : : : : : ( C , I : :  

R . R . R  : I ]  1 R . R . R :  I1 1 R . R  .R : I (  : : : : 
I % ] : :  I C r I  : :  1 C r 1  : : : : :  . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  
: : : (w.w.w.wI Iw.w.w.wI Iw.w.w.wI 
: : : : :  I c w l  1 :  : I & I  

-- -- - - 

4 
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Table 8-7 5. D MA Timing When Destination Is an Expansion Bus 

Destination Expansion Bus 

Source Expansion Bus 

Destination Expansion Bus 

Source Primary Bus 

Destination Expansion Bus 

18 

: : : IC,.,~ : ) c W I :  : : :  : 

R . R . R I  I (  1 R . R . R :  I I 1 R - R . R :  I (  : : : : 
l C r l : :  l c r l  : :  ( C r  I : : : : :  

Legend: 

14 19 

Source On-Chip 

- - 

Source Destination Expansion Bus 

On-Chip 1  + (2 + &)T 

Primary (2 + G +  2  + &) 
Bus +(2+C,+max( l ,G-C,+  

l))(T- 1) 

Expansion (2 + G + 2 + &) T 
Bus 

R I 1 R I : : I R ) : : : : : : : : : : :  
. . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  
(w ,w,w,w(w~w.w.w~w.w.w.wJ  : : : : : 

Number of transfers 
Source-read wait states 
Destination-write wait states 
Single-cycle reads 
Single-cycle writes 
Multicycle reads 
Multicycle writes 
Internal register cycle 

13 11 8 Cycles (HI) 17 15 12 4 16 9 10 5 3 1 2 6 7 
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Table 8-1 6 shows the maximum DMA transfer rates, assuming that there are 
no wait states (Cr = C, = 0). Table 8-17 shows the maximum DMA transfer 
rates, assuming there is one wait state for the read (Cr = 1) and no wait states 
for the write (C, = 0). Table 8-18 shows the maximum DMA transfer rates, 
assuming there is one wait state for the read (Cr = 1) and one wait state for the 
write (& = 1). 

In each table, the time for the complete transfer (the read and the write) is con- 
sidered. Since one bus access is required for the read and another for the 
write, internal bus transfer rates will be twice the DMA transfer rate. It is also 
assumed that no conflicts with the CPU exist. Rates are listed in Mwordslsec. 
A word is 32 bits (4 bytes). 

Table 8-76. Maximum DMA Transfer Rates When C, = C, = 0 

Internal 8.33 Mwordslsec 8.33 Mwordslsec 8.33 Mwordslsec 

Primary 5.56 Mwordslsec 4.1 7 Mwordslsec 5.56 Mwordslsec 

Expansion 5.56 Mwordslsec 5.56 Mwordslsec 4.1 7 Mwordslsec 

Source 

Table 8-1 7.Maximum DMA Transfer Rates When Cr = 1, & = 0 

Destination 

internal Primary Expansion 

Internal 8.33 Mwordslsec 8.33 Mwordslsec 8.33 Mwordslsec 

Primary 4.1 7 Mwordslsec 3.33 Mwordslsec 4.1 7 Mwordslsec 

Expansion 4.1 7 Mwordslsec 4.1 7 Mwordslsec 3.33 Mwordslsec 

Source 

Table 8-1 8. Maximum DMA Transfer Rates When Cr = 1, C, = 7 

Destination 

Internal Primary Expansion 

Internal 8.33 Mwordslsec 5.56 Mwordslsec 5.56 Mwordslsec 

Primary 4.1 7 Mwordslsec 2.78 Mwordslsec 4.1 7 Mwordslsec 

Expansion 4.1 7 Mwordslsec 4.1 7 Mwordslsec 2.78 Mwordslsec 

Source 

Peripherals 

Destination 

internal Prlmary Expansion 
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8.3.6 Synchronization of DMA Channels 

You can synchronize a DMA channel with interrupts. Refer to Table 8-1 1 on 
page 8-46 for the relationship between the SYNC bits of the DMA global wn- 
trol register and the synchronization performed. This section describes the fol- 
lowing four synchronization mechanisms: 

IJ No synchronization (SYNC = 0 0) 
0 Source synchronization (SYNC = 0 1) 
Q Destination synchronization (SYNC = 1 0) 
Q Source and destination synchronization (SYNC = 1 1) 

No Synchronization 

When SYNC = 0 0, no synchronization is performed. The DMA performs reads 
and writes whenever there are no conflicts. All interrupts are ignored and 
therefore are considered to be globally disabled. However, no bits in the DMA 
interrupt-enable register are changed. Figure 8-33 shows the 
synchronization mechanism when SYNC = 0 0. 

Figure 8-33. No DMA Synchronization 

A 
Disable DMA Interrupts 

I 
& 

DMA Channel Performs a Read 1 
I 

DMA Channel Performs a Wriie c 
Source Synchronization 

When SYNC=O 1, the DMA is synchronized to the source (see Figure 8-34). 
A read will not be performed until an interrupt is received by the DMA. Then 
all DMA interrupts are disabled globally. However, no bits in the DMA interrupt 
enable register are changed. 
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Figure 8-34. DMA Source Synchronization 

DMA Channel Performs a Read 
I 
A 

Enable DMA Interrupts Globally 

DMA Channel Performs a Write * 
Destination Synchronization 

When SYNC= 1 0, the DMA is synchronized to the destination. First, all inter- 
rupts are ignored until the read is complete. Though the DMA interrupts are 
considered globally disabled, no bits in the DMA interrupt-enable register are 
changed. A write will not be performed until an interrupt is received by the 
DMA. Figure 8-35 shows the synchronization mechanism when SYNC= 1 0. 

Figure 8-35, DMA Destination Synchronization 

A 

I DMA Channel Performs a Read 
I + 

I ldle Until Enabled Interrupt Is Received 1 
& 

Disable DMA Interrupts Globally 
I 
& 

DMA Channel Performs a Write 
I + 

DMA Interrupts Are Enabled Globally 
I 

Source and Destinatlon Synchronization 

When SYNC = 1 1, the DMA is synchronized to both the source and destina- 
tion. A read is performed when an interrupt is received. A write is performed 
on the following interrupt. Source and destination synchronization when 
SYNC = 1 1 is shown in Figure 8-36. 
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Figure 8-36. DMA Source and Destination Synchronization 

& 
ldle Until Enabled Interrupt is Received 

I 
& 

Disable DMA lnterrupts Globally 
I 
& 

DMA Channel Performs a Read 
I 
& 

Enable DMA lnterrupts Globally 
I 
& I ldle Until Enabled Interrupt Is Received 1 
I 

I Disable DMA lnterrupts Globally I 
1 

DMA Channel Performs a Write 

1 I Enable DMA lnterrupts Globally 1 

8.3.7 DMA lnterrupts 

You can generate a DMA interrupt to the CPU whenever the transfer count 
reaches 0, indicating that the last transfer has taken place. The TCINT bit in 
the DMAglobal control register determines whether the interrupt will be gener- 
ated. If TCINT = 1, the DMA interrupt is generated. If TCINT = 0, the DMA inter- 
rupt is not generated. If the DMA interrupt is generated, the EDlNT bit, bit 10 
in the interrupt enable register, must also be set to enable the CPU to be inter- 
rupted by the DMA. 

A second bit in the DMA global control register, the TC bit, is also generally 
associated with the state of the TCINT bit and the interrupt operation. The TC 
bit determines whether transfers are terminated when the transfer counter be- 
comes 0 or whether they are allowed to continue. If TC = 1, transfers are termi- 
nated when the transfer count becomes 0. If TC = 0, transfers are not termi- 
nated when the transfer count becomes 0. 

In general, if TCINT is 0, TC should also be cleared to 0. Otherwise, the DMA 
transfer will terminate, and the CPU will not be notified. If TCINT is 1, TC should 
also be 1 in most cases. In this case, the CPU will be notified when the transfer 
completes, and the DMA will be halted and ready to start a new transfer. 
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8.3.8 DMA Initialization/Reconfiguration 

You can control the DMA through memory-mapped registers located on the 
dedicated peripheral bus. Following is the general procedure for initializing 
and/or reconfiguring the DMA: 

1) Halt the DMA by clearing the START bits of the DMA global-control regis- 
ter. You can do this by wriiing a 0 to the DMA global-control register. Note 
that the DMA is halted on 

2) Configure the DMA via the DMA global-control register (with START = OO), 
as well as the DMA source, destination, and transfer-counter registers, if 
necessary. Refer to subsection 8.3.1 0 on page 8-58 for more information. 

3) Start the DMA by setting the START bits of the DMA global-control register 
as necessary. 

8.3.9 Hlnts for DMA Programming 

The following hints help you improve your DMA programming and avoid unex- 
pected results: 

Q Reset the DMA register before starting it. This clears any previously 
latched interrupt that may no longer exist. 

[] In the event of a CPU-DMA access conflict, the CPU always prevails. 
Carefully allocate the different sections of the program in memory for fast- 
er execution. If a CPU program access conflicts with a DMAaccess, enab- 
ling the cache helps if the program is located in external memory. DMAon- 
chip access happens during the H3 phase. Refer to Chapter 9 for details 
on CPU accesses. 

Note: Expansion and Peripheral Buses 

The expansion and peripheral buses cannot be accessed simultaneously 
because they are multiplexed into a common port (see Figure 2-1 on page 
2-3). This might increase CPU-DMA access conflicts. 

Ensure that each interrupt is received when you use interrupt synchroniza- 
tion; otherwise, the DMA will never complete the block transfer. 

Use readlwrite synchronization when reading from or writing to serial ports 
to guarantee data validity. 

The following are indications that the DMA has finished a set of transfers: 

C;) The DINT bit in the IIF register is set to 1 (interrupt polling). This requires 
that the TClNT bit in the DMA control register be set first. This interrupt- 
polling method does not cause any additional CPU-DMA access conflict. 
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The transfer counter has a zero value. However, notice that the transfer 
counter is decremented after the DMA read operation finishes (not after 
the write operation). Nevertheless, a transfer counter with a 0 value can 
be used as an indication of a transfer completion. 

The STAT bits in the DMA channel control register are set to 002. You can 
poll the DMA channel control register for thisvalue. However, because the 
DMA registers are memory-mapped into the peripheral bus address 
space, this option can cause further CPU-DMA access conflicts. 

8.3.10 DMA Programming Examples 

Example 8-5, Example 8-6, and Example 8-7 illustrate initialization proce- 
dures for the DMA. 

When linking the examples, you should allocate section memory addresses 
carefully to avoid CPU-DMA conflict. In the ' C ~ X ,  the CPU always prevails in 
cases of conflict. In the event of a CPU program-DMA data conflict, the enab- 
ling of the cache helps if the .text section is in external memory. For example, 
when linking the code in Example 8-5, Example 8-6, and Example 8-7, the 
.text section can be allocated into RAMO, .data into RAM1, and .bss into 
RAM1, where RAMO and RAM1 correspond to on-chip RAM block 0 and block 
1, respectively. 

In Example 8-5, the DMA initializes a 128-element array to 0. The DMA sends 
an interrupt to the CPU after the transfer is completed. This program assumes 
previous initialization of the CPU interrupt vector table (specifically the DMA- 
to-CPU interrupt). The program initializes the ST and IE registers for interrupt 
processing. 

Example 8-5, Array Initialization With DMA 

* TITLE: ARRAY INITIALIZATION WITH DMA 
* 

.GLOBAL START . DATA 
DMA .WORD 808000H ; DMA GLOBAL CONTROL REG ADDRESS 
RESET .WORD OC40H ; DMA GLOBAL CONTROL REG RESET VALUE 
CONTROL .WORD OC43H ; DMA GLOBAL CONTROL REG IN IT IAL IZAT ION 
SOURCE .WORD ZERO ; DATA SOURCE ADDRESS 
DESTIN .WORD -ARRAY ; DATA DESTINATION ADDRESS 
COUNT .WORD 128 ; NUMBER OF WORDS TO TRANSFER 
ZERO .FLOAT 0.0 ; ARRAY IN IT IAL IZAT ION VALUE 0.0 = 0x80000000 

.BSS -ARRAY,128 ; DATA ARRAY LOCATED I N  .BSS SECTION 
.TEXT 
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START LDP DMA 
LDI @DMA,ARO 
LDI @RESET,RO 
ST1 RO,*ARO 
LDI @SOURCE,RO 
ST1 RO,*+AR0(4) 
LDI @DESTIN,RO 
ST1 RO,*+AR0(6) 
LDI @COUNT,RO 
ST1 RO,*+AR0(8) 
OR 400H,IE 
OR 2000H,ST 
LDI @CONTROL,RO 
ST1 RO, *ARO 
BU $ 
.END 

; LOAD DATA PAGE POINTER 
; POINT TO DMA GLOBAL CONTROL REGISTER 
; RESET DMA 

; INITIALIZE DMA SOURCE ADDRESS REGISTER 

; INITIALIZE DMA DESTINATION ADDRESS REGISTER 

; INITIALIZE DMA TRANSFER COUNTER REGISTER 

; ENABLE INTERRUPT FROM DMA TO CPU 
; ENABLE CPU INTERRUPTS GLOBALLY 
; INITIALIZE DMA GLOBAL CONTROL REGISTER 
; START DMA TRANSFER 

Example 8-6 sets up the DMA to transfer data (1 28 words) from the serial port 
0 input register to an array buffer with serial port receive interrupt (RINTO). The 
DMA sends an interrupt to the CPU when the data transfer completes. 

Serial port 0 is initialized to receive 32-bit data words with an internally gener- 
ated receive-bit clock and a bit-transfer rate of 8H1 cyclesbit. 

This program assumes previous initialization of the CPU interrupt vector table 
(specifically the DMA-to-CPU interrupt). The serial port interrupt directly af- 
fects only the DMA; therefore, no CPU serial port interrupt vector setting is re- 
quired. 

Example 8-6. DMA Transfer With Serial-Port Receive Interrupt 
* TITLE DMA TRANSFER WITH SERIAL PORT RECEIVE INTERRUPT 
* 

.GLOBAL START . DATA 
DMA .WORD 808000H ; DMA GLOBAL CONTROL REG ADDRESS 
CONTROL .WORD OD43H ; DMA GLOBAL CONTROL REG INITIALIZATION 
SOURCE .WORD 80804CH ; DATA SOURCE ADDRESS: SERIAL PORT INPUT REG 
DESTIN .WORD ARRAY ; DATA DESTINATION ADDRESS 
COUNT .WORD i28 ; NUMBER OF WORDS TO TRANSFER 
IEVAL .WORD 00200400H ; IE REGISTER VALUE 
RESET1 .WORD OD40H ; DMA RESET 

.BSS -ARRAY,l28 ; DATA ARRAY LOCATED IN .BSS SECTION 
; THE UNDERSCORE USED IS JUST TO MAKE IT 
; ACCESSIBLE FROM C (OPTIONAL) 

SPORT .WORD 808040H ; SERIAL PORT GLOBAL CONTROL REG ADDRESS 
SGCCTRL .WORD OA300080H ; SERIAL PORT GLOBAL CONTROL REG INITIALIZATION 
SRCTRL .WORD lllH ; SERIAL PORT RX PORT CONTROL REG INITIALIZATION 
STCTRL .WORD 3COH ; SERIAL PORT TIMER CONTROL REG INITIALIZATION 
STPERIOD .WORD 00020000H ; SERIAL PORT TIMER PERIOD 
SPRESET .WORD 01300080H ; SERIAL PORT RESET 
RESET .WORD OH ; SERIAL-PORT TIMER RESET 

.TEXT 

START LDP DMA ; LOAD DATA PAGE POINTER 
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* DMA INITIALIZATION 
LDI @DMA,ARO ; POINT TO DMA GLOBAL CONTROL REGISTER 
LDI @SPORT,ARl 
LDI @RESET,RO 
ST1 RO,*+AR1(4) ; RESET SPORT TIMER 
LDI @RESETl, RO 
ST1 ROI*ARO ; RESET DMA 
LDI @SPRESET,RO 
ST1 ROI*AR1 ; RESET SPORT 
LDI @SOURCE,RO ; INITIALIZE DMA SOURCE ADDRESS REGISTER 
ST1 RO,*+ARO(4) 
LDI @DESTIN,RO ; INITIALIZE DMA DESTINATION ADDRESS REGISTER 
ST1 ROI*+AR0(6) 
LDI @COUNT,RO ; INITIALIZE DMA TRANSFER COUNTER REGISTER 
ST1 RO,*+AR0(8) 
OR @IEVAL,IE ; ENABLE INTERRUPTS 
OR 2000H,ST ; ENABLE CPU INTERRUPTS GLOBALLY 
LDI @CONTROL,RO ; INITIALIZE DMA GLOBAL CONTROL REGISTER 
ST1 RO, *ARO ; START DMA TRANSFER 

* SERIAL PORT INITIALIZATION 
LDI @SRCTRL,RO ; SERIAL-PORT RECEIVE CONTROL REG INITIALIZATION 
ST1 RO,*+AR1(3) 
LDI @STPERIOD,RO ; SERIAL-PORT TIMER PERIOD INITIALIZATION 
ST1 RO,*+AR1(6) 
LDI @STCTRL,RO ; SERIAL-PORT TIMER CONTROL REG INITIALIZATION 
ST1 RO,*+AR1(4) 
LDI @SGCCTRL,RO ; SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION 
ST1 RO,*ARl 
BU $ . END 

Example 8-7 sets up the DMA to transfer data (1 28 words) from an array buff- 
er to the serial port 0 output register with serial port transmit interrupt XINTO. 
The DMA sends an interrupt to the CPU when the data transfer completes. 

Serial port 0 is initialized to transmit 32-bit data words with an internally gener- 
ated frame sync and a bit-transfer rate of 8H1 cycleslbit. The receive-bit clock 
is internally generated and equal in frequency to one-half of the 'C3x HI  fre- 
quency. 

This program assumes previous initialization of the CPU interrupt vector table 
(specifically the DMA-to-CPU interrupt). The serial port interrupt directly af- 
fects only the DMA; therefore, no CPU serial port interrupt vector setting is re- 
quired. 
I i 

Note: Serial Port Transmit Synchronization 

The DMA uses serial port transmit interrupt XINTO to synchronize transfers. 
Because the XINTO is generated when the transmit buffer has written the last 
bit of data to the shifter, an initial CPU write to the serial port is required to 
trigger XINTO to enable the first DMA transfer. 

I I 
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Example 8-7. DMA Transfer With Serial-Port Transmit Interrupt 
* TITLE: DMA TRANSFER WITH SERIAL PORT TRANSMIT INTERRUPT 
* .GLOBAL START . DATA 
DMA .WORD 808000H ; DMA GLOBAL CONTROL REG ADDRESS 
CONTROL .WORD OE13H ; DMA GLOBAL CONTROL REG INITIALIZATION 
SOURCE .WORD (-ARRAY+l) ; DATA SOURCE ADDRESS 
DESTIN .WORD 80804CH ; DATA DESTIN ADDRESS: SERIAL-PORT OUTPUT REG 
COUNT .WORD 127 ; NUMBER OF WORDS TO TRANSFER =(MSG LENGHT-1) 
IEVAL .WORD 00100400H ; IE REGISTER VALUE 

.BSS -ARRAY,128 ; DATA ARRAY LOCATED IN .BSS SECTION 
; THE UNDERSCORE USED IS JUST TO MAKE IT 
; ACCESSIBLE FROM C (OPTIONAL) 

RESET1 .WORD OElOH ; DMA RESET 
SPORT .WORD 8080408 ; SERIAL-PORT GLOBAL CONTROL REG ADDRESS 
SGCCTRL .WORD 048800448 ; SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION 
SXCTRL .WORD lllH ; SERIAL-PORT TX PORT CONTROL REG INITIALIZATION 
STCTRL .WORD OOFH ; SERIAL-PORT TIMER CONTROL REG INITIALIZATION 
STPERIOD .WORD 00000002H ; SERIAL-PORT TIMER PERIOD 
SPRESET .WORD 00880044H ; SERIAL-PORT RESET 
RESET .WORD OH ; SERIAL-PORT TIMER RESET 

.TEXT 
START LDP DMA ; LOAD DATA PAGE POINTER 

DMA INITIALIZATION 

LDI @DMA,ARO ; POINT TO DMA GLOBAL CONTROL REGISTER 
LDI @SPORT,ARl 
LDI @RESET,RO 
STIRO,*+AR1(4) ; RESET SPORT TIMER 
ST1 RO, *ARO ; RESET DMA 
ST1 RO, *AR1 ; RESET SPORT 
LDI @SOURCE, RO ; INITIALIZE DMA SOURCE ADDRESS REGISTER 
STIRO,*+AR0(4) 
LDI @DESTIN, RO ; INITIALIZE DMA DESTINATION ADDRESS REGISTER 
STIRO,*+AR0(6) 
LDI @COUNT, RO ; INITIALIZE DMA TRANSFER COUNTER REGISTER 
STIRO,*+AR0(8) 
OR @IEVAL,IE ; ENABLE INTERRUPT FROM DMA TO CPU 
OR 2000H,ST ; ENABLE CPU INTERRUPTS GLOBALLY 
LDI @CONTROL,RO ; INITIALIZE DMA GLOBAL CONTROL REGISTER 
ST1 RO, *ARO ; START DMA TRANSFER 
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* SERIAL PORT IN IT IAL IZAT ION 

L D I  @ SXCTRL , RO ; SERIAL-PORT TX CONTROL REG INITIALIZATION 
STIRO, *+AR1(2 )  
LDI@STPERIOD,RO ; SERIALPORT TIMER PERIOD INITIALIZATION 
STIRO,*+ARl(C) 
L D I  @ STCTRL , RO ; SERIAL-PORT TIMER CONTROL REG IN IT IAL IZAT ION 
ST1 RO, *+AR1(4 ) 
L D I  @SGCCTRL,RO ; SERIAL-PORT GLOBAL CONTROL REG IN IT IAL IZAT ION 
ST1 RO, *ARl  

* CPU WRITES THE FIRST WORD (TRIGGERING EVENT -> XINT I S  GENERATED) 

L D I  @SOURCE, ARO 
L D I  *-ARO(1) ,RO 
STIRO,*+AR1(8) 
BU $ 
.END 

Other examples are as follows: 

Transfer a 256-word block of data from off-chip memory to on-chip 
memory and generate an interrupt on completion. The order of memory 
is to be maintained. 

DMA source address: 800000h 
DMA destination address: 809800h 
DMA transfer counter: 000001 00h 
DMA global control: 00000C53h 
CPU/DMA interrupt enable (IE): 00000400h 

a Transfer a 128-word block of data from on-chip memory to off-chip 
memory and generate an interrupt on completion. The order of memory 
is to be inverted; that is, the highest addressed member of the block is to 
become the lowest addressed member. 

DMA source address: 809800h 
DMA destination address: 800000h 
DMA transfer counter: 00000080h 
DMA global control: 00000C93h 
CPUIDMA interrupt enable (IE): 00000400h 

Transfer a 200-word block of data from the serial-port-0 receive register 
to on-chip memory and generate an interrupt on completion. The transfer 
is to be synchronized with the serial-port-0 receive interrupt. 

DMA source address: 80804Ch 
DMA destination address: 809C00h 
DMA transfer counter: 000000C8h 
DMA global control: 00000D43h 
CPUIDMA interrupt enable (IE): 00200400h 
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0 Transfer a 200-word block of data from off-chip memory to the serial-port-0 
transmit register and generate an interrupt on completion. The transfer is 
to be synchronized with the serial-port-0 transmit interrupt. 

DMA source address: 809C00h 
DMA destination address: 808048h 
DMA transfer counter: 000000C8h 
DMA global control: 00000E13h 
CPUIDMA interrupt enable (IE): 00400400h 

Q Transfer data continuously between the serial-port-0 receive register and 
the serial-port-0 transmit register to create a digital loop back. The transfer 
is to be synchronized with the serial-port-0 receive and transmit interrupts. 

DMA source address: 80804Ch 
DMA destination address: 808048h 
DMA transfer counter: OOOOOOOOh 
DMA global control: 00000303h 
CPUJDMA interrupt enable (IE): 00300000h 
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Two characteristics of the TMS320C3x that contribute to its high performance 
are: 

Pipelining, and 
0 Concurrent I10 and CPU operation. 

Five functional units control TMS320C3x operation: 

Fetch 
0 Decode 
0 Read 
0 Execute 
0 Direct memory access (DMA) 

Pipelining is the overlapping or parallel operations of the fetch, decode, read, 
and execute levels of a basic instruction. 

By performing inputJoutput operations, the DMA controller reduces the need 
for the CPU to do so, thereby decreasing pipeline interference and enhancing 
the CPU's computational throughput. 

Major topics discussed in this chapter are as follows: 

Topic Page 
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9.1 Pipeline Structure 

The five major units of the TMS320C3x pipeline structure and their functions 
are as follows: 

Q Fetch Unit (F) 

This unit fetches the instruction words from memory and updates the pro- 
gram counter (PC). 

Q Decode Unit (D) 

This unit decodes the instruction word and performs address generation. 
The unit also controls any modifications to the auxiliary registers and the 
stack pointer. 

Q Read Unit (R) 

This unit, if required, reads the operands from memory. 

Q Execute Unit (E) 

This unit, if required, reads the operands from the register file, performs 
any necessary operation, and writes results to the register file. If required, 
the unit writes results of previous operations to memory. 

0 DMA Channel (DMA) 

The DMA channel reads and writes to memory. 

A basic instruction has four levels: 

Q Fetch 
0 Decode 
Q Read 

Execute 

Figure 9-1 illustrates these four levels of the pipeline structure. The levels are 
indexed according to instruction and execution cycle. The perfect overlap in 
the pipeline, where all four units operate in parallel, occurs at cycle (m). Those 
levels about to be executed are at m + 1, and those just executed are at m - 1. 
The TMS320C3x pipeline control allows a high-speed execution rate of one 
execution per cycle. It also manages pipeline conflicts so that they are trans- 
parent to the user. You do not need to take any special precautions to guaran- 
tee correct operation. 
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Figure 9- 1. TMS320C3x Pipeline Structure 

CYCLE 

m- 3  

m-P  
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D = Decode, E = Execute, F = Fetch, R = Read; W. X, X Z = Instruction Representations 

Priorities from highest to lowest have been assigned to each of the functional 
units as follows: 

1) Execute (highest) 
2) Read 
3) Decode 
4) Fetch 
5) DMA (lowest) 

When the processing of an instruction is ready to pass to the next higher pipe- 
line level, but that level is not ready to accept a new input, a pipeline conflict 
occurs. In this case, the lower-priority unit waits until the higher-priority unit 
completes its currently executing function. 

Despite the DMA controller's low priority, you can minimize or even eliminate 
conflicts with the CPU through suitable datastructuring because the DMA con- 
troller has its own data and address buses. 
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9.2 Pipeline Conflicts 

The pipeline conflicts of the TMS320C3x can be grouped into the following 
categories: 

!J Branch Conflicts 

Branch conflicts involve most of those instructions or operations that read 
and/or modify the PC. 

Register Conflicts 

Register conflicts involve delays that can occur when reading from or writ- 
ing to registers that are used for address generation. 

Memory Conflicts 

Memory conflicts occur when the internal units of the TMS320C3x wm- 
pete for memory resources. 

Each of these three categories is discussed in the following sections. Exam- 
ples are included. Note that in these examples, when data is refetched or an 
operation is repeated, the symbol representing the stage of the pipeline is ap- 
pended with a number. For example, if a fetch is performed again, the instruc- 
tion mnemonic is repeated. When an access is detained for multiple cycles be- 
cause of not ready, the symbols RDY and RDY are used to indicate not ready 
and ready, respectively. 

9.2.1 Branch Conflicts 

The first class of pipeline conflicts occurs with standard (nondelayed) 
branches, that is, BR, Bcond, DBcond, CALL, IDLE, RPTB, RPTS, RETlcond, 
RETScond, interrupts, and reset. Conflicts arise with these instructions and 
operations because during their execution, the pipeline is used only for the 
completion of the operation; other information fetched into the pipeline is dis- 
carded or refetched, or the pipeline is inactive. This is referred to as flushing 
the pipeline. Flushing the pipeline is necessary in these cases to guarantee 
that portions of succeeding instructions do not inadvertently get partially ex- 
ecuted. TRAPcond and CALLcond are classified differently from the other 
types of branches and are considered later. 

Example 9-1 shows the code and pipeline operation for a standard branch. 

1 1 

Note: Dummy Fetch 

One dummy fetch (an MPYF instruction) is performed, which affects the 
cache. After the branch address is available, a new fetch (an OR instruction) 
is performed. 

1 I 
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Example 9-1. Standard Branch 

BR THREE ; Unconditional branch 
MPYF ; Not executed 
ADD ; Not executed 
SUBF ; Not executed 
AND ; Not executed 

THREE OR ; Fetched after BR ia fetched 

PIPELINE OPERATION 

n + l  ( ~ O P I  1 (nap) ( nap 1 BR 

THREE OR ( n a p )  (nap) ( nap) 

THREE -. PC Fetch held tor 
new PC valw 

D .: Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter 

RPTS and RPTB both flush the pipeline, ailowing the RS, RE, and RC registers 
to be loaded at the proper time relative to the flow of the pipeline. If these regis- 
ters are loaded without the use of RPTS or RPTB, no flushing of the pipeline 
occurs. If you are not using any of the repeat modes, then you can use RS, RE, 
and RC as general-purpose 32-bit registers and not cause any pipeline wn- 
flicts. In cases such as the nesting of RPTB due to nested interrupts, it might 
be necessary to load and store these registers directly while using the repeat 
modes. Since up to four instructions can be fetched before entering the repeat 
mode, you should follow loads by a branch to flush the pipeline. If the RC is 
changing when an instruction is loading it, the direct load takes priority over 
the modification made by the repeat mode logic. 
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Delayed branches are implemented to guarantee the fetching of the next three 
instructions. The delayed branches include BRD, BconoD, and DBconoD. 
Example 9-2 shows the code and pipeline operation for a delayed branch. 

Example 9-2. Delayed Branch 
BRD THREE ; Unconditional delayed branch 
MPYF ; Executed 
ADD ; Executed 
SUBF ; Executed 
AND ; Not executed 

THREE MPYF ; Fetched a f t e r  SUBF i s  fetched 

PIPELINE OPERATION 

PC l F I D I R I E l  

n BRD - - - 

n + 1 MPYF BRD - - No execute delay 

n t 2  ADDF MPYF BRD - 
n t 3  SUBF ADDF MPYF BRD 

THREE 
f 

MPYF SUBF ADDF MPYF 

THREE -, PC 

D = Decode, E = Execute, F = Fetch, R I Read, PC = Program Counter 
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9.2.2 Register Conflicts 

Register conflicts involve reading or writing registers used for addressing. 
These conflicts occur when the pertinent register is not ready to be used. Some 
conditions under which you can avoid register conflicts are discussed in Sec- 
tion 9.3 on page 9-1 8. 

The registers comprise the following three functional groups: 

a Group 1 

This group includes auxiliary registers (AR&AR7), index registers (IRO, 
IRl), and block size register (BK). 

Group 2 

This group includes the data page pointer (DP). 

Group 3 

This group includes the system stack pointer (SP). 

If an instruction writes to one of these three groups, the decode unit cannot use 
any register within that particular group until the write is complete, that is, in- 
struction execution is completed. In Example 9-3, an auxiliary register is 
loaded, and a different auxiliary register is used on the next instruction. Since 
the decode stage needs the result of the write to the auxiliary register, the de- 
code of this second instruction is delayed two cycles. Every time the decode 
is delayed, a refetch of the program word is performed; that is, the ADDF is 
fetched three times. Since these are actual refetches, they can cause not only 
conflicts with the DMA controller but also cache hits and misses. 
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Example 93. Write to an AR Followed by an AR for Address Generation 
LDI 7,ARl ; 7 -OAR1 

NEXT MPYF *AR2,RO ; Decode delayed 2 cycle8 
ADDF 
FLOAT 

PIPELINE OPERATION 

n LDI - - - 

n + l  MPYF LDI - - 

n t 2  ADD? MPYF LDI - 

n + 2  ADDF MPYF (nop) LDI7,ARl 

n + 2  ADDF MPYF ( nap) ( nap 

n t 3  FLOAT ADDF MPY F ( nap ) 

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter 

The case for reads of these groups is similar to the case for writes. If an 
instruction must read a member of one of these groups, the use of that particu- 
lar group by the decode for the following instruction is delayed until the read 
is complete. The registers are read at the start of the execute cycle and there- 
fore require only a one-cycle delay of the following decode. For four registers 
(IRO, IR1, BK, or DP), there is no delay. For all other registers, including the 
SP, the delay occurs. 

In Example 9-4, two auxiliary registers are added together, with the result go- 
ing to an extended-precision register. The next instruction uses a different aux- 
iliary register as an address register. 
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Example 9-4.A Read of ARs Followed by ARs for Address Generation 

ADDI ARO,ARl,Rl ; ARO + A R 1  * R 1  
NEXT MPYF *++ARZ,RO ; Decode delayed one cycle 

ADDF 
FLOAT 

PIPELINE OPERATION 

n ADDI - - - 

n + l  MPYF ADD1 - - 

n t 2  ADDF MPYF ADD1 - 

n + 2  ADDF MPYF (nop) ADD1 AR0,ARl RO 

n  + 3 FLOAT ADDF MPYF (nop) 

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter 

Loop counter auxiliary registers for the decrement and branch (DBR)) instruc- 
tion are regarded in the same way as they are for addressing. Therefore, the 
operation shown in Example 9-3 and Example 9-4 can also occur for this in- 
struction. 
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9.2.3 Memory Conflicts 

Memory conflicts can occur when the memory bandwidth of a physical 
memory space is exceeded. For example, RAM blocks 0 and 1 and the ROM 
block can support only two accesses per cycle. The external interface can sup- 
port only one access per cycle. Section 9.4 on page 9-21 contains some condi- 
tions under which you can avoid memory conflicts. 

Memory pipeline conflicts consist of the following four types: 

0 Program wait 

A program fetch is prevented from beginning. 

D Program fetch incomplete 

A program fetch has begun but is not yet complete. 

Q Execute only 

An instruction sequence requires three CPU data accesses in a single 
cycle. 

a Hold everything 

A primary or expansion bus operation must complete before another one 
can proceed. 

These four types of memory conflicts are illustrated in examples and dis- 
cussed in the paragraphs that follow. 

Program Wait 

Two conditions can prevent the program fetch from beginning: 

0 The start of a CPU data access when: 

W Two CPU data accesses are made to an internal RAM or ROM block, 
and a program fetch from the same block is necessary. 

One of the external ports is starting a CPU data access, and a program 
fetch from the same port is necessary. 

A multicycle CPU data access or DMA data access over the external bus 
is needed. 
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Example 9-5 illustrates a program wait until a CPU data access completes. 
In this case, *ARO and *AR1 are both pointing to data in RAM block 0, and the 
MPYF instruction will be fetched from RAM block 0. This results in the conflict 
shown in Example 9-5. Since no more than two accesses can be made to 
RAM block 0 in a single cycle, the program fetch cannot begin and must wait 
until the CPU data accesses are complete. 

Example 9-5. Program Wait Until CPU Data Access Completes 
ADDF3 *ARO , *ARl, RO 
F I X  
MPYF 
ADDF3 
NEGB 

PIPELINE OPERATION 

n  + 1 FIX ADDF3 - - 

n t 2  (WAIT) FIX ADDP3 - 

n + 2  W Y F  (nop) FIX A D D F ~  *ARO,AR~,RO 

n t 3  ADDF3 MPYF (nop) FIX 

n t 4  NEGB ADDF3 MPYF (nop) 

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter 

Example 9-6 shows a program wait due to a multicycle data-data access or 
a multicycle DMA access. The ADDF, MPYF, and SUBF are fetched from a 
portion of memory other than the external port that the DMA requires. The 
DMA begins a multicycle access. The program fetch corresponding to the 
CALL is made to the same external port that the DMA is using. 

Either of two cases may produce this situation: 

Q One of the following two memory boundaries is crossed: 

From 7F FFFFh to 80 OOOOh, or 
From 80 9FFFh to 80 A000h. 

a Code that has been cached is executed, and the instruction prior to the 
ADDF is one of the following (conditional or unconditional): 

a delayed branch instruction, or 
a delayed decrement and branch instruction. 
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Even though the DMA has the lowest priority, multicycle access cannot be 
aborted. The program fetch must therefore wait until the DMA access com- 
pletes. 

Example 9-6. Program Wait Due to Multicycle Access 

PIPELINE OPERATION 

n  ADDF - - - 

n + l  MPYF ADDF - - 

n + 2  SUBF MPYF ADDF - 

n + 3  (WAIT)  SUBF MPYF ADDF 

n + 3  CALL ( n o p )  SUBF MPYF 

n + 4  - CALL ( n o p )  SUBF 

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter 

Program Fetch Incomplete 

A program fetch incomplete occurs when a program fetch requires more than 
one cycle to complete due to wait states. In Example 9-7, the MPYF and 
ADDF are fetched from memory that supports single-cycle accesses. The 
SUBF is fetched from memory, which requires one wait state. One example 
that demonstrates this conflict is a fetch across a bank boundary on the 
primary port. See Section 7.4 on page 7-30. 

Example 9-7. Multicycle Program Memory Fetches 

PIPELINE OPERATION 

n  MPYF - - - 
n + l  ADDF MPYF - - 
n + 2 R D V  SUBF ADDF MPYF - 
n + 2 R D Y  SUBF (nop) ADDF MPYF 

n + 3  ADDI SUBF ( n o p )  ADDF 

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter 
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Execute Only 

The execute only type of memory pipeline conflict occurs when performing an 
interlocked load or when a sequence of instructions requires three CPU data 
accesses in a single cycle. There are three cases in which this occurs: 

0 An instruction performs a store and is followed by an instruction that does 
two memory reads. 

Q An instruction performs two stores and is followed by an instruction that 
performs at least one memory read. 

0 An interlocked load (LDII or LDFI) instruction is performed, and XF1= 1. 

The first case is shown in Example 9-8. Since this sequence requires three 
data memory accesses and only two are available, only the execute phase of 
the pipeline is allowed to proceed. The dual reads required by the LDF )I LDF 
are delayed one cycle. Note that a refetch of the next instruction can occur. 

Example 9-8. Single Store Followed by Two Reads 

STF RO, *AR1 ; RO + *AR1 
LDF *AR2,R1 ; *AR2 +R1 in parallel with 

I I LDF *AR3,R2 ; *AR3 + R2 

PIPELINE OPERATION 

n STF - - - 

n t 1 LDF 1 )  LDF STF - - 

n t 2  W LDF ( 1  LDF STF - 

n t 3  x w LDF I (  LDF STF 

n t 4  X W LDF I I LDF (nop) 

n t 4  Y x w LDF 1 1  LDF *ARS ,RI and * A R ~  ,R2 

D = Decode, E = Execute, F = Fetch, R = Read, PC=Program Counter, W,X, Y= Instruction Representations 
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Example 9-9 shows a parallel store followed by a single load or read. Since 
the two parallel stores are required, the next CPU data memory read must wait 
a cycle before beginning. One program memory refetch can occur. 

Example 9-9. Parallel Store Followed by Single Read 
STF RO,*ARO ; RO -+*ARO in parallel with 

I I STF R2,*AR1 ; RZ -+ *AR1 
ADDF @SUM,Rl ; R1 + @SUM +R1 
IACK 
ASH 

PIPELINE OPERATION 

n STF ( 1  STF - - - 
n + 1 ADDF STF ( 1  STF - - 
n + 2  IACK ADDF STF I (  STF - 
n + 3  ASH IACK ADDF STF 1 1  STF 

n + 4  ASH IACK ADDF ( nap ) 

n + 4  - ASH IACK ADDF 

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter 



The final case involves an interlocked load (LDII or LDFI) instruction and XF1 
= 1. Since the interlocked loads use the XF1 pin as an acknowledge that the 
read can complete, the loads might need to extend the read cycle, as shown 
in Example 9-1 0. Note that a program refetch can occur. 

Example 9- 10. Interlocked Load 

NOT R1, RO 
LDII 300h,AR2 
ADD1 *AR2, R2 
CMPI RO , R2 

PIPELINE OPERATION 

n NOT - - - 

n + 1 LDII NOT - - 

n + 2  ADD1 LDII NOT - 

n + 3  CMPI ADD1 LDII NOT 

n + 3  - CMPI ADD1 LDXI 

n + 4 - CMPI ADD1 LO1 I 

D = Decode, E = Execute, F = Fetch, R I Read, PC = Program Counter 

Hold Everything 

Three situations result in hold-everything memory pipeline conflicts: 

A CPU data load or store cannot be performed because an external port is 
busy. 

Q An external load takes more than one cycle. 

Q Conditional calls and traps are processed. 
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The first type of hold everything conflict occurs when one of the external ports 
is busy due to an access that has started but is not complete. In Example 9-1 1, 
the first store is a two-cycle store. The CPU writes the data to an external port. 
The port control then takes two cycles to complete the data-data write. The 
LDF is a read over the same external port. Since the store is not complete, the 
CPU continues to attempt LDF until the port is available. 

Example 9-1 1. Busy External Port 
STF RO , @ D M 1  
LDF @ D M 2  ,RO 

PIPELINE OPERATION 

PC l F I D I R I E l  
n STF - - - 

n t l  LDF STF - - 

n + 2  W LDF STF - 
n t 2  W LDF ( n o p )  STF 

n + 3  x w LDF ( n o p )  

n + 4  Y x w LDF 

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter, W, X, Y =  Instruction Representations 
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The second type of hold everything conflict involves multicycle data reads. The 
read has begun and continues until completed. In Example 9 1  2, the LDF is 
performed from an external memory that requires several cycles to complete. 

Example 9 - 1  2. Multicycle Data Reads 
LDF @DMA,RO 

PIPELINE OPERATION 

PC I F  I D I R I E I  

n  LDF - - - 
n + l  I LDF - - 
n + ?  J I LDP - 
n  + 3  K , ( ~ - Y )  I LDF - 
n + 3  K2 J I LDF 

D Decode, E = Execute, F = Fetch, R = Read, PC- Program Counter, 1, J, KI 1- R- 

The final type of hold everything conflict involves conditional calls and traps, 
which are different from the other branch instructions. Whereas the other 
branch instructions are conditional loads, the conditional calls and traps are 
conditional stores, which require one cycle more than a conditional branch 
(see Example 9-1 3). The added cycle is used to push the return address after 
the call condition is evaluated. 

Example 9 - 1  3. Conditional Calls and Traps 

PIPELINE OPERATION 

PC l F I D I R I E l  

n9 CALLcond - - - 
n t l  I CALLcond - - 
n + l  ( nap 1 ( n a p )  CALLcond - 

n t l  ( nap ) (nap ( nop ) CALLcond 

n + l  ( nap ) ( nap 1 ( n o p )  CALLcond 

n + 2 1 CALLaddr I ( nap 1 ( nap ( nap 1 

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter, I, = Instruction Repmsemtation 
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9.3 Resolving Register Conflicts 

If the auxiliary registers (AR7-ARO), the index registers (IR1-IRO), data page 
pointer (DP), or stack pointer (SP) are accessed for any reason other than ad- 
dress generation, pipeline conflicts associated with the next memory access 
can occur. The pipeline conflicts and delays are presented in subsection 9.2 
on page 9-4. 

Example 9-1 4, Example 9-1 5, and Example S 1 6  demonstrate either some 
common uses of these registers that do not produce a conflict or ways that you 
can avoid the conflict. 

Example 9-1 4. Address Generation Update of an AR Followed by an AR for Address 
Generation 

LDF 7 . 0 , R O  ; 7 . 0 + R O  
MPYF * + + A R O ( I R l ) , R O  
ADDF *AR2,RO 
F I X  
MPYF 
ADDF 

PIPELINE OPERATION 

n LDF - - - 

n + l  MPYF LDF - - 

n + 2 ADDF HPY F LDF - 

n + 3 FIX ADDF MPYF LDF 

n t 4  MPY F F I X  ADDF MPYF 

n  + 5 ADDF MPYF F I X  ADDF 

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter, W, X, Y; Z= Instruction Representations 
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Example 9-15. Write to an AR Followed by an AR for Address Generation Without a 
Pipeline Conflict 

LDI @TABLE ,AR2 
MPYF @VALUE,Rl 
ADDF R2,Rl 
MPYF *AR2++, R1 
SUBF 
STF 

PIPELINE OPERATION 

n + l  MPY F LDI - - 
n + 2  ADDF MPYF LDI - 
n + 3  MPYF ADDF MPYF LDI 7 ,  

ARZ 

n + 4  SUBF MPYF ADDF MPYF 

n + 5 STF SUBF MPYF ADDF 

D = Decode, E = Execute, F = Fetch, R I Read, PC = Prqram Counter 
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Example 9-16. Write to DP Followed by a Direct Memory Read Without a Pipeline Confljct 
LDP TABLE-ADDR 
POP RO 
LDF *-AR3 ( 2 ) , R1 
LDI @TABLE-ADDR,ARO 
PUSHF R6 
PUSH R4 

PIPELINE OPERATION 

n LDP - - - 

n t l  POP LDP - - 

n + 2  LDF POP LDP - 

n t 3  LDI LDF POP LDP 

n t 4  PUSHF LDI LDF POP 

n t 5  PUSH PUSHF LDI LDF 

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter 
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9.4 Resolving Memory Conflicts 

If program fetches and data accesses are performed in such a manner that the 
resources being used cannot provide the necessary bandwidth, the program 
fetch is delayed until the data access is complete. Certain configurations of 
program fetch and data accesses yield conditions under which the 
TMS320C3x can achieve maximum throughput. 

Table 9-1 shows how many accesses can be performed from the different 
memory spaces when it is necessary to do a program fetch and a single data 
access and still achieve maximum performance (one cycle). As shown in 
Table 9-1, four cases achieve one-cycle maximization. 

Table 9-1. One Program Fetch and One Data Access for Maximum Performance 

Acceroos From Expansion Bust 
Primary Bus Dual-Access Or Porlphoral 

Case # Accesses internal Memory Accesses 
1 1 1 - 
2 1 - 1 

2 from any 
3 - com bination - 

of internal memory 
4 - 1 1 

t  he expansion bus is available only on the TMS320C30. 
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I 

Table 9-2 shows how many accesses can be performed from the different 
memory spaces when it is necessary to do a program fetch and two data ac- 
cesses and still achieve maximum performance (one cycle). Six conditions 
achieve this maximization. 

Table 9-2. One Program Fetch and Two Data Accesses for Maximum Performance 

Accesses From ~xpanriont Or 
Primary Bus Dual-Access Perlpherai Bus 

Case # Accesses Internal Memory Accesses 

1 2 from any - 
combination 

of internal memory 

2t 1 Program 1 Data 1 Data 

3t 1 Data 1 Data 1 Program 
- 2 from same internal - 

memory block and 
1 from a different 
internal memory 

block 
- 3 from different - 

internal memory 
blocks 

6 - 2 from any 1 
combination 

of internal memory 
t The expansion bus is available only on the TMS320C30. 
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9.5 Clocking of Memory Accesses 

This section uses the relationships between internal clock phases (HI and H3) 
to memory accesses to illustrate how the TMS320C3x handles multiple 
memory accesses. Whereas the previous section discusses the interaction 
between sequences of instructions, this section discusses the flow of data on 
an individual instruction basis. 

Each major clock period of 60 ns is composed of two minor clock periods of 
30 ns, labeled H3 and HI. The active clock period for H3 and HI  is the time 
when that signal is high. 

1 Major Clock Period 

The precise operation of memory reads and writes can be defined according 
to these minor clock periods. The types of memory operations that can occur 
are program fetches, data loads and stores, and DMA accesses. 

9.5.1 Program Fetches 

Internal program fetches are always performed during H3 unless a single data 
store must occur at the same time due to another instruction in the pipeline. 
In this case, the program fetch occurs during H l  , and the data store during H3. 

External program fetches always start at the beginning of H3, with the address 
being presented on the external bus. At the end of HI, they are completed with 
the latching of the instruction word. 
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9.5.2 Data Loads and Stores 

Four types of instructions perform loads, memory reads, and stores: 

IJ Two-operand instructions, 
iJ Three-operand instructions, 
IJ MultiplierIALU operation with store instructions, and 
IJ Parallel multiply and add instructions. 

See Chapter 5 for detailed information on addressing modes. 

As discussed in Chapter 7, the number of bus cycles for external memory 
accesses differs in some cases from the number of CPU execution cycles. For 
external reads, the number of bus cycles and CPU execution cycles is identi- 
cal. For external writes, there are always at least two bus cycles, but unless 
there is a port access conflict, there is only one CPU execution cycle. In the 
following examples, any difference in the number of bus cycles and CPU 
cycles is noted. 

Two-Operand Instruction Memory Accesses 

Two-operand instructions include all instructions whose bits 31-29 are 000 or 
010 (see Figure 9-2). In the case of a data read, bits 15-0 represent the src 
operand. Internal data reads are always performed during HI.  External data 
reads always start at the beginning of H3, with the address being presented 
on the external bus; they complete with the latching of the data word at the end 
of HI.  

Figure 9-2. Two-Operand Instruction Word 

In the case of a data store, bits 15-0 represent the dst operand. lnternal data 
stores are performed during H3. External data stores always start at the begin- 
ning of H3, with the address and data being presented on the external bus. 

Three-Operand lnstruction Memory Reads 

Three-operand instructions include all instructions whose bits 31-29 are 001 
(see Figure 9-3). The source operands, src1 and src2, come from either regis- 
ters or memory. When one or more of the source operands are from memory, 
these instructions are always memory reads. 



Clocking of Memory Accesses 

Figure 9-3. Three-Operand Instruction Word 

31 24 23 16 15 8 7  0 
1 1 1 1 1  l l l r l l l  1 1 1 1 1 1 1  

Operation srcl sf& 
b 

If only one of the source operands is from memory (either srcl or srcZ) and is 
located in internal memory, the data is read during HI. If the single memory 
source operand is in external memory, the read starts at the beginning of H3, 
with the address being presented on the external bus, and completes with the 
latching of the data word at the end of HI. 

If both source operands are to be fetched from memory, several cases occur. 
If both operands are located in internal memory, the srcl read is performed 
during H3 and the src2 read during HI, thus completing two memory reads in 
a single cycle. 

If srcl is in internal memory and src2 is in external memory, the src2 access 
begins at the start of H3 and latches at the end of HI. At the same time, the 
srcl access to internal memory is performed during H3. Again, two memory 
reads are completed in a single cycle. 

If src1 is in external memory and src2is in internal memory, two cycles are nec- 
essary to complete the two reads. In the first cycle, both operands are ad- 
dressed. Since srcl takes an entire cycle to be read and latched from external 
memory, the internal operation on src2 cannot be completed until the second 
cycle. Ordering the operands so that srcl is located internally is necessary to 
achieve single-cycle execution. 

If srcl and src2are both from external memory, two cycles are required to com- 
plete the two reads. In the first cycle, the srcl access is performed and loaded 
on the next H3; in the second cycle, the src2access is performed and loaded 
on that cycle's HI. 

If src2 is in external memory and srcl is in on-chip or external memory and is 
immediately preceded by a single store instruction to external memory, a 
dummy src2read can occur between the execution of the store instruction and - 
the src2 read, regardless of which memory space is accessed (STRB, 
MSTRB, or IOSTRB). The dummy read can cause an externally interfaced 
FIFO address pointer to be incremented prematurely, thereby causing the loss 
of FlFO data. Example 9-17 illustrates how the dummy read can occur. 
Example 4-1 8 offers an alternative code segment that suppresses the dummy 
read. In the alternative code segment, the dummy read is eliminated by swap- 
ping the order of the source operands. 
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Example 9-1 7. Dummy src2 Read 
ST1 RO,*AR6 ; AR6 points to MSTRB space 
ADD13 *AR3,*ARl,RO ; AR3 points to on-chip RAM 

; AR1 points to MSTRB apace 

PIPELINE OPERATION 

PC I F  I D  l R  E l  

- ST1 ROI*AR6 

The read of src2 cannot start 
- - until the store ie complete. 

n + 5  ADD13 - dummy load of arc2 

n + 6  - - second cycle of dummy load 

n + 7  ADD13 - actual read of erc2 and srcl 

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter 

Two cycles are required for the MSTRB store. Two other cycles are required for the 
dummy MSTRB read of *AR3 (because the read follows a write). One cycle is required 
for an actual MSTRB read of *AR3. 
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Example 9-18. Operand Swapping Alternative 

Switch the operands of the three-operand instruction so that the internal read 
is performed first. 

ST1 RO,*AR6 ;AR6 points to MSTRB space 
ADD13 *ARlt*AR3,R0 ;AR3 points to on-chip RAM 

;AR1 points to MSTRB space 

PIPELINE OPERATION 
PC I F l D l R l E  

n + 3  - STI RO, * A R ~  

- - The read of src2 cannot start 

until the store ie complete. 

ADD13 - actual read of ere2 and ercl 

n + 6  - - eecond cycle of arc2 read 

n + 7  - ADD13 *ARl,*AR3,RO 

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter 

Operations with Parallel Stores 

The next class of instructions includes every instruction that has a store in par- 
allel with another instruction. Bits 31 and 30 for these instructions are equal 
to 1 1. 

The instruction word format for those operations that perform a multiply or ALU 
operation in parallel with a store is shown in Figure 9-4. If the store operation 
to dst2 is external or internal, it is performed during H3. Two bus cycles are 
required for external stores, but only one CPU cycle is necessary to complete 
the write. 

If the memory read operation is external, it starts at the beginning of H3 and 
latches at the end of HI.  If the memory read operation is internal, it is per- 
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formed during HI.  Note that memory reads are performed by the CPU during 
the read (R) phase of the pipeline, and stores are performed during the ex- 
ecute (E) phase. 

Figure 9-4. Multiply or CPU Operation With a Parallel Store 

The instruction word format for those instructions that have parallel stores to 
memory is shown in Figure S5. If both destination operands, dstl and dst2, 
are located in internal memory, dstl is stored during H3 and dst2 during H1, 
thus completing two memory stores in a single cycle. 

If dstl is in external memory and dst2 is in internal memory, the dstl store be- 
gins at the start of H3. The dst2store to internal memory is performed during 
HI.  Two bus cycles are required for the external store, but only one CPU cycle 
is necessary to complete the write. Again, two memory stores are completed 
in a single cycle. 

If dstl is in internal memory and dst2 is in external memory, an additional bus 
cycle is necessary to complete the dst2 store. Only one CPU cycle is neces- 
sary to complete the write, but the port access requires three bus cycles. In the 
first cycle, the internal dstl store is performed during H3, and dst2 is written 
to the port during HI.  During the next cycle, the dst2store is performed on the 
external bus, beginning in H3, and executes as normal through the following 
cycle. 

If dstl and dst2are both written to external memory, a single CPU cycle is still 
all that is necessary to complete the stores. In this case, four bus cycles are 
required. 

1) In the first cycle, both dstl and dst2are written to the port, and the external 
bus access for dstl begins. 

2) The store for dstl is completed on the second cycle, and the store for dst2 
begins on the third external bus cycle. 

3) Finally, the store for dst2 is completed on the fourth external bus cycle. 



Clocking of Memory Accesses 

Figure 9-5. Two Parallel Stores 

Parallel Multiplies and Adds 

Memory addressing for parallel multiplies and adds is similar to that for three- 
operand instructions. The parallel multiplies and adds include all instructions 
whose bits 31-30 = 10 (see Figure 9-6). 

For these operations, src3 and src4 are both located in memory. If both oper- 
ands are located in internal memory, src3 is performed during H3, and src4 is 
performed during HI, thus completing two memory reads in a single cycle. 

If src3 is in internal memory and src4 is in external memory, the src4 access 
begins at the start of H3 and latches at the end of HI. At the same time, the 
src3 access to internal memory is performed during H3. Again, two memory 
reads are completed in one cycle. 

If src3 is in external memory and src4 is in internal memory, two cycles are nec- 
essary to complete the two reads. In the first cycle, the internal src4 access 
is performed. During the H3 of the next cycle, the src3 access is performed. 

If src3 and src4 are both from external memory, two cycles are necessary to 
complete the two reads. In the first cycle, the src3 access is performed; in the 
second cycle, the src4 access is performed. 

Figure 9-6. Parallel Multiplies and Adds 
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Assembly Language Instructions 

The TMS320C3x assembly language instruction set supports numeric-inten- 
sive, signal-processing, and general-purpose applications. The instructions 
are organized into major groups consisting of load-and-store, two- or three-op- 
erand arithmetic/logical, parallel, program-control, and interlocked operations 
instructions. The addressing modes used with the instructions are described 
in Chapter 5. 

The TMS320C3x instruction set can also use one of 20 condition codes with 
any of the 10 conditional instructions, such as LDFcond. This chapter defines 
the condition codes and flags. 

The assembler allows optional syntax forms to simplify the assembly language 
for special-case instructions. These optional forms are listed and explained. 

Each of the individual instructions is described and listed in alphabetical order 
(see subsection 10.3.2 on page 10-1 6). Example instructions demonstrate the 
special format and explain its content. 

This chapter discusses the following major topics: 

Topic Page 
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10.1 lnstruction Set 

All of the instructions in the TMS320C3x instruction set are one machine word 
long. Most require one cycle to execute. All instructions are a single machine 
word long, and most instructions require one cycle to execute. In addition to 
multiply and accumulate instructions, the TMS320C3x possesses a full com- 
plement of general-purpose instructions. 

The instruction set contains 11 3 instructions organized into the following func- 
tional groups: 

IJ Load-and-store 
Q Two-operand arithmeticJlogical 
Q Three-operand arithmeticJlogical 
Q Program control 
Q Interlocked operations 
C] Parallel operations 

Each of these groups is discussed in the succeeding subsections. 

10.1 .I Load-andostore Instructions 

The TMS320C3x supports 12 load-and-store instructions (see Table 10-1). 
These instructions can: 

Q Load a word from memory into a register, 
[I Store a word from a register into memory, or 
Q Manipulate data on the system stack. 

Two of these instructions can load data conditionally. This is useful for locating 
the maximum or minimum value in a data set. See Section 10.2 on page 10-1 0 
for detailed information on condition codes. 

Table 10-1. Load-and-Store Instructions 

LDF Load floating-point value 11 POPF Pop floating-point value from stack 

Instruction Description 

LDE Load floating-point exponent 

LDFcond Load floating-point value II Push integer on stack 
conditionally 

Instruction Description 

POP Pop integer from stack 

LDI Load integer 11 PUSHF Push floating-point value on stack 

LDl cond Load integer conditionally II STF 
Store floating-point value 

LDM Load floating-point mantissa II  ST^ 
Store integer 

LDP Load data page pointer II 
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10.1.2 Two-Operand lnstructlons 

The TMS320C3x supports 35 two-operand arithmetic and logical instructions. 
The two operands are the source and destination. The source operand can be 
a memory word, a register, or a part of the instruction word. The destination 
operand is always a register. 

As shown in Table 10-2, these instructions provide integer, floating-point, or 
logical operations, and multiprecision arithmetic. 

Table 10-2. Two-Operand Instructions 

ABSl Absolute value of an integer 

ADDC~ Add integers with carry 

ADDF~ Add floating-point values 

Instruction Description 

ABSF Absolute value of a floating- 
point number 

ADDI~ Add integers 

 AND^ Bitwise logical-AND 

ANDN~ Bitwise logical-AND with 
complement 

 ASH^ Arithmetic shift 

CMPF~ Compare floating-point values 

Instruction Descrlptlon 

NORM Normalize floating-point value 

NOT Bitwise logical-complement 

OR7 Bitwise logical-OR 

RND Round floating-point value 

ROL Rotate left 

ROLC Rotate left through carry 

ROR Rotate right 

RORC Rotate right through carry 

SUBB~ Subtract integers with borrow 

CMPI~  Compare integers 11 SUBC Subtract integers conditionally 

FIX Convert floating-point value to 
integer 

FLOAT Convert integer to floating-point 
value 

L S H ~  Logical shift 

MPYF~ Multiply floating-point values 

MPYI~  Multiply integers 

NEGB Negate integer with borrow 

ll sUBF 

Subtract floating-point values 

a suBl 

Subtract integer 

I1 SUBFIB 

Subtract reverse integer with 
borrow 

SUBRF Subtract reverse floating-point 
value 

I 

SUBRl Subtract reverse integer 

TSTB~ Test bit fields 

NEGF Negate floating-point value 11 x O R ~  Bitwise exclusive-OR 

NEGl Negate integer II 
't Two- and three-operand versions 
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10.1.3 Three-Operand lnstructions 

Most instructions have only two operands; however, some arithmetic and log- 
ical instructions have three-operand versions. The 17 three-operand instruc- 
tions allow the TMS320C3x to read two operands from memory or the CPU 
register file in a single cycle and store the results in a register. The following 
factors differentiate the two- and three-operand instructions: 

Two-operand instructions have a single source operand (or shift count) 
and a destination operand. 

IJ Three-operand instructions can have two source operands (or one source 
operand and a count operand) and a destination operand. A source oper- 
and can be a memory word or a register. The destination of a three-oper- 
and instruction is always a register. 

Table 10-3 lists the instructions that have three-operand versions. Note that 
you can omit the 3 in the mnemonic from three-operand instructions (see sub- 
section 10.3.2 on page 10-1 6). 

ADDF3 Add floating-point values 11 MPY13 Multiply integers 

Table 1 0 3 .  Three-Operand Instructions 

ADD13 Add integers II 0 ~ 3  
Bitwise IogicaCOR 

instruction Description 

ADDC3 Add with carry 

AND3 Bitwise logical-AND 11 SUBB3 Subtract integers with borrow 

instruction Description 

MPYF3 Multiply floating-point values 

ANDN3 Bitwse logical-AND with complement 1) SUBF3 Subtract floating-point values 

ASH3 Arithmetic shift 11 SUB13 Subtract integers 

CMPF3 Compare floating-point values Test bit fields 

CMP13 Compare integers 11 XOR3 Bitwise exclusive-OR 

LSH3 Logical shift 
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10.1.4 Program-Control lnstructlons 

The program-control instruction group consists of all of those instructions (1 7) 
that affect program flow. The repeat mode allows repetition of a block of code 
(RPTB) or of a single line of code (RPTS). Both standard and delayed 
(single-cycle) branching are supported. Several of the program control instruc- 
tions are capable of conditional operations (see Section 11 -2 on page 11 -6 
for detailed information on condition codes). Table 10-4 lists the program con- 
trol instructions. 

Table 10-4. Program Control lnstructions 

10.1.5 Low-Power Control lnstructions 

lnstructlon Descrlptlon 

Bcond Branch conditionally (standard) 

BconoD Branch conditionally (delayed) 

BR Branch unconditionally (standard) 

BRD Branch unconditionally (delayed) 

CALL Call subroutine 

CALLcond Call subroutine conditionally 

DBcond Decrement and branch 
conditionally (standard) 

DBconaD Decrement and branch 
conditionally (delayed) 

IACK Interrupt acknowledge 

The low-power control instruction group consists of three instructions that af- 
fect the low-power modes. The low-power idle (IDLE2) instruction allows ex- 
tremely low-power mode. The divide-clock-by-1 6 (LOPOWER) instruction re- 
duces the rate of the input clock frequency. The restore-clock-to-regular- 
speed (MAXSPEED) instruction causes the resumption of full-speed opera- 
tion. Table 10-5 lists the low-power control instructions. 

lnstructlon Descrlptlon 

IDLE Idle until interrupt 

NOP No operation 

RETlcond Return from interrupt conditionally 

RETScond Return from subroutine 
conditionally 

RPTB Repeat block of instructions 

RPTS Repeat single instruction 

SWI Software interrupt 

TRAPcond Trap conditionally 

Table 10-5, Low-Power Control lnstructions 
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Instruction Descrlptlon 

IDLE2 Low-power idle 

LOPOWER Divide clock by 16 

Instruction Descrlptlon 

MAXSPEED Restore clock to regular speed 
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Table 10-7. Parallel Instructions (Continued) 

Mnemonlc Descrlption 

Parallel Arlthmetlc wlth Store lnotructlons (Concluded) 

NEGF 
II STF 
NEGl 
II ST1 
NOT 
I I  ST1 

Negate floating-point value and store floating-point value 

Negate integer and store integer 

Complement value and store integer 

Bitwise logical-OR value and store integer 

STF Store floating-point values 
II STF 

Store integers 

Subtract floating-point value and store floating-point value 

SUB13 Subtract integer and store integer 
II ST1 
XOR3 Bitwise exclusive-OR values and store integer 
II ST1 

LDF 
II LDF 
LDI 
I I  LDI 

Parallel Load lnstructlons 

Load floating-point 

Load integer 

Parallel Multiply and AddISubtract Instructions 

Multiply and add floating-point 

Multiply and subtract floating-point 

Multiply and add integer 

Multiply and subtract integer 
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10.1.8 Illegal Instructions 

The TMS320C3x has no illegal instruction-detection mechanism. Fetching an 
illegal (undefined) opcode can cause the execution of an undefined operation. 
Proper use of the TI TMS320 floating-point software tools will not generate an 
illegal opcode. Only the following can cause the generation of an illegal op- 
code: 

Misuse of the tools 
a An error in the ROM code 

Defective RAM 
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10.2 Condition Codes and Flags 
The TMS320C3x provides 20 condition codes (00000-10100, excluding 
01 01 1) that you can place in the condfield of any of the conditional instructions, 
such as RETScond or LDFcond. The conditions include signed and unsigned 
comparisons, comparisons to 0, and comparisons based on the status of indi- 
vidual condition flags. Note that all conditional instructions can accept the suf- 
fix U to indicate unconditional operation. 

Seven condition flags provide information about properties of the result of 
arithmetic and logical instructions. The condition flags are stored in the status 
register (ST) and are affected by an instruction only when either of the follow- 
ing two cases occurs: 

,g The destination register is one of the extended-precision registers 
(R7-RO). (This allows for modification of the registers used for addressing 
but does not affect the condition flags during computation.) 

[] The instruction is one of the compare instructions (CMPF, CMPF3, CMPI, 
CMP13, TSTB, or TSTB3). (This makes it possible to set the condition flags 
according to the contents of any of the CPU registers.) 

The condition flags can be modified by most instructions when either of the 
preceding conditions is established and either of the following two cases oc- 
curs: 

Q A result is generated when the specified operation is performed to infinite 
precision. This is appropriate for compare and test instructions that do not 
store results in a register. It is also appropriate for arithmetic instructions 
that produce underflow or overflow. 

The output is written to the destination register, as shown in Table 10-8. 
This is appropriate for other instructions that modify the condition flags. 

Table 10-8. Output Value Formats 

Type Of Operation Output Format 

Floating-point 8-bit exponent, one sign bit, 31-bit fraction 

Integer 32-bit integer 

Logical 32-bit unsigned integer 

Figure 1 &1 on page 10-1 1 shows the condition flags in the low-order bits of 
the status register. Following the figure is a list of status register condition flags 
and descriptions of how the flags are set by most instructions. For specific de- 
tails of the effect of a particular instruction on the condition flags, see the de- 
scription of that instruction in subsection 10.3.3 on page 10-1 8. 
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Figure 1 &I. Status Register 

NOTE: xx = reserved bii 
R = read, W = wrke 

LUF 

LV 

Latched Floating-point Underflow Condition Fiag 

LUF is set whenever UF (floating-point underflow flag) is set. LUF can be 
cleared only by a processor reset or by modifying it in the status register (ST). 

Latched Overflow Condition Flag 

LV is set whenever V (overflow condition flag) is set. Otherwise, it is un- 
changed. LV can be cleared only by a processor reset or by modifying it in the 
status register (ST). 

Floating-Point Underflow Condition Flag 

A floating-point underflow occurs whenever the exponent of the result is less 
than or equal to -1 28. If a floating-point underflow occurs, UF is set, and the 
output value is set to 0. UF is cleared if a floating-point underflow does not oc- 
cur. 

Negative Condition Flag 

Logical operations assign N the state of the MSB of the output value. For inte- 
ger and floating-point operations, N is set if the result is negative, and cleared 
otherwise. Zero is positive. 

Zero Condition Fiag 

For logical, integer, and floating-point operations, Z is set if the output is 0 and 
cleared otherwise. 
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V Overflow Conditlon Flag 

For integer operations, V is set if the result does not fit into the format specified 
for the destination (that is, -2 32 r result s 2 32 - 1). Otherwise, V is cleared. 
For floating-point operations, V is set if the exponent of the result is greater 
than 127; otherwise,V is cleared. Logical operations always clear V. 

C Carry Flag 

When an integer addition is performed, C is set if a carry occurs out of the bit 
corresponding to the MSB of the output. When an integer subtraction is per- 
formed, C is set if a borrow occurs into the bit corresponding to the MSB of the 
output. Otherwise, for integer operations, C is cleared. The carry flag is unaf- 
fected by floating-point and logical operations. For shift instructions, this flag 
is set to the final value shifted out; for a 0 shift count, this is set to 0. 

Table 10-9 lists the condition mnemonic, code, description, and flag for each 
of the 20 condition codes. 
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Table 10-9. Condition Codes and Flags 

Condltlon Code Descrlptlon Flagt 

Uncondltlonal Compares 

U 00000 Unconditional 

Unsigned Compares 

00001 Lower than 
0001 0 Lower than or same as 
0001 1 Higher than 
001 00 Higher than or same as 
001 01 Equal to 
00110 Not equal to 

Signed Compares 

LT 001 11 Less than 
LE 01 000 Less than or equal to 
GT 01 001 Greater than 
GE 01010 Greater than or equal to 
EQ 001 01 Equal to 
N E 001 1 0 Not equal to 

Don't care 

C 
C O R Z  
-C AND -Z 
-C 
z 
-z 

N 
N O R Z  
-N AND -Z 
-N 

Compare to Zero 

Z 001 01 Zero Z 
NZ 001 10 Not zero -Z 
P 01 001 Positive -N AND -Z 
N 00111 Negative N 
N N 01 01 0 Nonnegative -N 

Compare to Conditlon Flags 

N N 01 01 0 Nonnegative -N 
N 00111 Negative N 
NZ 001 10 Nonzero -Z 
Z 001 01 Zero Z 
NV 01100 No overflow -V 
V 01 101 Overflow V 
NUF 01110 No underflow -UF 
UF 01111 Underflow U F 
NC 001 00 No carry -C 
C 00001 Carry C 
N LV 10000 No latched overflow -LV 
LV 10001 Latched overflow LV 
NLUF 10010 No latched floating-point underflow -LUF 
LU F 10011 Latched floating-point underflow LU F 
ZU F 101 00 Zero or floating-point underflow Z OR UF 

t - = logical complement (not-true condition) 
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10.3 Individual Instructions 

This section contains the individual assembly language instructions for the 
TMS320C3x. The instructions are listed in alphabetical order. Information for 
each instruction includes assembler syntax, operation, operands, encoding, 
description, cycles, status bits, mode bit, and examples. 

Definitions of the symbols and abbreviations, as well as optional syntax forms 
allowed by the assembler, precede the individual instruction description sec- 
tion. Also, an example instruction shows the special format used and explains 
its content. 

A functional grouping of the instructions, as well as a complete instruction set 
summary, can be found in Section 10.1 on page 10-2. Appendix A lists the 
opcodes for all of the instructions. Refer to Chapter 5 for information on 
memory addressing. Code examples using many of the instructions are pro- 
vided in Chapter 11. 

10.3.1 Symbols and Abbreviations 

Table 10-1 0 lists the symbols and abbreviations used in the individual instruc- 
tion descriptions. 
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Table 10- 10. Instruction Symbols 

Symbol Meaning 

src Source operand 
srcl Source operand 1 
src2 Source operand 2 
src3 Source operand 3 
src4 Source operand 4 

dst Destination operand 
dsfl Destination operand 1 
dsi2 Destination operand 2 
disp Displacement 
cond Condition 
count Shift count 

General addressing modes 
Three-operand addressing modes 
Parallel addressing modes 
Conditional-branch addressing modes 

1x1 Absolute value of x 
X + Y  Assign the value of x to destination y 
x(man) Mantissa field (sign + fraction) of x 
X(~XP) Exponent field of x 

Operation 1 performed in parallel with operation 2 

xANDy Bitwise logical-AND of x and y 
x OR y Bitwise logical-OR of x and y 
x XOR y Bitwise logical-XOR of x and y 
-x Bitwise logical-complement of x 

x << y Shift x to the lefty bits 
x >> y Shift x to the right y bits 
*++SP Increment SP and use incremented SP as address 
*SP- - Use SP as address and decrement SP 

ARn 
I Rn 
Rn 
RC 
RE 
RS 
ST 

C 
GIE 
N 
PC 
RM 
SP 

Auxiliary register n 
Index register n 
Register address n 
Repeat count register 
Repeat end address register 
Repeat start address register 
Status register 

Carry bit 
Global interrupt enable bit 
Trap vector 
Program counter 
Repeat mode flag 
System stack pointer 
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10.3.2 Optional Assembler Syntax 

The assembler allows a relaxed syntax form for some instructions. These op- 
tional forms simplify the assembly language so that special-case syntax can 
be ignored. Following is a list of these optional syntax forms. 

0 You can omit the destination register on unary arithmetic and logical oper- 
ations when the same register is used as a source. For example, 

ABSl R0,RO can be written as ABSl RO. 

lnstructions affected: ABSI, ABSF, FIX, FLOAT, NEGB, NEGF, NEGI, 
NORM, NOT, RND 

You can write all three-operand instructions without the 3. For example, 

ADD13 RO,R1 ,R2 can be written as ADD1 RO,R1 ,R2. 

lnstructions affected: ADDC3, ADDF3, ADD13, AND3, ANDN3, ASH3, 
LSH3, MPYF3, MPY13, OR3, SUBB3, SUBF3, SUB13, XOR3 

This also applies to all of the pertinent parallel instructions. 

You can write all three-operand comparison instructions without the 3. For 
example, 

CMP13 RO,*ARO can be written as CMPl RO,*ARO. 

lnstructions affected: CMP13, CMPF3, TSTB3 

a Indirect operands with an explicit 0 displacement are allowed. In three-op- 
erand or parallel instructions, operands with 0 displacement are automati- 
cally converted to no-displacement mode. For example: 

LDI *+ARO(O),Rl is legal. 

Also 

ADD13 *+ARO(O),Rl ,R2 is equivalent to ADD13 *ARO,R1 ,R2. 

You can write indirect operands with no displacement, in which case a dis- 
placement of 1 is assumed. For example, 

LDI *ARO++(l),RO can be written as LDI *ARO++,RO. 

All conditional instructions accept the suffix U to indicate unconditional op- 
eration. Also, you can omit the U from unconditional short branch instruc- 
tions. For example: 

BU label can be written as B label, 

You can write labels with or without a trailing colon. For example: 

labelo: NOP 
label 1 NOP 
label2: (Label assembles to next source line.) 
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Empty expressions are not allowed for the displacement in indirect mode: 

LDI *+AROO ,RO is not legal. 

Q You can precede long immediate mode operands (destination of BR and 
CALL) with an @ sign: 

BR label can be written as BR @label. 

!J You can use the LDP pseudo-op to load a register (usually DP) with the 
eight MSBs of a relocatable address: 

LDP addr,REG or LDP @addr,REG 

The @ sign is optional. 

If the destination REG is the DP, you can omit the DP in the operand. LDP 
generates an LDI instruction with an immediate operand and a special re- 
location type. 

You can write parallel instructions in either order. For example: 

can be written as ST1 
11  ADDI. 

a You can write the parallel bars indicating part2 of a parallel instruction any- 
where on the line from column 0 to the mnemonic. For example: 

can be written as ADD1 
11 STI. 

If the second operand of a parallel instruction is the same as the third (des- 
tination register) operand, you can omit the third operand. This allows you 
to write three-operand parallel instructions that look like normal two-oper- 
and instructions. For example, 

ADD1 *AROIR2,R2 can be written as ADD *ARO,R2 
I /  MPYl *AR1 ,RO,RO 11 MPYl *AR1 ,RO. 

lnstructions (applies to all parallel instructions that have a register second 
operand) affected: ADDI, ADDF, AND, MPYI, MPYF, OR, SUBI, SUBF, 
and XOR. 

a You can write all commutative operations in parallel instructions in either 
order. For example, you can write the ADD1 part of a parallel instruction in 
either of two ways: 

lnstructions affected: parallel instructions containing any of ADDI, ADDF, 
MPYI, MPYF, AND, OR, and XOR. 
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L 

0 Use the syntax in Table 10-11 to designate CPU registers in operands. 
Note the alternate notation Rn, 0 5 n s 27, which is used to designate 
any CPU register. 

Table 10-1  1. CPU Register Syntax 

Assemblers Alternate 
Syntax Register Syntax Assigned Functlon 

RO RO Extended-precision register 
R1 R1 Extended-precision register 
R2 R2 Extended-precision register 
R3 R3 Extended-precision register 
R4 R4 Extended-precision register 
R5 R5 Extended-precision register 
R6 R6 Extended-precision register 
R7 R7 Extended-precision register 

ARO 
AR 1 
AR2 
AR3 
AR4 
AR5 
AR6 
AR7 

DP 
IRO 
IR1 
BK 
SP 

ST 
I E 
IF 
IOF 

Auxiliary register 
Auxiliary register 
Auxiliary register 
Auxiliary register 
Auxiliary register 
auxiliary register 
Auxiliary register 
Auxiliary register 

Data-page pointer 
Index register 0 
Index register 1 
Block-size register 
Active stack pointer 

Status register 
CPUIDMA interrupt enable 
CPU interrupt flags 
I10 flags 

Repeat start address 
Repeat end address 
Repeat counter 

10.3.3 Individual Instruction Descriptions 

Each assembly language instruction for the TMS320C3x is described in 
this section in alphabetical order. The description includes the assembler syn- 
tax, operation, operands, encoding, description, cycles, status bits, mode bit, 
and examples. 



Example Instruction U(AM PLE 

Syntax iNST src, dst 

iNSTl src2, dstl 
I( INST2 src3, dst2 

Each instruction begins with an assembler syntax expression. You can place 
labels either before the command (instruction mnemonic) on the same line or 
on the preceding line in the first column. The optional comment field that con- 
cludes the syntax is not included in the syntax expression. Space(s) are 
required between each field (label, command, operand, and comment fields). 

The syntax examples illustrate the common one-line syntax and the two-line 
syntax used in parallel addressing. Note that the two vertical bars 11 that indi- 
cate a parallel addressing pair can be placed anywhere before the mnemonic 
on the second line. The first instruction in the pair can have a label, but the sec- 
ond instruction cannot have a label. 

Operation 

Operands 

lsrc I -. dst 

Isrc2 I -. dst 1 
I I src3 -. dst2 

The instruction operation sequence describes the processing that occurs 
when the instruction is executed. For parallel instructions, the operation se- 
quence is performed in parallel. Conditional effects of status register specified 
modes are listed for such conditional instructions as Bcond. 

src general addressing modes (G): 
0 0 register (Rn, 0 s n s 27) 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 s n s 27) 

src2 indirect (disp = 0, 1, IRO, IR1) 
dstl register (Rnl , 0 s n l  5 7) 
src3 register (Rn2, 0 s n2 s 7) 
dst2 indirect (disp = 0, 1, IRO, iR1) 

Operands are defined according to the addressing mode andlor the type of ad- 
dressing used. Note that indirect addressing uses displacements and the in- 
dex registers. Refer to Chapter 5 for detailed information on addressing. 
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EXAMPLE Example Instruction 

Encoding 

3 1 
I I I I I  1 1  1 1  1 1 1 1 1 1 1 1 1 1 1  

INST src 

Encoding examples are shown using general addressing and parallel addres- 
sing. The instruction pair for the parallel addressing example consists of 
INST1 and INST2. 

Description Instruction execution and its effect on the rest of the processor or memory con- 
tents is described. Any constraints on the operands imposed by the processor 
or the assembler are discussed. The description parallels and supplements 
the information given by the operation block. 

Cycles 1 

The digit specifies the number of cycles required to execute the instruction. 

Status Bits LUF Latched Floating-Point Underflow Condition Flag. 1 if a 
floating-point underflow occurs; unchanged otherwise. 

LV Latched Overflow Condition Flag. 1 if an integer or floating-point 
overflow occurs; unchanged otherwise. 

UF Floating-Point Underflow Condition Flag. 1 if a floating-point un- 
derflow occurs; 0 otherwise. 

N Negative Condition Flag. 1 if a negative result is generated; 0 other- 
wise. In some instructions, this flag is the MSB of the output. 

Z Zero Condition Flag. 1 if a 0 result is generated; 0 otherwise. For log- 
ical and shift instructions, 1 if a 0 output is generated; 0 otherwise. 

V Overflow Condition Flag. 1 if an integer or floating-point overflowoc- 
curs; 0 otherwise. 

C Carry Flag. 1 if a carry or borrow occurs; 0 otherwise. For shift instruc- 
tions, this flag is set to the value of the last bit shifted out; 0 for a shift 
count of 0. 

The seven condition flags stored in the status register (ST) are modified by the 
majority of instructions only if the destination register is R7-RO. The flags pro- 
vide information about the properties of the result or the output of arithmetic 
or logical operations. 



Example Instruction EXAMPLE 

Mode Bit 

Example 

OVM Overflow Mode Flag. In general, integer operations are affected by the 
OVM bit value (described in Table 3-2 on page 3-6). 

Before Instructlon: 

DP = 80h 
R5=0766900000h=2.30562500e+02 
Memory at 8098AEh = 5CDFh = 1.000011 078 + 00 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instructlon: 

DP = 80h 
R5 = 0066900000h = 1.801 269538 + 00 
Memory at 8098AEh = 5CDFh = 1.00001 1078 + 00 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

The sample code presented in the above format shows the effect of the code 
on system pointers (for example, DP or SP), registers (for example, R1 or R5), 
memory at specific locations, and the seven status bits. The values given for 
the registers include the leading 0s to show the exponent in floating-point oper- 
ations. Decimal conversions are provided for all register and memory loca- 
tions. The seven status bits are listed in the order in which they appear In the 
assembler and simulator (see Section 10.2 on page 10-1 0 and Table 10-9 on 
page 10-1 3 for further information on these seven status bits). 
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ABSF Absolute Value of Floating-Point 

Syntax ABSF src, dst 

Operation lsrcl + dst 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 s n r 7) 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, r 0 n s 7) 

Encoding 

Description The absolute value of the src operand is loaded into the dst register. The src 
and dst operands are assumed to be floating-point numbers. 

An overflow occurs if src (man) = 80000000h and src (exp) = 7Fh. The result 
is dst (man) = 7FFFFFFFh and dst (exp) = 7Fh. 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 0 
N 0 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

Mode Bit 

Example 

OVM Operation is not affected by OVM bit value. 

ABSF R4,R7 

Before Instruction: 

After Instruction: 



Parallel ABSF and S F  ABSFllSTF 

Syntax ABSF src2, dstl 
11 STF src3, dst2 

Operation Isrc2 I -+ dst 1 
)I src3 + dst2 

Operands src2 indirect (disp = 0, 1, IRO, IR1) 
dstl register (Rnl, 0 s n l  s 7) 
src3 register (Rn2, 0 s n2 s 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

Description A floating-point absolute value and a floating-point store are performed in par- 
allel. All registers are read at the beginning and loaded at the end of the ex- 
ecute cycle. This means that if one of the parallel operations (STF) reads from 
a register and the operation being performed in parallel (ABSF) writes to the 
same register, STF accepts as input the contents of the register before it is mo- 
dified by the ABSF. 

If src2and dst2point to the same location, src2is read before the write to dsg. 
If src3and dstl point to the same register, src3is read before the write to dstl. 

An overflow occurs if src (man) = 80000000h and src (exp) = 7Fh. The result 
is dst (man) = 7FFFFFFFh and dst (exp) = 7Fh. 

Cycles 

Status Bits 

Mode Bit 

Example 

LUF Unaffected 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 0 
N 0 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

ABSF *++AR3(IRl) ,R4 
1 1  STF R4,*-AR7(1) 
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ABSFl lSTF Parallel ABSF and STF I 

Before Instruction: 

AR3 = 809800h 
IR1 = OAFh 
R4 = 733C00000h = 1,797508 + 02 
AR7 = 8098C5h 
Data at 8098AFh = 58B4000h = - 6.11 87508 + 01 
Data at 8098C4h = Oh 
LUFLV UF N Z V  C = O  0 0 0 0 0 0 

After Instruction: 

AR3 = 8098AFh 
IR1 = OAFh 
R4 = 574C00000h = 6,1187508 + 01 
AR7 = 8098C5h 
Data at 8098AFh = 58B4000h = -6.11 87508 + 01 
Data at 8098C4h = 733C000h = 1,797508 + 02 
L U F L V U F N Z V C = O O O  0 0 0 0  

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Absolute Value of Integer ABSI 

Syntax ABSi src, dst 

Operation Isrq -. dst 

Operands src general addressing modes (G): 
0 0 any CPU register 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst any CPU register 

Encoding 

Description The absolute value of the src operand is loaded into the dst register. The src 
and dst operands are assumed to be signed integers. 

An overflow occurs if src = 80000000h. If ST(0VM) = 1, the result is 
dst=7FFFFFFFh. if ST(0VM) = 0, the result is dst = 80000000h. 

Cycles 

Status Bits 

Mode Bit 

Example 1 

These condition flags are modified only if the destination register Is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 0 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is affected by OVM bit value. 

ABSI R0,RO 
or 
ABSI RO 

Before Instruction: 

RO = OFFFFFFCBh = - 53 

After Instruction: 
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ABSl Absolute Value of Integer 

Example 2 A B S I  *ARl,R3 

Before Instruction: 

AR1 = 20h 
R3 = Oh 
Data at 20h = OFFFFFFCBh = - 53 

After Instruction: 

AR1 = 20h 
R3 = 35h = 53 
Data at 20h = OFFFFFFCBh = - 53 



Parallel ABSl and ST1 ABSll lSTl 

Syntax ABSi src2, dstl 

Operation Isrc2 I -, dst l 
11 src3 + dst2 

Operands src2 indirect (disp = 0, 1, IRO, IR1) 
dstl register (Rnl , 0 r 1 r 7) 
src3 register (Rn2, 0 r n2 r 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encodlng 

Description An integer absolute value and an integer store are performed in parallel. All 
registers are read at the beginning and loaded at the end of the execute cycle. 
This means that, if one of the parallel operations (STI) reads from a register 
and the operation being performed in parallel (ABSI) writes to the same regis- 
ter, ST1 accepts as input the contents of the register before it is modified by the 
ABSI. 

If src2and dst2point to the same location, src2is read before the write to dst2. 

An overflow occurs if src = 80000000h. If ST(0VM) = 1, the result is dst = 
7FFFFFFFh. If ST(0VM) = 0, the result is dst = 80000000h. 

Cycles 

Status Bits 

Mode Bit 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 0 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is affected by OVM bit value. 
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ABSll lSTl ParallelABS1 and ST1 

Example ABSI *-AR5(1),R5 

I I ST1 Rlr*AR2--(IRl) 

Before Instruction: 

AR5 = 8099E2h 
R5 = Oh 
R1 = 42h = 66 
AR2 = 8098FFh 
IR1 = OFh 
Data at 8099E1 h = OFFFFFFCBh = - 53 
Data at 8098FFh = 2h = 2 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

AR5 = 8099E2h 
R5 = 35h = 53 
R1 = 42h = 66 
AR2 = 8098FOh 
IR1 = OFh 
Data at 8099El h = OFFFFFFCBh = - 53 
Data at 8098FFh = 42h = 66 
L U F L V U F N Z V C = O O O  0 0 0 0  

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



~ d d  integer with Carry ADDC 

Syntax ADDC src, dst 

Operation dst + src + C -. dst 

Operands src general addressing modes (G): 

0 0 any CPU register 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst any CPU register 

Encoding 

Description The sum of the dst and src operands and the carry (C) flag is loaded into the 
dst register. The dst and src operands are assumed to be signed integers. 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a carry occurs; 0 otherwise 

Mode Bit 

Example 

OVM Operation is affected by OVM bit value. 

ADDC Rl,R5 

Before instruction: 

After Instruction: 
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ADDC3 Add Integer With Caw, 3-Operand 

Syntax ADDC3 src2, srcl, dst 

Operation srcl t src2 t C -, dst 

Operands srcl three-operand addressing modes (T): 
0 0 any CPU register 
0 1 indirect (disp = 0, 1 ,  IRO, IR1) 
1 0 any CPU register 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2 three-operand addressing modes (T): 
0 0 any CPU register 
0 1 any CPU register 
1 0 indirect (disp = 0, 1 ,  IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst any CPU register 

Encoding 

- . -- .- .-  - 
1 1 1 1 I  1 1 1 1 1 1 1  1 1 1 1 1 1 1  

srcl s r a  

Description The sum of the srcl and src2 operands and the carry (C) flag is loaded into 
the dst register. The srcl, src2, and dst operands are assumed to be signed 
integers. 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
U 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a carry occurs; 0 otherwise 

Mode Bit OVM Operation is affected by OVM bit value. 



Add Integer With Carry, 3-Operand ADDC3 

Example 1 ADDC3 *AR5++(1RO),R5,R2 
or 

ADDC3 R5,*AR5++(IRO),R2 

Before Instruction: 

AR5 = 809908h 
IRO = 10h 
R5 = 066h = 102 
R2 =Oh 
Data at 809908h = OFFFFFFCBh = - 53 
L U F L V U F N Z V C = O O O  0 0 0 1 

After Instruction: 

AR5 = 80991 8h 
IRO = 10h 
R5 = 066h = 102 
R2 = 032h = 50 
Data at 809908h = OFFFFFFCBh = - 53 
L U F L V U F N Z V C = O  0 0 0 0 0 1 

Example 2 

Before Instruction: 

After Instruction: 

I 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 
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ADDF Add Floating-Point 

Syntax ADDF src, dst 

Operation dst + src -. dst 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 r n r 7) 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 r n s 7) 

Description The sum of the dstand srcoperands is loaded into the dstregister. The dstand 
src operands are assumed to be floating-point numbers. 

Encoding 
3 1  24 23 16 15 8 7 0 

Cycles 1 

1  I 

0 0 0  

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

1 1 1 1 I  1 1 1 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ~  

0 0  0 0 1  1  dst src 

OVM Operation is not affected by OVM bit value. 

ADDF *AR4++(IRl),R5 

Mode Bit 

Example 

Before instruction: 

AR4 = 809800h 
IR1 = 12Bh 
R5 = 0579800000h = 6.23750et01 
Data at 809800h = 86B2800h = 4.7031 2500 + 02 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

After instruction: 

AR4 = 80992Bh 
IR1 = 12Bh 
R5 = 09052C0000h = 5.3268750et02 
Data at 809800h = 86B2800h = 4.7031 2508 + 02 
L U F L V U F N Z V C = O O  0 O 0 O O 



Add Floating-Point, 3-Operand ADDF3 

Syntax ADDF3 src2, srcl, dst 

Operation src 1 + src2 -, dst 

Operands srcl three-operand addressing modes 0: 
0 0 register (Rnl, 0 s n l  s 7) 
0 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rnl, 0 s n l  s 7) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2 three-operand addressing modes 0: 
0 0 register (Rn2, 0 r n2 5 7) 
0 1 register (Rn2, 0 s n2 s 7) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 s n r 7) 

Encoding 

. -  - 
1 1 1 1  1 1 1 1 1 1 1  1 1 1 1 1 1 1  

dst srcl srQ - 
Description The sum of the src1 and src2operands is loaded into the dstregister. The src1, 

src2, and dst operands are assumed to be floating-point numbers. 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

Mode Bit 

Example 1 

OVM Operation is not affected by OVM bit value. 

Before Instruction: 
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ADD F3 Add Floating-Point, 3-Operand 

After Instruction: 

Example 2 

Before Instruction: 

AR1 = 809820h 
AR7 = 8099FOh 
IRO = 8h 
R4 = Oh 
Data at 809821 h = 700F000h = 1.289408 + 02 
Data at 8099FOh = 34C2000h = 1.275908 + 01 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

AR1 = 80982017 
AR7 = 8099F8h 
IRO = 8h 
R4 = 070DB20000h = 1.41 6953138 + 02 
Data at 809821 h = 700F000h = 1.289408 + 02 
Data at 8099FOh = 34C2000h = 1.275908 + 01 
L U F L V U F N Z V C = O O O  0 0 0 0  

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



ParallelADDF3 and STF ADDF311STF 

Syntax ADDF3 src2, srcl, dstl 
11 STF s r c -  dst2 

Operation src 1 + src2 -, dst 1 
I I src3 -. dst2 

Operands srcl register (Rnl, 0 s n l  s 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dstl register (Rn2, 0 s n2 s 7) 
src3 register (Rn3, 0 s n3 s 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

Descrlptlon Afloating-point addition and a floating-point store are performed in parallel. All 
registers are read at the beginning and loaded at the end of the execute cycle. 
This means that if one of the parallel operations (STF) reads from a register 
and the operation being performed in parallel (ADDF3) writes to the same reg- 
ister, STF accepts as input the contents of the register before it is modified by 
the ADDF3. 

If src2and dst2point to the same location, src2is read before the write to dst2. 

Cycles 

Status Bits 

Mode Bit 

Example 

These condition flags are modified only if the destination register is R7-RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

ADDF3 *+AR3(IRl),R2,R5 
I I STF R4,*AR2 
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Before Instruction: 

AR3 = 809800h 
IR1 = OA5h 
R2 = 070C800000h = 1.40508 + 02 
R5 = Oh 
R4 = 0576400000h = 6.281 2506 + 01 
AR2 = 8098F3h 
Data at 8098A5h = 733C000h = 1,797508 + 02 
Data at 8098F3h = Oh 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

AR3 = 809800h 
IR1 = OA5h 
R2 = 070C800000h = 1.4050et02 
R5=0820200000h =3.202508+02 
R4 = 0576400000h = 6.2812508 + 01 
AR2 = 8098F3h 
Data at 8098A5h = 733C000h = 1.797508 + 02 
Data at 8098F3h = 5764000h = 6,281258 + 01 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Syntax ADD1 src, dst 

Operation dst + src -. dst 

Operands src general addressing modes (G): 
0 0 any CPU register 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst any CPU register 

Encoding 

31 24 23 16 15 8 7  0 
1 1 1 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

dst SIC 

Description The sum of the dst and src operands is loaded into the the dst register. The 
dst and src operands are assumed to be signed integers. 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a carry occurs; 0 otherwise 

Mode Bit 

Example 

OVM Operation is affected by OVM bit value. 

Before Instruction: 

R3 = OFFFFFFCBh = - 53 
R7 = 35h = 53 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

After instruction: 

R3 = OFFFFFFCBh = - 53 
R7 = Oh 
LUFLV U F N Z V C = O  0 0 0 0 0 0 
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ADD I3 Add lntegel; 3-Operand 

Syntax ADD13 <src2 >, <src l >, edst > 

Operation src 1 + src2 -. dst 

Operands srcl three-operand addressing modes 0: 
0 0 any CPU register 
0 1 indirect (disp = 0, 1, IRO, IRA) 
1 0 any CPU register 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2 three-operand addressing modes (Tj: 
0 0 any CPU register 
0 1 any CPU register 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst any CPU register 

Encoding 

Description The sum of the srcl and src2operands is loaded into the dstregister. The srcl, 
src2, and dst operands are assumed to be signed integers. 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a carry occurs; 0 otherwise 

Mode Bit 

Example 1 

OVM Operation is affected by OVM bit value. 

Before Instruction: 

R4 = ODCh = 220 
R7 =OAOh = 160 
R5 = 10h = 16 
L U F L V U F N Z V C - O  O O O O O O 



Add Integer, 3-Operand ADD13 

After Instruction: 

R4 = ODCh = 220 
R7 = OAOh = 160 
R5 = 017Ch = 380 
L U F L V U F N Z V C = O O O  0 0 0 0  

Example 2 

Before Instructlon: 

AR3 = 809802h 
AR6 = 809930h 
IRO = 18h 
R2= 10h= 16 
Data at 809801 h = 2AF8h = 11,000 
Data at 809930h = 3A98h = 15,000 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

After Instructlon: 

AR3 = 809802h 
AR6 = 80991 8h 
IRO = 18h 
R2 = 06598h = 26,000 
Data at 809801 h = 2AF8h = 11,000 
Data at 809930h = 3A98h = 15,000 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

I 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 
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ADD131 ISTI ParallelADDI3 and ST1 

Syntax ADD13 srcZ,srcl, dstl 
( 1  ST1 src3, dst2 

Operation src 1 t src2 -+ dst 1 
1 1  src3 -- dst2 

Operands srcl register (Rnl, 0 s n l  s 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dstl register (Rn2, 0 s n2 r 7) 
src3 register (Rn3, 0 s n3 s 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

Description An integer addition and an integer store are performed in parallel. All registers 
are read at the beginning and loaded at the end of the execute cycle. This 
means that if one of the parallel operations (STI) reads from a register and the 
operation being performed in parallel (ADD13) writes to the same register, ST1 
accepts as input the contents of the register before it is modified by the ADD13. 

If src2and dst2point to the same location, src2is read before the write to dst2. 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a carry occurs; 0 otherwise 

OVM Operation is affected by OVM bit value. Mode Bit 



ParallelADDI3 and ST1 ADD1311STI 

Example 

Before Instruction: 

ARO = 80992Ch 
IRO = OCh 
R5 = ODCh = 220 
RO = Oh 
R3 = 35h = 53 
AR7 = 80983Bh 
Data at 80992Ch = 12Ch = 300 
Data at 80983Bh = Oh 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

ARO = 809920h 
IRO = OCh 
R5 = ODCh = 220 
RO = 208h = 520 
R3 = 35h = 53 
AR7 = 80983Bh 
Data at 80992Ch = 12Ch = 300 
Data at 80983Bh = 35h = 53 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

b 1 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 
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AND Bitwise Logical-AND 

Syntax AND src, dst 

Operands dst AND src -. dst 

Operands src general addressing modes (G): 
0 0 any CPU register 
0 1 direct 
1 0 indirect 
1 1 immediate (not sign-extended) 

dst any CPU register 

Encoding 

.-  .- - .  
I l l 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 l  

dst src 

Description The bitwise logical-AND between the dst and src operands is loaded into the 
dst register. The dst and src operands are assumed to be unsigned integers. 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output. 
Z 1 if a 0 result is generated; 0 otherwise 
v 0 
C Unaffected 

Mode Bit 

Example 

OVM Operation is not affected by OVM bit value. 

AND R1,RZ 

Before Instruction: 

R1 = 80h 
R2 = OAFFh 
L U F L V U F N Z V C = O O O  0 0 0 1 

After Instruction: 



Syntax AND3 src2, srcl, dst 

Operation src 1 AND src2 -. dsl 

Operands srcl three-operand addressing modes 0: 
0 0 any CPU register 
0 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 any CPU register 
1 1 indirect (disp = 0, 1, IRO, iR1) 

src2 three-operand addressing modes 0: 
0 0 any CPU register 
0 1 any CPU register 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst any CPU register 

Encoding 

3 1 24 23 16 15 8 7  0 
l l l t l  1 1 1 1  1 1 1 1 1 1 1  1 1 1 1 1 1 1  

dst srcl $re2 

Description The bitwise logical-AND between the srcl and src2 operands is loaded into 
the destination register. The srcl, src2, and dstoperands are assumed to be 
unsigned integers. 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output. 
Z 1 if a 0 result is generated; 0 otherwise 
v 0 
C Unaffected 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Example 1 AND3 *ARO--(IRO)I*+AR1,R4 

Before Instruction: 

ARO = 8098F4h 
IRO = 50h 
AR1 = 809951 h 
R4 = Oh 
Data at 8098F4h = 30h 
Data at 809952h = 123h 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

ARO = 8098A4h 
IRO = 50h 
AR1 = 809951 h 
R4 = 020h 
Data at 8098F4h = 30h 
Data at 809952h = 123h 
L U F L V U F N Z V C = O  O 0 0 0 0 0 

Example 2 

Before Instruction: 

AR5 = 80985Ch 
R7 = 2h 
R4 = Oh 
Data at 80985Bh = OAFFh 
L U F L V U F N Z V C = O  O 0 0 0 0 0 

After Instruction: 

AR5 = 80985Ch 
R7 = 2h 
R4 = 2h 
Data at 80985Bh = OAFFh 
L U F L V U F N Z V C = O O O  0 0 0 0  

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



ParallelAND3 and ST1 AND311STI 

Syntax AND3 src2, srcl, dstl 
I I ST1 src3, dst2 

Operation src 1 AND src2 -. dst 1 
11 src3 -. dst2 

Operands srcl register (Rnl, 0 r n l  s 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dstl register (Rn2,O r n2 r 7) 
src3 register (Rn3, 0 s n3 s 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

Description A bitwise logical-AND and an integer store are performed in parallel. All regis- 
ters are read at the beginning and loaded at the end of the execute cycle. This 
means that if one of the parallel operations (STI) reads from a register and the 
operation being performed in parallel (AND3) writes to the same register, ST1 
accepts as input the contents of the register before it is modified by the AND3. 

If src2and dst2point to the same location, src2is read before the write to dst2. 

Cycles 

Status Bits 

Mode Bit 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output. 
Z 1 if a 0 result is generated; 0 otherwise 
v 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 
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AN D311STI Parallel AND3 and ST1 

Example 

Before Instructlon: 

AR1 = 8099Fl h 
IRO = 8h 
R4 = OA323h 
R7 = Oh 
R3 = 35h = 53 
AR2 = 80983Fh 
Data at 8099F9h = 5C53h 
Data at 80983Fh = Oh 
L U F L V U F N Z V C = O O O  0 0  0 0  

After Instructlon: 

AR1 = 8099Fl h 
RO = 8h 
R4 = OA323h 
R7 = 03h 
R3 = 35h = 53 
AR2 = 80983Fh 
Data at 8099F9h = 5C53h 
Data at 80983Fh = 35h = 53 
L U F L V U F N Z V C = O O O  0 0  0 0  

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Bitwise Logical-AND With Complement ANDN 

Syntax ANDN src, dst 

Operation dst AND -src -. dst 

Operands src general addressing modes (G): 
0 0 any CPU register 
0 1 direct 
1 0 indirect 
1 1 immediate (not sign-extended) 

dst any CPU register 

Encoding 

- .  - . -- . - 

I  I  1 1 1 1 I  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

0 0 0  0 0 0 1  1 0  src 

Description The bitwise logical-AND between the dstoperand and the bitwise logical com- 
plement (-) of the src operand is loaded into the dst register. The dst and src 
operands are assumed to be unsigned integers. 

Cycles 

Status Bits 

Mode Bit 

Example 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output. 
Z 1 if a 0 result is generated; 0 otherwise 
v 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

ANDN @980Ch,R2 

Before instruction: 

DP = 80h 
R2 = OC2Fh 
Data at 80980Ch = OA02h 
L U F L V U F N Z V C = O O  0 0 0 0 0 

After instruction: 

DP = 80h 
R2 = 042Dh 
Data at 80980Ch = OA02h 
L U F L V U F N Z V C = O O  0 0 0 0 0  

Assembly Language Instructions 10-47 



Syntax ANDN3 src2, srcl, dst 

Operation src 1 AND -src2 + dst 

Operands srcl three-operand addressing modes (T): 
0 0 any CPU register 
0 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 any CPU register 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2 three-operand addressing modes (T): 
0 0 any CPU register 
0 1 any CPU register 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1,100, IRA) 

dst register (Rn, 0 s n s 27) 

Encoding 

. -  . -  
1 1 1 1 1 1 1  I 1 1 1 1 1 1  

srcl src2 

Description The bitwise logical-AND between the srcl operand and the bitwise logical 
complement (-) of the src2 operand is loaded into the dst register. The srcl, 
src2, and dst operands are assumed to be unsigned integers. 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output. 
Z 1 if a 0 result is generated; 0 otherwise 
v 0 
C Unaffected 

Mode Bit 

Example 1 

OVM Operation is not affected by OVM bit value. 

Before Instruction: 



After Instruction: 

Example 2 

Before Instruction: 

R1 = OCFh 
AR5 = 809825h 
IRO = 5h 
RO = Oh 
Data at 809825h = OFFFh 
LUFLV UF N Z V  C = O  0 0 0 0 0 0 

After Instruction: 

R1 = OCFh 
AR5 = 80982Ah 
IRO = 5h 
RO = OF30h 
Data at 809825h = OFFFh 
L U F L V U F N Z V C = O O  0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 
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ASH Arithmetic Shin 

Syntax ASH count, dst 

Operation If (count z 0): 
dst cc count -. dst 

Else: 
dst >> lcount I + dst 

Operands count general addressing modes (G): 
0 0 any CPU register 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst any CPU register 

Encoding 

Description The seven least significant bits of the count operand are used to generate the 
two's complement shift count of up to 32 bits. 

3 1 24 23 16 15 8 7 0 

If the count operand is greater than 0, the dst operand is left-shifted by the 
value of the countoperand. Low-order bits shifted in are 0-filled, and high-ord- 
er bits are shifted out through the carry (C) bit. 

1 1 1 1  

dst 

Arithmetic left-shift: 

C+dst+O 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

count 

If the countoperand is less than 0, the dstoperand is right-shifted by the abso- 
lute value of the countoperand. The high-order bits of the dstoperand aresign- 
extended as it is right-shifted. Low-order bits are shifted out through the C bit. 

A 

Arithmetic right-shift: 

sign of dst + dst -. C 

Cycles 

If the count operand is 0, no shift is performed, and the C bit is set to 0. The 
count and dst operands are assumed to be signed integers. 



Arithmetic Shill ASH 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N MSB of the output. 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C Set to the value of the last bit shifted out. 0 for a shift count of 0. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example 1 ASH R1 ,R3 

Before Instructlon: 

R1 = 10h= 16 
R3 = OAEOOOh 
L U F L V U F N Z V C = O O O  0 0 0 0 

After Instruction: 

Example 2 ASH @98C3hIR5 

Before Instruction: 

DP = 80h 
R5 = OAECOOOOl h 
Data at 8098C3h = OFFE8 = - 24 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instructlon: 

DP = 80h 
R5 = OFFFFFFAEh 
Data at 8098C3h = OFFE8 = - 24 
L U F L V U F N Z V C = O O O  1 0  0 1 
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ASH3 Arithmetic Shift, 3-Operand 

Syntax ASH3 count, src, dst 

Operatlon If (count r 0): 
src << count - dst 

Else: 
src >> lcount I + dst 

Operands count three-operand addressing modes (T): 
0 0 register (Rn2, 0 s n2 s 27) 
0 1 register (Rn2,O s n2 s 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src three-operand addressing modes (T): 
0 0 register (Rnl , 0 r n l  s 27) 
0 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rnl, 0 5 n l  5 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 s n 5 27) 

Encoding 

- .  - .  -- . -  . -  
I I 1 1 1 1 I  l l l r l l l  I 1 1 1 1 1 1  

0 0 1  0 0 0 1 0 1  src count 
L 

Description The seven least significant bits of the count operand are used to generate the 
two's complement shift count of up to 32 bits. 

If the count operand is greater than 0, the src operand is left-shifted by the 
value of the countoperand. Low-order bits shifted in are 0-filled, and high-ord- 
er bits are shifted out through the status register's C bit. 

Arithmetic left-shift: 

C + src +- 0 

If the countoperand is less than 0, the srcoperand is right-shifted by the abso- 
lute value of the countoperand. The high-order bits of the srcoperand aresign- 
extended as they are right-shifted. Low-order bits are shifted out through the 
C (carry) bit. 

Arithmetic right-shift: 

sign of src -. src -. C 

If the count operand is 0, no shift is performed, and the C bit is set to 0. The 
count, src, and dst operands are assumed to be signed integers. 



Arithmetic Shift, 3-Operand ASH3 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N MSB of the output. 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C Set to the value of the last bit shifted out. 0 for a shift count of 0. 
OVM Operation is not affected by OVM bit value. Mode Bit 

Example 

Before Instruction: 

AR3 = 809921 h 
R5 = 02BOh 
RO = Oh 
Data at 809921 h = 1Oh = 16 
L U F L V U F N Z V C = O O O O  0 0 0  

After Instruction: 

AR3 = 809920h 
R5=000002BOh 
RO = 02B00000h 
Data at 809921 h = 1 Oh = 16 
L U F L V U F N Z V C = O O O  0 0 0 0  

Example ASH3 R1 ,R3,R5 

Before Instruction: 

R1 =OFFFFFFF8h=-8 
R3 = OFFFFCBOOh 
R5 = Oh 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

After Instruction: 

R1 =OFFFFFFF8h=-8 
R3 = OFFFFCBOOh 
R5 = OFFFFFFCBh 
L U F L V U F N Z V C = O O O  1 0  0 0  

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 
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ASH31 ISTI ParallelASH3 and ST1 

Syntax ASH3 count, src2, dst 1 
11 ST1 src3, dst2 

Operation If (count 8 0): 
src2 << count + dstl 

Else: 
src2 >> 1 counq + dst 1 

Operands count register (Rnl , 0 5 n l  s 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dstl register (Rn2,O s n2 5 7) 
src3 register (Rn3, 0 5 n3 r 7) 
dsf2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

Description The seven least significant bits of the countoperand register are used to gen- 
erate the two's complement shift count of up to 32 bits. 

If the count operand is greater than 0, the src2 operand is left-shifted by the 
value of the countoperand. Low-order bits shifted in are 0-filled, and high-ord- 
er bits are shifted out through the C bit. 

Arithmetic left-shift: 

If the countoperand is less than 0, the src2operand is right-shifted by the ab- 
solute value of the countoperand. The high-order bits of the src2operand are 
sign-extended as it is right-shifted. Low-order bits are shifted out through the 
C bit. 

Arithmetic right-shift: 

sign of src2 + src2 -. C 

If the count operand is 0, no shift is performed, and the C bit is set to 0. The 
count and dst operands are assumed to be signed integers. 

All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that, if one of the parallel operations (STI) reads from a reg- 
ister and the operation being performed in parallel (ASH3) writes to the same 
register, ST1 accepts as input the contents of the register before it is modified 
by the ASH3. 



ParaNelASH3 and ST1 ASH311STI 

If src2and dst2point to the same location, src2is read before the write to dst2. 

Cycler 

Status Bits 

Mode Bit 

Example 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N MSB of the output 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C Set to the value of the last bit shifted out. 0 for a shift count of 0. 

OVM Operation is not affected by OVM bit value. 

Before Instruction: 

AR6 = 809900h 
IR1 = 8Ch 
R1 =OFFE8h=-24 
RO = Oh 
R5 = 35h = 53 
AR2 = 8098A2h 
Data at 809900h = OAEOOOOOOh 
Data at 8098A2h = Oh 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

After Instruction: 

AR6 = 80998Ch 
IR1 = 8Ch 
R1 = OFFE8h = - 24 
RO = OFFFFFFAEh 
R5 = 35h = 53 
AR2 = 8098A2h 
Data at 809900h = OAEOOOOOOh 
Data at 8098A2h = 35h = 53 
L U F L V U F N Z V C = O  0 0 1 0  0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 
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Syntax Bcond src 

Operation If cond is true: 
If src is in register-addressing mode (Rn, 0 s n s 27), 

src -. PC. 
If src is in PC-relative mode (label or address), 

displacement + PC + 1 -. PC. 
Else, continue. 

Operands src conditional-branch addressing modes (B): 
0 register 
1 PC-relative 

Encoding 

. . 
1 1 1 1  1 1 1 1 1 1 1 1 1 1 1  1 1 1 1  

cond register or displacement 

Description Bcondsignifies a standard branch that executes in four cycles. A branch is per- 
formed if the condition is true (since a pipeline flush also occurs on a true condi- 
tion; see Section 9.2 on page 9-4). If the src operand is expressed in register 
addressing mode, the contents of the specified register are loaded into the PC. 
If the srcoperand is expressed in PC-relative mode, the assembler generates 
a displacement: displacement = label - (PC of branch instruction + 1). This dis- 
placement is stored as a 16-bit signed integer in the 16 least significant bits 
of the branch instruction word. This displacement is added to the PC of the 
branch instruction plus 1 to generate the new PC. 

The TMS320C3x provides 20 condition codes that you can use with this in- 
struction (see Table 10-9 on page -1 3 for a list of condition mnemonics, condi- 
tion codes and flags). Condition flags are set on a previous instruction only 
when the destination register is one of the extended-precision registers (R7- 
RO) or when one of the compare instructions (CMPF, CMPF3, CMPI, CMP13, 
TSTB, or TSTB3) is executed. 

Cycles 

Status Bits 

Mode Bit 

10-56 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 



Branch Conditionally (Standard) Bcond 

Example 

Before Instruction: 

After Instruction: 

I 1 

Note: 

If a BZ instruction is executed immediately following a RND instruction with 
a 0 operand, the branch is not performed, because the 0 flag is not set. To 
circumvent this problem, execute a BZUF instead of a BZ instruction. 

I I 
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BcondD Branch Conditionally (Delayed) 

Syntax Bcond D src 

Operation If cond is true: 
If src is in register-addressing mode (Rn, 0 s n s 27), 

src -. PC. 
If src is in PC-relative mode (label or address), 

displacement + PC + 3 -. PC. 
Else, continue. 

Operands 

Encoding 

src conditional-branch addressing modes (B): 
0 register 
1 PC-relative 

I I I I I  I l l 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 i  

0 1 1  0 1  O B  cond register or displacement 

Description Bcond D signifies a delayed branch that allows the three instructions after the 
delayed branch to be fetched before the PC is modified. The effect is a single- 
cycle branch, and the three instructions following Bcond D will not affect the 
cond. 

A branch is performed if the condition is true. If the src operand is expressed 
in register-addressing mode, the contents of the specified register are loaded 
into the PC. If the srcoperand is expressed in PC-relative mode, the assembler 
generates a displacement: displacement = label - (PC of branch instruction 
+ 3). This displacement is stored as a 16-bit signed integer in the 16 least sig- 
nificant bits of the branch instruction. This displacement is added to the PC of 
the branch instruction plus 3 to generate the new PC. The TMS320C3x pro- 
vides 20 condition codes that you can use with this instruction (see Table 10-9 
on page -1 3for a list of condition mnemonics, condition codes, and flags). Con- 
dition flags are set on a previous instruction only when the destination register 
is one of the extended-precision registers (R7-RO) or when one of the com- 
pare instructions (CMPF, CMPF3, CMPI, CMP13, TSTB, or TSTB3) is ex- 
ecuted. 

Cycles 

Status Bits 

Mode Bit 

10-58 

LU F 
LV 
UF 
N 
z 
v 
C 

OVM 

Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 

Operation is not affected by OVM bit value. 



Branch Conditionally (Delayed) Bcond D 

Example BNZD 36 ( 3 6  * 24h) 

Before lnstructlon: 

Atter Instructlon: 
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BR Branch Unconditionally (Standard) 

Syntax BR src 

Operation src -. PC or PC + disp 4 PC, where disp = src - (PC + 1) 

Operands src long-immediate addressing mode 

Encoding 

3 1 24 23 16 15 8 7 - .  - -- - .  
1 1 1 1 1 1  I I I I I I I I I I I 1 1 I 1 1 I 1 1 1 1 1 1  

0 1 1  0 0  0 0  disp 

Description BR performs a PC-relative branch that executes in four cycles, since a pipeline 
flush also occurs upon execution of the branch; see Section 9.2 on page 9-4. 
An unconditional branch is performed. The src operand is assumed to be a 
24-bit unsigned integer. Note that bit 24 = 0 for a standard branch. 

Cycles 4 

Status Bits LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. Mode Bit 

Example 

Before Instruction: 

After Instruction: 



Branch Unconditionally (Delayed) B R D 

Syntax BRD src 

Operation src 4 PC 

Operands src long-immediate addressing mode 

Encoding 

Description BRD signifies a delayed branch that allows the three instructions after the 
delayed branch to be fetched before the PC is modified. The effect is a 
single-cycle branch. 

An unconditional branch is performed. The src operand is assumed to be a 
24-bit unsigned integer. Note that bit 24 = 1 for a delayed branch. 

Cycles 

Status Bits 

Mode Bit 

Example 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

BRD 2Ch 

Before instruction: 

After instruction: 
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Syntax CALL src 

Operation Next PC -. *++SP 
src + PC 

Operands src long-immediate addressing mode 

Encoding 

Description A call is performed. The next PC value is pushed onto the system stack. The 
src operand is loaded into the PC. The src operand is assumed to be a 24-bit 
unsigned immediate operand. 

Cycles 4 

Status Bits LU F 
LV 
UF 
N 
z 
v 
C 

OVM Mode Bit 

Example 

Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 

Operation is not affected by OVM bit value. 

CALL 123456h 

Before Instruction: 

After Instruction: 

PC = 123456h 
SP = 809802h 
Data at 809802h = 6h 
L U F L V U F N Z V C = O  0 0 0 0 0 0 





CALLcond Call Subroutine Conditionally 

Example CALLNZ R5 

Before Instruction: 

After Instruction: 

PC = 789h 
SP = 809836h 
R5 = 789h 
Data at 809836h = 124h 
L U F L V U F N Z V C = O O O  0 0 0 0  



Compare Floating-Point C MPF 

Syntax CMPF src, dst 

Operation dst - src 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 s n s 7) 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 s n s 7) 

Encoding 

Description The src operand is subtracted from the dst operand. The result is not loaded 
into any register, thus allowing for nondestructive compares. The dst and src 
operands are assumed to be floating-point numbers. 

Cycles 

Status Bits 

Mode Bit 

Example 

These condition flags are modified for all destination registers (R27-RO). 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

CMPF *+AR4,R6 

Before Instruction: 

AR4 = 8098F2h 
R6 = 070C800000h = 1.4050et02 
Data at 8098F3h = 070C8000h = 1.40508 + 02 
L U F L V U F N Z V C = O O  0 0 0 0 0 

After Instruction: 

AR4 = 8098F2h 
R6 = 070C800000h = 1.40508 + 02 
Data at 8098F3h = 070C8000h = 1.40508 + 02 
L U F L V U F N Z V C = O O O  0 1 0 0  
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CM PF3 Compare Floating-Point, 3-Operand 

Syntax CMPF3 src2, srcl 

Operation src 1 - src2 

Operands srcl three-operand addressing modes 0: 
0 0 register (Rnl, 0 s n l  r 7) 
0 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rnl , 0 r n1 s 7) 
1 1 indirect (disp = 0, 1, IRO, IRA) 

src2 three-operand addressing modes (T): 
0 0 register (Rn2, 0 s n2 r 7) 
0 1 register (Rn2, 0 r n2 r 7) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

- -- . . 
1 1 1 1 I  I I I I I I I I  I l l l l l r  

0 0 0 1 1 0  T srcl src2 
A 

Description The src2operand is subtracted from the src1 operand. The result is not loaded 
into any register, thus allowing for nondestructive compares. The srcl and 
src2 operands are assumed to be floating-point numbers. Although this in- 
struction has only two operands, it is designated as a three-operand instruc- 
tion because operands are specified in the three-operand format. 

Cycles 1 

Status Bits These condition flags are modified for all destination registers (R27-RO). 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

Mode Bit OVM Operation is not affected by OVM bit value. 



Compare Floating- Point, 3-Operand C M PF3 

Example 

Before Instruction: 

AR2 = 809831 h 
AR3 = 809852h 
Data at 809831 h = 77A7000h = 2.50448 t 02 
Data at 809852h = 57A2000h = 6.2531258 t 01 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

After Instruction: 

AR2 = 809831 h 
AR3 = 809851 h 
Data at 809831 h = 77A7000h = 2.50448 t 02 
Data at 809852h = 57A2000h = 6.2531 258 + 01 
L U F L V U F N Z V C = O O O  1 0  0 0  

I 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

I J 
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CM PI Compare Integer 

Syntax CMPl src, dst 

Operation dst - src 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 s n r 27) 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 s n s 27) 

Encodlng 

Description The src operand is subtracted from the dstoperand. The result is not loaded 
into any register, thus allowing for nondestructive compares. The dst and src 
operands are assumed to be signed integers. 

Cycles 1 

Status Bits These condition flags are modified for all destination registers (R27-RO). 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a borrow occurs; 0 otherwise 

Mode Bit 

Example 

OVM Operation is not affected by OVM bit value. 

CMPI R3,R7 

Before Instruction: 

After instruction: 



Compare Integer, 3-Operand C M P 13 

Syntax CMP13 src2, srcl 

Operation srcl - src2 

Operand8 srcl three-operand addressing modes 0: 
0 0 register (Rnl, 0 r n l  s 27) 
0 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rnl , 0 r n l  r 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2 three-operand addressing modes 0: 
0 0 register (Rn2,O s n2 r 27) 
0 1 register (Rn2,O s n2 s 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

Description The src2operand is subtracted from the srcl operand. The result is not loaded 
into any register, thus allowing for nondestructive compares. The srcl and 
src2 operands are assumed to be signed integers. Although this instruction 
has only two operands, it is designated as a three-operand instruction be- 
cause operands are specified in the three-operand format. 

Cycles 

Status Bit8 

Mode Bit 

These condition flags are modified for all destination registers (R27-RO). 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer ovemow occurs; 0 otherwise 
C 1 if a borrow occurs; 0 otherwise 

OVM Operation is not affected by OVM bit value. 
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CM PI3 Compare Integer, 3-Operand 

Example 

Before Instruction: 

After Instruction: 

I 1 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

I I 



Decrement and Branch Conditionally (Standard) DBcond 

Syntax DBcond ARn, src 

Operation ARn - 1 -. ARn 
If cond is true and ARn r 0 : 

If src is in register addressing mode (Rn, 0 s n s 27), 
src -. PC. 

If src is in PC-relative mode (label or address), 
displacement + PC + 1 -, PC. 

Else, continue. 

Operands src conditional-branch addressing modes (B): 
0 register 
1 PC-relative 

ARn register (0 s n 5 7) 

Encoding 

- .  .-  .-  - .  
1 1 1 1 1  1 1 1 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

cond register or displacement 

Description DBcond signifies a standard branch that executes in four cycles because the 
pipeline must be flushed if cond is true. The specified auxiliary register is de- 
cremented and a branch is performed if the condition is true and the specified 
auxiliary register is greater than or equal to 0. The condition flags are those set 
by the last previous instruction that affects the status bits. 

The auxiliary register is treated as a 24-bit signed integer. The most significant 
eight bits are unmodified by the decrement operation. The comparison of the 
auxiliary register uses only the 24 least significant bits of the auxiliary register. 
Note that the branch condition does not depend on the auxiliary register decre- 
ment. 

If the src operand is expressed in register addressing mode, the contents of 
the specified register are loaded into the PC. If the src operand is expressed 
in PC-relative addressing mode, the assembler generates a displacement: 
displacement = label - (PC of branch instruction + 1). This integer is stored as 
a 1 &bit signed integer in the 16 least significant bits of the branch instruction 
word. This displacement is added to the PC of the branch instruction plus 1 to 
generate the new PC. 

The TMS320C3x provides 20 condition codes that can be used with this in- 
struction (see Table 10-9 on page -13 for a list of condition mnemonics, condi- 
tion codes, and flags). Condition flags are set on a previous instruction only 
when the destination register is one of the extended-precision registers 
(R0-R7) or when one of the compare instructions (CMPF, CMPF3, CMPI, 
CMP13, TSTB, or TSTB3) is executed. 
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DBcond Decrement and Branch Condition 

Cycles 4 

Status Bits LU F 
LV 
UF 
N 
z 
v 
C 

OVM Mode Bit 

Example 

Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 

Operation is not affected by OVM bit value. 

CMPI 20O,R3 
DBLT AR3,R2 

Before Instruction: 

After Instruction: 



Decrement and Branch Conditionally (Delayed) DBcondD 

Syntax DBcondD ARn, src 

Operation ARn - 1 -. ARn 
If cond is true and ARN r 0: 

If src is in register addressing mode (Rn, 0 5 n 5 27) 
src -. PC 

If src is in PC-relative mode (label or address) 
displacement + PC + 3 -. PC. 

Else, continue. 

Operands src conditional-branch addressing modes (B): 
0 register 
1 PC-relative 

ARn register (0 s n r 7) 

Encoding 

3 1 24 23 16 15 8 7  0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

register or displacement 

Description DBcond D signifies a delayed branch that allows the three instructions after 
the delayed branch to be fetched before the PC is modified. The effect is a 
single-cycle branch. The specified auxiliary register is decremented, and a 
branch is performed if the condition is true and the specified auxiliary register 
is greater than or equal to 0. The condition flags are those set by the last pre- 
vious instruction that affects the status bits. The three instructions following the 
DBcondD do not affect the cond. 

The auxiliary register is treated as a 24-bit signed integer. The most significant 
eight bits are unmodified by the decrement operation. The comparison of the 
auxiliary register uses only the 24 least significant bits of the auxiliary register. 
Note that the branch condition does not depend on the auxiliary register decre- 
ment. 

If the src operand is expressed in register-addressing mode, the contents of 
the specified register are loaded into the PC. If the src is expressed in PC-rela- 
tive addressing, the assembler generates a displacement: displacement = la- 
bel - (PC of branch instruction + 3). This displacement is added to the PC of 
the branch instruction plus 3 to generate the new PC. Note that bit 21 = 1 for 
a delayed branch. 
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DBcondD Decrement and Branch Conditionally (Delayed) 

The TMS320C3x provides 20 condition codes that you can use with this in- 
struction (see Table 10-9 on page 10-13 for a list of condition mnemonics, 
condition codes, and flags). Condition flags are set on a previous instruction 
only when the destination register is one of the extended-precision registers 
(R7-RO) or when one of the compare instructions (CMPF, CMPF3, CMPI, 
CMPI3, TSTB, or TSTB3) is executed. 

Cycles 1 

Status Bits LUF 
LV 
UF 
N 
z 
v 
C 

OVM Mode Bit 

Example 

Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 

Operation is not affected by OVM bit value. 

CMP I 26h,R2 
DBZD AR5, $+110h 

Before Instruction: 

After Instruction: 



Floating-Point-to-Integer Conversion FIX 

Syntax FIX src, dst 

Operation fix(src) -. dst 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 s n s 7) 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst any CPU register 

Encoding 

," ," - .  - 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

src 

Description The floating-point operand src is converted to the nearest integer less than or 
equal to it in value, and the result is loaded into the dst register. The srcoper- 
and is assumed to be a floating-point number and the dst operand a signed 
integer. 

The exponent field of the result register (if it has one) is not modified. 

Integer overflow occurs when the floating-point number is too large to be rep- 
resented as a 32-bit two's complement integer. In the case of integer overflow, 
the result will be saturated in the direction of overflow. 

Cycles 

Status Bits 

Mode Bit 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 
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FIX Floating-Point-to-integer Conversion 

Example FIX Rl,R2 

Before Instruction: 

After Instructlon: 



Parallel FIX and ST1 FlXllSTl 

Syntax FIX src2, dstl 
1 1  ST1 src3, dst2 

Operation fix(src2) -. dstl 
11 src3 -+ dst2 

Operands src2 indirect (disp = 0, 1, IRO, IR1) 
dstl register (Rnl , 0 r n l  r 7) 
src3 register (Rn2, 0 r n2 r 7) 
dst2 indirect (disp = 0, 1, IRO, IRI) 

Encoding 

Description A floating-point to integer conversion is performed. All registers are read at the 
beginning and loaded at the end of the execute cycle. This means that, if one 
of the parallel operations (STI) reads from a register, and the operation being 
performed in parallel (FIX) writes to the same register, ST1 accepts as input the 
contents of the register before it is modified by FIX. 

31 24 23 16 15 8 7  0  

If src2and dst2point to the same location, src2is read before the write to dst2. 

Integer overflow occurs when the floating-point number is too large to be rep- 
resented as a 32-bit two's complement integer. In the case of integer overflow, 
the result will be saturated in the direction of overflow. 

I 

1 1  

Cycles 

Status Bits 

1 1 1 1 1 1 1  

ds12 

Mode Bit 

1 1 1 1 1 1 1 -  

src2 
1 1 1 1  

0  1 0 1 0  

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

I I 

dstl 
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0 0 0  
I I 

s r d  



FlXllSTl Parallel FlXand ST1 

Example FIX *++AFt4 ( 1 ) , R1 
I 1 ST1 RO,*AR2 

Before Instruction: 

AR4 = 8098A2h 
R1 = Oh 
RO = ODCh = 220 
AR2 = 80983Ch 
Data at 8098A3h = 733C000h = 1.79508 + 02 
Data at 80983Ch = Oh 
L U F L V U F N Z V C = O O  0 0 0 0 0 

After Instruction: 

AR4 = 8098A3h 
R1 = OB3h = 179 
RO = ODCh = 220 
AR2 = 80983Ch 
Data at 8098A3h = 733C000h = 1.797508 + 02 
Data at 80983Ch = ODCh = 220 
L U F L V U F N Z V C = O O O  0 0 0 0  

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Integer-to-floating-point Conversion FLOAT 

Syntax FLOAT src, dst 

Operation float (src) -. dst 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 s n s 27) 
0 1  direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 s n s 7) 

Encoding 

Description 

31 24 23 16 15 8 7 0 
I I 1 1 1 1 I  I I I I I  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

Cycles 

Status Bits 

Mode Bit 

Example 

src 

The integer operand srcis converted to the floating-point value equal to it, and 
the result loaded into the dst register. The src operand is assumed to be a 
signed integer, and the dst operand a floating-point number. 

0 0 0  

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
v 0 
C Unaffected 

G 0 0  1 0 1 1  

OVM Operation is not affected by OVM bit value. 

dst 

FLOAT *++AR2(2),R5 

Before Instruction: 

AR2 = 809800h 
R5 = 034C2000h = 1.27578125e + 01 
Data at 809802h = OAEh = 174 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

AR2 = 809802h 
R5 = 072E00000h = 1.74e + 02 
Data at 809802h = OAEh = 174 
L U F L V U F N Z V C = O O O  0 0 0 0  
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FLOATllSTF Parallel FLOATand STF 

Syntax FLOAT src2, dstl 
11 STF src3, dst2 

Operation float(src2) -. dstl 
1 1  src3 -. dst2 

Operands src2 indirect (disp = 0, 1, IRO, IRI) 
dstl register (Rnl, 0 s n l  s 7) 
src3 register (Rn2, 0 s n2 3 7) 
dst2 register (disp = 0, 1, IRO, IR1) 

Encoding 

Description An integer to floating-point conversion is performed. All registers are read at 
the beginning and loaded at the end of the execute cycle. This means that if 
one of the parallel operations (STF) reads from a register and the operation 
being performed in parallel (FLOAT) writes to the same register, then STF ac- 
cepts as input the contents of the register before it is modified by FLOAT. 

If src2and dst2point to the same location, src2is read before the write to dsg. 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
v 0 
C Unaffected 

Mode Bit OVM Operation is affected by OVM bit value. 



Parallel FLOAT and STF FLOAT11 STF 

Example FLOAT *+ARZ(IRO),R6 
( I STF R7,*AR1 

Before Instruction: 

AR2 = 8098C5h 
IRO = 8h 
R6 = Oh 
R7 = 034C200000h = 1.275781 258 t 01 
AR1 = 809933h 
Data at 8098CDh = OAEh = 174 
Data at 809933h = Oh 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instructlon: 

AR2 = 8098C5h 
IRO = 8h 
R6 = 072E000000h = 1.7408 + 02 
R7 = 034C200000h = 1.275781258 t 01 
AR1 = 809933h 
Data at 8098CDh = OAEh = 174 
Data at 809933h = 034C2000h = 1.275781258 t 01 
L U F L V U F N Z V C = O O O  0 0 0 0  

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 
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IACK Interrupt Acknowledge 

Syntax IACK src 
- 

Operation Perform a dummy read operation with IACK = 0. - 
At end of dummy read, set IACK to 1. 

Operands src general addressing modes (G): 
0 1 direct 
1 0 indirect 

Description 

Encoding 

3 1  24 23 16 15 8 7  0 

Cycles 

Status Bits 

Mode Bit 

Example 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

src 
I I 

0 0 0  

- 
A dummy read operation is performed. If off-chip memory is specified, IACK 
is set to 0 at half H I  cycle after the beginning of the decode phase of the iACK - 
instruction. At the first half of the H I  cycle of the dummy read, IACK is set to - 
1. Because of a multicycle read, the IACK signal will not be extended. This in- 
struction can be used to generate an external interrupt acknowledge. The 
IACK signal and the address can be used to signal interrupt acknowledge to 
external devices. The data read by the processor is unused. 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

I I I I I  

1 1  0 1 1 0  

OVM Operation is not affected by OVM bit value. 

IACK *AR5 

1  

G 

Before Instruction: 

1 1 1 1  

0 0 0 0 0  

IACK = 1 
PC = 300h 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 
- 
IACK = 1 
PC = 301h 
L U F L V U F N Z V C = O O O  0 0 0 0  



ldle Until Interrupt l D LE 

Syntax IDLE 

Operation 1 - ST(GIE) 
Next PC + PC 
ldle until interrupt. 

Operands None 

Encoding 

3 1 

Descriptlon 

Cycles 

Status B i b  

Mode Bit 

Example 

The global interrupt enable bit is set, the next PC value is loaded into the PC, 
and the CPU idles until an interrupt is received. When the interrupt is received, 
the contents of the PC are pushed onto the active system stack. 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

IDLE ; The processor idles until a reset 
; or unmasked interrupt occurs. 
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IDLE2 Low-Power ldle 

Syntax IDLE2 (TMS320LC31 Only) 

Operation 1 4 ST(GIE) 
Next PC 4 PC 
ldle until interrupt. 

Operands 

Encoding 

None 

Description The IDLE2 instruction serves the same function as IDLE, except that it re- 
moves the functional clock input from the internal device. This allows for ex- 
tremely low power mode. The PC is incremented once, and the device remains 
in an idle state until one of the external interrupts (INTO-3) is asserted. 

In IDLE2 mode, the 'C31 will behave as follows: 

0 The CPU, peripherals, and memory will retain their previous states. 

0 When the device is in the functional (nonemulation) mode, the clocks will 
stop with H1 high and H3 low. 

0 The 'LC31 will remain in IDLE2 until one of the four external interrupts 
(m-m) is asserted for at least two H1 cycles. When one of the four 
interrupts is asserted, the clocks start after a delay of one H1 cycle. The 
clocks can start up in the phase opposite that in which they were stopped 
(that is, H1 might start high when H3 was high before stopping, and H3 
might start high when H I  was high before stopping.) However, the H1 and 
H3 clocks remain 180" out of phase with each other. 

IJ During IDLE2 operation, for one of the four external interrupts to be recog- 
nized by the CPU and serviced, it must be asserted for at least two H1 
cycles. For the processor to recognize only one interrupt when it restarts 
operation, the interrupt must be asserted for less than three cycles. 

0 When the 'LC31 is in emulation mode, the H1 and H3 clocks will continue 
to run normally, and the CPU will operate as if an IDLE instruction had been 
executed. The clocks continue to run for correct operation of the emulator. 



Cycles 1 

Status Bits LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

Mode Bit 

Example 

OVM Operation is not affected by OVM bit value. 

IDLE2 ; The processor idlea until a reset 
; or unmasked interrupt occurs. 
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LDE Load Floating-Point Exponent 

Syntax LDE src, dst 

Operation src(exp) -. dsyexp) 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 r n r 7) 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 5 n 5 7) 

Encoding 

Description The exponent field of the src operand is loaded into the exponent field of the 
dst register. No modification of the dst register mantissa field is made unless 
the value of the exponent loaded is the resewed value of the exponent for 0 
as determined by the precision of the src operand. Then the mantissa field of 
the dst register is set to 0. The src and dst operands are assumed to be float- 
ing-point numbers. Immediate values are evaluated in the short floating-point 
format. 

- 

3 1 24 23 16 15 8 7 0 

Cycles 

Status Bits 

I I 

0 0 0  

Mode Bit 

Example 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

I I I 1 I  

0 0 1 1 0 1  

LDE RO,R5 

Before Instruction: 

I 

G 

After instruction: 

1 1 1 1  

dst 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

src 



Load Floating-Point LDF 

Syntax LDF src, dst 

Operation src -. dst 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 s n s 7) 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 s n r 7) 

Encoding 

Description The src operand is loaded into the dst register. The dst and src operands are 
assumed to be floating-point numbers. 

31 24 23 16 15 8 7  0 

Cycles 1 

Status Bite These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
v 0 
C Unaffected 

I  I  

0 0 0  

Mode Bit 

Example 

1  

G 
1 1 1 1 1  

0 0  1 1 1 0  

OVM Operation is not affected by OVM bit value. 

LDF @9800h,R2 

I I I I  

dst 

Before instruction: 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

SIC - 

DP = 80h 
R2 = Oh 
Data at 809800h = 10C52AOOh = 2.1 92543038 + 00 
L U F L V U F N Z V C = O O O  0 0 0 0 

After instruction: 

DP = 80h 
R2 = 01 OC52AOOh = 2,192543038 + 00 
Data at 809800h = 10C52AOOh = 2.192543038 + 00 
L U F L V U F N Z V C = O O O  0 0 0 0  
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LDFcond Load Floating- Point Conditionally 

Syntax LDFcond src, dst 

Operation If cond is true: 
src -. dst. 

Else: 
dst is unchanged. 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 s n r 7) 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 s n s 7) 

Encoding 

Description 

31 24 23 16 15 8 7 0  

Cycles 

Status Bits 

Mode Bit 

10-88 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

src 

If the condition is true, the srcoperand is loaded into the dstregister. otherwise, 
the dst register is unchanged. The dst and src operands are assumed to be 
floating-point numbers. 

I l l  

0 1  0 0  

The TMS320C3x provides 20 condition codes that can be used with this in- 
struction (see Table 10-9 on page 10-13 for a list of condition mnemonics, 
condition codes, and flags). Note that an LDFU (load floating-point uncondi- 
tionally) instruction is useful for loading R7-RO without affecting condition 
flags. Condition flags are set on a previous instruction only when the destina- 
tion register is one of the extended-precision registers (R7-RO) or when one 
of the compare instructions (CMPF, CMPF3, CMPI, CMP13, TSTB, orTSTB3) 
is executed. 

I 

G 
I I I I  

cond 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

I I I I  

dst 

OVM Operation is not affected by OVM bit value. 



Load Floating-Point Conditionally LDFcond 

Example LDFZ R3,R5 

Before Instruction: 

Atter Instruction: 
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LD Fl Load Floating-Point, interlocked 

Syntax LDFl src, dst 

Operation Signal interlocked operation 
src + dst 

Operands src general addressing modes (G): 
0 1 direct 
1 0 indirect 

dst register (Rn, 0 s n s 7) 

Encoding 

Description The srcoperand is loaded into the dstregister. An interlocked operation is sig- 
naled over XFO and XF1. The srcand dstoperands are assumed to be floating- 
point numbers. Note that only direct and indirect modes are allowed. Refer to 
Section 6.4 on page 6-12 for detailed description. 

0 0 0  

Cycles 1 if XF1 = 0 (See Section 6.4 on page 6-12) 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
v 0 
C Unaffected 

I 0 0  1 1 1  1 

Mode Bit 

Example 

G dst I src 

OVM Operation is not affected by OVM bit value. 

LDFI *+ARZ,R7 

Before instruction: 

AR2 = 8098Fl h 
R7 = Oh 
Data at 8098F2h = 584C000h = - 6.28125e + 01 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

After Instruction: 

AR2 = 8098Fl h 
R7 = 0584C00000h = - 6.281258 + 01 
Data at 8098F2h = 584C000h = - 6.281258 + 01 
L U F L V U F N Z V C = O O O  0 0 0 1 



Parallel LDF and LDF LDFll LDF 

Syntax LDF src2, dst2 
11 LDF srcl, dstl 

Operation src2 + dst2 
11 srcl -. dstl 

Operands srcl indirect (disp = 0, 1, IRO, IR1) 
dstl register (Rnl, 0 s n l  5 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dst2 register (Rn2,O s n2 s 7) 

Encoding 

Description Two floating-point loads are performed in parallel. If the LDFs load the same 
register, the assembler issues a warning. The result is that of LDF src2, dst2. 

31 24 23 16 15 8 7  0  

Cycles 1 

Status Bite LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

I 

Mode Bit 

1 1 1 1 1 I I  

srcl 

OVM Operation is not affected by OVM bit value. 

1 1 1 1 1 1 1  

wc2 
I 1 1 1  

1 1 0 0 0 1 0  

Assembly Language Instructions 10-91 

1  I 

dsQ 



LDFllLDF Parallel LDFand LDF 

Example LDF *--MI( IRO ) , R7 
I I LDF *AR7++(1),R3 

Before Instruction: 

AR1 = 80985Fh 
IRO = 8h 
R7 = Oh 
AR7 = 80988Ah 
R3 = Oh 
Data at 809857h = 70C8000h = 1.40508 + 02 
Data at 80988Ah = 5784000h = 6.281 2500 + 01 
L U F L V U F N Z V C = O O O O O O O  

After Instruction: 

AR1 = 809857h 
RO = 8h 
R7 = 070C800000h = 1.40508 + 02 
AR7 = 80988Bh 
R3 = 0578400000h = 6.281 2506 + 01 
Data at 809857h = 70C8000h = 1.40508 + 02 
Data at 80988Ah = 57B4000h = 6,2812500 + 01 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Parallel LDFand STF LDFllSTF 

Syntax LDF srcz', dstl 
11 STF src3, dst2 

Operation src2 -, dst 1 
11 src3 - dst2 

Operands src2 indirect (disp = 0, 1, IRO, IR1) 
dstl register (Rnl, 0 r n l  r 7) 
src3 register (Rn2, 0 r n2 s 7) 
dsf2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

Description A floating-point load and a floating-point store are performed in parallel. 

If src2and dst2point to the same location, src2is read before the write to dst2. 

Cycles 1 

Status Bits LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Example LDF *ARZ-- ( 1 ) , R1 
I I STF R3, *AR4++ (IR1) 

Before Instruction: 

AR2 = 8098E7h 
R1 = Oh 
R3 = 0578400000h = 6.281258 + 01 
AR4 = 809900h 
iR1 = 10h 
Data at 8098E7h = 70C8000h = 1.40508 + 02 
Data at 809900h = Oh 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

AR2 = 8098E6h 
R1 = 070C800000h = 1.4050e + 02 
R3 = 0576400000h = 6.281 258 + 01 
AR4 = 80991 Oh 
IR1 = 10h 
Data at 8098E7h = 70C8000h = 1.40508 + 02 
Data at 809900h = 57B4000h = 6.281 256 + 01 
L U F L V U F N Z V C = O O O  0 0 0 0  

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Load Integer LDI 

Syntax LDI src, dst 

Operation src + dst 

Operands src general addressing modes (G): 
0 0 any CPU register 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst any CPU register 

Encoding 

Description 

31 24 23 16 15 8 7  0  

Cycles 

Status Bits 

Mode Bit 

Example 

1 1 1 1 1 1 1 1 1 1 1 ~ ~ 1 1  

src 

The src operand is loaded into the dst register. The dst and src operands are 
assumed to be signed integers. An alternate form of LDI, LDP, is used to load 
the data page pointer register (DP). See the LDP instruction and subsec- 
tion 10.3.2 on page 10-1 6. 

I I I I  

dst 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
v 0 
C Unaffected 

I 

G 
I 1  

0 0 0  

OVM Operation is not affected by OVM bit value. 

1 1 1 1 I  

0 1  0 0 0 0  

LDI *-ARl(IRO),RS 

Before instruction: 

AR1 = 2Ch 
IRO = 5h 
R5 = 3C5h = 965 
Data at 27h = 26h = 38 
L U F L V U F N Z V C = O  0 0 0 0 0 0 
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After Instruction: 

AR1 = 2Ch 
IRO = 5h 
R5 = 26h = 38 
Data at 27h = 26h = 38 
L U F L V U F N Z V C = O O O  0  0  0 0  



Load Integer Conditionally LDlcond 

Syntax LDlcond src, dst 

Operation If cond is true: 
src -. dst, 

Operands 

Else: 
dst is unchanged. 

src general addressing modes (G): 

0 0 any CPU register 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst any CPU register 

Encoding 

Description If the condition is true, the srcoperand is loaded into the dstregister. otherwise, 
the dst register is unchanged. Regardless of the condition, the read of the src 
takes place. The dst and src operands are assumed to be signed integers. 

31 24 23 16 15 8 7  0  

The TMS320C3x provides 20 condition codes that can be used with this in- 
struction (see Table 10-9 on page 10-1 3 for a list of condition mnemonics, 
condition codes, and flags). Note that an LDlU (load integer unconditionally) 
instruction is useful for loading R7-RO without affecting the condition flags. 
Condition flags are set on a previous instruction only when the destination reg- 
ister is one of the extended-precision registers (R7-RO) or when one of the 
compare instructions (CMPF, CMPF3, CMPI, CMP13, TSTB, or TSTB3) is ex- 
ecuted. 

Cycles 

Status Bits 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

src 
I l l  1 1 1 1  

0 1 0 1  cond 

Mode Bit 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

I 

G 

OVM Operation is not affected by OVM bit value. 

1 1 1 1  

dst 
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LDlcond Load Integer Conditionally 

Example LDIZ *ARO++,R6 

Before Instruction: 

ARO = 8098FO 
Data at 8098FOh = 027Ch = 636 
R6 = OFE2h = 4,066 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

ARO = 8098Fl h 
Data at 8098FOh = 027Ch = 636 
R6 = OFE2h = 4,066 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

Note: Auxiliary Register Arithmetic 

The test condition does not affect the auxiliary register arithmetic. (AR 
modification will always occur.) 



Load Integer, Interlocked LDII 

Syntax LDll src, dst 

Operation Signal interlocked operation 
src --. dst 

Operands src general addressing modes (G): 
0 1 direct 
1 0 indirect 

dst any CPU register 

Encoding 

Description The src operand is loaded into the dst register. An interlocked operation is sig- 
naled over XFO and XF1. The srcand dstoperands are assumed to be signed 
integers. Note that only the direct and indirect modes are allowed. Refer to 
Section 6.4 on page 6-1 2 for detailed description. 

3 1  24 23 16 15 8 7 0  

Cycles 

Status Bits 

Mode Bit 

Example 

I 1  

0 0 0  

1 if XF = 0 (See Section 6.4 on page 6-1 2) 

I 

G 
I I I I I  

0 1  0 0 0 1  

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
v 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

1 1 1 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

dst SIC 

LDII @985Fh,R3 

Before instruction: 

DP = 80 
R3 = Oh 
Data at 80985Fh = ODCh 
L U F L V U F N Z V C = O O  0 0 0 0 0 

After Instruction: 

DP = 80 
R3 = ODCH 
Data at 80985Fh = ODCh 
L U F L V U F N Z V C = O O O  0 0 0 0  
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LDll lLDl Parallel LD1 and LDI 

Syntax LDI src2, dst2 
( 1  LDI src1,dstl 

Operation src2 -. dst2 
11 srcl + dstl 

Operands srcl indirect (disp = 0, 1, IRO, IR1) 
dstl register (Rnl, 0 r n l  r 7) 
src2 indirect (disp = 0, 1, IRO, IR1 ) 
dst2 register (Rn2, 0 r n2 r 7) 

Encoding 

Description Two integer loads are performed in parallel. A warning is issued by the assem- 
bler if the LDls load the same register. The result is that of LDI src2, dst2. 

31 24 23 16 15 8 7 0 

Cycles 1 

I 

1 1  

Statur Bits LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

Mode Bit 

I 

1 1 1 1  

0 0 0  1 1  

OVM Operation is not affected by OVM bit value. 

I I 

dsrZ 
I I 

dstl 
I I 

0 0 0  
1 1 1 1 1 1 1  

srcl 
I 1 1 1 1 1 1  

src2 



Parallel LDI and LDI LDlll LDl 

Example LDI *-ARl(l),R7 
I I LDI *AR7++(IRO),Rl 

Before Instruction: 

AR1 = 809826h 
R7 = Oh 
AR7 = 8098C8h 
IRO = 10h 
R1 = Oh 
Data at 809825h = OFAh = 250 
Data at 8098C8h = 2EEh = 750 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

AR1 = 809826h 
R7=OFAh=250 
AR7 = 8098D8h 
IRO = 10h 
R1 = 02EEh = 750 
Data at 809825h = OFAh = 250 
Data at 8098C8h = 2EEh = 750 
L U F L V U F N Z V C = O O O  0 0 0 0  

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 
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LDII [ST1 Parallel LD1 and ST1 

Syntax LDI src2, dstl 
)I ST1 src3, dst2 

Operation src2 + dst 1 
1) src3 - dst2 

Operands src2 indirect (disp = 0, 1, IRO, IR1) 
dstl register (Rnl , 0 s n l  s 7) 
src3 register (Rn2, 0 s n2 s 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

Description An integer load and an integer store are performed in parallel. If src2and dst2 
point to the same location, src2 is read before the write to dst2. 

3 1 24 23 16 15 87 0  

Cycles 1 

Status Bits LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

1  

1 1  

Mode Bit 

I I 

dstl 
1 1 1 1  

0  1 1  0 1  

OVM Operation is not affected by OVM bit value. 

I I 

0 0 0  

I I 

src3 
I I I I I I I  

ds12 
1 1 1 1 1 1 1  

src2 



Parallel LDI and ST1 LDlllSTl 

Example LDI *-ARl(l),R2 
I I ST1 R7, *AR5++( IRO) 

Before Instruction: 

AR1 = 8098E7h 
R2 = Oh 
R7 = 35h = 53 
AR5 = 80982Ch 
IRO = 8h 
Data at 8098E6h = ODCh = 220 
Data at 80982Ch = Oh 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

AR1 = 8098E7h 
R2 = ODCh = 220 
R7 = 35h = 53 
AR5 = 809834h 
IRO = 8h 
Data at 8098E6h = ODCh = 220 
Data at 80982Ch = 35h = 53 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 
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Syntax LDM src, dst 

Operation src (man) -. dst (man) 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 s n s 7 )  
0 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 5 n s 7 )  

Encoding 
3 I 

Description The mantissa field of the src operand is loaded into the mantissa field of the 
dst register. The dst exponent field is not modified. The src and dst operands 
are assumed to be floating-point numbers. If the srcoperand is from memory, 
the entire memory contents are loaded as the mantissa. If immediate address- 
ing mode is used, bits 15-1 2 of the instruction word are forced to 0 by the as- 
sembler. 

- .  - .  -- . -  . -  - .  

Cycles 1 

Status Bits LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

SIC 

1  I 

0 0 0  

Mode Bit 

Example 

OVM Operation is not affected by OVM bit value. 

I I I I I  

0 1  0 0 1  0 

LDM 156.75,R2 (156.75 = 071CC00000h) 

Before Instruction: 

I 

G 

After Instruction: 

1 1 1 1  

dst 



Load Data Page Pointer LDP 

Syntax LDP src, DP 

Operation src -. data page pointer 

Operand8 src is the 8 MSBs of the absolute 24-bit source address (src). 
The ", DP" in the operand is optional. 

Encoding 

31 

Description This pseudo-op is an alternate form of the LDUl instruction, except that LDP 
is always in the immediate addressing mode. The src operand field contains 
the eight MSBs of the absolute 24-bit src address (essentially, only 
bits 23-1 6 of src are used). These eight bits are loaded into the eight LSBs 
of the data page pointer. 

The eight LSBs of the pointer are used in direct addressing as a pointer to the 
page of data being addressed. There is a total of 256 pages, each page 64K 
words long. Bits 31 -8 of the pointer are reserved and should be kept set to 0. 

Cycles 

Status Bits 

Mode Bit 

Example 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

LDP @809900h,  DP 
or 
LDP @809900h 

Before Instruction: 

After instruction: 
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Syntax LOPOWER (TMS320LC31 Only) 

Operation H1/16+ H I  

Operands None 

Encoding 

3 1 23 

Description Device continues to execute instructions, but at the reduced rate of the CLKlN 
frequency divided by 16 (that is, in LOPOWER mode, an 'LC31 with a CLKlN 
frequency of 32 MHz will perform in the same way as a 2-MHz 'LC31, which 
has an instruction cycle time of 1000 ns). This allowsfor low-power operation. 

The 'LC31 CPU slows down during the read phase of the LOPOWER instruc- 
tion. To exit the LOPOWER power-down mode, invoke the MAXSPEED 
instruction (opcode = 1080 0000 h). The 'LC31 resumes full-speed operation 
during the read phase of the MAXSPEED instruction. 

Cycles 1 

Status Bits LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

Mode Bit 

Example 

OVM Operation is not affected by OVM bit value. 

LOPOWER ; The processor slows down operation to 
; 1/16th of the H1 clock. 



~ogical shirt LSH 

Syntax LSH count, dst 

Operation If count r 0: 
dst << count + dst 

Operands 

Encoding 

3 I 

Else: 
dst >> 1 count I -. dst 

count general addressing modes (G): 
0 0 any CPU register 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst any CPU register 

Description The seven least significant bits of the countoperand are used to generate the 
two's complement shift count. If the count operand is greater than 0, the dst 
operand is left-shifted by the value of the countoperand. Low-order bits shifted 
in are 0-filled, and high-order bits are shifted out through the carry (C) bit. 

- .  -- .- . -  - .  

Logical left-shift: 

If the countoperand is less than 0, the dstis right-shifted by the absolute value 
of the countoperand. The high-order bits of the dstoperand are 0-filled as they 
are shifted to the right. Low-order bits are shifted out through the C bit. 

1  

0 0 0  

Logical right-shift: 

0 -. dst-C 

1 1 1 1  

dst 

If the count operand is 0, no shift is performed, and the C bit is set to 0. The 
count operand is assumed to be a signed integer, and the dst operand is as- 
sumed to be an unsigned integer. 

l l l l l l l l l l r r l l l -  

count 
1 1 1 1 1  

0 1  0 0 1  1 
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LSH Logicel Shiff 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output. 
Z 1 if a 0 output is generated; 0 otherwise 
v 0 
C Set to the value of the last bit shifted out. 0 for a shift count of 0. 

Mode Bit 

Example 1 

Example 2 

OVM Operation is not affected by OVM bit value. 

LSH R4,R7 

Before Instruction: 

After Instruction: 

R4 = 01 8h = 24 
R7 = OACOOOOOOh 
L U F L V U F N Z V C = O O O  1 0  1 0  

LSH *-AR5(IRl),RS 

Before Instruction: 

AR5 = 809908h 
IRO = 4h 
R5 = 001 2C00000h 
Data at 809904h = OFFFFFFF4h = -1 2 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

After Instruction: 

AR5 = 809908h 
IRO = 4h 
R5 = 000001 2C00h 
Data at 809904h = OFFFFFFF4h = -1 2 
L U F L V U F N Z V C = O O O  0 0 0 0  



Logical Shift, 3-Operand LSH3 

Syntax LSH3 count, src, dst 

Operation If count r 0: 
src << count -. dst 

Else: 
src >> 1 count I -. dst 

Operands src three-operand addressing modes (T): 
0 0 any CPU register 
0 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 any CPU register 
1 1 indirect (disp = 0, 1, IRO, IR1) 

count three-operand addressing modes (T): 
0 0 any CPU register 
0 1 any CPU register 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 s n s 27) 

Encoding 

Description The seven least significant bits of the count operand are used to generate the 
two's complement shift count. 

31 24 23 16 15 8 7  0  

If the count operand is greater than 0, a copy of the src operand is left-shifted 
by the value of the countoperand, and the result is written to the dst. (The src 
is not changed.) Low-order bits shifted in are 0-filled, and high-order bits are 
shifted out through the C (carry) bit. 

Logical left-shift: 

1 1 1 1 1 1 1 -  

count 

C + src + 0 

If the countoperand is less than 0, the srcoperand is right-shifted by the abso- 
lute value of the count operand. The high-order bits of the dst operand are O- 
filled as they are shifted to the right. Low-order bits are shifted out through the 
C bit. 

I  

T 
1 1 1 1  

dst 
1  I  

0 0 1  

Logical right-shift: 

I I I I I I I  

src 
I l l 1 1  

0 0  1 0 0 0  

0 + src -. C 

If the count operand is 0, no shift is performed, and the C bit is set to 0. The 
count operand is assumed to be a signed integer. The src and dst operands 
are assumed to be unsigned integers. 
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LSH3 Logical Shiff, 3-Operand 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output. 
Z 1 if a 0 output is generated; 0 otherwise 
v 0 
C Set to the value of the last bit shifted out. 0 for a shift count of 0. 

Unaffected if dst is not R7-RO. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example 1 LSH3 R4,R7,R2 

Before Instruction: 

After Instruction: 

R4=018h =24 
R7 = 02ACh 
R2 = OACOOOOOOh 
L U F L V U F N Z V C = O  0 0 1 0  1 0  

Example 2 LSH3 *-AR4(IR1)lR51R3 

Before Instruction: 

AR4 = 809908h 
IR1 = 4h 
R5 = 01 2C00000h 
R3 = Oh 
Data at 809904h = OFFFFFFF4h = -1 2 
L U F L V U F N Z V C = O  0 0 0 0 0 0 



Logical Shift, 3-Operand LSH3 

After Instruction: 

AR4 = 809908h 
IR1 = 4h 
R5 = 01 2C00000h 
R3 = 000001 2C00h 
Data at 809904h = OFFFFFFF4h = -1 2 
LUFLV UF N Z V  C = O  0 0 0 0 0 0 

I 
-- - -- - 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 
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LSH31 ISTI Parallel LSH3 and ST1 

Syntax LSH3 count, src2, dstl 
I (  ST1 src3, dst2 

Operation If count r 0: 
src2 << count + dst 1 

Else: 
src2 >> 1 count ( + dst 1 

I I src3 + dst2 

count register (Rnl , 0 5 n l  5 7) 
srcl indirect (disp = 0, 1, IRO, IR1) 
dstl register (Rn3, 0 s n3 s 7) 
src2 register (Rn4, 0 s n4 5 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Operands 

Encoding 

Description The seven least significant bits of the countoperand are used to generate the 
two's complement shift count. 

31 24 23 16 15 8 7  0 

If the count operand is greater than 0, a copy of the src2operand is left-shifted 
by the value of the count operand, and the result is written to the dstl. (The 
src2is not changed.) Low-order bits shifted in are 0-filled, and high-order bits 
are shifted out through the C (carry) bit. 

I 

1 1  

Logical left-shift: 

C + src2 + 0 

If the countoperand is less than 0, the src2operand is right-shifted by the ab- 
solute value of the count operand. The high-order bits of the dst operand are 
0-filled as they are shifted to the right. Low-order bits are shifted out through 
the C (carry bit). 

1 1 1 1  

0 1 1  1 0  

Logical right-shift: 

0 + src2- C 

If the count operand is 0, no shift is performed, and the carry bit is set to 0. 

I I 

dstl 

The countoperand is assumed to be a seven-bit signed integer, and the src2 
and dstl operands are assumed to be unsigned integers. All registers are read 
at the beginning and loaded at the end of the execute cycle. This means that 
if one of the parallel operations (STI) reads from a register and the operation 
being performed in parallel (LSH3) writes to the same register, ST1 accepts as 
input the contents of the register before it is modified by the LSH3. 

1 I 

count 
I I 

src3 
I I I I I I I  r 1 1 1 1 1 1 .  

dsl2 src2 



Parallel LSH3 and ST1 LSH311STI 

If src2and dst2point to the same location, src2is read before the write to dst2. 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output. 
Z 1 if a 0 output is generated; 0 otherwise 
v 0 
C Set to the value of the last bit shifted out. 0 for a shift wunt of 0. 

OVM Operation is affected by OVM bit value. Mode Bit 

Example 1 

Before instruction: 

R2= 18h =24 
AR3 = 8098C2h 
RO = Oh 
R4 = ODCh = 220 
AR5 = 8098A3h 
Data at 8098C3h = OACh 
Data at 8098A2h = Oh 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

R2 = 18h = 24 
AR3 = 8098C3h 
RO = OACOOOOOOh 
R4 = ODCh = 220 
AR5 = 8098A3h 
Data at 8098C3h = OACh 
Data at 8098A2h = ODCh = 220 
L U F L V U F N Z V C = O O O  1 0  1 0  
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LSH311STI Parallel LSH3 and ST1 

Example 2 LSH3 R7 , *AR2-- ( 1 ) , R2 
1 I ST1 ROI*+ARO(l) 

Before Instruction: 

R7=OFFFFFFF4h=-12 
AR2 = 809863h 
R2 = Oh 
RO = 12Ch = 300 
ARO = 8098B7h 
Data at 809863h = 2C000000h 
Data at 8098B8h = Oh 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

After Instruction: 

R7=OFFFFFFF4h=-12 
AR2 = 809862h 
R2 = 2C000h 
RO= 12Ch =300 
ARO = 8098B7h 
Data at 809863h = 2C000000h 
Data at 8098B8h = 12Ch = 300 
L U F L V U F N Z V C = O O O  0 0 0 0  

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Restore Clock to Regular Speed M M S P  E E D 

Syntax MAXSPEED 

Operation H1/16-, H1 

Operands None 

Encoding 

Description Exits LOPOWER power-down mode (invoked by LOPOWER instruction with 
opcode 10800001 h). The 'LC31 resumes full-speed operation during the read 
phase of the MAXSPEED instruction. 

Cycles 1 

Status Bits LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

Mode Bit 

Example 

OVM Operation is not affected by OVM bit value. 

MAXSPEED ; The processor resumes full-speed operation. 
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M PY F Multiply Floating Point 

Syntax MPYF src, dst 

Operation dst x src + dst 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 5 n 5 7) 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 s n s 7) 

Encoding 

Description The product of the dst and srcoperands is loaded into the dst register. The src 
operand is assumed to be a single-precision floating-point number, and the dst 
operand is an extended-precision floating-point number. 

3 1  24 23 16 15 8 7  0 

Cycles 1 

Status 

I 1  

0 0 0  

Bits These condition flags are modified only if the destination register is R7-RQ. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

I I I I I  

0 1  0 1 0 0  

Mode Bit 

Example 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

src 
1  

G 

OVM Operation is not affected by OVM bit value. 

I I I I  

dst 

MPYF RO ,R2 

Before Instruction: 

After Instruction: 



Multiply Floating Point, 3-Operand M PY F3 

Syntax MPYF3 src2, srcl, dst 

Operation srcl x src2 -. dst 

Operands srcl three-operand addressing modes 0: 
0 0 register (Rnl , 0 s n l  s 7) 
0 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rnl, 0 5 n l  s 7) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2 three-operand addressing modes (T): 
0 0 register (Rn2, 0 r n2 r 7) 
0 1 register (Rn2, 0 s n2 s 7) 
1 0 indirect (disp = 0, 1, IRO, IRA) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 5 n 5 7) 

Encoding 

Description The product of the srcl and src2operands is loaded into the dst register. The 
srcl and src2 operands are assumed to be single-precision floating-point 
numbers, and the dstoperand is an extended-precision floating-point number. 

3 1 24 23 16 15 87 0 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

l 1 1 1 1 1 1  

src2 

Mode Bit 

I I I I I I I  

srcl 
I I 

0 0 1  

OVM Operation is not affected by OVM bit value. 
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I I I I I  

0 0  1 0 0 1  
I 

T 
I l l 1  

dst 



M PY F3 Multiply Floating Point, 3-Operand 

Example 1 MPYF3 ROIR7,R1 

Before Instruction: 

After Instruction: 

Example 2 

Before Instruction: 

AR2 = 809800h 
IRO = 12Ah 
R7 = 057B400000h = 6.2812506 + 01 
R2 = Oh 
Data at 80992Ah = 70C8000h = 1.4050e + 02 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

After Instruction: 

AR2 = 809800h 
IRO = 12Ah 
R7 = 0578400000h = 6.281 250e + 01 
R2 = OD09E4A000h = 8.8251 5625e + 03 
Data at 80992Ah = 70C8000h = 1.4050e + 02 
L U F L V U F N Z V C = O O O  0 0 0 0  

1 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Parallel MPYF3 and ADDF3 MPYF3I IADDF3 

Syntax MPYF3 srcA, srcB, dstl 
/I ADDF3 srcC, srcD, dst2 

Operation srcA x srcB .-. dst 1 
11 srcC + srcD .-. dst2 

Operands 
Any two indirect (disp = O,1 ,IRO,IRl) 
Any two register (0 s Rn s 7) 

dst 1 register ( d l ) :  
O=RO 
1 =R1 

dst2 register ( d 4 :  
0 = R2 
1 = R3 

src 1 register (Rn, 0 s n s 7) 
src2 register (Rn, 0 s n s 7) 
src3 indirect (disp = 0, 1, IRO, IR1) 
src4 indirect (disp = 0, 1, IRO, IR1) 

P parallel addressing modes (0 s P s 3) 

Operation (P Field) 

00 src3 x src4, srcl + src2 
0 1 src3 x srcl, src4 + src2 
10 srcl x src2, src3 + src4 
11 src3 x src 1, src2 + src4 

Encoding 

0 0 0 0 P dl d2 srcl src2 src3 src4 

Description A floating-point multiplication and a floating-point addition are performed in 
parallel. All registers are read at the beginning and loaded at the end of the 
execute cycle. This means that if one of the parallel operations (MPYF3) reads 
from a register and the operation being performed in parallel (ADDF3) writes 
to the same register, then MPYF3 accepts as input the contents of the register 
before it is modified by the ADDF3. 
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MPYF31 lADDF3 Parallel MPYF3 andADDF3 

Any combination of addressing modes can be coded for the four possible 
source operands as long as two are coded as indirect and two are register. The 
assignment of the source operands srcA- srcD to the srcl - src4 fields 
varies, depending on the combination of addressing modes used, and the P 
field is encoded accordingly. 

If src2and dsgpoint to the same location, src2is read before the write to dsf2. 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 0 
z 0 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

Mode Bit 

Example 

OVM Operation is not affected by OVM bit value. 

Before Instruction: 

AR5 = 8098C5h 
AR1 = 8098A8h 
IRO = 4h 
RO = Oh 
R5 = 0733C00000h = 1.797508 + 02 
R7 = 070C800000h = 1.40508 + 02 
R3 = Oh 
Data at 8098C5h = 34C0000h = 1.27500 + 01 
Data at 8098A4h = 11 10000h = 2.2656258 + 00 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Parallel MPYF3 andADDF3 MPYFSIIADDF3 

After Instruction: 

AR5 = 8098C6h 
AR1 = 8098A4h 
IRO = 4h 
RO = 04671 80000h = 2,888671 888 + 01 
R5 = 0733C00000h = 1.797508 + 02 
R7 = 070C800000h = 1.40508 + 02 
R3=0820200000h =3.202508+02 
Data at 8098C5h = 34C0000h = 1.27508 + 01 
Data at 8098A4h = 11 10000h = 2.2656258 + 00 
L U F L V U F N Z V C = O  0 0 0 0 0 0 
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MPYF3I 1STF Parallel MPYF3 and STF 

Syntax MPYF3 src2, srcl, dst 
1 )  STF src3, dst2 

Operation src 1 x src2 -. dst 1 
11 src3 -. dsf2 

Operands srcl  register (Rnl , 0 s n l  s 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dstl register (Rn3, 0 s n3 s 7) 
src3 register (Rn4, 0 s n4 r 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

Description Afloating-point multiplication and afloating-point store are performed in paral- 
lel. All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (MPYF3) writes to a reg- 
ister and the operation being performed in parallel (STF) reads from the same 
register, the STF accepts as input the contents of the register before it is modi- 
fied by the MPYF3. 

3 1 24 23 16 15 8 7  0 

If src2and dst2point to the same location, src2is read before the write to dsg. 

Cycles 

Status Bits 

I 1 1 1 1 1 1  

src2 

Mode Bit 

I 

1 1 

These condition flags are modified only if the destination register is R7-RO. 
LUF 1 if a floating-point underflow occurs; 0 unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

I I 

sml 

OVM Operation is not affected by OVM bit value. 

1 1 1 1  

0 1 1 1 1 
I I 

src3 
I I 

dsfl 
1 1 1 1 I I l  

ds12 



Parallel MPYF3 and STF MPYF311STF 

Example MPYF3 *-AR2(1)lR71R0 

I I STF R3 *ARO-- ( IRO ) 

Before Instruction: 

AR2 = 80982Bh 
R7 = 057B400000h = 6.281 2508 + 01 
RO = Oh 
R3 = 086B280000h = 4.7031 2508 + 02 
ARO = 809860h 
IRO = 8h 
Data at 80982Ah = 70C8000h = 1.40508 + 02 
Data at 809860h = Oh 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

AR2 = 80982Bh 
R7 = 057B400000h = 6.2812508 + 01 
RO = OD09E4A000h = 8.8251 56258 + 03 
R3 = 086B280000h = 4.7031 2508 + 02 
ARO = 809858h 
IRO = 8h 
Data at 80982Ah = 70C8000h = 1.40508 + 02 
Data at 809860h = 86B280000h = 4.70312508 + 02 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

r 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 
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MPYF3I ISU BF3 Parallel MPYF3 and SUBF3 

Syntax MPYF3 srcA, srcB, dstl 
1 1  SUBF3 srcC,srcD,dst2 

Operation srcA x srcB -. dstl 
I I srcD - srcC -. dst2 

Operands :"_1 Any~ind i rec t (d i~p=O,1~ IRO, lR l )  
srcC Any two register (0 5 Rn 5 7) 
srcD 

dst 1 register (d 1) :  
0 = RO 
1 =R1 

dst2 register ( d 4 :  
0 = R2 
1 =R3 

src 1 register (Rn, 0 r n s 7) 
src2 register (Rn, 0 r n r 7) 
src3 indirect (disp = 0, 1, IRO, IR1) 
src4 indirect (disp = 0, 1, IRO, IR1) 

P parallel addressing modes (0 r P r 3) 

Operation (P Field) 

00 sfC3 x srC4, s f ~ l  - S ~ C Z  
0 1 src3 x src 1, src4 - src2 
10 src 1 x src2, src3 - src4 
11 src3 x src 1, src2 - src4 

Encoding 

Description A floating-point multiplication and a floating-point subtraction are performed 
in parallel. All registers are read at the beginning and loaded at the end of the 
execute cycle. This means that if one of the parallel operations (MPYF3) reads 
from a register and the operation being performed in parallel (SUBF3) writes 
to the same register, MPYF3 accepts as input the contents of the register be- 
fore it is modified by the SUBF3. 

1 0  0 0 0  1 P d l d 2  srcl src2 src3 s f 4  



Parallel MPYF3 and SUBF3 MPYF311SUBF3 

Any combination of addressing modes can be coded for the four possible 
source operands as long as two are coded as indirect and two are coded regis- 
ter. The assignment of the source operands srcA - srcD to the srcl - src4 
fields varies, depending on the combination of addressing modes used, and 
the P field is encoded accordingly. 

Cycles 

Statue Bits 

Mode Bit 

Example 

These condition flags are modified only if the destination register is R7-RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 0 
z 0 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

Before Instruction: 

R5 = 034C000000h = 1.27508 + 01 
AR7 = 809904h 
lR1 = 8h 
RO = Oh 
R7 = 0733C00000h = 1.797508 + 02 
AR3 = 8098B2h 
R2 = Oh 
Data at 80990Ch = 11 10000h = 2.2508 + 00 
Data at 8098B2h = 70C8000h = 1.40508 + 02 
L U F L V U F N Z V C = O  0 0 0 0 0 0 
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After Instruction: 

R5 = 034C000000h = 1.27506 + 01 
AR7 = 80990Ch 
IR1 = 8h 
RO = 04671 80000h = 2.888671 888 + 01 
R7 = 0733C00000h = 1.797508 + 02 
AR3 = 8098Bl h 
R2 = 05E3000000h = - 3.92508 + 01 
Data at 80990Ch = 11 10000h = 2.2508 + 00 
Data at 8098B2h = 70C8000h = 1.40508 + 02 
L U F L V U F N Z V C = O O  0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Multiply Integer M PY l 

Syntax MPYl src, dst 

Operation dst x src -+ dst 

Operands src general addressing modes (G): 
0 0 any CPU register 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst any CPU register 

Description The product of the dstand srcoperands is loaded into the dstregister. The src 
and dstoperands, when read, are assumed to be 24-bit signed integers. The 
result is assumed to be a 48-bit signed integer. The output to the dst register 
is the 32 least significant bits of the result. 

Encoding 
3 1  24 23 16 15 8 7  0  

lnteger overflow occurs when any of the most significant 16 bits of the 48-bit 
result differs from the most significant bit of the 32-bit output value. 

Cycles 

Status Bits 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

src 
1  I  

0 0 0  

Mode Bit 

Example 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C Unaffected 

I I I I I  

0 1  0 1 0 1  

OVM Operation is affected by OVM bit value. 

MPYI Rl,R5 

I  

G 

Before Instruction: 

1 1 1 1  

dst 

After instruction: 
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M PY 13 Multiply Integer, 3-Operand 

syntax MPYi3 src2, srcl, dst 

Operation src 1 x src2 + dst 

Operands srcl three-operand addressing modes 0: 
0 0 any CPU register 
0 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 any CPU register 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2 three-operand addressing modes 0: 
0 0 any CPU register 
0 1 any CPU register 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 r n r 27) 

Encoding 

Description The product of the srcl and src2 operands is loaded into the dst register. The 
srcl and src2 operands are assumed to be 24-bit signed integers. The result 
is assumed to be a signed 48-bit integer. The output to the dst register is the 
32 least significant bits of the result. 

3 1 24 23 16 15 8 7 0 

Integer overflow occurs when any of the most significant 16 bits of the 48-bit 
result differs from the most significant bit of the 32-bit output value. 

1 1 1 1 1  

0 0  1 0 1  0 

Cycles 

Status Bits 

Mode Bit 

I 

T 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is affected by OVM bit value. 

I I I I  

dst 
I I I I I I I  

srcl 
1 1 1 1 1 1 1 -  

src2 



Multiply Integer, 3-Operand M PY 13 

Example 1 MPYI3 *AR4t*-AR1(1)IR2 

Before Instruction: 

AR4 = 809850h 
AR1 = 8098F3h 
R2 = Oh 
Data at 809850h = OADh = 173 
Data at 8098F2h = ODCh = 220 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

AR4 = 809850h 
AR1 = 8098F3h 
R2 = 094ACh = 38,060 
Data at 809850h = OADh = 173 
Data at 8098F2h = ODCh = 220 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

Example 2 

Before Instruction: 

AR4 = 8099F8h 
IRO = 8h 
R2 = OC8h = 200 
R7 = Oh 
Data at 8099FOh = 32h = 50 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

AR4 = 8099FOh 
IRO = 8h 
R2 = OC8h = 200 
R7 = 0271 Oh = 10,000 
Data at 8099FOh = 32h = 50 
L U F L V U F N Z V C = O O O  0 0 0 0  

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 
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MPY131 !ADD13 Parallel MPY13 andADDI3 

Syntax MPY13 srcA, srcB, dstl 
) I  ADD13 srcC, srcD, dst2 

Operation srcA x srcB -. dstl 
( 1  srcD + srcC + dst2 

dst 1 register (d l ) :  
0 = RO 
1 =R1 

Operands srcA 
srcB 
srcC 

dst2 register (dZ): 
0 = R2 
1 =R3 

Any two indirect (disp = O,1 ,IRO,IR1) 
Any two register (0 s Rn s 7) 

src 1 register (Rn, 0 s n s 7) 
src2 register (Rn, 0 s n s 7) 
src3 indirect (disp = 0, 1, IRO, IR1) 
src4 indirect (disp = 0, 1, IRO, IR1) 

P parallel addressing modes (0 s P s 3) 

Operation (P Field) 

00 src3 x src4, src 1 + src2 
0 1 src3 x srcl, src4 + src2 
10 srcl x src2, src3 + src4 
11 src3 x src 1,  src2 + src4 

Encoding 

Description An integer multiplication and an integer addition are performed in parallel. All 
registers are read at the beginning and loaded at the end of the execute cycle. 
This means that if one of the parallel operations (MPY13) reads from a register 
and the operation being performed in parallel (ADD13) writes to the same reg- 
ister, then MPY13 accepts as input the contents of the register before it is modi- 
fied by the ADD13. 

31 24 23 16 15 8 7 0  
I 

1 0  d l d 2  
I l l  

0  0  1 0  
I I 

srcl 
I 

P 
I I 

src2 
1 1 1 l I l  

srd3 
I 1 1 1 1 1 1  

sf04 



Parallel MPY13 and ADD13 MPY13J IADD13 

Any combination of addressing modes can be coded for the four possible 
source operands as long as lwo are coded as indirect and two are coded as 
register. The assignment of the source operands srcA -srcD to the 
srcl - src4fields varies, depending on the combination of addressing modes 
used, and the P field is encoded accordingly. To simplify processing when the 
order is not significant, the assembler may change the order of operands in 
commutative operations. 

Cycler 

Status Bits 

Mode Bit 

Example 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 0 
z 0 
V 1 if an integer overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is affected by OVM bit value. 

Before Instruction: 

R7 = 14h = 20 
R4= 64h = 100 
RO = Oh 
AR3 = 80981 Fh 
AR5 = 80996Eh 
R3 = Oh 
Data at 80981 Eh = OFFFFFFCBh = - 53 
Data at 80996Eh = 35h = 53 
L U F L V U F N Z V C = O O O  0 0 0 0  
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MPY1311ADDI3 Parallel MPY13 and ADD13 

After Instruction: 

R7=  14h 520 
R4 = 64h = 100 
RO = 07DOh = 2000 
AR3 = 80981 Fh 
AR5 = 80996Dh 
R3 = Oh 
Data at 80981 Eh = OFFFFFFCBh = - 53 
Data at 80996Eh = 35h = 53 
L U F L V U F N Z V C = O O O  0 0 0 0  

t i 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

1 I 



Parallel MPYI3 and ST1 MPY131JSTI 

Syntax MPYl3 src2, src 1, dstl 
11 ST1 src3, dst2 

Operation src 1 x src2 -. dst 1 
11 src3 -+ dst2 

Operands srcl register (Rnl , 0 5 n l  r 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dstl register (Rn3, 0 r n3 s 7) 
src3 register (Rn4, 0 r n4 r 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

Description An integer multiplication and an integer store are performed in parallel. All reg- 
isters are read at the beginning and loaded at the end of the execute cycle. This 
means that if one of the parallel operations (STI) reads from a register and the 
operation being performed in parallel (MPY13) writes to the same register, ST1 
accepts as input the contents of the register before it is modified by the MPY13. 

3 1 24 23 16 15 8 7  0 

If src2and dst2point to the same location, src2is read before the write to dst2. 

Integer overflow occurs when any of the most significant 16 bits of the 48-bit 
result differ from the most significant bit of the 32-bit output value. 

1 1 1 1 1 1 1 -  

src2 
I 

1 1 

Cycles 

Status Bits 

Mode Bit 

1 1 1 1  

1 0 0 0 0 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is affected by OVM bit value. 
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I I 

dstl 
I I 

sf& 
I I 

srcl 
1 1 1 1 1 1 1  

dsQ 



MPY13I ISTI Parallel MPY13 and ST1 

Example 

Before Instruction: 

ARO = 80995Ah 
R5 = 32h = 50 
R7 = Oh 
R2 = ODCh = 220 
AR3 = 80982Fh 
Data at 80995Bh = OC8h = 200 
Data at 80982Eh = Oh 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

ARO = 80995Bh 
R5 = 32h = 50 
R7 = 2710h = 10000 
R2 = ODCh = 220 
AR3 = 80982Fh 
Data at 80995Bh = OC8h = 200 
Data at 80982Eh = ODCh = 220 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

I 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Parallel MPYI3 and SUB13 MPY1311SUB13 

Syntax MPY13 srcA, srcB, dstl 
11 SUB13 srcC, srcD, dst2 

Operation srcA x srcB -. dst 1 
I I srcD - srcC - dst2 

Operands 

dst 1 register (dl): 
O=RO 
1 =R1 

srcA 
srcB 
srcC 
srcD 

dst2 register (d2): 
O=R2 
1 =R3 

Any two indirect (disp = O,1 ,IRO,IRl) 
Any two register (0 s Rn s 7) 

src 1 register (Rn, 0 s n s 7) 
src2 register (Rn, 0 s n s 7) 
src3 indirect (disp = 0, 1, IRO, IR1) 
src4 indirect (disp = 0, 1, IRO, IR1) 

P parallel addressing modes (0 r P s 3) 

Operation (P Field) 

00 src3 x src4, srcl - src2 
0 1 src3 x src 1, src4 - src2 
10 src 1 x src2, src3 - src4 
11 src3 x src 1, src2 - src4 

Encoding 

Description An integer multiplication and an integer subtraction are performed in parallel. 
All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (MPY13) reads from a 
register and the operation being performed in parallel (SUB13) writes to the 
same register, MPY13 accepts as input the contents of the register before it is 
modified by the SUB13. 

31 24 23 16 15 8 7  0  
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I 

d l d  
I I I  

1 0 0 0 1  1  
1 

P 
1 1 1 1 1 1  

src3 
I I I I I I I  

wc4 



Any combination of addressing modes can be coded for the four possible 
source operands as long as two are coded as indirect and two are coded as reg- 
ister. The assignment of the source operands srcA - srcD to the srcl - src4 
fields varies, depending on the combination of addressing modes used, and the 
P field is encoded accordingly. To simplify processing when the order is not sig- 
nificant, the assembler may change the order of operands in commutative op- 
erations. 

Integer overflow occurs when any of the most significant 16 bits of the 48-bit 
result differs from the most significant bit of the 32-bit output value. 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 1 if an integer underflow occurs; 0 otherwise 
N 0 
z 0 
V 1 if an integer overflow occurs; 0 otherwise 
C Unaffected 

Mode Bit 

Example 

OVM Operation is affected by OVM bit value. 

Before Instruction: 

R2 = 32h = 50 
ARO = 8098E3h 
RO = Oh 
AR5 = 8099FCh 
IR1 = OCh 
R4 = 07DOh = 2000 
Data at 8098E4h = 62h = 98 
Data at 8099FCh = 4BOh = 1200 
L U F L V U F N Z V C = O O O  0 0 0 0  



Parallel MPYI3 and SUB13 MPY1311SUB13 

After Instruction: 

R2 = 320h = 800 
ARO = 8098E4h 
RO = 01324h = 4900 
AR5 = 8099FOh 
IR1 = OCh 
R4=07DOh=2000 
Data at 8098E4h = 62h = 98 
Data at 8099FCh = 4BOh = 1200 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

I i 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

I I 
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N EG B Negative I n a e r  With Borrow 

Syntax NEGB src, dst 

Operation 0 -  src- C  -. dst 

Operands src general addressing modes (G): 
0  0  any CPU register 
0  1  direct 
1 0  indirect 
1  1  immediate 

dst any CPU register 

Encoding 

Description The difference of the 0, src, and C  operands is loaded into the dstregister. The 
dst and src are assumed to be signed integers. 

0 0 0  

Cycles 1  

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1  if an integer overflow occurs; unchanged otherwise 
UF 0  
N 1 if a negative result is generated; 0  otherwise 
Z 1  if a 0  result is generated; 0  otherwise 
V 1  if an integer overflow occurs; 0  otherwise 
C 1  if a borrow occurs; 0  otherwise 

0 1  0 1 1  0  G 

Mode Bit 

Example 

OVM Operation is affected by OVM bit value. 

dst 

NEGB R5,R7 

src 

Before Instruction: 

R5 = OFFFFFFCBh = - 53 
R7 = Oh 
L U F L V U F N Z V C = O O O  0  0  0  1  

After Instruction: 

R5 = OFFFFFFCBh = - 53 
R7 = 34h = 52 
L U F L V U F N Z V C = O O O  0  0  0 1  



Negate Floating Point N EG F 

Syntax NEGF src, dst 

Operation 0 - src -. dst 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 s n s 7) 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 s n s 7) 

Encoding 

Description The difference of the 0 and src operands is loaded into the dst register. The 
dst and src operands are assumed to be floating-point numbers. 

3 1  24 23 16 15 8 7  0 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 '  

src 

Mode Bit 

Example 

I I 

0 0 0  

OVM Operation is affected by OVM bit value. 

I 

G 
I I I I I  

0 1  0 1 1  1  

NEGF *++AR3(2),R1 

1 1 1 1  

dst 

Before Instruction: 

AR3 = 809800h 
R1 = 0578400025h = 6.281 25006e t 01 
Data at 809802h = 70C8000h = 1.4050e + 02 
L U F L V U F N Z V C = O O  0 0 0 0 0 

After instruction: 

AR3 = 809802h 
R1 = 07F3800000h = -1.4050e + 02 
Data at 809802h = 70C8000h = 1.4050e t 02 
L U F L V U F N Z V C = O O O  0 0 0 0  
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NEGFllSTF Parallel NEGFand STF 

Syntax NEGF src2, dstl 
1) STF srC3, dst2 

Operation 0 - src2 -* dst 1 
11 srC3 --. dst2 

Operands src2 indirect (disp = 0, 1, IRO, IR1) 
dstl register (Rnl , 0 r n l  r 7) 
src3 register (Rn2, 0 r n2 r 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

Description A floating-point negation and a floating-point store are performed in parallel. 
All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (STF) reads from a reg- 
ister and the operation being performed in parallel (NEGF) writes to the same 
register, STF accepts as input the contents of the register before it is modified 
by the NEGF. 

If src2and dst2point to the same location, src2is read before the write to dst2 

Cycles 

Status Bits 

Mode Bit 

These condition flags are modified only if the destination register is R7-RO. 
LUF 1 if a floating-point underflow occurs; 0 unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 



Parallel NEFG and STF NEGFllSTF 

Example NEGF *AR4-- ( 1 ) , R7 
1 1  STF RZ,*++AR5(1) 

Before Instruction: 

AR4 = 8098El h 
R7 = Oh 
R2 = 0733C00000h = 1.797508 + 02 
AR5 = 809803h 
Data at 8098El h = 578400000h = 6.281 2508 + 01 
Data at 809804h = Oh 
L U F L V U F N Z V C = O O  0 0 0 0 0 

After Instruction: 

AR4 = 8098EOh 
R7 = 0584C00000h = - 6.2812508 + 01 
R2 = 0733C00000h = 1.797508 + 02 
AR5 = 809804h 
Data at 8098El h = 5784000h = 6.281 2508 + 01 
Data at 809804h = 733C000h = 1,797508 + 02 
L U F L V U F N Z V C = O O O  0 0 0 0  

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 
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NEGl Negate Integer 

Syntax NEGl src, dst 

Operation 0  - src -. dst 

Operands src general addressing modes (G): 
0  0  any CPU register 
0  1 direct 
1 0  indirect 
1 1 immediate 

dst any CPU register 

Encoding 

Description The difference of the 0  and src operands is loaded into the dst register. The 
dst and src operands are assumed to be signed integers. 

3 1 24 23 16 15 8 7 0 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0  
N 1 if a negative result is generated; 0  otherwise 
Z 1 if a 0  result is generated; 0  otherwise 
V 1 if an integer overflow occurs; 0  otherwise 
C 1 if a borrow occurs; 0 otherwise 

Mode Bit 

Example 

1 1 1 1  

dst 
I  

G 
I  I  

0 0 0  

OVM Operation is affected by OVM bit value. 

1 1 1 l 1 1 1 1 1 1 1 1 1 1 1  

src 
1 1 1 1 1  

0 1  1 0 0 0  

NEGI 174,R5 (174 = OAEh) 

Before Instruction: 

R5 = ODCh = 220 
L U F L V U F N Z V C = O O  0 0 0  0 0  

After Instruction: 



Parallel NEGI and ST1 NEGll lSTl 

Syntax NEGI src2,dstl 
11 ST1 src3,dsQ 

Operation 0 - src2 + dst 1 
11 src3 -. dst2 

Operands src2 indirect (disp = 0, 1, IRO, IR1) 
dstl register (Rnl , 0 r n l  r 7) 
src3 register (Rn2,O r n2 r 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

Descrlptlon An integer negation and an integer store are performed in parallel. All registers 
are read at the beginning and loaded at the end of the execute cycle. This 
means that if one of the parallel operations (STI) reads from a register and the 
operation being performed in parallel (NEGI) writes to the same register, then 
ST1 accepts as input the contents of the register before it is modified by the 
NEGI. 

If src2and dst2point to the same location, src2is read before the write to dst2. 

Cycles 

Status Bits 

Mode Bit 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a borrow occurs; 0 otherwise 

OVM Operation is affected by OVM bit value. 
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NEGll lSTl Parallel NEGI and ST1 

Example NEGI *-AR3,RZ 
I I ST1 R2, *ARl++ 

Before Instruction: 

AR3 = 80982Fh 
R2= 19h =25 
AR1 = 8098A5h 
Data at 80982Eh = ODCh = 220 
Data at 8098A5h = Oh 
L U F L V U F N Z V C = O O  0 0 0 0 0 

After Instruction: 

AR3 = 80982Fh 
R2 = OFFFFFF24h = - 220 
AR1 = 8098A6h 
Data at 80982Eh = ODCh = 220 
Data at 8098A5h = 19h = 25 
L U F L V U F N Z V C = O O O  1 0  0 1 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



NO operation NOP 

Syntax NOP src 

Operation No ALU or multiplier operations. 
ARn is modified if src is specified in indirect mode. 

Operands src general addressing modes (G): 
0 0 register (no operation) 
1 0 indirect (modify ARn, 0 s n s 7) 

Encoding 

Description If the src operand is specified in the indirect mode, the specified addressing 
operation is performed, and a dummy memory read occurs. If the srcoperand 
is omitted, no operation is performed. 

Cycles 

Status Blts 

Mode Bit 

Example 1 

Example 2 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

NOP 

Before Instruction: 

After instruction: 

NOP *AR3-- ( 1 ) 

Before Instruction: 

After instruction: 
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N 0 R M Normalize 

Syntax NORM src, dst 

Operation norm (src) -. dst 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 s n s 7) 
0 1 direct 
1 0 indirect 
1 1 immediate 

Encoding 

Description The srcoperand is assumed to be an unnormalized floating-point number; that 
is, the implied bit is set equal to the sign bit. The dst is set equal to the normal- 
ized src operand with the implied bit removed. The dst operand exponent is 
set to the src operand exponent minus the size of the left-shift necessary to 
normalize the src. The dst operand is assumed to be a normalized floating- 
point number. 

3 1 24 23 16 15 8 7 0  

If src (exp) = -1 28 and src (man) = 0, then dst= 0, Z = 1, and UF = 0. If src (exp) 
= -1 28 and src (man) z 0, then dst = 0, Z = 0, and UF = 1. For all other cases 
of the src, if a floating-point underflow occurs, then dst (man) is forced to 0 and 
dst (exp) = -1 28. If src (man) = 0, then dst (man) = 0 and dst (exp) = -1 28. Re- 
fer to Section 4.6 on page 4-1 8 for more information. 

Cycles 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

src 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV Unaffected 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
v 0 
C Unaffected 

- 
I I 

0 0 0  

Mode Bit 

I 

G 
I I I I I  

0 1  1 0 1  0  

OVM Operation is not affected by OVM bit value. 

1 1 1 1  

dst 



Normalize NORM 

Example 

Before Instruction: 

After Instruction: 
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NOT Bitwise Logical-Complement 

Syntax NOT src, dst 

Operation -src -, dst 

Operands src general addressing modes (G): 
0 0 any CPU register 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst any CPU register 

Encoding 

Description 

31 24 23 16 15 8 7 0  

Cycles 

Status Bits 

I I I I I  

0 1  1 0 1  1  

Mode Bit 

Example 

The bitwise logical-complement of the srcoperand is loaded into the dstregis- 
ter. The complement is formed by a logical-NOT of each bit of the srcoperand. 
The dst and src operands are assumed to be unsigned integers. 

1  

G 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 result is generated; 0 otherwise 
v 0 
C Unaffected 

OVM Operation is affected by OVM bit value. 

1 1 1 1  

dst 

NOT @982Ch,R4 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

src 

Before Instruction: 

DP = 80h 
R4 = Oh 
Data at 80982Ch = 5E2Fh 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

DP = 80h 
R4 = OFFFFA1 Doh 
Data at 80982Ch = 5E2Fh 
L U F L V U F N Z V C = O O O  1 0  0 0  



Parallel NOTand ST1 NOTllSTl 

Syntax NOT src2, dstl 
I( STi src3, dst2 

Operation -src2 -, dstl 
11 src3-. dst2 

Operands src2 indirect (disp = O,1, IRO, IRA) 
dstl register (Rnl, 0 s n l  s 7) 
src3 register (Rn2, 0 s n2 s 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

Description A bitwise logical-NOT and an integer store are performed in parallel. All regis- 
ters are read at the beginning and loaded at the end of the execute cycle. This 
means that if one of the parallel operations (STI) reads from a register and the 
operation being performed in parallel (NOT) writes to the same register, ST1 
accepts as input the contents of the register before it is modified by the NOT. 

If src2and dst2point to the same location, src2is read before the write to dst2. 

Cycles 

Status Bits 

Mode Bit 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 result is generated; 0 otherwise 
v 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 
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NOT11 ST1 Parallel NOT and ST1 

Example NOT *+ARZ,R3 
I I ST1 R7, *--AR4 (IR1) 

Before Instruction: 

AR2 = 8099CBh 
R3 = Oh 
R7 = ODCh = 220 
AR4 = 809850h 
IR1 = 10h 
Data at 8099CCh = OC2Fh 
Data at 809840h = Oh 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

After Instruction: 

AR2 = 8099CBh 
R3 = OFFFFF3DOh 
R7 = ODCh = 220 
AR4 = 809840h 
IR1 = 10h 
Data at 8099CCh = OC2Fh 
Data at 809840h = ODCh = 220 
L U F L V U F N Z V C = O O O  1 0  0 0  

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Syntax OR src, dst 

Operation dst OR src - dst 

Operands src general addressing modes (G): 
0 0 any CPU register 
0 1 direct 
1 0 indirect 
1 1 immediate (not sign-extended) 

dst any CPU register 

Description The bitwise logical OR between the srcand dstoperands is loaded into the dst 
register. The dst and src operands are assumed to be unsigned integers. 

Encoding 
31 24 23 16 15 8 7  0  

Cycles 1 

1 1 1 1 1  

1 0 0 0 0 0  

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 result is generated; 0 otherwise 
v 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. Mode Bit 

Example 

I 

G 

Before instruction: 

AR1 = 809800h 
IR1 = 4h 
R2 = 01 2560000h 
Data at 809804h = 2BCDh 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

1 1 1 1  

dst 

After instruction: 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -  

src 

AR1 = 809804h 
IR1 = 4h 
R2 = 01 2562BCDh 
Data at 809804h = 2BCDh 
L U F L V U F N Z V C = O  0 0 0 0 0 0 
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Syntax OR3 src2, srcl, dst 

Operation src 1 OR src2 + dst 

Operands srcl  three-operand addressing modes 0: 
0 0 register (Rnl , 0 n l  s 27) 
0 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rnl , 0 s n l  r 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2 three-operand addressing modes 0: 
0 0 register (Rn2, 0 r n2 5 27) 
0 1 register (Rn2, 0 s n2 r 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, lR1) 

dst register (Rn, 0 r n s 27) 

Encoding 

Description The bitwise logical-OR between the srcl  and src2operands is loaded into the 
dstregister. The srcl, src2, and dstoperands are assumed to be unsigned in- 
tegers. 

31 24 23 16 15 8 7  0  

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV ilnaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 result is generated; 0 otherwise 
v 0 
C Unaffected 

I 1 1 1 1 1 1  

arc2 

Mode Bit OVM Operation is not affected by OVM bit value. 

1 1 1 1  

dst 
I 

T 
I I 

0 0 1  

I I 1 1 1 1 1  

sml 
I I I I I  

0 0  1 0 1  1  



Example 

Before Instruction: 

AR1 = 809800h 
IR1 = 4h 
R2 = 01 2560000h 
R7 = Oh 
Data at 809804h = 2BCDh 
L U F L V U F N Z V C = O O O  0 0 0 0  

Atter lnstructlon: 

AR1 = 809804h 
IR1 = 4h 
R2 = 01 2560000h 
R7 = 01 2562BCDh 
Data at 809804h = 2BCDh 
L U F L V U F N Z V C = O O  0 0 0 0 0 

t 1 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 
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OR3JISTI Parallel OR3 and ST/ 

Syntax OR3 src2# src 1, dst 1 
11 ST1 src3, dst2 

Operation srcl OR src2 -. dstl 
I src3 -. dst2 

Operands srcl register (Rnl , 0 5 n l  5 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dstl register (Rn2, 0 s n2 s 7) 
src3 register (Rn3, 0 5 n3 s 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

A bitwise logical-OR and an integer store are performed in parallel. All regis- 
ters are read at the beginning and loaded at the end of the execute cycle. This 
means that if one of the parallel operations (STI) reads from a register and the 
operation being performed in parallel (OR3) writes to the same register, then 
ST1 accepts as input the contents of the register before it is modified by the 
OR3. 

31 24 23 16 15 8 7 0 

If src2and dst2point to the same location, src2is read before the write to dst2. 

Cycles 

Status Bits 

I 

1 1 

Mode Bit 

I I 

dsfl 
1 1 1 1  

1 0 1 0 0 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 result is generated; 0 otherwise 
v 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

I I 

srcl 
I I 

s r d  
I I I I I I I  

dst2 
I 1 1 1 1 1 1  

src2 



Parallel OR3 and ST1 OR311STI 

Example 

Before Instruction: 

AR2 = 809830h 
R5 = 800000h 
R2 = Oh 
R6 = ODCh = 220 
AR1 = 809883h 
Data at 809831 h = 9800h 
Data at 809883h = Oh 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

AR2 = 809831 h 
R5 = 800000h 
R2 = 809800h 
R6 = ODCh = 220 
AR1 = 809882h 
Data at 809831 h = 9800h 
Data at 809883h = ODCh = 220 
L U F L V U F N Z V C = O O O  0 0 0 0 

I 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 
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POP Pop Integer 

Syntax POP dst 

Operation *SP-- -+ dst 

Operands dst register (Rn, 0 s n s; 27) 

Encoding 

Description The top of the current system stack is popped and loaded into the dst register 
(32 LSBs). The top of the stack is assumed to be a signed integer. The POP 
is performed with a postdecrement of the stack pointer. The exponent bits of 
an extended precision register (R7-RO) are left unmodified. 

31 24 23 16 15 8 7 0  

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
v 0 
C Unaffected 

1 1 1 1 1 l 1 1 1 1 1 1 1 1 1  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

Mode Bit 

Example 

I I 

0 0 0  

OVM Operation is not affected by OVM bit value. 

I I I I I  

0 1  1 1 0 0  
I 

0 1  

POP R3 

I I I I  

dst 

Before Instruction: 

SP = 809856h 
R3 = 012DAh = 4,826 
Data at 809856h = FFFFODA4h = - 62,044 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

After Instruction: 

SP = 809855h 
R3 = OFFFFODA4h = -62,044 
Data at 809856h = FFFFODA4h = - 62,044 
L U F L V U F N Z V C = O  0 O 1 O 0 0 



Pop Floating Point POP F 

Syntax POPF dst 

Operation *SP-- -. dstl 

Operands dst register (Rn, 0 s n s 7) 

Encoding 

Description The top of the current system stack is popped and loaded into the dst register 
(32 MSBs). The top of the stack is assumed to be a floating-point number. The 
POP is performed with a postdecrement of the stack pointer. The eight LSBs 
of an extended precision register (R7-RO) are 0 filled. 

3 1  24 23 16 15 8 7  0  

Cycles 

Status Bits 

Mode Bit 

Example 

I I I 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
UF 0 
LV Unaffected 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
v 0 
C Unaffected 

I I I I I  

OVM Operation is not affected by OVM bit value. 

I l l 1  1 1 1 1 1 1 1 1 1 1 1 1 1  1 1  

POPF R4 

Before Instruction: 

SP = 80984Ah 
R4 = 025D2E0123h = 6.91 186578e + 00 
Data at 80984Ah = 5F2C1302h = 5.32544007e + 28 
L U F L V U F N Z V C = O O O  0 0 0 0  

dst 1 0 1  0 0 0  

After Instruction: 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 1  1 1 0  

SP = 809849h 
R4=5F2C130200h=5.32544007e+28 
Data at 80984Ah = 5F2C1302h = 5.32544007e + 28 
L U F L V U F N Z V C = O O  0 0 0 0 0  
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PUSH PUSH Integer 

Syntax PUSH src 

Operation src + *t tSP 

Operands src register (Rn, 0 s n s 27) 

Encoding 

Description 

31 24 23 16 15 8 7 0  

Cycles 

Status Bits 

1 1  

0 0 0  

Mode Bit 

Example 

The contents of the src register (32 LSBs) are pushed on the current system 
stack. The srcis assumed to be a signed integer. The PUSH is performed with 
a preincrement of the stack pointer. The integer or mantissa portion of an ex- 
tended precision register (R7-RO) is saved with this instruction. 

I I I I I  

0 1  1 1  

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

1  

1 0 0 1  

PUSH R6 

Before Instruction: 

1 1 1 1  

src 

SP = 8098AEh 
R6 = 025C128081 h = 633,415,688 
Data at 8098AFh = Oh 
L U F L V U F N Z V C = O O O  0 0 0 0  

1 1 1 1 1 1 1  1 1 1 1 1 1 1 1  

0 0 0 0  0 0 0 0 0 0 0 0 0 0 0  

After instruction: 

SP = 8098AFh 
R6 = 025C128081 h = 633,415,688 
Data at 8098AFh = 5C128081 h = 1,544,716,417 
L U F L V U F N Z V C = O  0 0 0 0 0 0 



PUSH Floating Point PUSH F 

Syntax PUSHF src 

Operation src + *++SP 

Operands src register (Rn, 0 s n s 7) 

Encoding 

Description The contents of the src register (32 MSBs) are pushed on the current system 
stack. The src is assumed to be a floating-point number. The PUSH is per- 
formed with a preincrement of the stack pointer. The eight LSBs of the mantis- 
sa are not saved. (Note the difference in R2 and the value on the stack in the 
example below.) 

31 24 23 16 15 8 7  0  

Cycles 

Status Bits 

Mode Bit 

Example 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

I I 

0 0 0  

OVM Operation is not affected by OVM bit value. 

I 

0 1  
I I I I I  

0 1  1 1 1 1  

PUSHF R2 

I I I I  

src 

Before Instruction: 

SP = 809801 h 
R2 = 025C128081 h = 6.877258548 + 00 
Data at 809802h = Oh 
L U F L V U F N Z V C = O O  0 0 0 0 0  

After Instruction: 

SP = 809802h 
R2 = 025C128081 h = 6,877258546 + 00 
Data at 809802h = 025C1280h = 6.877258308 + 00 
L U F L V U F N Z V C = O O  0 0 0 0 0 
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RETlcond Return From Interrupt Conditionally 

Syntax RETlcond 

Operation If cond is true: 
*SP--- PC 
1 -. ST (GIE). 

Else, continue. 

Operands None 

Encoding 

Description 

3 1 24 23 16 15 8 7 0  

Cycles 

Status Bits 

Mode Bit 

I I I I I I I I I I ~ I I I I  

0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0  

A conditional return is performed. If the condition is true, the top of the stack 
is popped to the PC, and a 1 is written to the global interrupt enable (GIE) bit 
of the status register. This has the effect of enabling all interrupts for which the 
corresponding interrupt enable bit is a 1. 

1 1 1 1  

0 1 1  1 1  

The TMS320C3x provides 20 condition codes that can be used with this in- 
struction (see Table 10-9 on page 10-1 3 for a list of condition mnemonics, 
condition codes, and flags). Condition flags are set on a previous instruction 
only when the destination register is one of the extended-precision registers 
(R7-RO) or when one of the compare instructions (CMPF, CMPF3, CMPI, 
CMP13, TSTB, or TSTB3) is executed. 

I I I I  

0 0 0 0 0 0  

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

1 1 1 1  

cond 

OVM Operation is not affected by OVM bit value. 



Return From Interrupt Conditionally R ETlcond 

Example RETINZ 

Before Instruction: 

PC = 456h 
SP = 809830h 
ST = Oh 
Data at 809830h = 123h 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instructlon: 

PC = 123h 
SP = 80982Fh 
ST = 2000h 
Data at 809830h = 123h 
L U F L V U F N Z V C = O O O  0 0 0 0  
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RETScond Return From Subroutine Conditionally 

Syntax R ETScond 

Operation If cond is true: 
*SP- - + PC. 
Else, continue. 

Operands 

Encoding 

None 

Description A conditional return is performed. If the condition is true, the top of the stack 
is popped to the PC. 

3 1  24 23 16 15 8 7  0  

The TMS320C3x provides 20 condition codes that you can use with this in- 
struction (see Table 10-9 on page -1 3 for a list of condition mnemonics, condi- 
tion codes, and flags). Condition flags are set on a previous instruction only 
when the destination register is one of the extended-precision registers (R7- 
RO) or when one of the compare instructions (CMPF, CMPF3, CMPI, CMP13, 
TSTB, or TSTB3) is executed. 

1 1 1 1  

0 1 1  1 1  

Cycles 

Status Bits 

Mode Bit 

Example 

- 
1 1 1  

0 0 0 1  

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

RETSGE 

I 

0 0  

Before Instruction: 

PC = 123h 
SP = 80983Ch 
Data at 80983Ch = 456h 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

1 1 1 1  

cond 

After Instruction: 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0  

PC = 456h 
SP = 80983Bh 
Data at 80983Ch = 456h 
L U F L V U F N Z V C = O O O  0 0 0 0  



Round Floating Point RN D 

Syntax RND src, dst 

Operation rnd(src) -. dst 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 s n s 7) 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 s n s 7) 

Encoding 

Description The result of rounding the src operand is loaded into the dst register.The src 
operand is rounded to the nearest single-precision floating-point value. If the 
src operand is exactly half-way between two single-precision values, it is 
rounded to the most positive value. 

3 1  24 23 16 15 8 7 0  

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs or the src operand is 0; 

0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z Unaffected 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

1 1 1 1 1 1 1 1 1  1 1 1 1 1 1  

src 
I I 

0 0 0  

Mode Blt 

Example 

OVM Operation is affected by OVM bit value. 

I I I I I  

1 0 0 0 1 0  

RND R 5  ,R2 

Before Instruction: 

I 

G 
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I I I I  

dst 



R N D Round Floating Point 

After Instruction: 

I 

Note: BZUF Instruction 

If a BZ instruction is executed immediately following an RND instruction with 
a 0 operand, the branch is not performed because the zero flag is not set. 
To circumvent this problem, execute a BZUF instruction instead of a BZ 
instruction. 



Rotate Left ROL 

Syntax ROL dst 

Operation dst left-rotated 1 bit -. dst 

Operands dst register (Rn, 0 s n r 27) 

Encoding 

Descrlptlon The contents of the dstoperand are left-rotated one bit and loaded into the dst 
register. This is a circular rotation, with the MSB transferred into the LSB. 

31 24 23 16 15 8 7 0  

Rotate left: 

I I 

0 0 0  

Cycles 

Status Bits 

Mode Bit 

Example 

1 1 1 1 1  

1 0 0 0 1 1  

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 output is generated; 0 otherwise 
V 0 
C Set to the value of the bit rotated out of the high-order bit. Unaffected 

if dst is not R7 - RO. 

OVM Operation is not affected by OVM bit value. 

1  

1 1  

ROL R3 

Before Instruction: 

I 1 1 1  

dst 

After Instruction: 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
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ROLC Rotate Left Through Carry 

Syntax ROLC dst 

Operation dst left-rotated one bit through carry bit -. dst 

Operands dst register (Rn, 0 s n r 27) 

Encoding 

Description The contents of the dst operand are left-rotated one bit through the carry bit 
and loaded into the dstregister. The MSB is rotated to the carry bit at the same 
time the carry bit is transferred to the LSB. 

3 1 24 23 16 15 8 7 0  

Rotate left through carry bit: 

Cycles 

Status Bits 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

Mode Bit 

Example 1 

1 1 1 1  

dst 
1  I  

0 0 0  

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 output is generated; 0 otherwise 
v 0 
C Set to the value of the bit rotated out of the high-order bit. if dst is not 

R7-RO, then C is shifted into the dst but not changed. 

OVM Operation is not affected by OVM bit value. 

1 1 1 1 1  

1 0 0 1 0 0 1 1  

ROLC R3 

I  

Before Instruction: 

After Instruction: 



Rotate Left Through Carry ROLC 
w 

Example 2 ROLC ~3 

Before Instruction: 

After Instruction: 
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Syntax ROR dst 

Operation dst right-rotated one bit through carry bit -. dst 

Operands dst register (Rn, 0 s n s 27) 

Encoding 

31 24 23 16 15 8 7 

Description The contents of the dst operand are right-rotated one bit and loaded into the 
dst register. The LSB is rotated into the carry bit and also transferred into the 
MSB. 

- -. 

Rotate right: 

Cycles 

Status Bits 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
I I 

0 0 0  

Mode Bit 

Example 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 output is generated; 0 otherwise 
v 0 
C Set to the value of the bit rotated out of the high-order bit. Unaffected 

if dst is not R7-RO. 

I I I I I  

1 0 0 1 0 1 1 1  

OVM Operation is not affected by OVM bit value. 

ROR R7 

1  

Before Instruction: 

1 1 1 1  

dst 

After Instruction: 



Rotate Right Through Carry RORC 

Syntax RORC dst 

Operation dst right-rotated one bit through carry bit -. dst 

Operands dst register (Rn, 0 s n s 27) 

Encoding 

Description The contents of the dst operand are right-rotated one bit through the status 
register's carry bit. This could be viewed as a 33-bit shift. The carry bit value 
is rotated into the MSB of the dst, while at the same time the dst LSB is rotated 
into the carry bit. 

3 1  24 23 16 15 8 7 0  

Rotate right through carry bit: 

Cycles 

Status Bits 

1 1 1 1 1 1 1 1 1  1 1 1 1 1 1 -  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  - 

Mode Bit 

Example 

I I I I  

dst 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 output is generated; 0 otherwise 
v 0 
C Set to the value of the bit rotated out of the high-order bit. If dst is not 

R7 - RO, then C is shifted in but not changed. 

1  1  I 

0 0 0  

OVM Operation is not affected by OVM bit value. 

1 1 1 1 1  

1 0 0 1 1 0 1 1  

RORC R4 

Before Instruction: 

After Instruction: 
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RPTB Repeat Block 

Syntax RPTB src 

Operation src -, RE 
1 -, ST (RM) 
Next PC -, RS 

Operands src long-immediate addressing mode 

Description RPTB allows a block of instructions to be repeated a number of times without 
any penalty for looping. This instruction activates the block repeat mode of up- 
dating the PC. The src operand is a 24-bit unsigned immediate value that is 
loaded into the repeat end address (RE) register. A 1 is written into the repeat 
mode bit of status register ST (RM) to indicate that the PC is being updated 
in the repeat mode. The address of the next instruction is loaded into the repeat 
start address (RS) register. 

Encoding 
31 24 23 16 15 8 7 0  

Cycles 4 

1 1 1 1 1 l 1  

0 1 1  0 0  1 0 0  

Status Bits LUF 
LV 
UF 
N 
z 
v 
C 

OVM 

I I 1 1 I I I I I I I I I I I I I 1 ~ 1 1 ~ ~  

src 

Mode Bit 

Example 

Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 

Operation is not affected by OVM bit value. 

RPTB 127h 

Before Instruction: 

After Instruction: 



Repeat Single R PTS 

Syntax RPTS src 

Operation src -+ RC 
1 -ST(RM) 
1 - 3  
Next PC - RS 
Next PC -+ RE 

Operands src general addressing modes (G): 
0 0 register 
0 1 direct 
1 0 indirect 
1 1 immediate 

Encoding 

Description The RPTS instruction allows you to repeat a single instruction a number of 
times without any penalty for looping. Fetches can also be made from the in- 
struction register (IR), thus avoiding repeated memory access. 

3 1  24 23 16 15 8 7 0  
I I I I I I I  1 1 1 1 1  1 1 1 1 1 1 1 1 l 1 1 1 1 1 1 ~  

The src operand is loaded into the repeat counter (RC). A 1 is written into the 
repeat mode bit of the status register ST (RM). A 1 is also written into the re- 
peat single bit (S). This indicates that the program fetches are to be performed 
only from the instruction register. The next PC is loaded into the repeat end 
address (RE) register and the repeat start address (RS) register. 

For the immediate mode, the srcoperand is assumed to be an unsigned inte- 
ger and is not sign-extended. 

0 0 0  

Cycles 

Status Bits 

1 0 0 1 1 1  

Mode Bit 

src G 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

1 1 0 1 1  

OVM Operation is not affected by OVM bit value. 
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RPTS Repeat Single 

Example RPTS A R ~  

Before Instruction: 

PC = 123h 
ST = Oh 
RS = Oh 
RE = Oh 
RC = Oh 
AR5 = OFFh 
L U F L V U F N Z V C = O  O 0 0 O 0 0 

After Instruction: 

PC = 124h 
ST = 100h 
RS = 124h 
RE = 124h 
RC = OFFh 
AR5 = OFFh 
L U F L V U F N Z V C = O O O  0 0 0 0  



Signal, Interlocked S lG 1 

Syntax SlGl 

Operation Signal interlocked operation. 
Wait for interlock acknowledge. 
Clear interlock. 

Operands None 

Encoding 

Description An interlocked operation is signaled over XFO and XF1. After the interlocked 
operation is acknowledged, the interlocked operation ends. SlGl ignores the 
external ready signals. Refer to Section 6.4 on page 6-1 2 for detailed informa- 
tion. 

Cycles 

Status Bits 

Mode Bit 

Example 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

SIGI ; The processor sets XFO to 0, idles 
; until XF1 is set to 0, and then 
; sets XFO to 1. 
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STF Store Floating Point 

Syntax STF src, dst 

Operation src - dst 

Operands src register (Rn, 0 r n r 7) 

dst general addressing modes (G): 
0 1 direct 
1 0 indirect 

Encoding 

Description The src register is loaded into the dst memory location. The src and dstoper- 
ands are assumed to be floating-point numbers. 

31 24 23 16 15 8 7 0  

Cycles 1 

I I 

0 0 0  

Status Bits LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

STF R2,@98Alh 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

dst 
I I I I I  

1 0 1 0 0 0  

Mode Bit 

Example 

Before instruction: 

I 

G 

DP = 80h 
R2 = 052C501900h = 4.30782204e + 01 
Data at 8098Al h = Oh 
L U F L V U F N Z V C = O O  0 0 0 0 0 

1 1 1 1  

src 

After Instruction: 

DP = 80h 
R2 = 052C501900h = 4.30782204e + 01 
Data at 8098Al h = 52C5019h = 4.30782204e + 01 
L U F L V U F N Z V C = O  0 0 0 0 0 0 



Store Floating Point, Interlocked STFl 

Syntax STFi src, dst 

Operation src -. dst 
Signal end of interlocked operation. 

Operands src register (Rn, 0 s n s 7) 

dst general addressing modes (G): 
0 1 direct 
1 0 indirect 

Description 

Encoding 

31 24 23 16 15 8 7 0 

Cycles 

Status Bits 

Mode Bit 

Example 

I I 

0 0 0  

The src register is loaded into the dstmemory location. An interlocked opera- 
tion is signaled over pins XFO and XF1. The srcand dstoperands are assumed 
to be floating-point numbers. Refer to Section 6.4 on page 6-1 2 for detailed 
information. 

I 

G 
1 1 1 1 1  

1 0  1 0 0 1  

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

1 1 1 1  

src 

STFI R3, *-AR4 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 l  

dst 

Before Instruction: 

R3 = 0733C00000h = 1.797508 + 02 
AR4 = 80993Ch 
Data at 80993Bh = Oh 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

After Instruction: 

R3 = 0733C00000h = 1.797508 + 02 
AR4 = 80993Ch 
Data at 80993Bh = 733C000h = 1.797500 + 02 
L U F L V U F N Z V C = O  0 0 0 0 0 0 
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STFl ISTF Parallel Store Floating Point 

Syntax STF src2, dst2 
I( STF srcl, dstl 

Operation src2 + dst2 
1 1  srcl -. dstl 

Operands srcl register (Rnl , 0 s n l  s 7) 
dstl indirect (disp = 0, 1, IRO, IR1) 
src2 register (Rn2, 0 r n2 s 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

Description Two STF instructions are executed in parallel. Both srcl and src2are assumed 
to be floating-point numbers. 

3 1 24 23 16 15 8 7 0  

Cycles 1 

Status Bits LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

I 

1 1  

Mode Bit 

Example 

I I 

srcl 

OVM Operation is not affected by OVM bit value. 

1 1 1 1  

0 0 0  0 0  

STF R4,*AR3-- 
I I STF R3,*+tAR5 

1 1 1 1 I I I  

dstl 

Before Instruction: 

I 1  

s r d  
1 1 1 1 1 l 1  

ds12 

R4 = 070C800000h = 1.4050e t 02 
AR3 = 809835h 
R3 = 0733C00000h = 1.797506 + 02 
AR5 = 8099D2h 
Data at 809835h = Oh 
Data at 8099D3h = Oh 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

I I 

0 0 0  



Parallel store Floating Point STFl ISTF 

After Instruction: 

R4 = 070C800000h = 1.40508 + 02 
AR3 = 809834h 
R3 = 0733C00000h = 1.797500 + 02 
AR5 = 8099D3h 
Data at 809835h = 070C8000h = 1.4050e + 02 
Data at 8099D3h = 0733C000h = 1.797508 + 02 
L U F L V U F N Z V C = O O O  0 0 0 0  

1 i 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

I 1 
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ST1 Store Integer 

Syntax ST1 src, dst 

Operatlon src -, dst 

Operands src register (Rn, 0 r n 5 27) 

dst general addressing modes (G): 
0 1 direct 
1 0 indirect 

Encoding 

Description The src register is loaded into the dst memory location. The src and dst oper- 
ands are assumed to be signed integers. 

31 24 23 16 15 8 7 0  

Cycles 1 

Status Bits LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

l l l l l l l l l l l l l l l  

dst 
I I 

0 0 0  

OVM Operation is not affected by OVM bit value. Mode Bit 

Example 

I I I I I  

1 0  1 0 1  0  

Before Instruction: 

DP = 80h 
R4 = 42BD7h = 273,367 
Data at 80982Bh = OE5FCh = 58,876 
L U F L V U F N Z V C = O O O  0 0 0 0  

I 

G 

After Instruction: 

1 1 1 1  

src 

DP = 80h 
R4 = 42BD7h = 273,367 
Data at 80982Bh = 42BD7h = 273,367 
L U F L V U F N Z V C = O O O  0 0 0 0  



Store Integer, Interlocked ST1 1 

Syntax ST11 src, dst 

Operation src -. dst 
Signal end of interlocked operation 

Operands src register (Rn, 0 s n s 27) 

dst general addressing modes (G): 
0 1 direct 
1 0 indirect 

Encoding 

Description The src register is loaded into the dstmemory location. An interlocked opera- 
tion is signaled over pins XFO and XF1. The srcand dstoperands are assumed 
to be signed integers. Refer to Section 6.4 on page 6-1 2 for detailed informa- 
tion. 

31 24 23 16 15 8 7  0 

Cycles 

Status Bits 

1 1 1 1 I  

1 0 1  0 1  1 

Mode Bit 

Example 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

I  

G 

OVM Operation is not affected by OVM bit value. 

Before Instruction: 

1 1 1 1  

src 

DP = 80h 
R1 = 78Dh 
Data at 8098AEh = 25Ch 

I l l  l l l l l l l l l l l l  

dst 

After Instruction: 

DP = 80h 
R1 = 78Dh 
Data at 8098AEh = 78Dh 
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ST1 1 lSTl Parallel ST1 and ST1 

Syntax ST1 src2, dst2 
11 ST1 src1,dstl 

Operation src2 -, dst2 
1 1  srcl -, dstl 

Operands srcl register (Rnl , 0 s n l  s 7) 
dstl indirect (disp = 0, 1, IRO, IR1) 
src2 register (Rn2, 0 s n2 s 7) 
dst2 indirect (disp = 0, 1, IRO, iR1) 

Encoding 

Description 

31 24 23 16 15 8 7  0 

Cycles 

Status Bits 

Mode Bit 

Example 

I 1 1 1 1 1 1  

dsQ 

Two integer stores are performed in parallel. If both stores are executed to the 
same address, the value written is that of ST1 src2, dst2. 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

I I 

0 0 0  
I I 

src2 
1  

1 1  

OVM Operation is not affected by OVM bit value. 

1 1 1 1  

0 0 0  0 1  

Before Instruction: 

I I 

srcl 

RO = ODCh = 220 
AR2 = 809830h 
IRO = 8h 
R5 = 35h = 53 
ARO = 8098D3h 
Data at 809838h = Oh 
Data at 8098D3h = Oh 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

1 1 1 1 1 1 1  

dsfl 



Parallel ST1 and ST1 STlllSTl 

After Instruction: 

RO = ODCh = 220 
AR2 = 809838h 
IRO = 8h 
R5 = 35h = 53 
ARO = 8098D3h 
Data at 809838h = ODCh = 220 
Data at 8098D3h = 35h = 53 
L U F L V U F N Z V C = O O  0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 
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SU BB Subtract Integer With Borrow 

Syntax SUBB src, dst 

Operation dst- src-C + dst 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 s n r 27) 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 s n r 27) 

Encoding 

Description The difference of the dst, src, and C operands is loaded into the dst register. 
The dst and src operands are assumed to be signed integers. 

3 1  24 23 16 15 8 7  0  

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a borrow occurs; 0 otherwise 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

SIC 

I I 

0 0 0  

Mode Bit 

Example 

OVM Operation is affected by OVM bit value. 

1 1 1 1 I  

1 0 1  1 0 1  

SUBB *AR5++(4),R5 

Before Instruction: 

I 

G 

AR5 = 809800h 
RS=OFAh=250 
Data at 809800h = OC7h = 199 
L U F L V U F N Z V C = O O O  0 0 0 1 

1 1 1 1  

dst 

After Instruction: 

AR5 = 809804h 
R5 = 032h = 50 
Data at 809800h = OC7h = 199 
L U F L V U F N Z V C = O  0 0 0 0 0 0 



Subtract Integer With Borrow, 3-Operand SUBB3 

Syntax SUBB3 src2, srcl, dst 

Operation srcl-  src2- C 4 dst 

Operands srcl three-operand addressing modes 0: 
0 0 register (Rnl , 0 r n l  5 27) 
0 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rnl, 0 5 n l  s 27') 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2 three-operand addressing modes (T): 
0 0 register (Rn2, 0 s n2 s 27) 
0 1 register (Rn2, 0 5 n2 r 27') 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, lR1) 

dst register (Rn, 0 5 n 5 27) 

Encoding 

Description The difference of the srcl and src2operands and the C flag is loaded into the 
dst register. The srcl, src2, and dst operands are assumed to be signed inte- 
gers. 

31 24 23 16 15 8 7  0 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a borrow occurs; 0 otherwise 

l l l r l  

0 0 1  1 0 0  

Mode Bit 

I 

T 
1 1 1 1  

dst 

OVM Operation is affected by OVM bit value. 
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srcl 
1 1 1 1 1 1 1  

srcZ 



SUBB3 Subtract Integer With Borrow, 3-Operand 

Example 

Before Instruction: 

AR5 = 809800h 
IRO = 4h 
R5=OC7h = 199 
RO = Oh 
Data at 809800h = OFAh = 250 
L U F L V U F N Z V C = O O O  0 0 0 1 

After Instruction: 

AR5 = 809804h 
IRO = 4h 
R5=OC7h = 199 
RO = 32h = 50 
Data at 809800h = OFAh = 250 
L U F L V U F N Z V C = O O O  0 0 0 0  

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

I I 



Subtract Integer Conditionally SU BC 

Syntax SUBC src, dst 

Operation If (dst - src 2 0): 
(dst- S ~ C  << 1) OR 1 -. dsi 
Else: 
dst << 1 + dst 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 r n 5 27) 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 r n s 27) 

Encoding 

Description The srcoperand is subtracted from the dstoperand. The dstoperand is loaded 
with a value dependent on the result of the subtraction. If (dst- src) is greater 
than or equal to 0, then (dst- src) is left-shifted one bit, the least significant 
bit is set to 1, and the result is loaded into the dst register. if (dst - src) is less 
than 0, dst is left-shifted one bit and loaded into the dst register. The dst and 
src operands are assumed to be unsigned integers. 

31 24 23 16 15 8 7  0  

You can use SUBC to perform a single step of a multibit integer division. See 
subsection 11 -3.4 on page 11 -26 for a detailed description. 

I I 

0 0 0  

Cycles 

Status Bits 

Mode Bit 

I I I I I  

1 0 1  1 1 0  

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

I 

G 
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1 1 1 1  

dst 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

src 



SU BC Subtract Integer Conditionally 

Example 1 SUBC @98C5hfR1 

Before Instructlon: 

DP = 80h 
R1 = 04F6h = 1270 
Data at 8098C5h = 492h = 11 70 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

DP = 80h 
R1 = OC9h = 201 
Data at 8098C5h = 492h = 11 70 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

Example 2 SUBC 3000,RO (3000 = OBB8h) 

Before Instruction: 

After Instructlon: 

RO = OFAOh = 4000 
L U F L V U F N Z V C = O  0 0 0 0 0 0 



Subtract Floating Point S U BF 

Syntax SUBF src, dst 

Operation dst - src -. dst 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 s n s 7) 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 s n r 7) 

Encoding 

Description The difference of the dst operand minus the src operand is loaded into the 
dst register. The dst and src operands are assumed to be floating-point num- 
bers. 

31 24 23 16 15 8 7  0 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

1 1 1 1  I I I I I  

Mode Bit 

Example 

I 

OVM Operation is not affected by OVM bit value. 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

SUBF *ARO--(IRO),R5 

Before Instruction: 

1 0 1  1 1  1 

ARO = 809888h 
IRO = 80h 
R5 = 0733C00000h = 1.79750000e + 02 
Data at 809888h = 70C8000h = 1.4050e + 02 
L U F L V U F N Z V C = O O O  0 0 0 0  

G dst 

After Instruction: 

src 

ARO = 809808h 
IRO = 80h 
R5 = 051 D000000h = 3.92508 + 01 
Data at 809888h = 70C8000h = 1.4050e + 02 
L U F L V U F N Z V C = O  0 0 0 0 0 0 
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SUBF3 Subtract Floating Point, 3-Operand 

Syntax SUBF3 src2, srcl, dst 

Operation src 1 - src2 -, dst 

Operands srcl three-operand addressing modes (T): 
0 0 register (Rnl , s n l  s 7) 
0 1 indirect (disp = 0, 1, IRO, IRI) 
1 0 register (Rnl, s n l  s 7) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2 three-operand addressing modes 0: 
0 0 register (Rn2, s n2 s 7) 
0 1 register (Rn2, s n2 s 7) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IRI) 

dst register (Rn, 0 s n s 7) 

Encoding 

Description The difference of the srcl and src2 operands is loaded into the dst register. 
The srcl, src2, and dst operands are assumed to be floating-point numbers. 

3 1 24 23 16 15 8 7 0 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

I 1 1 1 1 1 1  

s r d  

Mode Bit 

I I 

0 0 1  

I 

T 
I I I I I  

0 0 1  1 0 1  
I I I I  

dst 
I I I I I I I  

srcl 



Subtract Floating Point, 3-Operand SUBF3 

Example 1 SUBF3 *ARO--(IRO),*ARl,R4 

Before Instruction: 

ARO = 809888h 
IRO = 80h 
ARI = 808851 h 
R4 = Oh 
Data at 809888h = 70C8000h = 1.40508 + 02 
Data at 809851 h = 733C000h = 1.79750e + 02 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

ARO = 809808h 
IRO = 80h 
AR1 = 809851 h 
R4 = 51 D000000h = 3.92508 + 01 
Data at 809888h = 70C8000h = 1.40506 + 02 
Data at 809851 h = 733C000h = 1.797508 + 02 
L U F L V U F N Z V C = O O O  0 0 0 0  

Example 2 SUBF3 R7, RO , R6 

Before Instruction: 

After Instruction: 

I 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 
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Syntax SUBF3 srcl, src2, dstl 
)I STF src3, dst2 

Operation src2 - src 1 4 dst 1 
1 1  src3 + dst2 

Operands srcl register (Rnl , 0 r n l  r 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dstl register (Rn2, 0 s n2 s 7) 
src3 register (Rn3, 0 s n3 s 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

Description 

3 1 24 23 16 15 8 7  0 
I I l l  I I I I I I I I I I I I I  1 1 1 1 1 1 1 .  

Cycles 

Status Bits 

Mode Bit 

1 1 

Afloating-point subtraction and a floating-point store are performed in parallel. 
All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (STF) reads from a reg- 
ister and the operation being performed in parallel (SUBF3) writes to the same 
register, STF accepts as input the contents of the register before it is modified 
by the SUBF3. 

dstl 

If src3and dstl point to the same location, src3is read before the write to dstl. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

srcl 0 1 0 1 s r d  dsi2 src? 



Parallel SUBF3 and STF SUBF311STF 

Example SUBF3 Rl,*-AR4(IRl),RO 
I I STF R7,*+AR5(IRO) 

Before Instruction: 

R1 = 057B400000h = 6.281 258 + 01 
AR4 = 8098B8h 
IR1 = 8h 
RO = Oh 
R7 = 0733C00000h = 1.797508 + 02 
AR5 = 809850h 
IRO = 10h 
Data at 8098BOh = 70C8000h = 1.40508 + 02 
Data at 809860h = Oh 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

R1 = 057B400000h = 6.281 258 + 01 
AR4 = 8098B8h 
IR1 = 8h 
RO = 061 B600000h = 7.7687508 + 01 
R7 = 0733C00000h = 1.797508 + 02 
AR5 = 809850h 
IRO = 10h 
Data at 8098BOh = 70C8000h = 1.40508 + 02 
Data at 809860h = 733C000h = 1.797508 + 02 
L U F L V U F N Z V C = O O O  0 0 0 0  

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 
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Syntax SUB1 src, dst 

Operation dst - src + dst 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 s n s 27) 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 s n s 27) 

Encoding 

Description 

31 24 23 16 15 8 7 0  

Cycles 

Status Bits 

1 1  

0 0 0  

Mode Bit 

Example 

The difference of the dstoperand minus the srcoperand is loaded into the dst 
register. The dst and src operands are assumed to be signed integers. 

1 1 1 1 I  

1 1 0  0 0 0  

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a borrow occurs; 0 otherwise 

OVM Operation is affected by OVM bit value. 

1  

G 

Before Instruction: 

After Instruction: 

I l l 1  

dst 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

SIC 



Subtract Integer, 3-Operand SU B13 

Syntax SUB13 src2, srcl, dst 

Operation src 1 - src2 -+ dst 

Operands srcl three-operand addressing modes (T): 
0 0 register (Rnl, 0 r n l  r 27) 
0 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rnl, 0 r n l  s 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2 three-operand addressing modes (T): 
0 0 register (Rn2, 0 r n2 a 27) 
0 1 register (Rn2, 0 r n2 s 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 s n 5 27) 

Encoding 

Description The difference of the srcl operand minus the src2operand is loaded into the 
dst register. The srcl, src2, and dst operands are assumed to be signed inte- 
gers. 

3 1 24 23 16 15 8 7  0 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a borrow occurs; 0 otherwise 

~ I I I ~ I I  

srQ 

Mode Bit 

1 1 1 1 1 1 1  

srcl 

OVM Operation is affected by OVM bit value. 

1 1 1 1  

dst 
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I 

T 
I I 

0 0 1  
1 1 1 1 1  

0 0 1  1 1 0  



SU B13 Subtract Integer, 3-Operand 

Example 1 SUB13 R7, R2, RO 

Before Instructlon: 

After Instruction: 

Example 2 

Before Instruction: 

AR2 = 80985Eh 
R4 = 0226h = 550 
R3 = Oh 
Data at 80985Dh = ODCh = 220 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instructlon: 

AR2 = 80985Eh 
R4 = 0226h = 550 
R3 = 01 4Ah = 330 
Data at 80985Dh = ODCh = 220 
L U F L V U F N Z V C = O O O  0 0 0 0  

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Parallel SUB13 and ST1 SUB131JSTI 

Syntax SUB13 srcl, src2, dstl 
( 1  ST1 src3, dst2 

Operation src2 - src 1 + dst 1 
1 1  src3 -. dst2 

Operands srcl register (Rnl, 0 s n l  r 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dstl register (Rn2, 0 s n2 s 7) 
src3 register (Rn3, 0 r n3 5 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

Description An integer subtraction and an integer store are performed in parallel. All regis- 
ters are read at the beginning and loaded at the end of the execute cycle. This 
means that if one of the parallel operations (STI) reads from a register and the 
operation being performed in parallel (SUBI3) writes to the same register, ST1 
accepts as input the contents of the register before it is modified by the SUB13. 

31 24 23 16 15 8 7 0 
I 1 1 1 1  I I I I I I 1 1 1 1 1 I I  1 I I 1 1 1 I -  

If src3and dstl point to the same location, src3is read before the write to dstl. 

Cycles 

Status Bits 

1 1 

Mode Bit 

srcl 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a borrow occurs; 0 otherwise 

1 0 1 1 0 

OVM Operation is affected by OVM bit value. 

dsn 
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src2 srd dslz 



Example 

Before Instruction: 

R7 = 14h = 20 
AR2 = 80982Fh 
IRO = 10h 
R1 = Oh 
R3 = 35h = 53 
AR7 = 80983Bh 
Data at 80983Fh = ODCh = 220 
Data at 80983Ch = Oh 
L U F L V U F N Z V C = O O  0 0 0 0 0 

After Instruction: 

R7= 14h =20 
AR2 = 80982Fh 
IRO = 10h 
R1 =OC8h=200 
R3 = 35h = 53 
AR7 = 80983Ch 
Data at 80983Fh = ODCh = 220 
Data at 80983Ch = 35h = 53 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Subtract Reverse Integer With Borrow SUBRB 

Syntax SUBRB src, dst 

Operation src - dst- C + dst 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 s n r 27) 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 s n s 27) 

Encoding 

Description The difference of the src, dst, and C operands is loaded into the dst register. 
The dst and src operands are assumed to be signed integers. 

31 24 23 16 15 8 7  0  

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a borrow occurs; 0 otherwise 

OVM Operation is affected by OVM bit value. 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

src 

SUBRB R4 ,R6 

I I l l 1  

G dst 
I I 

0 0 0  

Mode Bit 

Example 

I l l 1 1  

1 1 0 0 0 1  

Before Instruction: 

After instruction: 
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Syntax SUBRF src, dst 

Operation src - dst -. dst 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 s n s 7) 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 5 n s 7) 

Encoding 

31 

Description The difference of the src operand minus the dstoperand is loaded into the dst 
register. The dstand srcoperands are assumed to be floating-point numbers. 

- .  - . -- . -  . -  - .  

Cycles 1 

I I 

0 0 0  

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

Mode Bit 

Example 

1 1 1 1 I  

1 1 0 0 1 0  

OVM Operation is not affected by OVM bit value. 

SUBRF @9905h,R5 

I 

G 

Before Instruction: 

DP = 80h 
R5 = 0578400000h = 6.2812506 + 01 
Data at 809905h = 733C000h = 1.797508 + 02 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

1 1 1 1  

dst 

After Instruction: 

1 1 1 1 1 1 1 1 1 1 1 l l l l  

src 

DP = 80h 
R5 = 0669E00000h = 1.169375008 + 02 
Data at 809905h = 733C000h = 1.797506 + 02 
LUFLV UF N Z V  C = O  0 0 0 0 0 0 



Subtract Reverse Integer SUBRl 

Syntax SUBRi src, dst 

Operation src - dst -. dst 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 r n r 27) 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 r n r 27) 

Description The difference of the srcoperand minus the dstoperand is loaded into the dst 
register. The dst and src operands are assumed to be signed integers. 

Encoding 
31 24 23 16 15 8 7  0  

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a borrow occurs; 0 otherwise 

I  I 1  

Mode Bit 

Example 

1 1 1 1 1  

OVM Operation is affected by OVM bit value. 

I 1 1 1  t l l l l l l 1 1 1 1 1 1 1 1  

SUBRI *AR5++(IRO),R3 

Before instruction: 

dst SIC 

AR5 = 809900h 
IRO = 8h 
R3 = ODCh = 220 
Data at 809900h = 226h = 550 
L U F L V U F N Z V C = O O O  0 0 0 0  

G 0 0 0  

After Instruction: 

1 1 O O 1 1  

AR5 = 809908h 
IRO = 8h 
R3 = 01 4Ah = 330 
Data at 809900h = 226h = 550 
L U F L V U F N Z V C = O O O  0 0 0 0  
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Syntax SWI 

Operation Performs an emulation interrupt 

Operands None 

Encoding 
!3 I 

Description The SWI instruction performs an emulator interrupt. This is a reserved instruc- 
tion and should not be used in normal programming. 

Cycles 4 

Status Bits LU F 
LV 
UF 
N 
z 
v 
C 

OVM Mode Bit 

Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 

Operation is not affected by OVM bit value. 



Trap Conditionally TRAPcond 

Syntax TRAPcond N 

Operation 0 -. ST(GIE) 
If cond is true: 

Next PC - *++SP, 
Trap vector N - PC. 

Else: 

Set ST(GIE) to original state. 
Continue. 

Operands N (0 s N s 31) 

Encoding 

Description Interrupts are disabled globally when 0 is written to ST(GIE). If the condition 
is true, the contents of the PC are pushed onto the system stack, and the PC 
is loaded with the contents of the specified trap vector (N). If the condition is 
not true, ST(GIE) is set to its value before the TRAPcond instruction changes 
it. 

3 1 24 23 16 15 87 0  

The TMS320C3x provides 20 condition codes that can be used with this in- 
struction (see Table 10-9 on page 10-1 3 for a list of condition mnemonics, 
condition codes, and flags). Condition flags are set on a previous instruction 
only when the destination register is one of the extended-precision registers 
(R7-RO) or when one of the compare instructions (CMPF, CMPF3, CMPI, 
CMP13, TSTB, or TSTB3) is executed. 

Cycles 

Status Bits 

I l l 1  

N 

Mode Bit 

1 1 1 1 1 1 1 1 1 1  

0 0 0 0 0 0 0 0  0 0 1  
1 1 1 1 1 1  

0 1  1 1 0 1 0 0 0 0 0  

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

I l l  
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I I I I  

cond 



TRAPcon d Trap Conditionally 

Example TRAPZ 16 

Before Instruction: 

PC = 123h 
SP = 809870h 
ST = Oh 
Trap Vector 16 = 1 Oh 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

PC = 10h 
SP = 809871 h 
Data at 809871 h = 124h 
ST = Oh 
L U F L V U F N Z V C = O O O  0 0 0 0  



Test Bit Fields TSTB 

Syntax TSTB src, dst 

Operation dst AN D src 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 r n r 27) 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 r n s 27) 

Encoding 

Description The bitwise logical-AND of the dst and src operands is formed, but the result 
is not loaded in any register. This allows for nondestructive compares. The dst 
and src operands are assumed to be unsigned integers. 

31 24 23 16 15 8 7 0  

Cycles 1 

Status Bits These condition flags are modified for all destination registers (R27-RO). 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 output is generated; 0 otherwise 
v 0 
C Unaffected 

I  I 

0 0 0  

Mode Bit 

Example 

1 1 1 1  

dst 

OVM Operation is not affected by OVM bit value. 

I I I I I  

1 1 0 1 0 0  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

src 

TSTB *-AR4(1),R5 

I 

G 

Before Instruction: 

AR4 = 8099C5h 
R5 = 898h = 2200 
Data at 8099C4h = 767h = 1895 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

After Instruction: 

AR4 = 8099C5h 
R5 = 898h = 2200 
Data at 8099C4h = 767h = 1895 
L U F L V U F N Z V C = O  0 0 0 1 0  0 

Assembly Language instructions 1 0-203 



Syntax TSTB3 src2, srcl 

Operation srcl  AND src2 

Operands srcl  three-operand addressing modes 0: 
0 0 register (Rn 1, 0 r n l  r 27) 
0 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rnl, 0 s n l  5 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2 three-operand addressing modes (T): 
0 0 register (Rn2, 0 s n2 s 27) 
0 1 register (Rn2, 0 s n2 s 127) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

0 0 1  1 1 1  T 0 0 0 0 0  srcl src2 

Description The bitwise logical-AND between the srcl and src2operands is formed but is 
not loaded into any register. This allows for nondestructive compares. The 
srcl and src2 operands are assumed to be unsigned integers. Although this 
instruction has onlytwo operands, it is designated as a three-operand instruc- 
tion because operands are specified in the three-operand format. 

Cycles 

Status Bits 

Mode Bit 

These condition flags are modified for all destination registers (R27-RO). 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 output is generated; 0 otherwise 
v 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 



Test Bit Fields, 3-Operands TSTB3 

Example 1 TSTB3 *AR5--(IRO),*+ARO(l) 

Before Instruction: 

AR5 = 809885h 
IRO = 80h 
ARO = 80992Ch 
Data at 809885h = 898h = 2200 
Data at 80992Dh = 767h = 1895 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

AR5 = 809805h 
IRO = 80h 
ARO = 80992Ch 
Data at 809885h = 898h = 2200 
Data at 80992Dh = 767h = 1895 
L U F L V U F N Z V C = O O O  0 1 0 0  

Example 2 TSTB3 R4 *AR6-- ( IRO ) 

Before Instruction: 

R4 = OFBC4h 
AR6 = 8099F8h 
iRO = 8h 
Data at 8099F8h = 1568h 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

R4 = OFBC4h 
AR6 = 8099FOh 
IRO = 8h 
Data at 8099F8h = 1568h 
L U F L V U F N Z V C = O O O  0 0 0 0  

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 
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Syntax XOR src, dsl 

Operation dst XOR src + dst 

Operands src general addressing modes (G): 
0 0 register (Rn, 0 s n s 27) 
0 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 s n s 27) 

Encoding 

Description The bitwise exclusive-OR of the src and dst operands is loaded into the dst 
register. The dst and src operands are assumed to be unsigned integers. 

3 1 24 23 16 15 8 7  0 

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 output is generated; 0 othewise 
v 0 
C Unaffected 

1 1  

0 0 0  

OVM Operation is not affected by OVM bit value. 

I I I I I  

1 1 0 1 0 1  

XOR R1 ,R2 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -  

src 
I 

G 

Mode Bit 

Example 

1 1 1 1  

dst 

Before Instruction: 

After Instruction: 



Syntax XOR3 src2, srcl, dst 

Operation src 1 XOR src2 -, dst 

Operands srcl three-operand addressing modes (T): 
0 0 register (Rnl, 0 s n l  r 27) 
0 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rnl, 0 s n l  s 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2 three-operand addressing modes (T): 
0 0 register (Rn2, 0 r n2 s 27) 
0 1 register (Rn2, 0 r n2 s 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 s n s 27) 

Encoding 

Description The bitwise exclusive-OR between the srcl and src2operands is loaded into 
the dstregister. The srcl, src2, and dstoperands are assumed to be unsigned 
integers. 

31 24 23 16 15 8 7  0  

Cycles 1 

Status Bits These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 output is generated; 0 otherwise 
v 0 
C Unaffected 

I 1 1 1 1 1 1 ~  

src2 

Mode Bit 

1 1 1 1 1 1 1  

srcl 

OVM Operation is not affected by OVM bit value. 

I I I I  

dst 
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I 

T 
I I 

0 0 1  
1 1 1 1 1  

0 1 0  0 0 0  



Example 1 XOR3 *AR3++(IRO),R7,R4 

Before Instruction: 

AR3 = 809800h 
IRO = 10h 
R7 = OFFFFh 
R4 = Oh 
Data at 809800h = 5AC3h 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

After instruction: 

AR3 = 80981 Oh 
IRO = 10h 
R7 = OFFFFh 
R4 = OA53Ch 
Data at 809800h = 5AC3h 
L U F L V U F N Z V C = O O O  0 0 0 0 

Example 2 

Before Instruction: 

R5=OFFA32h 
AR1 = 809826h 
R1 = Oh 
Data at 809825h = OFF5Cl h 
L U F L V U F N Z V C = O O O  0 O 0 0  

After Instruction: 

R5=OFFA32h 
AR1 = 8098261.1 
R1 = 000F33h 
Data at 809825h = OFF5Cl h 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

, 
Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Parallel XOR3 and ST1 XOR311STI 

Syntax XOR3 src2,srcl,dstl 
1 1  ST1 src3, dst2 

Operation src 1 XOR src2 -. dst 1 
( 1  src3 -. dst2 

Operands srcl register (Rnl , 0 r n l  s 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dstl register (Rn2, 0 s n2 s 7) 
src3 register (Rn3, 0 r n3 s 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

Description A bitwise exclusive-XOR and an integer store are performed in parallel. All reg- 
isters are read at the beginning and loaded at the end of the execute cycle. This 
means that, if one of the parallel operations (STI) reads from a register and the 
operation being performed in parallel (XOR3) writes to the same register, ST1 
accepts as input the contents of the register before it is modified by the XOR3. 

31 24 23 16 15 8 7 0 

If src2and dst2point to the same location, src2is read before the write to dst2. 

1  

1 1  

Cycles 

Status Bits 

Mode Bit 

1 1 1 1  

1 0 1  1 1  

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 output is generated; 0 otherwise 
v 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

1  I  

dst 
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I  I  

srcl 
I  I  

src3 
I I I I I I I  

dsQ 
1 l 1 1 1 1 1  

sn2 



XOR311STI Parallel XOR3 and ST1 

Example XOR3 *ARl++, R 3 ,  R 3  
I I ST1 R 6 ,  *-AR2 ( IRO ) 

Before Instruction: 

AR1 = 80987Eh 
R3 = 85h 
R6 = ODCh = 220 
AR2 = 8098B4h 
IRO = 8h 
Data at 80987Eh = 85h 
Data at 8098ACh = Oh 
L U F L V U F N Z V C = O O O  0 0 0 0  

After Instruction: 

AR1 = 80987Fh 
R3 = Oh 
R6 = ODCh = 220 
AR2 = 8098B4h 
IRO = 8h 
Data at 80987Eh = 85h 
Data at 8098ACh = ODCh = 220 
L U F L V U F N Z V C = O  0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Software Applications 

The TMS320C3x is a powerful digital signal processor with an architecture and 
instruction set designed to find simple solutions to DSP problems. There are 
instructions specifically designed for efficient implementation of DSP algo- 
rithms as well as general-purpose instructions that make the device suitable 
for more general tasks, like any microprocessor. The floating-point and integer 
arithmetic supported by the device let you concentrate on the algorithm and 
pay less attention to scaling, dynamic range, and overflows. 

The purpose of this chapter is to explain how to use the instruction set, the ar- 
chitecture, and the interface of the TMS320C3x processor. It presents coding 
examples for frequently used applications and discusses more involved exam- 
ples and applications. This chapter defines the principles involved in the ap- 
plications and provides the corresponding assembly-language code for in- 
structional purposes and for immediate use. Whenever the detailed explana- 
tion of the underlying theory is too extensive to be included in this manual, ap- 
propriate references are given for further information. 

Major topics discussed in this chapter are listed below. 

Topic Page 



Processor Initialization 

11 .I Processor initialization 

Before you execute a digital signal processing algorithm, you must initialize 
the processor. Initialization usually occurs any time the processor is reset. 

You can reset the processor by applying a low level to the RESET input for sev- 
eral cycles. At this time, the TMS320C3x terminates execution and puts the 
reset vector (that is, the contents of memory IocationO) in the program counter. 
The reset vector normally contains the address of the system-initialization rou- 
tine. The hardware reset also initializes various registers and status bits. 

After reset, you can further initialize the processor by executing instructions 
that set up operational modes, memory pointers, interrupts, and the remaining 
functions needed to meet system requirements. 

To configure the processor at reset, you should initialize the following internal 
functions: 

0 Memory-mapped registers 
0 Interrupt structure 

In addition to the initialization performed during the hardware reset (for condi- 
tions after hardware reset, see Chapter 12), Example 11-1 shows coding for 
initializing the TMS320C3x to the following machine state: 

0 All interrupts are enabled. 
0 The overflow mode is disabled. 
0 The data memory page pointer is set to 0. 
Q The internal memory is filled with 0s. 

Note that all constants larger than 16 bits should be placed in memory and ac- 
cessed through direct or indirect addressing. 
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Example 1 1 - 1. TMS320C3x Processor Initialization 

* TITLE PROCESSOR INITIALIZATION 

.global RESET,INIT,BEGIN 
.global INTO,INTl,INT2,1NT3 
.global ISROIISR1,1SR2,1SR3 . global DINT, DMA 
.global TINTO,TINT1,XINTO,RINTOIXINT1,R1NTl 
.global TIMEO,TIME1,XMTO,RCVO,XMT1,RCVl 
.global TRAPO,TRAPl,TRAP2,TRPO,TRPl,TRP2 

PROCESSOR INITIALIZATION FOR THE TMS320C3x 

RESET AND INTERRUPT VECTOR SPECIFICATION. THIS 
ARRANGEMENT ASSUMES THAT DURING LINKING, THE FOLLOWING 
TEXT SEGMENT WILL BE PLACED TO START AT MEMORY 
LOCATION 0. 

* 
. sect " init" ; Named section 

RESET .word INIT ; RS- load address INIT to PC 
INTO .word ISRO ; INTO- loads address ISRO to PC 
INTl .word ISRl ; INTI- loads address ISRl to PC 
INT2 .word ISR2 ; INT2- loads address ISR2 to PC 
INT3 .word ISR3 ; INT3- loads address ISR3 to PC 

XINTO .word XMTO ; Serial port 0 transmit interrupt processing 
RINTO .word RCVO ; Serial port 0 receive interrupt processing 
XINTl .word XMTl ; Serial port 1 transmit interrupt processing 

* RINTl .word RCVl ; Serial port 1 receive interrupt processing 
TINT0 .word TIME0 ; Timer 0 interrupt processing 
TINT1 .word TIME1 ; Timer 1 interrupt processing 
DINT .word DMA ; DMA interrupt processing . space 2 0 ; Reserved space 
TRAP0 .word TRPO ; Trap 0 vector processing begins 
TRAP1 .word TRPl ; Trap 1 vector processing begins 
TRAP2 .word TRP2 ; Trap 2 vector processing begins . space 2 9 ; Leave space for the other 29 traps 
4 

* IN THE FOLLOWING SECTION, CONSTANTS THAT CANNOT BE REPRESENTED 
* IN THE SHORT FORMAT ARE INITIALIZED. THE NUMBERS IN PARENTHESIS 
* AT THE END OF THE COMMENTS REPRESENT THE OFFSET OF A 
* PARTICULAR CONTROL REGISTER FROM 
* CTRL (808000X) 
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MASK 
BLKO 
BLK 1 
STCK 
CTRL 
DMACTL 
TIMOCTL 
TIMlCTL 
SERGLOBO 
SERPRTXO 
SERPRTRO 
SERTIMO 
SERGLOBl 
SERPRTXl 
SERPRTRl 
SERTIMl 
PARINT 
IOINT 
* 

OFFFFFFFFH 
0809800H ; 
0809COOH ; 
0809FOOH ; 
0808000H ; 
OOOOOOOH ; 
OOOOOOOH ; 
OOOOOOOH ; 
OOOOOOOH ; 
OOOOOOOH ; 
OOOOOOOH ; 
OOOOOOOH ; 
OOOOOOOH ; 
OOOOOOOH ; 
OOOOOOOH ; 
OOOOOOOH ; 
OOOOOOOH ; 
OOOOOOOH ; 

Beginning address of RAM block 0 
Beginning address of RAM block 1 
Beginning of stack 
Pointer for peripheral-bus memory map 
Init for DMA control (0) 
Init of timer 0 control (32) 
Init of timer 1 control (48) 
Init of serial 0 glbl control (64) 
Init of serial 0 xrnt port control (66) 
Init of serial 0 rcv port control (67) 
Init of serial 0 timer control (68) 
Init of serial 1 glbl control (80) 
Init of serial 1 xmt port control (82) 
Init of serial 1 rcv port control (83) 
Init of serial 1 timer control (84) 
Init of parallel interface control (100) 
Init of 1/0 interface control (96) 

* 
THE ADDRESS AT MEMORY LOCATION 0 DIRECTS EXECUTION TO BEGIN HERE 

* FOR RESET PROCESSING THAT INITIALIZES THE PROCESSOR. WHEN RESET 
* IS APPLIED, THE FOLLOWING REGISTERS ARE INITIALIZED TO 0: 
* 

* ST -- CPU STATUS REGISTER 
* IE -- CPU/DMA INTERRUPT ENABLE FLAGS 
* IF -- CPU INTERRUPT FLAGS 
* IOF-- 1/0 FLAGS 
* 
* THE STATUS REGISTER HAS THE FOLLOWING ARRANGEMENT: 

* BITS: 31-14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

* FUNCTION: RESRV GIE CC CE CF RESRV RM OVM LUF LV UF N Z V C 
* 

INIT LDP 0,DP ; Point the DP register to page 0 
LDI 1800H,ST ; Clear and enable cache, and disable OVM 
LDI @MASK,IE ; Unmask all interrupts 

* 
INTERNAL DATA MEMORY INITIALIZATION TO FLOATING POINT 0 

* 

LDI @BLKO , ARO ; ARO points to block 0 
LDI @BLKl ,AR1 ; AR1 points to block 1 
LDFO,O,RO ; 0 register RO 
RPTS 1023 ; Repeat 1024 times ... 
STF RO, *ARO++ ( 1 ) ; Zero out location in RAM block 0 and ... 

I I STFRO,*ARl++(l) ; Zero out location in RAM block 1 
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THE PROCESSOR IS INITIALIZED. THE REMAINING APPLICATION-- 
DEPENDENT PART OF THE SYSTEM (BOTH ON- AND OFF--CHIP) SHOULD 
NOW BE INITIALIZED. 

FIRST, INITIALIZE THE CONTROL REGISTERS. IN THIS EXAMPLE, 
EVERYTHING IS INITIALIZED TO 0, SINCE THE ACTUAL INITIALIZATION IS 
APPLICATION-DEPENDENT. 

LDI QCTRL,ARO ; Load in ARO the pointer to control 
; registers 

LDI Q DMACTL , RO 
STIRO,*+ARO(O) ; Init DMA control 

LDI eTIMOCTL, RO 
STIRO1*+AR0(32) 
LDI @TIMlCTL,RO 
STIRO,*+AR0(48) 
LDIeSERGLOB0,RO 
STIRO,*+AR0(64) 
LDI OSERPRTXO , RO 
ST1 RoI*+ARO(66) 
LDI QSERPRTRO I RO 
ST1 RO, *+AR0(67) 
LDI QSERTIMO , RO 
ST1 RO, *+AR0(68) 
LDIPSERGLOB1,RO 
ST1 RO,*+AR0(80) 
LDI O SERPRTX 1, RO 
STIROI*+AR0(82) 
LDI QSERPRTR1 , RO 
STIRO,*+AR0(83) 
LDI QSERTIM1 , RO 
STIRO,*+ARO(84) 
LDI QPARINT, RO 
STIRO,*+AR0(100) 
LDI QIOINT, RO 
STIROI*+AR0(96) 

Init timer 0 control 

Init timer 1 control 

Init serial 0 global control 

Init serial 0 xmt control 

Init serial 0 rcv control 

Init serial 0 timer control 

Init serial 1 global control 

Init serial 1 xmt control 

Init serial 1 rcv control 

Init serial 1 timer control 

Init parallel interface control (C30 only) 

Init 1/0 interface control 

LDI @ STCK , SP ; Init the stack pointer 
OR 2000H,ST ; Global interrupt enable 

BR BEGIN ; Branch to the beginning of application 
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11.2 Program Control 

One group of TMS320C3x instructions provides program control and facili- 
tates all types of high-speed processing. These instructions directly handle: 

IJ subroutine calls 
IJ software stack 
IJ interrupts 
IJ zero-overhead branches 
IJ single- and multiple-instruction loops without any overhead 

11.2.1 Subroutines 

The TMS320C3x has a 24-bit program counter (PC) and a practically unlimited 
software stack. The CALL and CALLcond subroutine calls cause the stack 
pointer to increment and store the contents of the next value of the PC counter 
on the stack. At the end of the subroutine, RETScond performs a conditional 
return. 

Example 11-2 illustrates the use of a subroutine to determine the dot product 
between two vectors. Given two vectors of length N, represented by the arrays 
a [O], a [ I ]  ,..., a [N -I] and b [0], b [ I ]  ,..., b [N -11, the dot product is computed 
from the expression 

d =a[O] b [0] + a[1] b [ I ]  + ... + a[N- I ]  b[N-11 

Processing proceeds in the main routine to the point where the dot product is 
to be computed. It is assumed that the arguments of the subroutine have been 
appropriately initialized. At this point, a CALL is made to the subroutine, 
transferring control to that section of the program memory for execution, then 
returning to the calling routine via the RETS instruction when execution has 
completed. Note that for this particular example, it would suffice to save the 
register R2. However, a larger number of registers are saved for demonstra- 
tion purposes. The saved registers are stored on the system stack. This stack 
should be large enough to accommodate the maximum anticipated storage re- 
quirements. You could use other methods of saving registers equally well. 
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Example 11-2. Subroutine Call (Dot Product) 

* TITLE SUBROUTINE CALL (DOT PRODUCT) 
* 
* 
* MAIN ROUTINE THAT CALLS THE SUBROUTINE 'DOT' TO COMPUTE THE 
* DOT PRODUCT OF TWO VECTORS 

* 
* 
* 
* LDI @blkO,ARO ; ARO points to vector a 

LDI @blkl,ARl ; AR1 points to vector b 
* LDI N,RC ; RC contains the number of elements 

* CALL DOT 
* 

* 

* SUBROUTINE DOT 
* 

* EQUATION: d = a(0) * b(0) + a(1) b(1) + ... + a(N-1) * b(N-1) 
* 
* THE DOT PRODUCT OF a AND b,IS PLACED IN REGISTER RO. N MUST 
* BE GREATER THAN OR EQUAL TO 2. 
* 

* ARGUMENT ASSIGNMENTS: 

* ARGUMENT I FUNCTION 

* ARO 
* AR1 
* RC 
* 

I ADDRESS OF a(0) 
I ADDRESS OF b(0) 
I LENGTH OF VECTORS (N) 

* REGISTERS USED AS INPUT: ARO, AR1, RC 
* REGISTER MODIFIED: RO 
* REGISTER CONTAINING RESULT: RO 
* 

.global DOT 

DOT PUSH ST ; Save status register 
PUSH R2 ; Use the stack to save R2's 
PUSHF R2 ; Lower 32 and upper 32 bits 
PUSH ARO ; Save ARO 
PUSH AR1 ; Save AR1 
PUSH RC ; Save RC 

Software Applications 11-7 



Program Control 

* ; Initialize RO: 
MPYF3 *ARO,*ARl,RO ; a(0) b(0) -> RO 
LDFO.O,R2 ; Initialize R2 
SUB1 2 ,RC ; Set RC = N-2 

* 
* DOT PRODUCT (1 <= i < N) 
* 

RPTS RC ; Setup the repeat single 

RETURN SEQUENCE 
* 

POP RC 
POP AR1 
POP ARO 
POPF R2 
POP R2 
POP ST 
RETS 

; Restore RC 
; Restore AR1 
; Restore ARO 
; Restore top 32 bits of R2 
; Restore bottom 32 bits of R2 
; RestoreST 
; Return 

* end 

* 
. end 

11.2.2 Software Stack 

The TMS320C3x has a software stack whose location is determined by the 
contents of the stack pointer register (SP). The stack pointer increments from 
low to high values, and provisions should be made to accommodate the antici- 
pated storage requirements. The stack can be used not only during the sub- 
routines CALL and RETS, but also inside the subroutine as a place of tempo- 
rary storage of the registers, as shown in Example 11-2. SP always points to 
the last value pushed on the stack. 
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The CALL and CALLcond instructions and the interrupt routines push the 
value of the PC onto the stack. RETScond and RETlcond then pop the stack 
and place the value in the program counter. You can also use the PUSH and 
POP instructions to maneuver the integer value of any register onto and off the 
stack, respectively. There are two additional instructions, PUSHF and POPF, 
for floating point numbers. You can push and pop floating point numbers to reg- 
isters R7-RO. This feature makes it easy to save all 40 bits of the extended 
precision registers (see Example 11-2). Using PUSH and PUSHF on the 
same register saves the lower 32 and upper 32 bits. PUSH saves the lower 
32; PUSHF, the upper 32. POPF, followed by POP, will recover this extended 
precision number. It is important to perform the integer and floating-point 
PUSH and POP in the order given above. POPF forces the least significant 
eight bits of the extended-precision registers to 0 and therefore must be per- 
formed first. 

You can easily read and write to the SP to create multiple stacks for different 
program segments. SP is not initialized by the hardware during reset. It is 
therefore important to remember to initialize its value so that SP points to a pre- 
determined memory location. This avoids the problem of SP attempting to 
write into ROM or otherwise write over useful data. 

11.2.3 Interrupt Service Routines 

lnterrupts on the TMS320C3x are prioritized and vectored. When an interrupt 
occurs, the corresponding flag is set in the interrupt flag register IF. If the corre- 
sponding bit in the interrupt enable register (IE) is set, and interrupts are en- 
abled by having the GIE bit in the status register set to 1, interrupt processing 
begins. You can also write to the interrupt flag register, allowing you to force 
an interrupt by software or to clear interrupts without processing them. 

Even when the interrupt is disabled, you can read the interrupt flag register (IF) 
and take appropriate action, depending on whether the interrupt has occurred. 
This is true even when the interrupt is disabled. This can be useful when an 
interrupt-driven interface is not implemented. Example 11-3 shows the case 
in which a subroutine is called when interrupt 1 has not occurred. 

Example 1 1 3 .  Use of Interrupts for Software Polling 
* TITLE INTERRUPT POLLING 

TSTB 2,1F ; Tes t  i f  in terrupt  1 has occurred 
CALLZ SUBROUTINE ; If not, c a l l  subroutine 

Software Applications 11-9 



Program Control 

When interrupt processing begins, the PC is pushed onto the stack, and the 
interrupt vector is loaded in the PC. Interrupts are then disabled by setting the 
GIE = 0, and the program continues from the address loaded in the PC. Since 
all interrupts are disabled, interrupt processing can proceed without further in- 
terruption, unless the interrupt service routine re-enables interrupts. 

Except for very simple interrupt service routines, it is important to ensure that 
the processor context is saved during execution of this routine. You must save 
the context before you execute the routine itself and restore it after the routine 
is finished. The procedure is called context switching. Context switching is also 
useful for subroutine calls, especially during extensive use of the auxiliary and 
the extended precision registers. This section contains code examples of con- 
text switching and an interrupt service routine. 
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11.2.3.1 Context Switching 

Context switching is commonly required during the processing of subroutine 
calls or interrupts. It might be quite extensive or it might be simple, depending 
on system requirements. On the TMS320C3x, the program counter is auto- 
matically pushed onto the stack. Important information in other TMS320C3x 
registers, such as the status, auxiliary, or extended-precision registers, must 
be saved by special commands. In order to preserve the state of the status reg- 
ister, you should push it first and pop it last. This keeps the restoration of the 
extended precision registers from affecting the status register. 

Example 11-4 and Example 11-5 show saving and restoring of the 
TMS320C3xstate. In both examples, the stack is used for saving the registers, 
and it expands towards higher addresses. If you don't want to use the stack 
pointed at by SP, you can create a separate stack by using an auxiliary register 
as the stack pointer. Registers saved in these examples are: 

Q Extended-precision registers R7 through RO 
Q Auxiliary registers AR7 through ARO 
Q Data-page pointer DP 
Q Index registers IRO and IR1 
Q Block-size register BK 
Q Status register ST 
Q Interrupt-related registers IE and IF 
Q I10 flag IOF 
Q Repeat-related registers RS, RE, and RC 
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Example 11-4. Context Save for the TMS320C3x 

* TITLE CONTEXT SAVE FOR THE TMS320C3x 

* 
* 

.global SAVE 
* 

* CONTEXT SAVE ON SUBROUTINE CALL OR INTERRUPT 
* 
SAVE : 

PUSH ST ; Save status register 
* 
* SAVE THE EXTENDED PRECISION REGISTERS 
* 

PUSH RO 
PUSHF RO 
PUSH R1 
PUSHF R1 
PUSH R2 
PUSHF R2 
PUSH R3 
PUSHF R3 
PUSH R4 
PUSHF R4 
PUSH R5 
PUSHF R5 
PUSH R6 
PUSHF R6 
PUSH R7 
PUSHF R7 

* 

Save the lower 32 bits 
and the upper 32 bits 

Save the lower 32 bits 
and the upper 32 bits 

Save the lower 32 bits 
and the upper 32 bits 

Save the lower 32 bits 
and the upper 32 bits 

Save the lower 32 bits 
and the upper 32 bits 

Save the lower 32 bits 
and the upper 32 bits 

Save the lower 32 bits 
and the upper 32 bits 

Save the lower 32 bits 
and the upper 32 bits 

* SAVE THE AUXILIARY REGISTERS 

PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 

* 

ARO 
AR1 
AR2 
AR3 
AR4 
AR5 
AR6 
AR7 

; Save ARO 
; Save AR1 
; Save AR2 
; Save AR3 
; Save AR4 
; Save AR5 
; Save AR6 
; Save AR7 
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PUSH DP 
PUSH IRO 
PUSH IR1 
PUSH BK 
PUSH IE 
PUSH IF 
PUSH IOF 
PUSH RS 
PUSH RE 
PUSH RC 

* 
SAVE IS COMPLETE 

* 

SAVE THE REST REGISTERS FROM THE REGISTER FILE 

Save data page pointer 
Save index register IRO 
Save index register IR1 
Save block-size register 
Save interrupt enable register 
Save interrupt flag register 
Save 1/0 flag register 
Save repeat start address 
Save repeat end address 
Save repeat counter 
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Example 11-5. Context Restore for the TMS320C3x 

* TITLE CONTEXT RESTORE FOR THE TMS320C3x 

* 
.global RESTR 

* 

* CONTEXT RESTORE AT THE END OF A SUBROUTINE CALL OR INTERRUPT 
* 
RESTR: 
* 
* RESTORE THE REST REGISTERS FROM THE REGISTER FILE 

* 
POP RC 
POP RE 
POP RS 
POP IOF 
POP IF 
POP IE 
POP BK 
POP IRl 
POP IRO 
POP DP 

* 

Restore 
Restore 
Restore 
Restore 
Restore 
Restore 
Restore 
Restore 
Restore 
Restore 

repeat counter 
repeat end address 
repeat start address 
1/0 flag register 
interrupt flag register 
interrupt enable register 
block-size register 
index register IR1 
index register IRO 
data page pointer 

* RESTORE THE AUXILIARY REGISTERS 
* 

POP AR7 
POP AR6 
POP AR5 
POP AR4 
POP AR3 
POP AR2 
POP ARl 
POP ARO 

* 

; Restore AR7 
; Restore AR6 
; RestoreAR5 
; Restore AR4 
; Restore AR3 
; Restore AR2 
; Restore AR1 
; Restore ARO 

* RESTORE THE EXTENDED PRECISION REGISTERS 
* 
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POPF R7 
POP R7 
POPF R6 
POP R6 
POPF R5 
POP R5 
POPF R4 
POP R4 
POPF R3 
POP R3 
POPF R2 
POP R2 
POPF R1 
POP Rl 
POPF RO 
POP RO 
POP ST 

* 

* RESTORE I S  COMPLETE 
* 

Restore the upper 32 bits and 
the lower 32 bits of R7 

Restore the upper 32 bits and 
the lower 32 bits of R6 

Restore the upper 32 bits and 
the lower 32 bite of R5 

Restore the upper 32 bite and 
the lower 32 bite of R4 

Restore the upper 32 bits and 
the lower 32 bits of R3 

Restore the upper 32 bits and 
the lower 32 bits of R2 

Restore the upper 32 bite and 
the lower 32 bite of R1 

Restore the upper 32 bits and 
the lower 32 bits of RO 

Restore status register 
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11 2.3.2 Interrupt Prlority 

Interrupts on the TMS320C3x are automatically prioritized. This allows inter- 
rupts that occur simultaneously to be serviced in a predefined order. Infrequent 
but lengthy interrupt service routines might need to be interrupted by more fre- 
quently occurring interrupts. In Example 114,  the interrupt service routine for 
INT2 temporarily modifies the IE to permit interrupt processing when an inter- 
rupt to INTO (but no other interrupt) occurs. When the routine has finished pro- 
cessing, the IE register is restored to its original state. Notice that the 
RETlcondinstruction not only pops the next program counter address from the 
stack, but also sets the GIE bit of the status register. This enables all interrupts 
that have their interrupt enable bit set. 

Example 11-6. Interrupt Service Routine 

* TITLE INTERRUPT SERVICE ROUTINE 

ENABLE .set 2000h 

* 
* INTERRUPT PROCESSING FOR EXTERNAL INTERRUPT INT2- 

PUSH ST 
PUSH DP 
PUSH IE 
PUSH RO 
PUSHF RO 
PUSH R1 
PUSHF R1 
LDI MASK, IE 
OR ENABLE, ST 

Save status register 
Save data page pointer 
Save interrupt enable register 
Save lower 32 bits and 

upper 32 bits of RO 
Save lower 32 bits and 

upper 32 bits of R1 
Unmask only INTO 
Enable all interrupts 

* 
* MAIN PROCESSING SECTION FOR ISR2 

XOR ENABLE, ST 
POPF R1 
POP Rl 
POPF RO 
POP RO 
POP IE 
POP DP 
POP ST 

* 
RETI 

Disable all interrupts 
Restore upper 32 bits and 

lower 32 bits of R1 
Restore upper 32 bits and 

lower 32 bits of RO 
Restore interrupt enable register 
Restore data page register 
Restore status register 

Return and enable interrupts 
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11.2.4 Delayed Branches 

The TMS320C3x uses delayed branches to create single-cycle branching. 
The delayed branches operate like regular branches but do not flush the pipe- 
line. Instead, the three instructions following a delayed branch are also ex- 
ecuted. As discussed in Chapter 6, the only limitations are that none of the 
three instructions following a delayed branch can be a: 

Q Branch (standard or delayed) 
Q Call to a subroutine 
Q Return from a subroutine 
Q Return from an interrupt 
Q Repeat instruction 
Q TRAP instruction 
r~ IDLE instruction 

Conditional delayed branches use the conditions that exist at the end of the 
instruction immediately preceding the delayed branch. Sometimes a branch 
is necessary in the flow of a program, but fewer than three instructions can be 
placed after a delayed branch. For faster execution, it is still advantageous to 
use a delayed branch. This is shown in Example 11-7, with NOPs taking the 
place of the unused instructions. The trade-off is more instruction words for 
less execution time. 

Example 11-7. Delayed Branch Execution 

* TITLE DELAYED BRANCH EXECUTION 

LDF *+AR1(5),R2 ; Load contents of memory to R2 
BGED SKIP ; I f  loaded number >=Or branch (delayed) 
LDFN R2,Rl ; I f  loaded number <Or load it to R1 
SUBF 3.0,Rl ; Subtract 3 from R1 
NOP ; Dummy operation to complete delayed 

; branch 
MPYF 1.5,Rl ; Continue here if loaded number < O  

SKIP LDF R1, R3 ; Continue here if loaded number >=0 
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11 -2.5 Repeat Modes 

The TMS320C3x supports looping without any overhead. For that purpose, 
there are two instructions: RPTB repeats a block of code, and RPTS repeats 
a single instruction. There are three control registers: repeat start address 
(RS), (repeat end address (RE), and repeat counter (RC). These contain the 
parameters that specify loop execution (refer to Section 6.1 on page 6-2 for 
a complete description of RPTB and RPTS). RS and RE are automatically set 
from the code, while you must set RC, as shown in the examples below. 

11.2.5.1 Block Repeat 

Example 11-8 shows an application of the block repeat construct. In this ex- 
ample, an array of 64 elements is flipped over by exchanging the elements that 
are equidistant from the end of the array. In other words, if the original array is 

the final array after the rearrangement will be 

Because the exchange operation is done on two elements at the same time, 
it requires 32 operations. The repeat counter RC is initialized to 31. In general, 
if RC contains the number N, the loop will be executed N + 1 times. The loop 
is defined by the RPTB instruction and the EXCH label. 
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Example 1 1 -8 .  Loop Using Block Repeat 
* TITLE LOOP USING BLOCK REPEAT 

* 
* THIS CODE SEGMENT EXCHANGES THE VALUES OF ARRAY ELEMENTS THAT ARE 
* SYMMETRIC AROUND THE MIDDLE OF THE ARRAY. 

L D I  @ADDR, A R O  ; 
L D I  A R O  , AR1 
ADD1 63,ARl ; 

* ; 
L D I  31,RC i 

* 
RPTB EXCH ; 

; 
L D I  *ARO,RO ; 

1 1  L D I  *ARl,Rl ; 
EXCH S T 1  R 1  , *ARO++ ( 1 ) ; 

1 )  STIRO,*ARl--(I) 

A R O  pointe to the beginning of the array 

AR1 pointe to the end of the 
64  -element array 
Initialize repeat counter 

Repeat RC+1 times between here and 
EXCH 

Load one memory element in RO, 
and the other in R l  

Then, exchange their locations 

Subsection 6.1.2 on page 6-3 specifies restrictions in the block-repeat con- 
struct. Because the program counter is modified at the end of the loop accord- 
ing to the contents of the registers RS, RE, and RC, no operation should at- 
tempt to modify the repeat counter or the program counter at the end of the 
loop in a different way. 

In principle, it is possible to nest repeat blocks. However, there is only one set 
of control registers: RS, RE, and RC. It is therefore necessary to save these 
registers before entering an inside loop. It might be more practical to imple- 
ment a nested loop by the more traditional method of using a register as a 
counter and then using a delayed branch rather than using the nested repeat 
block approach. 

Example 11-9 shows another example of using the block repeat to find a maxi- 
mum of 147 numbers. 
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Example 11-9. Use of Block Repeat to Find a Maximum 

* TITLE USE OF BLOCK REPEAT TO FIND A MAXIMUM 
* 
* THIS ROUTINE FINDS THE MAXIMUM OF N = 147 NUMBERS. 
* 

LDI 146,RC ; Initialize repeat counter to 147-1 
LDI @ADDR,ARO ; ARO points to beginning of array 
LD *ARO++(l),RO ; Initialize MAX to the first value 

* 
RPTB LOOP 
CMPF *ARO++(l),RO ; Compare number to the maximum 

LOOP LDFLT *-ARO(l),RO ; If greater, this ie a new maximum 

11.2.5.2 Single-instruction Repeat 

The single-instruction repeat uses the control registers RS, RE, and RC in the 
same way as the block repeat. The advantage over the block repeat is that the 
instruction is fetched only once, and then the buses are available for moving 
operands. Note that the single-instruction repeat construct is not interruptible, 
while block repeat is interruptible. 

Example 11 -1 0 shows an application of the single-repeat construct. In this ex- 
ample, the sum of the products of two arrays is computed. The arrays are not 
necessarily different. If the arrays are a(i) and b(i), each of length N = 512, 
register RO will contain, after computation, this quantity: 

a (1) b (1) t a(2) b (2) +...+a (N) b (N). 

The value of the RC is specified to be 51 1 in the instruction. If RC contains the 
number N, the loop will be executed N t 1 times. 
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Example 1 1 - 10. Loop Using Single Repeat 
TITLE LOOP USING SINGLE REPEAT 

* 
* THIS CODE SEGMENT COMPUTES SUM[a(i)b(i)] FOR i = 1 to N. 
* 
* 

LDI @ADDRl,ARO ; ARO pointe to array a(i) 
LDI eADDR2,ARl ; AR1 pointe to array b(i) 

* 
LDF O.O,RO ; Initialize RO 

* 
MPYF3 *ARO++(l),*ARl++(l),Rl 

* ; Compute firet product 
RPTS 511 ; Repeat 512 times 

* 

MPYF3 *ARO++(l),*ARl++(l),Rl,RO ; Compute next product 
I I ADDF3 R1 ,RO ,RO ; and accumulate the 

; previoue one * 
ADDF R1,RO ; One final addition 
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11.2.6 Computed GOTOs 

It is occasionally convenient to select during run time (and not during assem- 
bly) the subroutine to be executed. The TMS320C3x1s computed GOT0 sup- 
ports this selection. The computed GOT0 is implemented using the CALLcond 
instruction in the register-addressing mode. This instruction uses the contents 
of the register as the address of the call. Example 11-11 shows a computed 
GOT0 for a task controller. 

Example 11 -1 1. Computed GOT0 

TITLE COMPUTED GOT0 

TASK CONTROLLER 

THIS MAIN ROUTINE CONTROLS THE ORDER OF TASK EXECUTION (6 TASKS 
IN THE PRESENT EXAMPLE). TASKO THROUGH TASK5 ARE THE NAMES OF 
SUBROUTINES TO BE CALLED. THEY ARE EXECUTED IN ORDER, TASKO, 
TASK1, . . .TASKS. WHEN AN INTERRUPT OCCURS, THE INTERRUPT 
SERVICE ROUTINE IS EXECUTED, AND THE PROCESSOR CONTINUES 
WITH THE INSTRUCTION FOLLOWING THE IDLE INSTRUCTION. THIS 
ROUTINE SELECTS THE TASK APPROPRIATE FOR THE CURRENT CYCLE, 
CALLS THE TASK AS A SUBROUTINE, AND BRANCHES BACK TO THE IDLE 
TO WAIT FOR THE NEXT SAMPLE INTERRUPT WHEN THE SCHEDULED TASK 
HAS COMPLETED EXECUTION. RO HOLDS THE OFFSET FROM THE BASE 
ADDRESS OF THE TASK TO BE EXECUTED. 

LDI 
LDI 

WAIT IDLE 
ADD13 

* 
SUB1 
LDILT 
LDI 
CALLU 
BR 

TSKSEQ .word 
.word 
.word 
.word 
.word 
.word 

ADDR .word 

1,RO 
5,RO 
*AR2, R1 
R 1 
WAIT 

TASK5 
TASK4 
TASK3 
TASK2 
TASKl 
TASKO 
TSKSEQ 

Initialize RO 
AR1 holds base address of the table 
Wait for the next interrupt 
Add the base address to the table 
Entry number 
Decrement RO 
If ROCO, reinitialize it to 5 
Load the task address 
Execute appropriate task 

Address of TASK5 
Address of TASK4 
Address of TASK3 
Address of TASK2 
Address of TASKl 
Address of TASKO 
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11.3 Logical and Arithmetic Operations 

The TMS320C3x instruction set supports both integer and floating-point arith- 
metic and logical operations. The basic functions of such instructions can be 
combined to form more complex operations. This section examines examples 
of these operations: 

Bit manipulation 
a Block moves 
0 Bit-reversed addressing 
a Integer and floating-point division 

Square root 
Extended-precision arithmetic 

a Floating-point format conversion between IEEE and TMS320C3x formats 

11.3.1 Bit Manipulation 

Instructions for logical operations, such as AND, OR, NOT, ANDN, and XOR 
can be used together with the shift instructions for bit manipulation. A special 
instruction, TSTB, tests bits. TSTB performs the same operation as AND, but 
the result of the logical AND is only used to set the condition flags and is not 
written anywhere. Example 11-1 2 and Example 11-1 3 demonstrate the use 
of the several instructions for bit manipulation and testing. 

Example 1 1 - 12. Use of TSTB for Soflware-Controlled Interrupt 

TITLE USE OF TSTB FOR SOFTWARE-CONTROLLED INTERRUPT 

IN THIS EXAMPLE, ALL INTERRUPTS HAVE BEEN DISABLED BY 
RESETTING THE GIE BIT OF THE STATUS REGISTER. WHEN AN 
INTERRUPT ARRIVES, IT IS STORED IN THE IF REGISTER. THE 
PRESENT EXAMPLE ACTIVATES THE INTERRUPT SERVICE ROUTINE INTR 
WHEN IT DETECTS THAT INT2- HAS OCCURRED. 

TSTB 0100b,IF ; Check if bit 2 of IF is set, 
CALLNZ INTR ; and, if so, call subroutine INTR 

Software Applications 1 1  -23 



Logical and Arithmetic Operations 

Example 11-1 3. Copy a Bit From One Location to Another 

* TITLE COPY A BIT FROM ONE LOCATION TO ANOTHER 
* 
* BIT I OF R1 NEEDS TO BE COPIED TO BIT J OF R2. 
* ARO POINTS TO A LOCATION HOLDING I, AND IT IS ASSUMED THAT THE 
* NEXT MEMORY LOCATION HOLDS THE VALUE J. 
* 

LDI 
LSH 
TSTB 
BZD 
LDI 
LSH 
ANDN 
OR 

CONT . 

l,RO 
*ARO , RO ; Shift 1 to align it with bit I 
R1, RO ; Test the Ith bit of R1 
CONT ; If bit = 0, branch delayed 
l,RO 
*+ARO(l),RO ; Align 1 with Jth location 
RO , R2 ; If bit = 0, reeet Jth bit of R2 
RO,R2 ; If bit = 1, set Jth bit of R2 
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11.3.2 Block Moves 

Since the TMS320C3x directly addresses a large amount of memory, blocks 
of data or program code can be stored off-chip in slow memories and then 
loaded on-chip for faster execution. Data can also be moved from on-chip to 
off-chip memory for storage or for multiprocessor data transfers. 

You can use direct memory access (DMA) in parallel with CPU operations to 
accomplish such data transfers. The DMA operation is explained in detail in 
subsection 8.3 on page 8-43. An alternative to DMA is to perform data trans- 
fers under program control using load and store instructions in a repeat mode. 
Example 11-14 shows the transfer of a block of 512 floating-point numbers 
from external memory to block 1 of the on-chip RAM. 

Example 11-1 4. Block Move Under Program Control 

* TITLE BLOCK MOVE UNDER PROGRAM CONTROL 
* 

extern .word OlOOOH 
block1 .word 0809COOH 

LDI @extern,ARO ; Source address 
LDI @blockl,ARl ; Destination address 

LDF *ARO++,RO ; Load the first number 

RPTS 510 ; Repeat following instruction 511 times 
LDF *ARO++,RO ; Load the next number, and... 

I I STF RO,*ARl++ ; store the previous one 

STF RO,*ARl ; Store the last number 

11.3.3 Bit-Reversed Addressing 

The TMS320C3x can implement fast Fourier transforms (FFT) with bit-rev- 
ersed addressing. If the data to be transformed is in the correct order, the final 
result of the FFT is scrambled in bit-reversed order. To recover the frequency- 
domain data in the correct order, you must swap certain memory locations. 
The bit-reversed addressing mode makes swapping unnecessary. The next 
time data needs to be accessed, the access is performed in a bit-reversed 
manner rather than sequentially. The base address of bit-reversed addressing 
must be located on a boundary of the size of the table. For example, if IRO = 
2-1, the n LSBs of the base address must be 0. 
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In bit-reversed addressing, IRO holds a value equal to one-half the size of the 
FFT, if real and imaginary data are stored in separate arrays. During access- 
ing, the auxiliary register is indexed by IRO, but with reverse carry propagation. 
Example 11-15 illustrates a 51 2-point complex FFT being moved from the 
place of computation (pointed at by ARO) to a location pointed at by AR1. In 
this example, real and imaginary parts XR(i) and XI (i) of the data are not stored 
in separate arrays, but they are interleaved XR(O), XI(O), XR(l), XI(1), ..., 
XR(N-I), XI(N-1). Because of this arrangement, the length of the array is 2N 
instead of N, and IRO is set to 512 instead of 256. 

Example 1 1 - 15. Bit-Reversed Addressing 
* 
* TITLE BIT-REVERSED ADDRESSING 
* 
* THIS EXAMPLE MOVES THE RESULT OF THE 512-POINT FFT 
* COMPUTATION POINTED AT BY A R O  TO A LOCATION POINTED AT 
* BY AR1. REAL AND IMAGINARY POINTS ARE ALTERNATING. 

L D I  
L D I  
L D I  
LDF 
RPTB 

LDF 

I I STF 

LOOP LDF 
1 I STF 

512,IRO 
2, I R 1  
511,RC ; Repeat 511+1 t i m e 8  
*+ARO(l),Rl ; Load f i r s t  imaginary point 
LOOP 

*ARO++(IRO)B,RO ; Load r e a l  value (and point 
Rl,*+ARl(l) : t o  next locat ion) and s to re  

I the imaginary value 
*+ARO(l),Rl ; Load next imaginary point  and store 
RO, *M I++  ( I R 1 )  ; previous r e a l  va lue 

11.3.4 lnteger and FloatTng-Point Division 

Although division is not implemented as a single instruction in the 
TMS320C3x, the instruction set has the capacity to perform an efficient divi- 
sion routine. lnteger and floating-point division are examined separately be- 
cause different algorithms are used. 
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11.3.4.1 Integer Division 

Division is implemented on the TMS320C3x by repeated subtractions using 
SUBC, a special conditional subtract instruction. Consider the case of a 32-bit 
positive dividend with i significant bits (and 32 - i sign bits) and a32-bit positive 
divisor with j significant bits (and 32 - j sign bits). The repetition of the SUBC 
command i - j + 1 times produces a 32-bit result in which the lower i - j + 
1 bits are the quotient and the upper 31 - i + j bits are the remainder of the 
division. 

SUBC implements binary division in the same manner that long division imple- 
ments it. The divisor which is assumed to be smaller than the dividend) is 
shifted left i - j times to be aligned with the dividend. Then, using SUBC, the 
shifted divisor is subtracted from the dividend. For each subtraction that does 
not produce a negative answer, the dividend is replaced by the difference. It 
is then shifted to the left, and a 1 is put in the LSB. If the difference is negative, 
the dividend is simply shifted left by 1. This operation is repeated 
i - j + 1 times. 
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As an example, consider the division of 33 by 5, using both long division and 
the SUBC method. In this case, i = 6 ,  j = 3, and the SUBC operation is repeated 
6 - 3 + 1 = 4 times. 

Long Division: 

-1 01 
1101 
-1 01 

11 Remainder 

SUBC Method: 

00000000000000000000000000100001 Dividend 
000000000000000000000000001 01 000 Divisor (Alianed) 

Negative Difference (First  SUB^ command) 

.1 
000000000000000000000000001 0001 0 New Dividend + Quotient 
00000000000000000000000000101000 Divisor 

00000000000000000000OOOOO00110,O Difference (> 0) (Second SUBC Command) 

0000000000000000000000000011 01 01 New Dividend + Quotient 
000000000000000000000000001 01 000 Divisor 

Difference (> 0) (Third SUBC Command) 

.1 
00000000000000000000000000011 01 1 New Dividend + Quotient 
000000000000000000000000001 01 000 Divisor 

Negative Difference (Fourth SUBC Command) 

Remainder 

When the SUBC command is used, both the dividend and the divisor must be 
positive. Example 11-1 6 shows an example of a realization of the integer divi- 
sion in which the sign of the quotient is properly handled. The last instruction 
before returning modifies the condition flag in case subsequent operations de- 
pend on the sign of the result. 
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Example 1 1 - 16. Integer Division 

TITLE INTEGER DIVISION 

SUBROUTINE DIVI 

INPUTS: SIGNED INTEGER DIVIDEND IN RO, 
SIGNED INTEGER DIVISOR IN R1 

OUTPUT: RO/R1 into RO 

REGISTERS USED: RO-R3, IRO, IR1 

OPERATION: 1. NORMALIZE DIVISOR WITH DIVIDEND 
2. REPEAT SUBC 
3. QUOTIENT IS IN LSBs OF RESULT 

CYCLES : 31-62 (DEPENDS ON AMOUNT OF NORMALIZATION) 

.glob1 DIVI 

SIGN .set R2 
TEMPF .set R3 
TEMP .set IRO 
COUNT .set IR1 

* DIVI - SIGNED DIVISION 

DIVI : 

DETERMINE SIGN OF RESULT. GET ABSOLUTE VALUE OF OPERANDS. 
* 

XOR RO,Rl,SIGN ; Get the sign 
ABSI RO 
ABSI R1 

CMPI R0,Rl ; Divisor > dividend ? 
BGTD ZERO ; If so, return 0 

* 

* NORMALIZE OPERANDS. USE DIFFERENCE IN EXPONENTS AS SHIFT COUNT 
* FOR DIVISOR AND AS REPEAT COUNT FOR 'SUBC'. 
* 

FLOAT RO , TEMPF ; Normalize dividend 
PUSHF TEMPF ; PUSH as float 
POP COUNT ; POP as int 
LSH -24, COUNT ; Get dividend exponent 
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FLOAT R 1 ,  TEMPF ; Normalize d i v i s o r  
PUSHF TEMPF ; PUSH a s  f l o a t  
POP TEMP ; POP a s  i n t  
LSH -24,TEMP ; G e t  d i v i s o r  exponent 
SUB1 TEMP,COUNT ; G e t  d i f f e r e n c e  i n  exponents  
LSH COUNT,Rl ; Align d i v i s o r  w i t h  d iv idend  

DO COUNT+l SUBTRACT 6 SHIFTS. 

RPTS COUNT 
SUBC R1,RO 

MASK OFF THE LOWER COUNT+l BITS OF RO. 

SUBRI 3 1, COUNT ; S h i f t  count  i s  (32 - (COUNT+l)) 
LSH COUNT,RO ; S h i f t  l e f t  
NEGI COUNT 
LSH COUNT,RO ; S h i f t  r i g h t  t o  g e t  r e s u l t  

CHECK SIGN AND NEGATE RESULT I F  NECESSARY. 

NEGI R0,Rl ; Negate r e s u l t  
ASH -31,SIGN ; Check s i g n  
LDINZ R1,RO ; I f  set, u s e  n e g a t i v e  r e s u l t  
CMPI 0,RO ; S e t  s t a t u s  from r e s u l t  
RETS 

RETURN 0. 

LDI 0,RO 
RETS 
.end 

If the  dividend is less than the divisor and you want fractional division, you can 
perform a division after you determine the desired accuracy of the quotient in 
bits. If the  desired accuracy is k bits, start by shifting the dividend left by k posi- 
tions. Then apply the algorithm described above, with i replaced by i t k. It is 
assumed that i t k is less than 32. 
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11.3.4.2 Computation of Floating-Poin t inverse and Division 

This section presents a method of implementing floating-point division on the 
TMS320C3x. Since the algorithm outlined here computes the inverse of a 
number v, to perform y / v, multiply y by the inverse of v. 

The computation of 1 / v is based on the following iterative algorithm. At the 
ith iteration, the estimate x [i] of 1 / v  is computed from v and the previous esti- 
mate x [i-1] according to the following formula: 

To start the operation, an initial estimate x [0] is needed. If v = a 26, a good 
initial estimate is 

x [0] = 1.0*2-e-1 

Example 11-1 7 shows the implementation of this algorithm on the 
TMS320C3x1 where the iteration has been applied five times. Both accuracy 
and speed are affected by the number of iterations. The accuracy offered by 
the single-precision floating-point format is 2 - 23 = 1 .I 92E - 7.  If you want 
more accuracy, use more iterations. If you want less accuracy, reduce the 
number of iterations to increase the execution speed. 

This algorithm properly treats the boundary conditions when the input number 
either is 0 or has a very large value. When the input is 0, the exponent 
e = -  128. Then the calculation of x [0] yields an exponent equal to 
- (- 128) -1 = 127, and the algorithm will overflow and saturate. On the other 
hand, in the case of a very large number, e = 127, the exponent of x [O] will be 
- 127 - 1 = - 128. This will cause the algorithm to yield 0, which is a reasonable 
handling of that boundary condition. 
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Example 1 1 - 1 7. Inverse of a Floating-Point Number 
* 
* TITLE INVERSE OF A FLOATING-POINT NUMBER 
* 

SUBROUTINE INVF 

* 
* THE FLOATING-POINT NUMBER V IS STORED IN RO. AFTER THE 

COMPUTATION IS COMPLETED, l/v IS ALSO STORED IN RO. 
* 

TYPICAL CALLING SEQUENCE: 
* LDFv, RO 
* CALL INVF 

* ARGUMENT ASSIGNMENTS: 

* ARGUMENT I FUNCTION 
* 
* RO v = NUMBER TO FIND THE RECIPROCAL OF (UPON THE CALL) 
* RO I l/v (UPON THE RETURN) 

* REGISTER USED AS INPUT: RO 
REGISTERS MODIFIED: RO, R1, R2, R3 
REGISTER CONTAINING RESULT: RO 

* 
CYCLES: 35 WORDS: 32 

* 

.global INVF 
* 
INVF : LDF RO , R3 ; v is saved for later 

ABSF RO ; The algorithm uses v = Ivl 
* 
* EXTRACT THE EXPONENT OF v. 
* 

PUSHF RO 
POP R1 
ASH -24,Rl ; The 8 LSBs of R1 contain the exponent 

; of v 
* 
* x[O] FORMATION IS GIVEN THE EXPONENT OF v. 
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NEGI R1 
SUB1 1,Rl ; Now we have -e-1, the exponent of x[O] 
ASH 24,Rl 
PUSH R1 
POPF R1 ; Now R1 = x[O] = 1.0 * 2**(-e-1) 

* 
NOW THE ITERATIONS BEGIN. 

* 
MPYF Rl,RO,RZ ; R2 = v *  x[O] 
SUBRF 2.01R2 ; R2 = 2.0 - v * x[O] 
MPYF R2,Rl ; R1 = x[l] = x[O] * (2.0 - v * x[O]) 

* 
MPYF Rl,RO,R2 ; R2 = v * x[l] 
SUBRF 2.01R2 ; R2 = 2.0 - v * x[l] 
MPYF R2,Rl ; R1 = x[2] = x[l] * (2.0 - v ~ [ l ] )  * 
MPYF Rl,RO,RZ ; R2 = v * x[2] 
SUBRF 2.0,RZ ; R2 = 2.0 - v * x[2] 
MPYF R2,Rl ; R1 = x[3] = x[2] * (2.0 - v * x[2]) 

MPYF Rl,RO,R2 ; R2 = v *  x[3] 
SUBRF 2.01R2 ; R2 = 2.0 - v  * x[3] 
MPYF R2,Rl ; R1 x[4] x[3] * (2.0 - v x[3]) 

RND R1 ; Thie minimizes error in the LSBe 
* 
* FOR THE LAST ITERATION WE USE THE FORMULATION: 
* x[5] = (x[4] (1.0 - (v x[4]))) + x[4] 
* 

MPYF RlIR0,R2 ; R2 = v * x[4] = 1.0..01.. => 1 
SUBRF 1.0,RZ ; R2 = 1.0 - v * x[4] = 0.0..01... => 0 
MPYF Rl,R2 ; R2 I x[4] * (1.0 - v * ~ [ 4 ] )  
ADDF R2,Rl ; R2 E x[5] t (~[4]*(1.0-(v*x[~])))+x[~] 

* 
RNDR1,RO ; Round eince thie is followed by a MPYF 

* 
* NOW THE CASE OF v < 0 IS HANDLED. 
* 

NEGF RO ,R2 
LDF R3,R3 ; Thie eete condition flage 
LDFN R2,RO ; If v < 0, then RO = -RO 

* 
RETS 

* 
* END 
* 

.end 
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11.3.5 Square Root 

An iterative algorithm computes square root on the TMS320C3x and is similar 
to the one used for the computation of the inverse. This algorithm computes 
the inverse of the square root of a number v, 1 / SQRT(v). To derive SQRT(v), 
multiply this result by v. Since in many applications, division by the square root 
of a number is desirable, the output of the algorithm saves the effort to compute 
the inverse of the square root. 

At the ith iteration, the estimate x[i] of 1 / SQRT(v) is computed from v and the 
previous estimate x[i-1] according to this formula: 

To start the operation, an initial estimate x[O] is needed. If v = a * 2e, a good 
initial estimate is 

x [O] = 1.0*2-812 

Example 11-18 shows the implementation of this algorithm on the 
TMS320C3x, where the iteration has been applied five times. Both accuracy 
and speed are affected by the number of iterations. If you want more accuracy, 
use more iterations. If you want less accuracy, reduce the number of iterations 
to increase the execution speed. 
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Example 1 1 - 18. Square Root of a Floating-Point Number 

TITLE SQUARE ROOT OF A FLOATING-POINT NUMBER 

SUBROUTINE SQRT 

THE FLOATING POINT NUMBER v IS STORED IN RO. AFTER THE 
COMPUTATION IS COMPLETED, SQRT(v) IS ALSO STORED IN RO. NOTE 
THAT THE ALGORITHM ACTUALLY COMPUTES l/SQRT(v). 

TYPICAL CALLING SEQUENCE: 

LDF v, RO 
CALL SQRT 

ARGUMENT ASSIGNMENTS: 

ARGUMENT I FUNCTION 

RO I v = NUMBER TO FIND THE SQUARE ROOT OF 
I (UPON THE CALL) 

RO I SQRT(v) (UPON THE RETURN) 

REGISTER USED AS INPUT: RO 
REGISTERS MODIFIED: RO, R1, R2, R3 
REGISTER CONTAINING RESULT: RO 

CYCLES: 50 WORDS: 39 

.global SQRT 

EXTRACT THE EXPONENT OF V. 
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SQRT : LDF RO , R3 ; Save v 
RETSLE ; Return if number is non-positive 
PUSHF RO 
POP Rl 
ASH -24 ,R1 ; The 8 LSBs of R1 contain exponent of v 
ADD1 1,Rl ; Add a rounding bit in the exponent 
ASH -1,Rl ; e/2 

* 
* X[O] FORMATION GIVEN THE EXPONENT OF V. 
* 

NEGI R1 
ASH 24,Rl 
PUSH R1 
POPF R1 ; Now R1 = x[O] = 1.0 * 2**(-e/2) 

* 
* GENERATE V/2. 
* 

MPYF 0.5,RO ; V/2 and take rounding bit out 
* 
* NOW THE ITERATIONS BEGIN. 
* 

MPYF Rl,Rl,R2 ; R2 = x[0] * x[O] 
MPYF ROIR2 ; R2 = (v/2) * x[O] * x[O] 
SUBRF 1.5,RZ ; R2 = 1.5 - (v/2) x[O] x[O] 

MPYF R2,Rl ; R1 = x[1] = x[O] * 
* ; (1.5 - (v/2)*x[O]*x[O]) 

RND R1 
MPYF Rl,Rl,R2 ; R2 = x[l] x[l] 
MPYF RO,R2 ; R2 = (v/2) * x[l] * x[l] 
SUBRF 1.5,R2 ; R2 = 1.5 - (v/2) * x[l] * x[l] 
MPYF R2,Rl ; R1 = x[2] = x[l] * 

* ; (1.5 - (v/2)*x[l]*x[l]) 
RND R1 
MPYF Rl,Rl,R2 ; R2 = x[2] * x[2] 
MPYF RO,R2 ; R2 = (v/2) x[2] * x[2] 
SUBRF 1.5,RZ ; R2 = 1.5 - (v/2) * x[2] * x[2] 
MPYF R2,Rl ; R1 = x[3] = x[2] 

* i *(1.5 - (v/2)*x[2]*x[2]) 
RND R1 

* 
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MPYF 
MPYF 
SUBRF 
MPYF 

RND 

MPYF 
MPYF 
SUBRF 
MPYF 

RND 

MPYF 

RETS 

end 

.end 

Round 

Sqrt(v) from sqrt(v**(-1)) 
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11.3.6 Extended-Precision Arithmetic 

The TMS320C3x offers 32 bits of precision for integer arithmetic and 24 bits 
of precision in the mantissa for floating-point arithmetic. For higher precision 
in floating-point operations, the eight extended-precision registers R7 to RO 
contain eight additional bits of accuracy. Since no comparable extension is 
available for fixed-point arithmetic, this section shows how you can achieve 
fixed-point double precision by using the capabilities of the processor. The 
technique consists of performing the arithmetic by parts (which is similar to 
performing longhand arithmetic). 

In the instruction set, operations ADDC (add with carry) and SUBB (subtract 
with borrow) use the status carry bit for extended-precision arithmetic. The 
carry bit is affected by the arithmetic operations of the ALU and by the rotate 
and shift instructions. It can also be manipulated directly by setting the status 
register to certain values. For proper operation, the overflow mode bit should 
be reset (OVM = 0) so that the accumulator results are not loaded with the sat- 
uration values. Example 11-1 9 and Example 11 -20 show 64-bit addition and 
64-bit subtraction. The first operand is stored in the registers RO (low word) and 
R1 (high word). The second operand is stored in R2 and R3. The result is 
stored in RO and R1. 
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Example 1 1 - 19. 64-Bit Addition 
TITLE 64-BIT ADDITION 

TWO 64-BIT NUMBERS ARE ADDED TO EACH OTHER, PRODUCING 
A 64-BIT RESULT. THE NUMBERS X (R1,RO) AND Y (R3,RZ) ARE 
ADDED, RESULTING IN W (R1,RO). 

ADD1 R2,RO 
ADDC R3,Rl 

Example 1 1-20. 64-Bit Subtraction 
TITLE 64-BIT SUBTRACTION 

TWO 64-BIT NUMBERS ARE SUBTRACTED FROM EACH OTHER 
PRODUCING A 64-BIT RESULT. THE NUMBERS X (R1,RO) AND 
Y (R3,RZ) ARE SUBTRACTED, RESULTING IN W (R1,RO). 

SUB1 R2,RO 
SUBB R3,Rl 

When two 32-bit numbers are multiplied, a 64-bit product results. The proce- 
dure for multiplication is to split the 32-bit magnitude values of the multiplicand 
X and the multiplier Y into two parts (XI ,XO) and (X3,X2), respectively, with 16 
bits each. The operation is done on unsigned numbers, and the product is ad- 
justed for the sign bit. Example 11-21 shows the implementation of a 32-bit by 
32-bit multiplication. 
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Example 1 1-2 1. 32- Bit-by-32- Bit Multiplication 

TITLE 32 BIT X 32 BIT MULTIPLICATION 

SUBROUTINE EXTMPY 

FUNCTION: TWO 32-BIT NUMBERS ARE MULTIPLIED, PRODUCING A 64-BIT 
RESULT. THE TWO NUMBERS (X and Y) ARE EACH SEPARATED INTO TWO 
PARTS (X1 XO) AND (Y1 YO), WHERE XO, XI, YO, AND Y1 ARE 16 BITS. 
THE TOP BIT IN X1 AND Y1 IS THE SIGN BIT. THE PRODUCT IS 
IN TWO WORDS (WO AND Wl). THE MULTIPLICATION IS PERFORMED ON 
POSITIVE NUMBERS, AND THE SIGN IS DETERMINED AT THE END. 

X1 XO BITS OF PRODUCTS 

X Y1 Yo (NOT COUNTING SIGN) PRODUCT 

ARGUMENT ASSIGNMENTS: 

ARGUMENT I FUNCTION 
I 

RO I MULTIPLIER AND LOW WORD OF THE PRODUCT 
R1 I MULTIPLICAND AND UPPER WORD OF THE PRODUCT 

REGISTERS USED AS INPUT: RO, R1 
REGISTERS MODIFIED: RO, R1, R2, R3, R4, ARO, AR1 
REGISTER CONTAINING RESULT: R0,Rl 
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* CYCLES: 28 (WORST CASE) WORDS: 25 

.global EXTMPY 

EXTMPY XOR3 RO,Rl,ARO ; Store sign 
ABSI RO ; Absolute values of X 
ABSI R1 i and Y 

* 
* SEPARATE MULTIPLIER AND MULTIPLICAND INTO TWO PARTS 
* 

LDI -16,ARl 
LSH3 AR1, RO , R2 ; R2 = X1 = upper 16 bite of X 
AND OFFFFH ,RO ; RO = XO = lower 16 bits of X 
LSH3 AR1,Rl1R3 ; R3 = Y1 = upper 16 bits of Y 
AND OFFFFH,Rl ; R 1 =  YO = lower 16 bits of Y 

* 
* CARRY OUT THE MULTIPLICATION 
* 

MPYI 
MPY I 
ADDI 
MPYI 

LD I 
LSH 
CMPI 
BGED 

R3,RO 
R2, R1 
R0,Rl 
R2, R3 

R1,RZ 
16,RZ 
0 ,ARo 
DONE 

LSH -16,Rl 
ADD13 R4, R2, RO 
ADDC3 Rl,R3,Rl 

* 
NEGATE THE PRODUCT 

NOT RO 
ADDI 1,RO 
NOT Rl 
ADDC 0,Rl 

i 
i 
i 
; 

i 
; 
i 
i 
; 
I 

i 

IF THE 

Lower 16 bits of P2tP3 
Check the sign of the product 
If >O, multiplication complete 

(delayed) 
Upper 16 bits of P2tP3 
WO = RO = lower word of the product 
W1 = R1 = upper word of the product 

NUMBERS ARE OF OPPOSITE SIGNS 

DONE RETS 
.end 
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11.3.7 IEEErTMS320C3x Floating-Point Format Conversion 

The fast version of the IEEE-to-TMS320C3x conversion routine was originally 
developed by Keith Henry of Apollo Computer, Inc. The other routines were 
based on this initial input. 

In fixed-point arithmetic, the binary point that separates the integer from the 
fractional part of the number is fixed at a certain location. For example, if a 
32-bit number has the binary point after the most significant bit (which is also 
the sign bit), only fractional numbers (numbers with absolute values less than 
I),  can be represented. In other words, there is a number called aQ31 number, 
which is a number with 31 fractional bits. All operations assume that the binary 
point is fixed at this location. the fixed-point system, although simple to imple- 
ment in hardware, imposes limitations in the dynamic range of the represented 
number, which causes scaling problems in many applications. You can avoid 
this difficulty by using floating-point numbers. 

A floating-point number consists of a mantissa m multiplied by base b raised 
to an exponent e: 

In current hardware implementations, the mantissa is typically a normalized 
number with an absolute value between 1 and 2, and the base is b = 2. Al- 
though the mantissa is represented as a fixed-point number, the actual value 
of the overall number floats the binary point because of the multiplication by 
be. The exponent e is an integer whose value determines the position of the 
binary point in the number. IEEE has established a standard format for the re- 
presentation of floating-point numbers. 

To achieve higher efficiency in hardware implementation, the TMS320C3x 
uses a floating-point format that differs from the IEEE standard. This section 
briefly describes the two formats and presents software routines to convert be- 
tween them. 

TMS320C3x floating-point format: 
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In a 32-bit word representing a floating-point number, the first eight bits corre- 
spond to the exponent expressed in two's-complement format. There is one 
bit for sign and 23 bits for the mantissa. The mantissa is expressed in two's- 
complement form, with the binary point after the most significant nonsign bit. 
Since this bit is the complement of the sign bit s, it is suppressed. In other 
words, the mantissa actually has 24 bits. A special case occurs when 
e = -1 28. In this case, the number is interpreted as 0, independently of the 
values of s and f (which are set to 0 by default). To summarize, the values of 
the represented numbers in the TMS320C3x floating-point format are as fol- 
lows: 

2e * (01 .f) i f s =  0 
2e * (1 0.9 i f s =  1 
0 i fe  = -128 

IEEE floating-point format: 

The IEEE floating-point format uses sign-magnitude notation for the mantissa, 
and the exponent is biased by 127. In a 32-bit word representing a 
floating-point number, the first bit is the sign bit. The next eight bits correspond 
to the exponent, which is expressed in an offset-by-127 format (the actual ex- 
ponent is e-127). The following 23 bits represent the absolute value of the 
mantissa with the most significant 1 implied. The binary point is after this most 
significant 1. In other words, the mantissa actually has 24 bits. There are sev- 
eral special cases, summarized below. 

These are the values of the represented numbers in the IEEE floating-point 
format: 

Special cases: 

(-1)s * 0.0 
( - l )~ *2 -126*  (0.0 
(-1)s * infinity 
NaN (not a number) 

if e = 0 and f = 0 (zero) 
if e = 0 and f < > 0 (denormalized) 
if e = 255 and f = 0 (infinity) 
if e = 255andf < > O  

Based on these definitions of the formats, two versions of the conversion rou- 
tines were developed. One version handles the complete definition of the for- 
mats. The other ignores some of the special cases (typically the ones that are 
rarely used), but it has the benefit of executing faster than the complete con- 
version. For this discussion, the two versions are referred to as the complete 
version and the fast version, respectively. 
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11.3.7.1 IEEE-to-TMS320C3x Floating-Point Format Conversion 

Example 11 -22 shows the fast conversion from IEEE to TMS320C3x floating- 
point format. It properly handles the general case when 0 < e < 255, and also 
handles 0s (that is, e = 0 and f = 0). The other special cases (denormalized, 
infinity, and NaN) are not treated and, if present, will give erroneous results. 

Example 11-22. IEEE-to-TMS320C3x Conversion (Fast Version) 

TITLE IEEE TO TMS320C3x CONVERSION (FAST VERSION) 

SUBROUTINE FMIEEE 

FUNCTION: CONVERSION BETWEEN THE IEEE FORMAT AND THE 
TMS320C3x FLOATING-POINT FORMAT. THE NUMBER TO 
BE CONVERTED IS IN THE LOWER 32 BITS OF RO. 
THE RESULT IS STORED IN THE UPPER 32 BITS OF RO. 
UPON ENTERING THE ROUTINE, AR1 POINTS TO THE 
FOLLOWING TABLE: 

* ARGUMENT ASSIGNMENTS: 

* ARGUMENT I FUNCTION 
* 
* RO I NUMBER TO BE CONVERTED 
* AR1 ( POINTER TO TABLE WITH CONSTANTS 
* 
* REGISTERS USED AS INPUT: RO, AR1 
* REGISTERS MODIFIED: RO, R1 
* REGISTER CONTAINING RESULT: RO 
* 

* NOTE: SINCE THE STACK POINTER SP IS USED, MAKE SURE TO 
* INITIALIZE IT IN THE CALLING PROGRAM. 
* 

* CYCLES: 12 (WORST CASE) WORDS: 12 
* 

.global FMIEEE 
* 
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FMIEEE AND3 
BND 
ADD1 

* 
NEG 

LDIZ 
SUB1 
PUSH 
POPF 
RETS 

PUSH 
POPF 
NEGF 
RETS 

RO,*ARl,Rl 
NEG 
RO , Rl 

; Replace fraction with 0 
; Test sign 
; Shift sign 
i and exponent inserting 0 
; If all 0 ,  generate C30 0 
; Unbiaa exponent 

; Load this as a flt. pt. number 

; Load this as a flt. pt. number 
; Negate if orig. sign is negative 
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Example 11-23 shows the complete conversion between the IEEE and 
TMS320C3xformats. In addition to the general case and the Os, it handles the 
special cases as follows: 

If NaN (e = 255, fc >O), the number is returned intact. 

a If infinity (e = 255, f = 0), the output is saturated to the most positive or 
negative number, respectively. 

Q If denormalized (e = 0, fc >0), two cases are considered. If the MSB of 
f is 1, the number is converted to TMS320C3x format. Otherwise, an un- 
derflow occurs, and the number is set to 0. 

Example 1 1-23. IEEE-to- TMS320C3x Conversion (Complete Version) 

* TITLE IEEE TO TMS320C3x CONVERSION (COMPLETE VERSION) 
* 

* SUBROUTINE FMIEEEl 
* 

* FUNCTION: CONVERSION BETWEEN THE IEEE FORMAT AND THE TMS320C3x 
* FLOATING-POINT FORMAT. THE NUMBER TO BE CONVERTED 
* IS IN THE LOWER 32 BITS OF RO. THE RESULT IS STORED 
* IN THE UPPER 32 BITS OF RO. 
* 

* UPON ENTERING THE ROUTINE, AR1 POINTS TO THE FOLLOWING TABLE: 

* ARGUMENT ASSIGNMENTS: 

* ARGUMENT I FUNCTION 
* 
* RO I NUMBER TO BE CONVERTED 
* AR1 I POINTER TO TABLE WITH CONSTANTS 
* 

* REGISTERS USED AS INPUT: RO, AR1 
* REGISTERS MODIFIED: RO, R1 
* REGISTER CONTAINING RESULT: RO 
* 
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NOTE: SINCE THE STACK POINTER SP IS USED, MAKE SURE TO 
* INITIALIZE IT IN THE CALLING PROGRAM. 
* 

* CYCLES: 23 (WORST CASE) WORDS: 34 
* 

.global FMIEEEl 

FMIEEEl LDI RO,R1 
AND *+ARl(S),Rl 
BZ UNNORM 
* 
XOR *+ARl(S),Rl 
BNZ NORMAL 

; If e = 0, number is either 0 or 
i denormalized 

; If e < 255, use regular routine 

* HANDLE NaN AND INFINITY 

TSTB *+AR1(7),RO 
RETSNZ ; Return if NaN 
LDI R0,RO 

LDFGT *+ARl(E),RO ; If positive, infinity = 
i most positive number 

LDFN *+ARl(S),RO ; If negative, infinity = 
RETS ; most negative number RETS 

* HANDLE 0s AND UNNORMALIZED NUMBERS 

UNNORM TSTB *+AR1(6),RO ; Is the MSB of f equal to I? 
LDFZ *+AR1(3),RO ; If not, force the number to 0 
RETSZ ; and return 

XOR 
BND 
LSH 

SUB1 
PUSH 
POPF 
RETS 

NEG 1 POPF 
NEGF 
RETS 

*+ARl(C),RO ; If MSB of f = 1, make it 0 
NEGl 
1,RO ; Eliminate sign bit 

; 6 line up mantissa 
*+ARl(Z),RO ; Make e = -127 
RO 
RO ; Put number in floating point format 

RO 
RO , RO ; If negative, negate RO 
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HANDLE THE REGULAR CASES 
* 
NORMAL AND3 RO,*ARl,Rl ; Replace fraction with 0 

BND NEG ; Test sign 
ADD1 R0,Rl ; Shift sign and exponent inserting 0 
SUB1 *+ARl(Z),Rl ; Unbias exponent 
PUSH R1 
POPF RO ; Load this as a flt. pt. number 
RETS 

NEG POPF RO ; Load this as a flt. pt. number 
NEGF R0,RO ; Negate if original sign negative 
RETS 



Loaical and Arithmetic Oaerations 

11.3.7.2 TMS320C3x-to-IEEE Floating-Point Format Converslon 

The vast majority of the numbers represented by the TMS320C3x 
floating-point format are covered by the general IEEE format and the repre- 
sentation of 0s. The only special case is e = -1 27 in the TMS320C3x format; 
this corresponds to a denormalized number in IEEE format. It is ignored in the 
fast version, while it is treated properly in the complete version. 
Example 11-24 shows the fast version, and Example 11-25 shows the com- 
plete version of the TMS320C3x-to-IEEE conversion. 

Example 11-24. TMS320C3x-to-IEEE Conversion (Fast Version) 

* 
* TITLE TMS320C3x TO IEEE CONVERSION (FAST VERSION) 
* 
* 
* SUBROUTINE TOIEEE 
* 
* FUNCTION: CONVERSION BETWEEN THE TMS320C3x FORMAT AND THE IEEE 
* FLOATING-POINT FORMAT. THE NUMBER TO BE CONVERTED 

I S  IN THE UPPER 32  BITS OF RO. THE RESULT WILL BE IN 
* THE LOWER 32  BITS OF RO. 
* 

* UPON ENTERING THE ROUTINE, AR1 POINTS TO THE FOLLOWING TABLE: 

* ( 0 )  OxFF800000 <-- AR1 
* ( 1 )  O ~ F F 0 0 0 0 0 0  
* ( 2 )  0x7F000000 
* ( 3 )  0x80000000 
* ( 4 )  0x81000000 
* 

* ARGUMENT ASSIGNMENTS: 

* ARGUMENT I FUNCTION 
I 

* RO I NUMBER TO BE CONVERTED 
* AR1 I POINTER TO TABLE WITH CONSTANTS 

REGISTERS USED AS INPUT: RO, ARI 
* REGISTERS MODIFIED: RO 
* REGISTER CONTAINING RESULT: RO 
* 

* NOTE: SINCE THE STACK POINTER 'SP'  I S  USED, MAKE SURE TO 
* INITIALIZE I T  I N  THE CALLING PROGRAM. 
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CYCLES: 14 (WORST CASE) 
* 

.global TOIEEE 
* 
TOIEEE LDF R0,RO 

LDFZ *+AR1(4),RO 
BND NEG 
ABSF RO 
LSH 1,RO 
PUSHF RO 
POP RO 
ADDI *+AR1(2),RO 
LSH -l,RO 
RETS 

WORDS: 15 

; Determine the sign of the number 
; If 0, load appropriate number 
; Branch to NEG if negative (delayed) 
; Take the absolute value of the number 
; Eliminate the sign bit in RO 

; Place number in lower 32 bits of RO 
; Add exponent bias (127) 
; Add the positive sign 

NEG POP RO ; Place number in lower 32 bite 
; of RO 

ADD1 *+AR1(2),RO ; Add exponent bias (127) 
LSH -l,RO ; Make space for the sign 
ADD1 *+AR1(3) ,RO ; Add the negative sign 
RETS 
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Example 1 1-25. TMS320C3x-to-IEEE Conversion (Complete Version) 

TITLE TMS320C3x TO IEEE CONVERSION (COMPLETE VERSION) 

SUBROUTINE TOIEEEl 

FUNCTION: CONVERSION BETWEEN THE TMS320C3x FORMAT AND THE IEEE 
FLOATING-POINT FORMAT. THE NUMBER TO BE CONVERTED 
IS IN THE UPPER 32 BITS OF RO. THE RESULT WILL BE 
IN THE LOWER 32 BITS OF RO. 

UPON ENTERING THE ROUTINE, AR1 POINTS TO THE FOLLOWING TABLE: 

ARGUMENT ASSIGNMENTS: 

ARGUMENT I FUNCTION 

RO I NUMBER TO BE CONVERTED 
AR1 I POINTER TO TABLE WITH CONSTANTS 

REGISTERS USED AS INPUT: RO, AR1 
REGISTERS MODIFIED: RO 
REGISTER CONTAINING RESULT: RO 

NOTE: SINCE THE STACK POINTER 'SP1 IS USED, MAKE SURE TO 
INITIALIZE IT IN THE CALLING PROGRAM. 

CYCLES: 31 (WORST CASE) WORDS: 25 

.global TOIEEEl 
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TOIEEEl LDF ROIRO ; 
LDFZ *+AR1(4),RO ; 
BND NEG i 
ABSF RO i 

; 
LSH 1,RO i 
PUSHF RO 
POP RO i 
ADDI *+ARl(Z),RO ; 
LSH -1,RO ; 

CONT TSTB *+AR1(5 ) , RO 
RETSNZ i 
TSTB *+AR1(7),RO 
RETSZ I 

PUSH RO 
POPF RO 
LSH -1,RO i 
PUSHF RO 
POP RO 
ADDI *+AR1(6),RO ; 
RETS 

NEG POP RO I 

BRD CONT 
ADDI *+ARI(2),RO ; 
LSH -1,RO i 
ADDI *+AR1(3),RO ; 
RETS 

Determine the sign of the number 
If 0, load appropriate number 
Branch to NEG if negative (delayed) 
Take the absolute value 

of the number 
Eliminate the sign bit in RO 

Place number in lower 32 bits of RO 
Add exponent bias (127) 
Add the positive sign 

If e > 0, return 

If e = 0 & f = 0, return 

Shift f right by one bit 

Add 1 to the MSB of f 

Place number in lower 32 bits of RO 

Add exponent bias (127) 
Make space for the sign 
Add the negative sign 
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11.4 Application-Oriented Operations 

Certain features of the TMS320C3x architecture and instruction set facilitate 
the solution of numerically intensive problems. This section presents exam- 
ples of applications using these features, such as companding, filtering, FFTs, 
and matrix arithmetic. 

11.4.1 Companding 

In telecommunications, conserving channel bandwidth while preserving 
speech quality is a primary concern. This is achieved this by quantizing the 
speech samples logarithmically. An 8-bit logarithmic quantizer produces 
speech quality equivalent to a 13-bit uniform quantizer. The logarithmic quanti- 
zation is achieved by companding (COMpressIexPANDing). Two international 
standards have been established for companding: the p-law standard (used 
in the United States and Japan), and the A-law standard (used in Europe). De- 
tailed descriptions of p law and A law companding are presented in an applica- 
tion report on companding routines included in the book Digital Signal Pro- 
cessing Applications with the TMS320 Family (literature number SPRA012A). 

During transmission, logarithmically compressed data in sign-magnitude form 
is transmitted along the communications channel. If any processing is neces- 
sary, you should expand this data to a 14-bit (for p law) or 13-bit (for A law) 
linear format. This operation is performed when the data is received at the digi- 
tal signal processor. After processing, the result is compressed back to 8-bit 
format and transmitted through the channel to continue transmission. 

Example 11-26 and Example 11-27 show p-law compression and expansion 
(that is, linear to p-law and p-law to linear conversion), while Example 11-28 
and Example 11 -29 show A-law compression and expansion. For expansion, 
using a look-up table is an alternative approach. A look-up table trades 
memory space for speed of execution. Since the compressed data is eight bits 
long, you can construct a table with 256 entries containing the expanded data. 
If the compressed data is stored in the register ARO, the following two instruc- 
tions will put the expanded data in register RO: 

ADD1 @TABL,ARO ; @TABL = BASE ADDRESS OF TABLE 
LDI *ARO RO ; PUT EXPANDED NUMBER IN RO 

You could use the same look-up table approach for compression, but the re- 
quired table length would then be 16,384 words for p-law or 8,192 words for 
A-law. If this memory size is not acceptable, use the subroutines presented in 
Example 11-26 or Example 11 -28. 
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Example 11-26. p-Law Compression 
* 

TITLE U-LAW COMPRESSION 
* 
* 
* SUBROUTINE MUCMPR 
* 
* 

* ARGUMENT ASSIGNMENTS: 

* ARGUMENT 1 FUNCTION 

* RO I NUMBER TO BE CONVERTED 
* 
* REGISTERS USED AS INPUT: RO 
* REGISTERS MODIFIED: RO, R1, R2, SP 
* REGISTER CONTAINING RESULT: RO 
* 

* NOTE: SINCE THE STACK POINTER 'SP' IS USED IN THE COMPRESSION 
* ROUTINE 'MUCMPR', MAKE SURE TO INITIALIZE IT IN THE 

CALLING PROGRAM. 
* 

* CYCLES: 20 WORDS: 17 
* 
* 

.global MUCMPR 
* 
MUCMPR LDI R0,Rl ; Save sign of number 

ABSI R0,RO 
CMPI lFDEH,RO ; If RbOxlFDE, 
LDIGT lFDEH, RO ; saturate the result 
ADD1 33,RO ; Add bias 

FLOAT RO ; Normalize: (seg+5)0WXYZx ... x 
MPYF 0.03125,RO ; Adjust segment number by 2**(-5) 
LSH 1,RO ; (seg)WXYZx...x 
PUSHF RO 
POP RO ; Treat number as integer 
LSH -20,RO ; Right-justify 

LDI O,R2 
LDI R1,Rl ; If number is negative, 
LDILT 80H,R2 I set sign bit 
ADD1 R2,RO ; RO = compressed number 
NOT RO ; Reverse all bits for transmission 
RETS 



Example 11-27. p-La w Expansion 
4 

* TITLE U-LAW EXPANSION 

* 
SUBROUTINE MUXPND 

* 

* ARGUMENT ASSIGNMENTS: 
* 

* ARGUMENT 1 FUNCTION 

* RO 1 NUMBER TO BE CONVERTED 
* 
* REGISTERS USED AS INPUT: RO 
* REGISTERS MODIFIED: RO, R1, R2, SP 
* REGISTER CONTAINING RESULT: RO 
4 

* 
* CYCLES: 20 (WORST CASE)WORDS: 14 
* 

.global MUXPND 
* 
MUXPND NOT ROIRO 

LDI ROIRl 
AND OFH,Rl 
LSH 1,Rl 
ADD1 33,Rl 
LDI RO,R2 
LSH -4,R0 
AND 7,R0 
LSH3 RO,Rl,RO 
SUB1 33,RO 
TSTB 80H1R2 
RETSZ 
NEGI RO 
RETS 

Complement bits 

Isolate quantization bin 

Add bias to introduce lxxxxl 
Store for sign bit 

Isolate segment code 
Shift and put result in RO 
Subtract bias 
Test sign bit 

Negate if a negative number 
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Example 1 1-28. A-Law Compression 
* 
* TITLE A-LAW COMPRESSION 
* 

* SUBROUTINE ACMPR 
* 

* ARGUMENT ASSIGNMENTS: 

* ARGUMENT I FUNCTION 

* RO I NUMBER TO BE CONVERTED 

* REGISTERS USED AS INPUT: RO 
REGISTERS MODIFIED: RO, R1, R2, SP 

* REGISTER CONTAINING RESULT: RO 
* 
* NOTE: SINCE THE STACK POINTER 'SP' IS USED IN THE COMPRESSION 
* ROUTINE 'ACMPR', MAKE SURE TO INITIALIZE IT IN THE 
* CALLING PROGRAM. 
* 

* CYCLES:ZZ WORDS: 19 

* 
.global ACMPR 

* 
ACMPR LDI RO , R1 ; Save sign of number 

ABSI R0,RO 
CMPI lFH, RO ; If R0<0x20, 
BLED END ; do linear coding 
CMPI OFFFH, RO ; If RO>OxFFF, 
LDIGT OFFFH, RO ; saturate the result 
LSH -1,RO ; Eliminate rightmost bit 

FLOAT RO ; Normalize: (seg+3)0WXYZx. ..x 
MPYF 0.125,RO ; Adjust segment number by 2**(-3) 
LSH 1, RO ; (seg)wxYzx...x 
PUSHF RO 
POP RO ; Treat number as integer 
LSH -20,RO ; Right-justif y 

END LDI 0,RZ 
LDI R1,Rl ; If number is negative, 
LDILT 80H,R2 I set sign bit 
ADD1 R2,RO ; RO = compressed number 
XOR OD5H,RO ; Invert even bits 

; for transmission 
RETS 
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Example 1 1-29. A- Law Expansion 

* TITLE A-LAW EXPANSION 
* 

SUBROUTINE AXPND 
* 

* ARGUMENT ASSIGNMENTS: 

ARGUMENT 1 FUNCTION 
* 

RO ( NUMBER TO BE CONVERTED 
* 
* REGISTERS USED AS INPUT: RO 

REGISTERS MODIFIED: RO, R1, R2, SP 
* REGISTER CONTAINING RESULT: RO 
* 

CYCLES: 25 (WORST CASE)WORDS: 16 
* 
* 

.global AXPND 

AXPND XOR 
LDI 
AND 
LSH 
LDI 
LSH 
AND 
BZ 
SUB1 
ADDI 

SKIPl ADDI 
LSH3 
TSTB 
RETSZ 
NEGI 
RETS 

DSH, RO 
RO,R1 
OFH ,Rl 
1,Rl 
RO , R2 
-4,RO 
7 ,RO 
SKIPl 
1,RO 
32,Rl 
1,Rl 
RO,Rl,RO 
80H,R2 

Invert even bits 

Isolate quantization bin 

Store for bit sign 

Isolate segment code 

Create lxxxxl 
OR Oxxxxl 
Shift and put result in RO 
Test sign bit 

Negate if a negative number 
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11.4.2 FIR, IIR, and Adaptive Filters 

Digital filters are a common requirement for digital signal processing systems. 
There are two types of digital filters: finite impulse response (FIR) and infinite 
impulse response (IIR). Each of these types can have either fixed or adaptable 
coefficients. This section presents the fixed-coefficient filters first, followed by 
the adaptive filters. 

11.4.2.1 FIR Filters 

If the FIRfilter has an impulse response h [0], h [I], ..., h [N -11, and x[n] repre- 
sents the input of the filter at time n, the output y [n] at time n is given by this 
equation: 

y[n] = h  [O] x[n] + h [ l ]  x[n-11 + ... + h [N-11 x [n- (N-I)] 

Two features of the TMS320C3x that facilitate the implementation of the FIR 
filters are parallel multiplyladd operations and circular addressing. The former 
permits the performance of a multiplication and an addition in a single machine 
cycle, while the latter makes a finite buffer of length N sufficient for the data x. 

Figure 11-1 shows the arrangement of the memory locations necessary to im- 
plement circular addressing, while Example 11-30 presents the TMS320C3x 
assembly code for an FIR filter. 

Figure 1 1 - 1. Data Memory Organization for an FIR Filter 
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To set up circular addressing, initialize the block-size register BK to block 
length N. Also, the locations for signal x should start from a memory location 
whose address is a multiple of the smallest power of 2 that is greater than N. 
For instance, if N = 24, the first address for x should be a multiple of 32 (the 
lowest five bits of the beginning address should be 0). See Section 5.3 on page 
5-24 for more information. 



Application-Oriented Operations 

In Example 1130, the pointer to the input sequence x is incremented and is 
assumed to be moving from an older input to a newer input. At the end of the 
subroutine, AR1 will be pointing to the position for the next input sample. 

Example 1 1-30. FIR Filter 

* TITLE FIR FILTER 
* 
* 
* SUBROUTINE FIR 
* 
* EQUATION: y(n) = h(0) * x(n) + h(1) * x(n-1) + 
t ... + h(N-1) x(n-(N-1)) 
* 
* TYPICAL CALLING SEQUENCE: 
* 
* LOAD ARO 
* LOAD AR1 
* LOAD RC 
* LOAD BK 
* CALL FIR 
* 

* ARGUMENT ASSIGNMENTS: 

* ARGUMENT I FUNCTION 
L 

ARO I ADDRESS OF h(N-1) 
* AR1 I ADDRESS OF ~(n-(N-1)) 
* RC I LENGTH OF FILTER - 2 (N-2) 

BK I LENGTH OF FILTER (N) 
* 
* REGISTERS USED AS INPUT: ARO, AR1, RC, BK 
* REGISTERS MODIFIED: RO, R2, ARO, AR1, RC 
* REGISTER CONTAINING RESULT: Ro 
* 
* 
* CYCLES: 11 + (N-1) WORDS: 6 
* 
* 

.global FIR 

; Initialize RO: 
FIR MPYF3 *ARO++(1),*AR1++(1)%,RO 

* ; h(N-1) * x(n-(N-1)) -> RO 
LDF 0.0tR2 ; Initialize R2 

* FILTER (1 <= i < N) 
* 

RPTS RC ; Set up the repeat cycle 
MPYF3 *ARO++(l),*ARl++(l)%,RO; h(~-1-i)*x(n-(N-1-i))->RO 

I I ADDF3 RO ,R2, R2 ; Multiply and add operation 

Software Applications 11 -59 



Application-Oriented Operations 

ADDF RO , R2, RO 
* 
* RETURN SEQUENCE 
* 

RETS 

; Add last product 

; Return 

end 
* 

.end 

11.4.2.2 IIR Filters 

The transfer function of the IIR filters has both poles and 0s. Its output depends 
on both the input and the past output. As a rule, the filters need less computa- 
tion than an FIR with similar frequency response, but the filters have the draw- 
back of being sensitive to coefficient quantization. Most often, the IIR filters are 
implemented as a cascade of second-order sections, called biquads. 
Example 11-31 and Example 11-32 show the implementation for one biquad 
and for any number of biquads, respectively. 

This is the equation for a single biquad: 

y [n] = a1 y [n - 11 t a2 y [n -21 t bO x [n]  t b l  x [n -11 t b2 x [n -21 

However, the following two equations are more convenient and have smaller 
storage requirements: 

d [n] = a2 d [n - 21 t a1 d [n -11 + x [n] 
y[n] = b2d[n-21 t b l  d [ n - 1 ] t  bOd[n] 

Figure 11-2 shows the memory organization for this two-equation approach, 
and Example 11-31 is an implementation of a single biquad on the 
TMS320C3x. 

Figure 11-2. Data Memory Organization for a Single Biquad 
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As in the case of FIR filters, the address for the start of the values d must be 
a multiple of 4; that is, the last two bits of the beginning address must be 0. The 
block-size register BK must be initialized to 3. 
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Example 1 1 3  1. IIR Filter (One Biquad) 

TITLE IIR FILTER 

SUBROUTINE IIR 1 

IIRl == IIR FILTER (ONE BIQUAD) 

EQUATIONS: d(n) = a2 d(n-2) + a1 * d(n-1) + x(n) 
y(n) = b2 * d(n-2) + bl d(n-1) + bO * d(n) 

TYPICAL CALLING SEQUENCE: 

load R2 
load ARO 
load AR1 
load BK 
CALL IIRl 

ARGUMENT ASSIGNMENTS: 

ARGUMENT I FUNCTION 

R2 INPUT SAMPLE X(N) 
ARO I ADDRESS OF FILTER COEFFICIENTS (I2) 
AR1 ADDRESS OF DELAY MODE VALUES (D(N-2)) 
BK I B K - 3  

REGISTERS USED AS INPUT: R2, ARO, AR1, BX 
REGISTERS MODIFIED: RO, R1, R2, ARO, AR1 
REGISTER CONTAINING RESULT: RO 

CYCLES: 11 WORDS: 8 

FILTER 
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.global IIRl 
* 
IIRl MPYF3 *ARO I *AR1, RO 
* ; a2 * d(n-2) -> RO 

MPYF3 *++ARO(l) ,*ARl--(I) % ,R1 
* ; b2 * d(n-2) -> R1 
* 

MPYF3 *++ARO(1),R2,R2 ; bO * d(n) -> R2 
STF RZ,*ARl++(l)% 

ADDF RO,R2 
ADDF R1,R21R0 

RETURN SEQUENCE 

; Store d(n)and point to d(n-1) 

RETS ; Return 

* end 
* 

In the more general case, the IIR filter contains N>1 biquads. The equations 
for its implementation are given by the following pseudo-C language code: 

Y [O,nl = x [nl 
for (i = 0; i < N; i ++){ 

d [i,n] = a2 [i] d [i, n - 21 + a1 [i] d [i,n -11 + y [i - 1 ,n] 
y [i,n] = b2 [i] d [i - 21 + b l  [i] d [i,n - 11 + bO [i] d [i,n] 

1 
Y [nl = Y [N - 1,nI 

Figure 11-3 shows the corresponding memory organization, while 
Example 11-32 shows the TMS320C3x assembly-language code. 
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Figure 11-3. Data Memory Organization for N Biquads 
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You should initialize the block register BK to 3; the beginning of each set of d 
values (that is, d [i,n 1, i = O...N - 1) should be at an address that is a multiple 
of 4 (where the last two bits are 0). 
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Example 11-32. IIR Filters (N > 1 Biquads) 

* TITLE IIR FILTERS (N > 1 BIQUADS) 

* 
* SUBROUTINE IIR2 
* 
* 
* 
* EQUATIONS: y(0,n) = x(n) 
* 

FOR (i = 0; i < N; i++) 

* TYPICAL CALLING SEQUENCE: 
* 1 

* Y(n) = ~(N-lrn) * 
TYPICAL CALLING SEQUENCE: 

* 

load 
load 
load 
load 
load 
load 
load 
CALL 

R2 
ARO 
AR1 
IRO 
IR1 
BK 
RC 
IIR2 

* ARGUMENT ASSIGNMENT: 

ARGUMENT I FUNCTION 

R2 
ARO 
AR1 
BK 
IRO 
IR1 
RC 

INPUT SAMPLE x(n) 
ADDRESS OF FILTER COEFFICIENTS (a2(0)) 
ADDRESS OF DELAY NODE VALUES (d(0,n-2)) 
BK = 3 
IRO = 4 
IR1 = 4*N-4 
NUMBER OF BIQUADS (N) -2 

* REGISTERS USED AS INPUT; ~ 2 ,  ARO, AR1, IRO, IR1, BK, RC 
* REGISTERS MODIFIED; RO, R1, R2, ARO, AR1, RC 

REGISTERS CONTAINING RESULT: RO 
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CYCLES: 17 + 6N WORDS: 17 
* 
* 
* 

.global IIR2 
* 

MPYF3 
ADDF 

al(0) * ~(0,n-1) -> RO 
First sum term of d(0,n) 

*++ARO(l) ,*ARl--(l)%,RO 
RO, R2, R2 
*++ARO(1),RZIR2 
R2, *ARl--(I)% 

bl(0) * d(0,n-1) -> RO 
Second sum term of d(0,n) 
bO(0) * d(0,n) -> R2 

MPYF3 
ADDF3 
MPYF3 
STF 

Store d(0,n); 
point to 
d(0,n-2) 

Loop for 1 <= i < n RPTB LOOP 

MPYF3 
ADDF 3 

a2(i) d(i,n-2) -> RO 
First sum term of y(i-1,n) 

b2(i) * D(i,n-2) -> R1 
Second sum term 

of y(i-1,n) 

al(i) * d(i,n-1) -> RO 
First sum of d(i,n) 

bl(i) * d(i,n-1) -> RO 
Second sum term of d(i,n) 

STF 
Store d(i,n); 

point to d(i,n-2) 
LOOP 
* 
* 
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FINAL SUMMATION 

ADDF RO,R2 
ADDF3 Rl,R2,RO 

NOP *ARl--( IR1) 
NOP *MI--( 1 ) % 

RETURN SEQUENCE 

RETS 

end 

; First sum term of y(n-1,n) 
; Second sum term 
; of y(n-1,n) 

; Return to first biquad 
; Point to d(0,n-1) 

; Return 

. end 



11.4.2.3 Adaptive Filters (LMS Algorithm) 

In some applications in digital signal processing, you must adapt a filter over 
time to keep track of changing conditions. The book Theory and Design of 
Adaptive Filters by Treichler, Johnson, and Larimore (Wiley-Interscience, 
1987) presents the theory of adaptive filters. Although in theory, both FIR and 
IIR structures can be used as adaptive filters, the stability problems and the 
local optimum points that the IIR filters exhibit make them less attractive for 
such an application. Hence, until further research makes IIR filters a better 
choice, only the FIR filters are used in adaptive algorithms of practical applica- 
tions. 

In an adaptive FIR filter, the filtering equation takes this form: 

y [n] = h [n,O] x [n] t h [n,l] x [n - 11 t ... t h [n,N - 11 x [n - (N - I ) ]  

The filter coefficients are time-dependent. In a least-mean-squares (LMS) al- 
gorithm, the coefficients are updated by an equation in this form: 

p is a constant for the computation. You can interleave the updating of the filter 
coefficients with the computation of the filter output so that it takes three cycles 
per filter tap to do both. The updated coefficients are written over the old filter 
coefficients. Example 11-33 shows the implementation of an adaptive FIR fil- 
ter on the TMS320C3x. The memory organization and the positioning of the 
data in memory should follow the same rules that apply to the FIR filter de- 
scribed in subsection 11.4.2.1 on page 11 -58. 
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Example 1 1-33. Adaptive FIR Filter (L MS Algorithm) 

* TITLE ADAPTIVE FIR FILTER (LMS ALGORITHM) 

* 
* SUBROUTINE LMS 

* LMS == LMS ADAPTIVE FILTER 
* 
* 
* 
* EQUATIONS: y(n) = h(n,O)*x(n) + h(n,l)*x(n-1) + ... 

* FOR (i = 0; i < N; i++) 

* h(n+l,i) = h(n,i) + tmuerr * x(n-i) 

* 
* TYPICAL CALLING SEQUENCE: 
* 

load R4 
* load ARO 
* load AR1 
* load RC 
* load BK 
* CALL LMS 
* 
* 

* ARGUMENT ASSIGNMENTS: 

* ARGUMENT I FUNCTION 
* I 

* R4 I SCALE FACTOR (2 * mu * err) 
* ARO I ADDRESS OF h(n,N-1) 
* AR1 I ADDRESS OF x(n-(N-1)) 
* RC I LENGTH OF FILTER - 2 (N-2) 
* BK I LENGTH OF FILTER (N) 
* 



* REGISTERS USED AS INPUT: R4, ARO, ARl, RC, BK 
* REGISTERS MODIFIED: RO, R1, R2, ARO, AR1, RC 
* REGISTER CONTAINING RESULT: RO 
* 
* PROGRAM SIZE: 10 words 
* 

EXECUTION CYCLES: 14 + 3(N-1) 
* 

* SETUP (i = 0 ) 
* 

.global LMS 

; Initialize RO: 
LMS MPYF3 *ARO, *ARl, RO 

; h(n,N-1) x(n-(N-1)) -> RO 
LDF O.OlR2 ; Initialize R2 

; Initialize R1: 
MPYF3 *AR1++(1)%, R4, R1 

; x(n-(N-1)) * tmuerr -> R1 
ADDF3 *ARO++(l), R1, R1 

; h(n,N-1) + x(n-(N-1)) * 
; tmuerr -> R1 

* FILTER AND UPDATE (1 <= I < N) 
* 

RPTB LOOP Set up the repeat block 

Filter: 
h(n,N-1-i) 

* x(n-(N-1-i)) -> RO 
Multiply and add operation 

UPDATE : 
x(n,N-(N-1-i)) * tmuerr -> R1 
Rl -> h(n+l,N-1-(i-1)) 

MPYF3 
STF I I * 

LOOP 
* 

ADDF3 
STF 

Add last product 

h(n,O) + x(n) 
* tmuerr -> h(n+l,O) 

RETURN SEQUENCE 
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RETS 
* 

; Return 

* end 
4 

.end 

11.4.3 Matrix-Vector Muitipllcation 

In matrix-vector multiplication, a K x N matrix of elements m(i,j) having K rows 
and N columns is multiplied by an N x 1 vector to produce a K x 1 result. The 
multiplier vector has elements v(j), and the product vector has elements p(i). 
Each one of the product-vector elements is computed by the following expres- 
sion: 

This is essentially a dot product, and the matrix-vector multiplication contains, 
as a special case, the dot product presented in Example 11-2 on page 11-7. 
In pseudo-C format, the computation of the matrix multiplication is expressed 
by 

for (i = 0; i < K; i + +) { 
p (i) = 0 
for (j = 0; j c N; j + +) 

p (i) = p (i) + m (i,j) * v  (j) 
1 

Figure 11-4 shows the data memory organization for matrix-vector multiplica- 
tion, and Example 11-34 shows the TMS320C3x assembly code that imple- 
ments it. Note that in Example 11-34, K (number of rows) should be greater 
than 0, and N (number of columns) should be greater than 1. 
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Figure 1 1-4. Data Memory Organization for Matrix- Vector Multiplication 
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Example 1 1-34. Matrix Times a Vector Multiplication 

TITLE MATRIX TIMES A VECTOR MULTIPLICATION 

SUBROUTINE MAT 

MAT == MATRIX TIMES A VECTOR OPERATION 

TYPICAL CALLING SEQUENCE:* 
load ARO 
load AR1 
load AR2 
load AR3 
load R1 
CALL MAT 

ARGUMENT ASSIGNMENTS: 

ARGUMENT I FUNCTION 

ARO ( ADDRESS OF M(0,O) 
AR1 I ADDRESS OF V(0) 
AR2 I ADDRESS OF P(0) 
AR3 I NUMBER OF ROWS - 1 (K-1) 
R 1 I NUMBER OF COLUMNS - 2 (N-2) 

REGISTERS USED AS INPUT: ARO, AR1, AR2, AR3, R1 
REGISTERS MODIFIED: RO, R2, ARO, AR1, AR2, AR3, IRO, 

RC, RSA, REA 

PROGRAM SIZE: 11 

EXECUTION CYCLES: 6 + 10 * K + K * (N - 1) 

.global MAT 

* 
* SETUP 

MAT LDI R1,IRO 
ADD1 2,IRO 

; Number of columns-2 -> IRO 
; IRO = N 



RETS 

* 
* FOR (i = 0; i < K; i++) LOOP OVER THE ROWS 
* 

ROWS LDF 0.O,R2 ; I n i t i a l i z e  R2 
MPYF3 *ARO++(l),*ARl++(l),RO 

* ; m ( i , O )  v (0 )  -> RO 
* 

* FOR ( j  = 1; j < N; j++) DO DOT PRODUCT OVER COLUMNS 
* 

RPTS R1  
* ; M u l t i p l y  a r o w  by a column 

MPYF3 *ARO++( l ) , *ARl++( l ) ,RO ; m ( i , j )  * v ( j )  -> RO 
1 1  ADDF3 RO,R2,R2 ; m ( i ,  j-1) v( j -1)  + R2 -> R2 
* 

DBD AR3,ROWS ; Counts the no. of roue  l e f t  
* 
* 

ADDF RO,R2 ; Last  accumulate 
STF R2, *AR2++ ( 1 ) ; R e s u l t  -> p ( i )  

NOP *--m1( IRO ) ; S e t  AR1 t o  point  t o  v ( 0 )  

* 1 1 1  DELAYED BRANCH HAPPENS HERE 1 1 1  
* 
* RETURN SEQUENCE 
* 

; Return 

* end 
* 

. end 

11.4.4 Fast Fourier Transforms (FFT) 

Fourier transforms are an important tool often used in digital signal processing 
systems. The purpose of the transform is to convert information from the time 
domain to the frequency domain. The inverse Fourier transform converts infor- 
mation back to the time domain from the frequency domain. Implementation 
of Fourier transforms that are computationally efficient are known as fast Four- 
ier transforms (FFTs). The theory of FFTs can be found in books such as DFT/ 
FFTand Convolution Algorithms by C.S. Burrus and T.W. Parks (John Wiley, 
1985) and Digital Signal Processing Applications with the TMS320 Family by 
Texas Instruments (literature number SPRAO12A). 
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Fast Fourier transform is a label for a collection of algorithms that implement 
efficient conversion from time to frequency domain. There are several types 
of FFTs: 

a Radix-2 or radix-4 algorithms (depending on the size of the FFT butterfly) 
Decimation in time or frequency (DIT or DIF) 

a Complex or real FFTs 
FFTs of different lengths, etc. 

Certain TMS320C3x features that increase efficient implementation of numer- 
ically intensive algorithms are particularly well-suited for FFTs. The high speed 
of the device (33-17s cycle time) makes implementation of real-time algorithms 
easier, while floating-point capability eliminates the problems associated with 
dynamic range. The powerful indirect-addressing indexing scheme facilitates 
the access of FFT butterfly legs with different spans. The repeat block implem- 
ented by the RPTB instruction reduces the looping overhead in algorithms 
heavily dependent on loops (such as the FFTs). This construct provides the 
efficiency of in-line coding in loop form. The FFT will reverse the bit order of 
the output; therefore, the output must be reordered. This reordering does not 
require extra cycles, because the device has a special mode of indirect ad- 
dressing (bit-reversed addressing) for accessing the FFT output in the original 
order. 

The examples in this subsection were based on programs contained in the 
Burrus and Parks book and in the paper Real-Valued Fast Fourier Transform 
Algorithms by H.V. Sorensen, et al (IEEE Transform on ASSP, June 1987). 

Example 11-35 and Example 11-36 show the implementation of a complex 
radix-2, DIF FFT on the TMS320C3x. Example 11-35 contains the generic 
code of the FFT, which can be used with a number of any length. However, for 
the complete implementation of an FFT, you need a table of twiddle factors 
(sineslcosines); the length of the table depends on the size of the transform. 
To retain the generic form of Example 11-35, the table with the twiddle factors 
(containing 1-114 complete cycles of a sine) is presented separately in 
Example 1136for the case of a64-point FFT. Afull cycle of asine should have 
a number of points equal to the FFT size. Example 11-36 uses two variables: 
N, which is the FFT length, and M, which is the logorithm of N to a base equal 
to the radix. In other words, M is the number of stages of the FFT. For example, 
in a 64-point FFT, M = 6 when using a radix-2 algorithm, and M = 3 when using 
a radix-4 algorithm. If the table with the twiddle factors and the FFT code are 
kept in separate files, they should be connected at link time. 
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Example 1 1-35. Complex, Radix-2, DlF FFT 

TITLE COMPLEX, RADIX-2, DIF FFT 

GENERIC PROGRAM FOR LOOPED-CODE RADIX-2 FFT COMPUTATION IN TMS320C3x 

THE PROGRAM IS TAKEN FROM THE BURRUS AND PARKS BOOK, P. 111. 
THE (COMPLEX) DATA RESIDE IN INTERNAL MEMORY. THE COMPUTATION 
IS DONE IN PLACE, BUT THE RESULT IS MOVED TO ANOTHER MEMORY 
SECTION TO DEMONSTRATE THE BIT-REVERSED ADDRESSING. 

THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE THAT IS PUT IN A .DATA 
SECTION. THIS DATA IS INCLUDED IN A SEPARATE FILE TO PRESERVE THE 
GENERIC NATURE OF THE PROGRAM. FOR THE SAME PURPOSE, THE SIZE OF 
THE FFTN AND LOG2(N) ARE DEFINED IN A .GLOBL DIRECTIVE AND SPECIFIED 
DURING LINKING. 

.glob1 FFT 

.glob1 N . glob1 M 

.glob1 SINE 

INP .usect "INu, 1024 
.BSS OUTP,1024 

* INITIALIZE 

FFTSIZ .word N 
LOGFFT .word M 
SINTAB .word SINE 
INPUT .word INP 
OUTPUT .word OUTP 

FFT : LDP FFTSIZ 

LDI @FFTSIZ,IRl 
LSH -2, IR1 
LDI O,AR6 
LDI @FFTSIZ,IRO 
LSH 1, IRO 
LDI @FFTSIZ,R7 
LDI 1 ,AR7 

LDI 1 ,AR5 

; Entry point for execution 
; FFT size 
; LOG2(N) 
; Address of sine table 

; Memory with input data 
; Memory with output data 

; Command to load data page pointer 

; IR1 = N/4, pointer for SIN/COS table 
; AR6 holds the current stage number 

; IRO = 2*N1 (because of real/imag) 
; R7 = N2 
; Initialize repeat counter 
; of first loop 
; Initialize IE index (AR5 = IE) 
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* OUTER LOOP 

LOOP : NOP *++AR6(1) ; Current FFT stage 
LDI @INPUT,ARO ; ARO points to X(1) 
ADD1 R7,ARO1AR2 ; AR2 points to X(L) 
LDI AR7,RC 
SUB1 1,RC ; RC should be one less than desired # 

* FIRST LOOP 

RPTB 
ADDF 
SUBF 
ADDF 
SUBF 
STF 

I I STF 
BLKl STF 
I I STF 

BLK 1 
*ARO,*AR2,RO ; 
*AR2++,*ARO++,Rl ; 
*AR2,*ARO1R2 ; 
*AR2,*AROIR3 I 

R2, *ARO-- ; 
R3 1 *AR2-- ; 
RO,*ARO++(IRO) ; 
R1, *AR2++ (IRO ) ; 

RO = X(I)+X(L) 
R1 = X(1)-X(L) 
R2 = Y(I)+Y(L) 
R3 = Y(1)-Y(L) 
Y(1) = R2 and... 
Y(L) = R3 
X(1) = RO and.. . 
X(L) = R1 and ARO,2 = AR0,2 + 2*n 

* IF THIS IS THE LAST STAGE, YOU ARE DONE 

CMPI @LOGFFT, AR6 
BZD END 

* MAIN INNER LOOP 

LDI 

LDI 
INLOP: ADDI 

LDI 
ADDI 
ADDI 
ADDI 
LDI 
SUBI 

LDF 

* SECOND LOOP 

RPTB 
SUBF 
SUBF 

* 
MPYF 

I I ADDF * 
MPYF 

I I STF 

AR1,ARo 
2 ,AR1 
@INPUT, ARO 
R7,AR01AR2 
AR7, RC 
l,RC 

Init loop counter for 
inner loop 

Initialize IA index (AR4 = IA) 
IA = IA+IE; AR4 points to 

cosine 

Increment inner loop counter 
(X(I),Y(I)) pointer 
(X(L),Y(L)) pointer 

RC should be 1 less than 
desired # 

R6 = SIN 

BLK2 
*AR2,*ARO1R2 ; R2 = X(1)-X(L) 
*+AR2,*+AR01R1 

; R1 = Y(1)-Y(L) 
R2,R6,RO ; RO = R2*SIN and... 
*+AR2,*+AR01R3 

; R3 = Y(I)+Y(L) 
Rl1*+AR4(IR1),R3; R3= Rl*COS and ... 
R3, *+ARO ; Y(1) = Y(I)+Y(L) 
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SUBF RO1R3,R4 ; 
MPYF RlIR6,RO ; 

I I ADIN? *AR2,*ARO1R3 i 
MPYF R2,*tAR4(IRl),R3 ; 

I I STF R3,*ARO++(IRO) 
* 
* ; 

ADDF RO1R3,R5 i 
BLK2 STFR5,*AR2++(IRO) ; 

I 

I I STF R4, *+AR2 ; 

R4 R1 * COS-R2 * SIN 
RO = R1 SIN and... 
R3 = X(1) + X(L) 
R3 = R2 * COS and... 

X(1) = X(I)+X(L) and ARO = ARO+2*N1 
R5 = R2*COS+Rl*SIN 
X(L) R2 * COStR1 * SIN, 

incr AR2 and. . . 
Y(L) = Rl*COS-R2*SIN 

CMPI R7 ,AR1 
BNE INLOP ; Loop back to the inner loop 

LSH 1 ,AR7 ; Increment loop counter for next time 
BRD LOOP ; Next FFT stage (delayed) 
LSH 1 ,AR5 ; I E = 2 * I E  
LDI R7, IRO ; N1 = N2 
LSH -1,R7 ; N2 = N2/2 

* STORE RESULT OUT USING BIT-REVERSED ADDRESSING 

END: LDI @FFTSIZ,RC ; R C = N  
SUB1 1 ,RC ; RC should be one less than desired # 
LDI @FFTSIZ,IRO ; IRO = size of FFT = N 
LDI 2, IR1 
LDI @INPUT,ARO 
LDI @OUTPUT,ARl 

RPTB BITRV 
LDF *+ARO(l),RO 

I I LDF *ARO++(IRO)B,Rl 
BITRV STF RO,*+ARl(l) 

1 I STF Rl,*ARl++(IRl) 

SELF BR SELF 
.end 

; Branch to itself at the end 
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Example 11-36. Table With Twiddle Factors for a 64-Point FIT 

*TITLE TABLE WITH TWIDDLE FACTORS FOR A 64-POINT FFT 
* 
* FILE TO BE LINKED WITH THE SOURCE CODE FOR A 64--POINT, RADIX-2 FFT 

.glob1 SINE 

.glob1 N . glob1 M 

SINE 
.float . float 
.float . float 
.float . float . float . float . float . float . float . float 
.float 
.float . float 
.float 

COSINE 
.float 
.float 
.float 
.float 
.float . float . float 
.float 
.float 
.float 
.float 
.float . float 
.float . float 
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. float . float . float - 
.float - . float - 
. float - 
.float - . float 
. float - 
.float - . float - . float - 
. float - . float - 
. float - . float - . float - 
. float . float - 
. float - 
. float - 
. float - 
.float - . float - . float - 
. float - . float - . float - 
.float - 
.float - 
. float - 
. float - 
.float - 
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. float . float . float 
.float 
.float . float 
.float 
.float 
.float . float 
.float 
.float 
.float . float . float . float 

The radix-2 algorithm has tutorial value, because the functioning of the FFT 
algorithm is relatively easy to understand. However, radix-4 implementation 
can increase execution speed by reducing the amount of arithmetic required. 
Example 11-37 shows the generic implementation of a complex, DIF FFT in 
radix-4. A companion table, such as the one in Example 11-36, should have 
a value of M equal to the logN, where the base of the logarithm is 4. 
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Example 1 1-37. Complex, Radix-4, DlF FFT 

TITLE COMPLEX, RADIX-4, DIF FFT 

GENERIC PROGRAM TO PERFORM A LOOPED-CODE RADIX-4 FFT COMPUTATION 
IN THE TMS320C3x 

THE PROGRAM IS TAKEN FROM THE BURRUS AND PARKS BOOK, P. 117. 
THE (COMPLEX) DATA RESIDE IN INTERNAL MEMORY, AND THE COMPUTATION 
IS DONE IN PLACE. 

THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE THAT IS PUT IN A .DATA 
SECTION. THIS DATA IS INCLUDED IN A SEPARATE FILE TO PRESERVE THE 
GENERIC NATURE OF THE PROGRAM. FOR THE SAME PURPOSE, THE SIZE OF 
THE FFT N AND LOG4(N) ARE DEFINED IN A .GLOBL DIRECTIVE AND 
SPECIFIED DURING LINKING. 

IN ORDER TO HAVE THE FINAL RESULT IN BIT-REVERSED ORDER, THE TWO 
MIDDLE BRANCHES OF THE RADIX-4 BUTTERFLY ARE INTERCHANGED DURING 
STORAGE. NOTE THIS DIFFERENCE WHEN COMPARING WITH THE PROGRAM IN 
P. 117 OF THE BURRUS AND PARKS BOOK. 

* 
.glob1 FFT ; Entry point for execution 
.glob1 N ; FFT size 
.glob1 M ; LOG4(N) 
.glob1 SINE ; Address of sine table 

.usect "INW,1024 ; Memory with input data 

* INITIALIZE 

TEMP .word $+2 
STORE .word FFTSIZ ; Beginning of temp storage area 

.word N 

.word M 

.word SINE 

.word INP 

. BSS FFTSIZ,l ; FFT size . BSS LOGFFT,l ; LOGI(FFTS1Z) . BSS SINTAB,l ; Sine/cosine table base . BSS INPUT,l ; Area with input data to process . BSS STAGE, 1 ; FFT stage # . BSS RPTCNT,l ; Repeat counter . BSS IEINDX,l ; IE index for sine/cosine 
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. BSS LPCNT,l ; Second-loop count . BSS JT, 1 ; JT counter in program, P. 117 . BSS IA1,l ; IAl index in program, P. 117 

FFT : 

* INITIALIZE DATA LOCATIONS 

LDP 
LDI 
LDI 
LDI 
ST1 
LD I 
ST1 
LDI 
ST1 
LDI 
ST1 

LDP 
LDI 
LDI 
LDI 
LDI 
ST1 
LSH 
LSH 
LDI 
ST1 
ST1 
LSH 
ADD I 
ST1 
SUBI 
LSH 

TEMP ; Command to load data page counter 
@TEMP ,ARO 
@STORE,ARl 
*ARO++, RO ; Xfer data from one memory to the other 
RO, *ARl++ 
*ARO++, RO 
RO, *ARl++ 
*ARO++, RO 
RO, *ARl++ 
*ARO , RO 
RO , *AR1 

FFTSIZ 
@FFTSIZ,RO 
@FFTSIZ,IRO 
@FFTSIZ,IRl 
O,AR7 
AR7, @STAGE 
1, IRO 
-2, IR1 
1 ,AR7 
AR7,@RPTCNT 
AR7,@IEINDX 
-2,RO 
2,RO 
RO,@JT 
2,RO 
1,RO 

Command to load data page pointer 

@STAGE holds the current stage number 
IRO = 2*N1 (because of real/imag) 
IR1 = N/4, pointer for SIN/COS table 

Init repeat counter of first loop 
Init. IE index 
JT = RO/2+2 

* OUTER LOOP 

LOOP : 
LDI @INPUT , ARO ; ARO points to X(1) 
ADD1 RO,ARO,ARl ; ARI points to X(I1) 
ADD1 RO,ARl,AR2 ; AR2 points to X(I2) 
ADD1 RO1AR2,AR3 ; AR3 points to X(I3) 
LDI @RPTCNT , RC 
SUB1 1 ,RC ; RC should be one less than desired # 

* FIRST LOOP 

RPTB BLKl 
ADDF *+AROI*+AR2,R1 



BLK 1 

I I 

ADDF R3,RlIR6 
SUBF *+AR2,*+AROIR4 

STF R6,*+ARO 
SUBF R3,Rl 
LDF *AR2,R5 
LDF *+ARl,R7 
ADDF *AR3, *AR1, R3 
ADDF R5, *ARO , R1 
STF Rl,*+ARl 
ADDF R3,RlIR6 
SUBF R5, *ARO , R2 
STF R6,*ARO++(IRO) 
SUBF R3 ,R1 
SUBF *AR3, *ARl, R6 
SUBF R7, *+AR3, R3 
STF Rl,*ARl++(IRO) 
SUBF R6, R4, R5 
ADDF R6 ,R4 
STF R5, *+AR2 
STF R4,*+AR3 
SUBF R3, R2, R5 
ADDF R3,RZ 
STF RSI*AR2++(IRO) 
STFR2,*AR3++(IRO) 

* IF THIS IS THE LAST STAGE, YOU ARE DONE 

LDI @STAGE,AR7 
ADDI 1,AR7 
CMPI @LOGFFT, AR7 
BZD END 
ST1 AR7 I @STAGE ; Current FFT stage 

* MAIN INNER LOOP 

LDI 
ST1 
LDI 
ST1 

LDI 
ADDI 
LDI 
LDI 
ADDI 
ADDI 
ST1 

1,AR7 
AR7, @IAl ; Init IAI index 
2 ,AR7 
AR7, @LPCNT ; Init loop counter for inner loop 

i INLOP : 
2 ,AR6 ; Increment inner loop counter 
@LPCNT , AR6 
@LPCNT, ARO 
@IA1 ,AR7 
@IEINDX,AR7 ; IA1 = IAl+IE 
@INPUT, ARO ; (X(I),Y(I)) pointer 
AR7, @IA1 
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ADDI 
ST1 
ADDI 
ADDI 
LDI 
SUBI 
CMPI 
BZD 
LDI 
LDI 
ADDI 
SUBI 
ADDI 
SUBI 
ADDI 
SUBI 

RO,ARO,ARl 
AR6, @LPCNT 
RO,ARl,AR2 
RO ,AR2 ,AR3 
@RPTCNT,RC 
l,RC 
@JT,AR6 
SPCL 
@ IA1, AR7 
@ IA1, AR4 
@SINTAB,AR4 
1 ,AR4 
AR4 ,AR7 ,AR5 
1,AR5 
AR7 ,AR5 ,AR6 
1,AR6 

(X(Il),Y(Il)) pointer 

(X(I2),Y(I2)) pointer 
(X(I3),Y(I3)) pointer 

RC should be one lese than desired # 
If LPCNT = JT, go to 

special butterfly 

Create cosine index AR4 
Adjust sine table pointer 

* SECOND LOOP 

RPTB BLK2 
ADDF *+AR2,*+AR01R3 

; R3 = Y(I)+Y(I2) 
ADDF *+AR3, *+ARl, R5 

; RS = Y(Il)+Y(I3) 
ADDF R5,R3,R6 ; R6 = R3+R5 
SUBF *+AR2,*+ARO1R4 

; R4 = Y(1)-Y(I2) 
SUBF R5,R3 ; R3 = R3-R5 
ADDF *AR2, *ARO , R1 ; R1 = X(I)+X(I2) 
ADDF *AR3, *AR1, R5 ; R5 = X(Il)+X(I3) 
MPYF R3,*+AR5(IRl),R6 R6 = R3*C02 
STF R6,*+ARO ; Y(1) =R3+R5 
ADDF R5,RlIR7 ; R7 = Rl+R5 
SUBF *AR2, *ARO , R2 ; R2 = X(1)-X(I2) 
SUBF R5,Rl ; R1 = R1-R5 
MPYF Rl1*AR5,R7 ; R7 = Rl*SI2 
STFR7,*ARO++(IRO) ; X(1) =Rl+R5 
SUBF R7 ,R6 ; R6 = R3*C02-Rl*SI2 
SUBF *+AR3,*+ARl,R5 

; R5 = Y(I1)-Y(I3) 
MPYF RlI*+AR5(IR1),R7 ; R7 = Rl*CO2 
STF R6,*+AR1 ; Y(I1) = R3*C02-R1*SI2 
MPYF R3 , *AR5, R6 ; R6 = R3*SI2 
ADDF R7,R6 ; R6 = Rl*COZ+R3*SI2 
ADDF R5,R2,Rl ; R1 = R2+R5 
SUBF R5,R2 ; R2 = R2-R5 
SUBF *AR3, *ARl, R5 ; R5 = X(I1)-X(I3) 
SUBF R5, R4, R3 ; R3 = R4-R5 
ADDF R5,R4 ; R4 = R4+R5 
MPYF R3,*+AR4(IRl),R6 ; R6 = R3*C01 
STFR6,*ARl++(IRO) ; X(I1) = Rl*C02+R3*SI2 



MPYF Rl1*AR4,R7 I 

SUBF R7,R6 i 
MPYF Rl1*+AR4(IR1),R6; 

1 I STF R6, *+AR2 i 
MPYF R3 *AR4, R7 i 
ADDF R7,R6 I 

MPYF R4,*+AR6(1Rl),R6 ; 
I I STFR61*AR2++(IRO) I 

MPYF R2, *AR6, R7 I 

SUBF R7, R6 I 

MPYF R2,*+AR6(IRl),R6; 

I I STF R6, *+AR3 i 
MPYF R4, *AR6, R7 i 
ADDF R7,R6 I 

BLK2 STF R6,*AR3++(1RO) 
* ; x(i3) = R2*C03+R4*SI3 

CMPI @LPCNT,RO 
BP INLOP ; Loop back to the inner loop 
BR CONT 

* SPECIAL BUTTERFLY FOR W = J 

SPCL LDI IR1, AR4 
LSH-1,ARI ; Point to SIN(45) 
ADD1 @SINTAB ,AR4 ; Create cosine index AR4 = C021 

RPTB 
ADDF 
SUBF 
ADDF 

SUBF 
* 

ADDF 
SUBF 
ADDF 
ADDF 

* 
SUBF 
ADDF 
STF 

I I STF 
SUBF 
SUBF 

* 
STF 

Software Applications 1 1  -85 



Application-Oriented Operations 

I I STF RT,*ARl++(IRO) ; 
ADDF R3,R2,R5 i 
SUBF R2, R3, R2 ; 
SUBF R1, R4, R3 ; 
ADDF Rl,R4 i 
SUBF R5, R3, R1 i 
MPYF *AR4,R1 ; 
ADDF R5,R3 i 
MPYF *AR4,R3 ; 

I I STF R1, *+AR2 ; 
SUBF R4, R2, R1 i 
MPYF *AR4,R1 ; 

I I STF R3,*ARZ++(IRO) ; 
ADDF R4,R2 i 
MPYF *AR4,R2 i 

BLK3 STF Rl,*+AR3 ; 
I I STF R2, *AR3++ ( IRO ) ; 

CMPI @LPCNT, RO 
BPD INLOP ; Loop back to the inner loop 

CONT LDI @RPTCNT,AR7 
LDI @IEINDX ,AR6 
LSH 2,AR7 ; Increment repeat counter for 

* ; next time 
ST1 AR7, @RPTCNT 
LSH 2,AR6 ; I E 1 4 * I E  
ST1 AR6, @IEINDX 
LDI R0,IRO ; N1 = N2 
LSH -3,RO 
ADD1 2,R0 
ST1 RO, @JT ; JT = N2/2+2 
SUB1 2,R0 
LSH l,RO ; N2 = N2/4 
BR LOOP ; Next FFT stage 

* STORE RESULT USING BIT-REVERSED ADDRESSING 
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END: L D I  @FFTSIZ,RC ; R C - N  
SUB1 l,RC ; RC should be one l e ee  than deeired # 
L D I  @FFTSIZ, IRO ; IRO = s i z e  o f  FFT = N 
L D I  2 , I R l  
L D I  @INPUT, A R O  
LDP STORE 
L D I  @STORE,ARl 

RPTB BITRV 
LDF *+ARO(l),RO 

1 1  LDF *ARO++(IRO)B,Rl 
BITRV STF RO , *+ARl( 1 ) 
1 1  STF Rl,*ARl++(IRl) 

SELF BR SELF . end 
; Branch t o  i t e e l f  a t  t h e  end 

The data to be transformed is usually asequence of real numbers. In this case, 
the FFT demonstrates certain symmetries that permit the reduction of the 
computational load even further. Example 11-38 shows the generic imple- 
mentation of a real-valued, radix-2 FFT. For such an FFT, the total storage re- 
quired for a length-N transform is only N locations; in a complex FFT, 2N are 
necessary, Recovery of the rest of the points is based on the symmetry condi- 
tions. 

Example 11-39 shows the implementation of a radix2 real inverse FFT. The 
inverse transformation assumes that the input data is given in the order pres- 
ented at the output of the forward transformation and produces a time signal 
in the proper order (that is, bit reversing takes place at the end of the program). 
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Example 11-38. Real, Radix-2 FFT 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
FILENAME : ffft-rl.asm 

WRITTEN BY : Alex Tessarolo 
* Texas Instruments, Australia 
* 
* DATE : 23rd July 1991 
* 
* VERSION : 2.0 

* 
* VER 
* -  
1.0 

* 2.0 
* 
* 
* 
* 

DATE COMMENTS 

18th July 91 Original release. 
23rd July 91 Most stages modified. 

Minimum FFT size increased from 32 to 64. 
Faster in place bit reversing algorithm. 
Program size increased by about 100 words. 
One extra data word required. 

* SYNOPSIS: 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 

int 

int 
int 
float 
float 

float 
int 

NOTE : 

ffft-rl( FFT-SIZE, LOG-SIZE, SOURCE-ADDR, DEST-ADDR, 
SINE-TABLE, BIT-REVERSE ) ;  

FFT-SIZE ; 64, 128, 256, 512, 1024, ... 
LOG-SIZE ; 6 ,  7, 8, 9, 10 , . . .  
*SOURCE-ADDR ; Points to location of source data. 
*DEST-ADDR ; Points to where data will be 

; operated on and stored. 
*SINE-TABLE ; Points to the SIN/COS table. 
BIT-REVERSE ; = 0, bit reversing is disabled. 

; <> 0, bit reversing is enabled. 

1) If SOURCE-ADDR = DEST-ADDR, then in-place bit 
reversing is performed, if enabled (more 
processor intensive). 

2) FFT-SIZE must be >= 64 (this is not checked). 



* DESCR1PTION:Generic function to do a radix-2 FFT computation on the C30. 
* The data array is FFT-SIZE-long with only real data. The out- 
* put is stored in the same locations with real and imaginary 

points R and I as follows: 

The program is based on the FORTRAN program in the 
paper by Sorensen et al., June 1987 issue of Trans. 
on ASSP. 

* Bit reversal is optionally implemented at the begin- 
ning of the function. 

* 
The sine/cosine table for the twiddle factors is ex- 
pected to be supplied in the following format: 

* NOTE: The table is the first half period of a sine wave. 

Stack structure upon call: 

BIT-REVERSE 
SINE-TABLE 
DEST-ADDR 
SOURCE-ADDR 
LOG-SI ZE 
FFT-SIZE 
returne 

old FP 
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* NOTE: Calling C program can be compiled using either large 
* or small model. 
* 
* WARNING: DP initialized only once in the program. Be wary 

with interrupt service routines. Make sure interrupt 
* service routines save the DP pointer. 
* 
* WARNING: The DEST-ADDR must be aligned such that the first 
* LOG-SIZE bits are zero (this is not checked by the 
* program). 
* 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* 

* REGISTERS USED: RO, R1, R2, R3, R4, R5, R6, R7 
* ARO, AR1, AR2, AR3, AR4, AR5, AR6, AR7 
* IRO, IR1 
* RC, RS, RE 
* DP 
* 
MEMORY REQUIREMENTS: Program = 405 Words (approximately) 

* Data = 7 Words 
* Stack = 12 Words 
* 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* BENCHMARKS: 
* 
* 
* 
* 

Assumptions - Program in RAM0 
- Reserved data in RAMO 
- Stack on primary/expansion bus RAM 
- Sine/cosine tables in RAMO 
- Processing and data destination in RAM1. 
- Primary/expansion bus RAM, 0 wait state. 

FFT Size Bit ReversingData Source Cycles(C30) 

1024 OFF RAM1 19816 approx. 
Note: This number does not include the C callable overheads. 

Add 57 cycles for these overheads. 

.global -ffft-rl ; Entry execution point. 

FFT-SIZE : .usect ".fftdata",l ; Reserve memory for arguments. 
LOG-SIZE : .usect ".fftdata",l 
SOURCE-ADDR: .usect ".fftdata",l 
DEST-ADDR: .usect ".fftdataN,l 
SINE-TABLE: .usect ".fftdata",l 
BIT-REVERSE: .usect ".fftdata",l 
SEPARATION: .usect ".fftdata",l 
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; 
; Initialize C function. 
r' 

PUSH 
LDI 
PUSH 
PUSH 
PUSH 
PUSHF 
PUSH 
PUSHF 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 

LDP 

LDI 
ST1 
LDI 
ST1 
LDI 
ST1 
LDI 
ST1 
LDI 
ST1 
LDI 
ST1 

LDI 
CMPI 
BZ 

; Preserve C environment. 

FFT-SIZE ; Init. DP pointer. 

*-FP(Z),RO ; Move arguments from stack. 
RO,@FFT-SIZE 
*-FP(3),RO 
RO,@LOG-SIZE 
*-FP(4),RO 
RO , @ SOURCE-ADDR 
*-FP(S),RO 
RO , @DEST-ADDR 
*-FP(6),RO 
RO,@SINE-TABLE 
*-FP(7),RO 
RO,@BIT-REVERSE 

; 
; Check bit reversing mode (on or off). 
i 
; BIT-REVERSING = 0, then OFF 
i (no bit reversing). 
; BIT-REVERSING <> 0, Then ON. 
; 

@BIT-REVERSE,RO 
0,RO 
MOVE-DATA 

i 
; Check bit reversing type. 
; 
; If SourceAddr = DestAddr, then in place 
i bit reversing. 
; If SourceAddr <> DestAddr, then 
I standard bit reversing. 
I 
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LDI 
CMPI 
BEQ 

LDI 
SUBI 
LDI 
LSH 
LDI 
LDI 

LDF 

RPTS 
LDF 

I I 
STF 

IN-PLACE : LDI 
LSH 
LDI 

LDI 
LSH 
SUBI 
LDI 
LDI 
LDI 

NOP 
NOP 
LDF 
LDF 
CMPI 
LDFGT 
LDFGT 

@SOURCE-ADDR,RO 
@DEST-ADDR,RO 
IN-PLACE 

: 
; Bit reversing Type 1 (from source to 
I destination). 
; 
; NOTE: abs(S0URCE-ADDR - DEST-ADDR) 
; must be > FFT-SIZE, this is not 
i checked. 
; 

@FFT-SIZE,RO 
2,RO 
@FFT-SIZE,IRO 
-1, IRO ; IRO = half FFT size. 
@SOURCE-ADDR,ARO 
@ DEST-ADDR, AR1 

RO 
*ARO++,Rl 
STF Rl,*ARl++(IRO)B 

START 

; 
; In-place bit reversing. 
I 

; Bit reversing on even locations, 
; 1st half only. 

@FFT-SIZE,IRO 
-2, IRO ; IRO = quarter FFT size. 
2, IR1 

*ARl++ ( IRO ) B 
*ARZ++(IRO)B 
*++ARO(IRl),RO 
*AR1, R1 
AR1, ARO ; Xchange locs only if ARO<ARl. 
R0,Rl 
*ARl++(IRO)B,Rl 
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RPTB 
LDF 

LDF 
I I 

I I 
CMPI 
LDFGT 

BITRV1: LDFGT 

STF 
STF 

LDI 
LSH 
LDI 
ADDI 
ADDI 
LDI 
LDI 
LSH 
SUB1 

NOP 
NOP 
LDF 
LDF 
CMPI 
LDFGT 
LDFGT 

RPTB 
LDF 

LDF 
I I 

I I 
CMPI 
LDFGT 

BITRV2 : LDFGT 

STF 
STF 

BITRVl 
*++ARO(IRl),RO 
STF RO , *ARO 
*ARl, R1 
STF Rl,*AR2++(IRO)B 
AR1,ARO 
RO , R1 
*ARl++(IRO)B,RO 

; Perform bit reversing on odd 
i locations, 2nd half only. 

@FFT-SIZE,RC 
-1,RC 
@DEST-ADDR, ARO 
RC , ARO 
1,ARo 
AR0,ARl 
ARo,AR2 
-1,RC 
3 ,RC 

*ARl++(IRO)B 
*AR2++(IRO)B 
*++ARO(IRl),RO 
*AR1 , R1 
AR1,ARO ; Xchange locs only if ARO<ARl. 
R0,Rl 
*ARl++(IRO)B,Rl 

BITRV2 
*++ARO(IRl),RO 
STF RO , *ARO 
*ARl/ R1 
STF Rl,*ARZ++(IRO)B 
AR1,ARo 
R0,Rl 
*ARl++(IRO)B,RO 

i Perform bit reversing on odd 
i locations, let half only. 

LDI @FFT-SIZE,RC 
LSH -1,RC 
LDI RC, IRO 
LDI @DEST-ADDR, ARO 
LDI AR0,ARl 
ADD1 1 ,ARO 
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ADD1 
LSH 
LDI 
SUBI 

LDF 
LDF 

RPTB 
LDF 

BITRV3r LDF 
I I 

I I 
STF 
STF 

BR 

MOVE-DATA: LDI 
CMPI 
BEQ 

LDI 
SUBI 
LDI 
LDI 

LDF 

RPTS 
LDF 

I I 

IRO , ARl 
-1,RC 
RC, IRO 
2,RC 

BITRV3 
*++ARO(IRl),RO 
STF RO,*ARl++(IRO)B 
*AR1 , R1 
STF Rl,*-ARO(IR1) 

RO, *AR1 
R1, *ARO 

START 

i 
i Check data source locatione. 
i 
i If SourceAddr = DestAddr, then 
; do nothing. 
i If SourceAddr o DeetAddr, then move 

data. 
: 

@SOURCE-ADDR,RO 
@DEST-ADDR,RO 
START 

RO 
*ARO++, R1 
STF R1, *ARl++ 

STF 



; 
; Perform first and second FFT loops. 

0 4 [X(Il) + X(I2)l + [X(I3) + X(I4)] 

START: 

I I 

I I 

I I 

I I 

I I 

LOOP 1-2 : 

I I 

I I 

LDI 
LD I 
LDI 
LDI 
ADDI 
ADDI 
ADDI 
LDI 
LDI 
LSH 
SUB1 
LDF 
LDF 
ADDF3 
SUBF3 
SUBF3 
ADDF3 
ADDF3 
SUBF3 

RPTB 
LDF 
LDF 
ADDF3 
STF 
SUBF3 
STF 
SUBF3 
STF 
ADDF3 
STF 
ADDF3 
SUBF3 
STF 
STF 
STF 
S TF 

@DEST-ADDR,ARl 
AR1,ARZ 
ARl,AR3 
ARl,AR4 
1,AR2 
2,AR3 
3 ,AR4 
4, IRO 
@FFT-SIZE,RC 
-2 ,RC 
2,RC 
*AR2, RO 
*AR3, R1 
RlI*AR4,R4 
RlI*AR4++(1RO),R5 
ROI*AR1,R6 
ROI*AR1++(IRO),R7 
R7,R4,R2 
R4,R7,R3 

LOOPI-2 
*+AR2(IRO),RO 
*+AR3(IRO),R1 
R1, *AR4 ,R4 
R3,*AR3++(IRO) 
RlI*AR4++(IRO),R5 
R5 , *-AR4 (IRO) 
ROI*ARlIR6 
R6,*AR2++(IRO) 
ROI*AR1++(IRO),R7 
R2 , *-AR1 ( IRO ) 
R7,R4,R2 
R4,R7,R3 
R3, *AR3 
R5,*-AR4(IRO) 
R6, *AR2 
R2,*-ARl(IR0) 
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I 

; Perform third FFT loop. 
I 

; Part A: 

LDI 
LDI 
LDI 
ADDI 
ADDI 
LDI 
LDI 
LSH 
SUB1 

@DEST-ADDRIAR1 
ARl,AR2 
AR1 ,AR3 
4 ,AR2 
6 ,AR3 
8, IRO 
@FFT-SIZE,RC 
-3 1 RC 
2,RC 

SUBF3 *AR2,*ARl1R1 
ADDF3 *AR2,*AR11R2 
NEGF *AR3, R3 

RPTB 
LDF 

I I STF 
SUBF3 

I I STF 
ADDF3 

I I STF 
LOOP3-A: NEGF 

LOOP3-A 
*+AR2(IRO),RO 
R2,*ARl++(IRO) 
ROl*ARl1R1 
RlI*AR2++(IRO) 
RO, *ARlIR2 
R3,*AR3++(1RO) 
*AR3, R3 

STF R2, *AR1 
STF R1, *AR2 
STF R3, *AR3 
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; 
; Part B: 

i 

ARO 

; AR1 
; 
i I ARZ 

L - 3  
; 
; ARO 

LDI 
LSH 
LDI 
SUB1 
LDI 
LDI 
LDI 
LDI 
LDI 
ADDI 
ADDI 
ADDI 
ADDI 
LDI 
LDF 

MPYF3 
MPYF3 
ADDF3 
MPYF3 
SUBF3 
SUBF3 
ADDF3 
STF 
SUBF3 
STF 
ADDF3 
STF 

RPTB 
MPYF3 
STF 
ADDF3 
MPYF3 

0 
1 4 X[Il] + [X(I3)*COS+ X(I4)*COS] 
2 
3 4 XI111 - [X(I3)*COS+ X(I4)*COS] 
4 
5 4 -X[I2] - [X(I3)*COS- X(I4)*COS] 
6 
7 4 X[I2] - [X(I3)*COS- X(I4)*COS] 
8 
9 NOTE: COS(Z*pi/8) = SIN(2*pi/8) 

@FFT-SIZE,RC 
-3 ,RC 
RC, IR1 
3,RC 
8, IRO 
@DEST-ADDR,ARO 
AR0,ARl 
ARo,AR2 
ARO,AR3 
1 ,ARo 
3,ARl 
5,AR2 
7,AR3 
@SINE_TABLE,AR7 ; Initialize table pointers. 
*++AR7(1Rl),R7 ; R7 = COS(2*pi/8) 

; *AR7 = COS(Z*pi/8) 
*AR7,*AR2,RO ; RO = X(I3)*COS 
*AR3,R7,Rl ; R5 = X(I4)*COS 
RO,Rl,RZ ; R2 = [X(I3)*COS + X(I4)*COS] 
*AR7,*+AR2(1RO),RO 
RO,Rl,R3 ; R3 -[X(I3)*COS - X(I4)*COS] 
*ARl,R3,R4 ; R4 -X(I2) + R3 
*ARlIR3,R4 ; R4 = X(I2) + R3 
RQ,*ARZ++(IRO) 
R2, *ARO ,R4 
R4,*AR3++(IRO) 
*ARO , R2, R4 
RI,*ARl++(IRO) 

; 
LOOP3-B i 
*AR3,R7,R1 
R4,*ARO++(IRO) 
RO,Rl,R2 
*AR7,*+AR2(IRO),RO 
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LOOP 3-B I 
I I 

I I 

SUBF3 
SUBF 3 
ADDF3 
STF 
SUBF3 
STF 
ADDF3 
STF 
MPYF3 
STF 
ADDF3 
SUBF3 
SUBF3 
ADDF3 
STF 
SUBF3 
STF 
ADDF3 
STF 
STF 
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i 
; Perform fourth FFT loop. 
I 

; Part A: 

LDI 
LDI 
LDI 
ADDI 
ADDI 
LDI 
LDI 
LSH 
SUB1 
SUBF3 
ADDF3 
NEGF 
RPTB 
LDF 
STF 
SUBF3 
STF 
ADDF3 
STF 
NEGF 

STF 
STF 
STF 

@DEST-ADDRIAR1 
ARl,AR2 
ARl,AR3 
8 ,AR2 
12 ,AR3 
16, IRO 
@FFT-SIZE,RC 
-4 ,RC 
2,RC 
*AR2,*ARlIR1 
*AR2,*ARlIR2 
*AR3, R3 
LOOP4-A 
*+ARZ(IRO),RO 
RZ,*ARl++(IRO) 
RO, *AR1 ,R1 
RlI*AR2++(IRO) 
RO,*ARl,R2 
R3,*AR3++(IRO) 
*AR3, R3 
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i 
; Part B: - 

ARO -b 

LDI 
LSH 
LDI 
LDI 
SUB1 
LDI 
LDI 
LDI 
LDI 
LDI 
ADDI 
ADD I 
ADDI 
ADD I 
ADDI 

LDI 
LDF 

LDI 
LDF 

LDI 
LDF 

@FFT-SIZE,RC 
-4 ,RC 
RC, IR1 
2, IRO 
3,RC 
@DEST-ADDR,ARO 
AR0,ARl 
ARO,AR2 
ARO,AR3 
AR0,ARI 
1 ,ARO 
7 ,AR1 
9 ,AR2 
15,AR3 
ll,AR4 

LDI 
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MPYF3 
MPYF3 
MPYF3 
ADDF3 
MPYF3 
SUBF3 
SUBF3 
ADDF3 
STF 
SUBF3 
STF 
ADDF3 
STF 

MPY F 3 
STF 
ADDF3 
MPYF3 
SUBF3 
SUBF3 
ADDF3 
STF 
SUBF3 
STF 
STF 

MPYF3 
STF 
MPYF3 
MPYF3 
ADDF3 
MPYF3 
SUBF3 
SUBF3 
ADDF3 
STF 
SUBF3 
STF 
ADDF3 
STF 

RPTB 
MPYF3 
STF 
MPYF3 
MPYF3 
ADDF3 
MPYF3 
SUBF3 
SUBF3 
ADDF3 
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MPYF3 
STF 
ADDF3 
MPYF3 
SUBF3 
SUBF3 
ADDP3 
STF 
SUBF3 
STF 
ADDF3 
STF 

MPYF3 
STF 
MPYF3 
MPYF3 
ADDF3 
SUBF3 
SUBF3 
ADDF3 
STF 
SUBF3 
STF 
ADDF3 
STF 

STF 
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LOOP : 

11-104 

i 
; Perform remaining FFT loops (loop 4 onwards). 
i LOOP 
i 1st 2nd 

+ 
LDI 
LSH 
ST1 
LSH 
LDI 
LDI 
LDI 
LDI 
LDI 
LSH 
LSH 
ADD1 
LSH 
LDI 

i 
I 

; 
i 
: 
i 
i 
: 
i 
i 
i 
i 
i 
; 
; 
i 
; 
i 
i 
i 
I 

: 
i 
; 
i 
; 
i 

@FFT-SIZE,IRO 
-2, IRO 
IRO,@SEPARATION 
-2, IRO 
5,R5 
3,R7 
16,R6 
@DESTPDDRlAR5 
@DEST-ADDR,ARl 
-1, IRO 
11R7 
1,R7 
1 ,R6 
AR1, AR4 

- + + 
ARl' 1-1 0 0 4 X1(Il)+ X'(13) 

1 1 4 X(I1) + [X(I3)*COS + X(I4)*SIN] 
2 2 

X 11 3 3 

-C LP 

A + 
X'(I2) 8 16 

B + 
4 

13 29 
14 30 

AR2+ 15 31 + X[Il] - [X(I3)*COS + X(I4)*SIN] 
16 32 4 X1(1l)- X1(13) 

AR3 + 17 33 4 -X[I2]- [X(I3)*SIN- X(I4)*COS] 
18 34 
19 35 

' f""i24 48 4 -X1(14) 

+ 

[%JiE[ ; 
i 
i 
I 

i 

29 61 
30 62 

+ 31 63 4 X[I2] - [X(I3)*SIN - X(I4)*COS] - 32 64 

+ 33 65 

I I 
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INLOP : 

IN-BLK : 
I I 

I I 

ADDI 
LDI 
ADDI 
ADDI 
SUBI 
LDI 
SUBI 

LDI 
LDI 
LDI 

ADDF3 
SUBF3 
NEGF 
STF 
STF 
STF 

LDI 

SUBI 

MPYF3 
MPYF3 
MPYF3 
MPYF3 
SUBF3 
MPYF3 
ADDF3 
SUBF3 
ADDF3 
STF 
SUBF3 
STF 
ADDF3 
STF 

RPTB 
LDF 
MPYF3 
STF 
MPYF3 
MPYF3 
SUBF3 
MPYF3 
ADDF3 
SUBF3 
ADDF3 
STF 
SUBF3 
STF 
ADDF3 
STF 

; AR1 points at A. 

; AR2 points at B. 

; AR4 points at D. 

; AR3 points at C. 

@SINE-TABLE,ARO ; ARO points at SIN/COS table. 
R7, IR1 
R7, RC 

*--ARl(IRl),*++AR2(1Rl),RO; RO = 
*--AR3(IRl),*ARl++,Rl ; R1 r 

*--AR4 1 R2 ; R 2  = .  
RO, *-AR1 ; X'(I1) 
R1, *AR2-- ; X'(I3) 
RZI*AR4++(IR1) ; X1(14) 

@SEPARATION,IRl ; IRl=SEPARATION 
BETWEEN SIN/COS TBLS 

3,RC 

IN-BLK 
*-ARO(IRl),R3 
*AR4, R3, R4 
R4, *ARl++ 
*AR3,R3,R1 
*AROI*AR3,R0 
Rl,RO,R3 
*++ARO(IRO)I*-AR4,R0 
RO1R4,R2 
*AR2, R3, R4 
*AR2, R3, R4 
R4, *AR3++ 
R2, *AR1 ,R4 
R4, *AR4-- 
*ARl1R2,R4 
R4, *AR2-- 
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LDF 
MPYF3 

I I 
MPYF3 
MPYF3 

LD I 
I I 

ABDF 3 
SUBF3 
ADDF3 

I I 
SUBF3 

I I 
ADDF3 

I I 
STF 

SUB13 
CMPI 
BLTD 

LDI 

LDI 
LDI 

ADD1 
CMPI 
BLED 
LDI 
LSH 
LSH 

*-ARO(IRl),R3 
*AR4, R3, R4 
STF R4, *ARl++ 
*AR3,R3,R1 
*AROI*AR3,RO 
SUBF3 R1,RO1R3 
R6, IR1 
RO1R4,R2 
*AR2,R3,R4 
*AR2,R3,R4 
STF R4,*AR3++(IRl) 
R2, *AR1 ,R4 
STF R4,*AR4++(IRl) 
*ARllR2,R4 
STF R4,*AR2++(IRl) 

ARS,ARl,RO 
@FFT-SIZE,RO 
INLOP ; LOOP BACK TO THE 

INNER LOOP 
@SINE-TABLE,ARO ; ARO POINTS TO 

SIN/COS TABLE 
R7, IR1 
R7, RC 

1,R5 
@LOG-SIZE,R5 
LOOP 
@DEST-ADDR,ARI 
-1, IRO 
1,R7 
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POP DP 

POP AR7 
POP AR6 
POP AR5 
POP AR4 
POPF R7 
POP R7 
POPF R6 
POP R6 
POP R5 
POP R4 
POP FP 
RETS 

; 
; Return to C environment. 
i 

; Restore C environment 
i variables. 

* 
* NO more. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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Example 1 1-39. Real Inverse, Radix-2 FFT 

* Real Inverse FFT 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* 
* FILENAME r ifft-rl.asm 
* 
* WRITTEN BY : Daniel Mazzocco 
* Texas Instruments, Houston 
* 
* DATE : 18th Feb 1992 
* 
VERSION : 1.0 

* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* VER DATE COMMENTS 
* -  
* 1.0 18th Feb 92 Original release. Started from forward real FFT 

routine written by Alex Tessarolo, rev 2.0 . 
* 

* SYNOPSIS: int ifft-rl( FFT-SIZE, LOG-SIZE, SOURCE-ADDR, 
DEST-ADDR, SINE-TABLE, BIT-REVERSE ) ;  

* 
int FFT-SIZE ; 64, 128, 256, 512, 1024, ... 
int LOG-S I Z E ; 6 ,  7, 8, 9, 10 , . . .  
float *SOURCE-ADDR ; Points to where data is originated 

; and operated on. 
float *DEST-ADDR ; Points to where data will be stored. 
float *SINE-TABLE ; Points to the SIN/COS table. 
int BIT-REVERSE ; = 0, bit reversing is disabled. 

; <> 0, bit reversing is enabled. 

NOTE: 1) If SOURCE-ADDR = DEST-ADDR, then in place bit 
reversing is performed, if enabled (more 
processor intensive). 

2) FFT-SIZE must be >= 64 (this is not checked). 
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DESCRIPTION: 
* 

* 
* 

* 
* 
* 

Generic function to do an inverse radix-2 FFT computation 
on the C30. 
The data array is FFT-SIZE long with real and imaginary 
points R and I as follows: 

The output data array will contain only real values. 
Bit reversal is optionally implemented at the end 
of the function. 

The sine/cosine table for the twiddle factors is expected 
to be supplied in the following format: 

NOTE: The table is the first half period of a sine wave. 

* Stack structure upon call: 

BIT-REVERSE 
SINE-TABLE 
DEST-ADDR 
SOURCE-ADDR 
LOG-S I ZE 
FFT-SIZE 
returne 

old FP 
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NOTE: Calling C program can be compiled using either large 
or small model. 

WARNING: DP initialized only once in the program. Be wary 
with interrupt service routines. Make sure interrupt 
service routines save the DP pointer. 

WARNING: The SOURCE-ADDR must be aligned such that the first 
LOG-SIZE bits are zero (this is not checked by the 
program). 

* 
* REGISTERS USED: RO, R1, R2, R3, R4, R5, R6, R7 
* ARO, AR1, AR2, AR3, AR4, AR5, AR6, AR7 
* IRO, IR1 
* RC, RS, RE 
* DP 

* MEMORY REQUIREMENTS: Program = 322 words (approximately) 
Data = 7 words 
Stack = 12 words 

* 
* BENCHMARKS : Assumptions - Program in RAM0 
* - Reserved data in RAM0 
3t - Stack on primary/expansion bus RAM 
* - Sine/cosine tables in RAM0 
* - Processing and data destination in RAM1 
* - Primary/expansion bus RAM, 0 wait state 
4 

* FFT Size Bit Reversing Data Source Cycles(C30) 
* 
* 1024 OFF RAM1 25892 approx. 
* Note: This number does not include the C callable overheads. 
* Add 57 cycles for these overheads. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

.global -ifft-rl ; Entry execution point. 

FFT-SIZE : .usect ".ifftdata",l ; Reserve memory for arguments. 
LOG-SIZE : .usect ".ifftdata",l 
SOURCE-ADDR: .usect ".ifftdata",l 
DEST-ADDR : .usect ".ifftdataW,l 
SINE-TABLE: .usect ".ifftdata",l 
BIT-REVERSE : .usect ".ifftdatal', 1 
SEPARATION : .usect " . iff tdata" , 1 
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- if ftrl r PUSH 
LDI 
PUSH 
PUSH 
PUSH 
PUSHF 
PUSH 
PUSHF 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 

LDP 

LDI 
ST1 
LDI 
ST1 
LDI 
ST1 
LDI 
ST1 
LDI 
ST1 
LD I 
ST1 

; 
; Initialize C Function. 
; 

; Preserve C environment. 

FFT-SIZE ; Initialize DP pointer. 

*-FP(2),RO ; Move arguments from stack. 
RO,@FFT-SIZE 
*-FP(3)tRO 
RO,@LOG-SIZE 
*-FP(4),RO 
RO,@SOURCE-ADDR 
*-FP(S),RO 
RO,@DEST-ADDR 
*-FP(6)tRO 
RO,@SINE-TABLE 
*-FP(7),RO 
RO,@BIT-REVERSE 
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i 
; Perform last FFT loops first (loop 2 onwards). 
: 
d LOOP 
: 1st 2nd 

LOOP : 

11-112 

- + + 
0 0 4 Xp(Il)t X'(13) 

4 X(I1) t [X(I2) 

A 1 16 * Xr(12)* 2 XI (12) 
B + 

13 29 
14 30 

AR2 + 15 31 4 Xi141 - [X(I3) 
16 32 4 X1(1l)- X'(13) 

AR3 + 17 33 4 [X(Il)-X(I2)]*COS-[X(13)+X(I4)]*SIN 
18 34 
19 35 

48 + -X8(14)*2 
D + 

+ [X(I2)-X(I2)]*SIN+[X(I3)+X(I4)]*COS 
- 32 64 

-b 33 65 

+ 
LDI 1, IRO ; Step between two consecutive sines 
LDI 4, R5 ; Stage number from 4 to M. 
LDI @FFT_SIZE,R7 
LSH -2,R7 ; R7 is FFT-SIZE/4-1 (ie 15 for 64 pts) 
SUB1 1,R7 ; and will be used to point at A & D. 
LDI @FFT_SIZE,R6 ; R6 will be used to point at D. 
LSH 1,R6 
LDI @SOURCE-ADDR,AR5 
LDI @SOURCE-ADDR,ARl 

LSH -1,R6 ; R6 is FFT-SIZE at the 1st loop. 
LDI AR1 ,AR4 
ADD1 R7, AR1 ; AR1 points at A. 
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INLOP : 

LDI 
ADDI 
ADDI 
SUBI 
LDI 
SUBI 

LDI 
LDI 

SUBF3 
LDF 

I I STF 
MPYF 
LDF 

I I STF 
MPYF 
STF 

I I STF 

LDI 

LDI 
LSH 
SUBI 

SUBF3 
ADDF3 
MPYF3 
LDF 
MPYF3 

I I SUBF3 
ADDF3 

I I  STF 
MPYF3 

I I STF 
ADDF3 
MPYF3 

I I STF 
SUBF3 

RPTB 

AR1,ARZ 
2 ,AR2 ; AR2 points at B. 
R6,AR4 
R7 ,AR4 ; AR4 points at D. 
AR4,AR3 
2 ,AR3 ; AR3 points at C. 

*--ARl(IRl) ,* 
--AR3(IRl),RO ; RO Xf(I1) + X1(13) 
*AR3,*ARl,Rl ; Rl = Xf(Il) - Xf(13) 
*--AR4 R2 
RO, *ARl++ ; X f (11) 
-2.0,RZ ; R2 = -2*X'(I4) 
*--AR2 R3 
R1, *AR3++ ; X'(I3) 
2.O,R3 ; R3 = 2*X'(I2) 
R3,*AR2++(IRl) ; X'(I2) 4 
RZ,*ARI++(IRl) ; Xf(14) 

@FFT-SIZE,IRl ; IRlnseparation between SIN/ 
; COS tbls 

@SINE-TABLE,ARO; ARO points at SIN/COS table. 
-2, IR1 
3,RC 

IN-BLK 
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IN-BLK : 

SUBF3 
ADDF 3 
MPYF3 
STF 
LDF 
MPYF3 
SUBF3 
ADDF3 
STF 
MPYF3 
STF 
ADDF3 
MPYF3 
STF 
SUBF3 

SUBF3 
ADDF3 
MPYF3 
STF 
LDF 
MPYF3 
SUBF3 
ADDF3 
STF 
MPYF3 
STF 
LDI 
ADDF3 
MPYF3 
STF 
SUBF3 
NEGF 
STF 

SUB13 
CMPI 
BLTD 
NOP 
LDI 
LDI 

ADD1 
CMPI 
BLED 
LDI 
LSH 
LSH 

*AR2,*ARl1R3 ; R3 X(I1)-X(I2) 
*ARlI*AR2,R2 ; R2 = X(Il)+X(IZ) 
R3,*++ARO(IRO),Rl; R1 = R3*SIN 
R4, *AR3++ ; x(I3) 
*AR4, R4 ; R4 = X(I4) 
R3,*++ARO(IR1),RO; RO = R3*COS 
*AR3,R4,R3 ; R3 = X(I4)-X(I3) 
R4,*AR3,R2 ; R2 = X(I3)+X(I4) 
R2, *AR1 ; X(I1) 4 
R2,*ARO--(IRl),R4; R4 R2*COS 
R3, *AR2 ; x(I2) 4 
R6, IR1 ; Get prepared for the next 
R4,Rl1R3 ; R3 = R3*SIN + R2*COS 
R2, *ARO,Rl ; R1 = R2*SIN 
R3,*AR4++(IRl) ; X(I4) 
Rl,RO,R4 ; R4 R3*COS 2 - R2*SIN 
*ARl++(IRl),RZ ; Dummy 
R4,*AR3++(IRl) ; X(I3) 

AR5,ARl1RO 
@FFT-SIZE,RO 
INLOP ; Loop back to the inner loop 
*AR2++ (IR1) ; Dummy 
R7, IR1 
R7, RC 

1,R5 
@LOG-SIZE,R5 ; Next stage if any left 
LOOP 
@SOURCE-ADDR,~~ 
1, IRO ; Double step in sinus table 
-1 ,R7 
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I 

; Perform third FFT loop. 

LDI 
LDI 
LDI 
LDI 
ADDI 
ADDI 
ADDI 
LDI 
LDI 
LSH 
SUB1 
LDI 

RPTB 
LDF 
ADDF3 
SUBF3 
LDF 

I I STF 
MPYF 
LDF 

I I STF 
MPYF 

LOOP3-A : STF 
I I STF 

@SOURCE-ADDRIAR1 
AR11AR2 
AR11AR3 
AR11AR4 
2 ,AR2 
4 ,AR3 
6 ,AR4 
8, IRO 
@FFT-SIZE,RC 
-3,RC 
1 ,RC 
@SINE-TABLE,ARO ; ARO points at SIN/COS table 
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i 
; Part B: 

r 

LDI 
LDI 
LDI 
LDI 
ADDI 
ADDI 
ADDI 
ADDI 
LDI 
LDI 
LSH 
LDI 
SUB1 

0 
1 4- X(I1) + X(I2) 
2 
3 +' X(I1) - X(I3) 
4 
5 4- [X(Il)- X(I2)]*COS-- [X(I3)+ X(I4)]*SIN 
6 
7 +' [X(Il)- X(I2)]*SIN+ [X(I3)+ X(I4)]*COS] 
8 
9 NOTE: COS(2*pi/8) = SIN(2*pi/8) 

@SOURCE-ADDR,ARl 
AR1,ARZ 
ARl,AR3 
ARl,AR4 
1,ARl 
3 ,AR2 
5,AR3 
7 ,AR4 
@SINE_TABLE,AR7 ; AR7 points at SIN/COS table. 
@FFT-SIZE,RC 
-3, RC 
RC, IR1 
2 ,RC 
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LDF 
LDF 
ADDF3 
SUBF3 
SUBF3 
ADDF3 
SUBF3 

I I STF 
ADDF3 

I I STF 
MPYF3 

I I SUBF3 
MPYF3 

I I STF 

RPTB 

LDF 
I l STF 

ADDF3 
LDF 
SUBF3 
SUBF3 
ADDF3 
SUBF3 

I I STF 
ADDF3 

I I STF 
MPYF3 

1 )  SUBF3 
LOOP3-B : MPYF3 

I I STF 

STF 

*AR2, R6 ; R6 = X(I2) 
*AR3, RO ; RO = X(I3) 
R6,*ARlrR5 ; R5 = X(Il)+X(I2) 
R6, *AR1 ,R4 ; R4 = X(I1)-X(I2) 
R01R4 ,R3 ; R3 I X(I1)-X(I2)-X(I3) 
ROIR4,R2 ; R2 X(I1)-X(I2)+X(I3) 
RO, *AR4 ,R1 ; R1 = X(I4)-X(I3) 
R5,*ARl++(IRO) ; X(I1) 4 
R2, *AR4, R5 ; R5 = X(I1)-X(IZ)+X(I3)+X(I4) 
Rlr*AR2++(IRO) ; x(I2) 4 
R5,*++AR7(IRl),Rl ; R1 = R5*SIN 
*AR4, R3, R2 ; R2 X(I1)-X(I2)-X(I3)-X(I4) 
RZI*AR7,RO ; RO = R2*SIN 
Rlr*AR4++(IRO) i X(I4) 4 

; 
LOOP3-B i 

; 
*AR2 R6 ; R6 = X(I2) 
RO,*AR3++(IRO) ; X(I3) 4 
R6, *ARl,RS ; R5 = X(Il)+X(IZ) 
*AR3, RO ; RO = X(I3) 
R6,*ARlIR4 ; R4 X(I1)-X(I2) 
ROtR4,R3 ; R3 X(I1)-X(I2)-X(I3) 
ROrR4,R2 ; R2 = X(I1)-X(I2)+X(I3) 
RO, *AR4 ,R1 ; R1 = X(I4)-X(I3) 
R5,*ARl++(IRO) i X(I1) 4 
R2, *AR4 ,R5 ; R5 = X(I1)-X(I2)+X(I3)+X(I4) 
RlI*AR2++(IRO) i x(I2) 4 
R5, *AR7 ,R1 ; R1 = R5*SIN 
*AR4, R3, R2 ; R2 X(I1)-X(I2)-X(I3)-X(I4) 
R2, *AR7 ,RO 
Rl1*AR4++(IRO) 
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L 

; 
; Perform first and second FFT loops. 
; 

; [ii Fl 0 4- X(I1) + X(I3) + 2*X(I2) 
1 4 X(I1) + X(I3) - 2*X(I2) 

; 2 4- X(I1) - X(I3) - 2*X(I4) 

i AR4 -b 3 4- X(I1) - X(I3) + 2*X(I4) 

: AR1 -b 4 

; 
; 6 

LDI 
LDI 
LDI 
LDI 
ADDI 
ADDI 
ADDI 
LDI 
LDI 
LSH 
SUB1 

@SOURCE-ADDR,ARI 
ARl,AR2 
ARl,AR3 
ARl,AR4 
1 ,AR2 
2,AR3 
3 ,AR4 
4, IRO 
@FFT-SIZE,RC 
-2, RC 
2,RC 
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LOOP 1-2 : 
I I 

LDF 
LDF 
LDF 
MPYF 
MPYF 
SUBF3 
SUBF3 
SUBF3 
STF 
ADDF3 
ADDF3 
STF 
SUBF3 
ADDF3 
STF 
ADDF3 

RPTB 
LDF 
STF 
MPYF 
LDF 
LDF 
MPYF 
SUBF3 
SUBF3 
SUBF3 
STF 
ADDF 3 
ADDF3 
STF 
SUBF3 
ADDF3 
STF 
ADDF3 

STF 

LOOP 1-2 
*AR4, R6 
RO,*ARl++(IRO) 
2.O,R6 
*AR2, R7 
* M I ,  R1 
2.O,R7 
R6,*AR3,R5 
R5,RlIR4 
R7, *AR3, R5 
R4,*AR4++(IRO) 
R5,RlIR3 
R6, *AR3, R4 
R3,*AR2++(IRO) 
R4,Rl1R4 
R7, *AR3,RO 
R4,*AR3++(IRO) 
RO,Rl,RO 

RO, *AR1 
; 
; LAST X(I1) 
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I 

; 
; Check bit reversing mode (on or off). 
; 
; BIT-REVERSING = 0, then OFF (no bit reversing). 
; BIT-REVERSING <> 0, then ON. 
; 

LDI @BIT-REVERSE,RO 
CMPI 0,RO 
BZ MOVE-DATA 

t 
; Check bit reversing type. 
i 
; If SourceAddr = DestAddr, then in place bit reversing. 
; If SourceAddr <> DestAddr, then standard bit reversing. 
i 

LDI @SOURCE-ADDR,RO 
CMPI @DEST-ADDR,RO 
BEQ IN-PLACE 

; 
; Bit reversing type 1 (from source to destination). 
1 

; NOTE: abs(S0URCE-ADDR - DEST-ADDR) must be > FFT-SIZE, this is not checked. 
; 

LDI @FFT-SIZE,RO 
SUB1 2,RO 
LDI @FFT-SIZE,IRO 
LSH -1, IRO ; IRO = half FFT size. 
LDI @SOURCE-ADDR,ARO 
LDI @DEST-ADDR,AR~ 

LDF *ARO++,Rl 

RPTS RO 
LDF *ARO++, R1 

I I STF Rl,*ARl++(IRO)B 

STF Rl,*ARl++(IRO)B 

BR DIVISION 
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: 
; In-place bit reversing. 
; 

; Bit reversing on even locations, let half 
; only. 

IN-PLACE : LDI 
LSH 
LDI 

LDI 
LSH 
SUBI 
LDI 
LDI 
LDI 

NOP 
NOP 
LDF 
LDF 
CMPI 
LDFGT 
LDFGT 

RPTB 
LDF 

I I STF 
LDF 

1 I STF 
CMPI 
LDFGT 

BITRV1: LDFGT 

STF 
STF 

LDI 
LSH 
LDI 
ADDI 
ADDI 
LDI 
LD I 
LSH 
SUBI 

NOP 
NOP 
LDF 

@FFT-SIZE,IRO 
-2, IRO ; IRO = quarter FFT size. 
2, IR1 

*ARl++(IRO)B 
*AR2++(IRO)B 
*++ARO(IRl),RO 
*AR1, R1 
AR1,ARO ; Xchange locations only if ARO<ARl. 
R0,Rl 
*ARl++(IRO)B,Rl 

RO, *ARO 
R1, *AR2 

; Perform bit reversing on odd locations, 
i 2nd half only. 

@FFT-SIZE,RC 
-1,RC 
@DEST-ADDR,ARO 
RC , ARO 
1 ,ARo 
AR0,ARl 
ARO,AR2 
-1,RC 
3,RC 

*AR1++ ( IRO ) B 
*AR2++(IRO)B 
*++ARO(IRl),RO 
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LDF 
CMPI 
LDFGT 
LDFGT 

RPTB 
LDF 

I I STF 
LDF 

I I STF 
CMPI 
LDFGT 

BITRVZ : LDFGT 

STF 
STF 

LDI 
LSH 
LDI 
LDI 
LDI 
ADDI 
ADDI 
LSH 
LDI 
SUB1 

LDF 
LDF 

RPTB 
LDF 

I I STF 
BITRV3: LDF 
I I STF 

STF 
STF 

*AR1, R1 
AR1,ARO ; Xchange locations only if ARO<ARl. 
R0,Rl 
*ARl++(IRO)B,Rl 

BITRVZ 
*++ARO(IRl),RO 
RO , *ARO 
*AR1, R1 
Rl,*ARZ++(IRO)B 
AR1,ARo 
RO , R1 
*ARl++(IRO)B,RO 

RO, *ARO 
R1, *ARZ 

; Perform bit reversing on odd 
I locations, 1st half only. 

@FFT-SIZE,RC 
-1,RC 
RC , IRO 
ODEST-ADDR,ARO 
AR0,ARl 
1 ,ARO 
IRO , AR1 
-1,RC 
RC, IRO 
2 ,RC 

RO, *AR1 
R1, *ARO 

DIVISION 
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MOVE-DATA: LDI 
CMPI 
BEQ 

LDI 
SUBI 
LDI 
LDI 

LDF 

RPTS 
LDF 

1 I STF 

STF 

DIVISION : LDI 
LDI 
FLOAT 
PUSHF 
POP 
NEGI 
PUSH 
POPF 
LDI 
LDI 
NOP 
LDI 
LSH 
SUBI 
MPYF3 
RPTB 
MPYF3 

I I STF 
LAST-LOOP: MPYF3 

I I STF 

MPYF3 

I I STF 
STF 

I 

; Check data source locations. 
I 

; If SourceAddr = 
; DestAddr, then do nothing. 
; If SourceAddr <> 
; DestAddr, then move data. 

@SOURCE-ADDR,RO 
@DEST-ADDR, RO 
DIVISION 

@FFT-SIZE,RO 
2,RO 
@ SOURCE-ADDR, ARO 
@DEST-ADDR,ARI 

2, IRO 
@FFT-SIZE,RO 
RO 
RO 
RO 
RO 
RO 
RO 
@DEST-ADDR,ARl 
@DEST-ADDR,AR2 
*AR2++ 
@FFT-SIZE,RC 
-1,RC 
2,RC 
RO,*ARl,Rl 
LAST-LOOP 
RO , *AR2, R2 
R1, *ARl++ (IRO ) 
RO, *ARl,Rl 
R2,*AR2++(IRO) 

; exp = LOG-SIZE 
; 32 MSB'S saved 

; Neg exponent 

; RO = l/FFT-SIZE 

; 1st location 

; 2nd,4th,6th1 ... location 
; 3rd,5th,7th1... location 

; Last location 
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; Return to C environment. 
; 

POP DP 
POP AR7 
POP AR6 
POP AR5 
POP AR4 
POPF R7 
POP R7 
POPF R6 
POP R6 
POP R5 
POP R4 
POP FP 
RETS 

; Restore C environment variables. 

* 
* NO more. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* 

The TMS320C3x quickly executes FFT lengths up to 1024 points (complex) 
or 2048 (real), covering most applications, because it can do so almost entirely 
in on-chip memory. Table 11-1 and Table 11-2 summarize the number of CPU 
clock cycles and the execution time required for FFT lengths between 64 and 
1024 points for the four algorithms. 
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Table 1 1 - 1. TMS320C3x FFT Timing Benchmarks (Cycles) 

FFT Timing In Cycles 

Number ot RADIX-2 RADIX-4 RADIX-2 RADIX-2 
Points (Complex) (Complex) (Real) (Real Inverse) 

t This benchmark is based on the Meyer and Schwarz program found in DigitalSignalProcessing Applications With the TMS320 
Family, Volume 3. 

Table 11-2. TMS320C3x F I T  Timing Benchmarks (Milliseconds) 

FFT Timing in Mllllseconds 

Number ot RADIX-2 RADIX-4 RADIX-2 RADIX-2 
Points (Complex) (Complex) (Real) (Real Inverse) 

64 0.139 0.1 03 0.041 0.054 

1 024t 1.975 

t This benchmark is based on the Meyer and Schwarz program found in Digitalsignal ProcessingApplications With the TMS320 
Family, Volume 3. 

11.4.5 Lattice Filters 

The lattice form is an alternative way of implementing digital filters; it has found 
applications in speech processing, spectral estimation, and other areas. In this 
discussion, the notation and terminology from speech processing applications 
are used. 

If H(z) is the transfer function of a digital filter that has only poles, A(z) = 1/H(z) 
will be a filter having only Os, and it will be called the inverse filter. The inverse 
lattice filter is shown in Figure 11-5. These equations describe the filter in 
mathematical terms: 
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f ( i , n ) = f ( i - l , n ) t k ( i )  b( i -1,n-1) 
b (i,n) = b (i-1,n-1) t k (i) f ( i-  1,n) 

Initial conditions: 

f (0,n) = b (0,n) = x (n) 

Final conditions: 

In the above equation, f (i,n) is the forward error, b (i,n) is the backward error, 
k (i) is the i-th reflection coefficient, x (n) is the input, and y (n) is the output 
signal. The order of the filter (that is, the number of stages) is p. In the linear 
predictive coding (LPC) method of speech processing, the inverse lattice filter 
is used during analysis, and the (forward) lattice filter during speech synthesis. 

Figure 11-5. Structure of the Inverse Lattice Filter 

Figure 11-6 shows the data memory organization of the inverse lattice-filter 
on the TMS320C3x. 

Figure 11-6. Data Memory Organization for Lattice Filters 

Reflection Baclyard 
Coefficients Propagat~on Terms 

Low 
Address 

High k(p) I b(p-1,n-1) 3 
Address 

Example 11-40 shows the implementation of an inverse lattice filter 
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Example 1140. Inverse Lattice Filter 

* TITLE INVERSE LATTICE FILTER 
* 

SUBROUTINE LATINV 
* 
* LATIM LATTICE FILTER (LPC INVERSE FILTER - ANALYSIS) 
* 
* 
* TYPICAL CALLING SEQUENCE: 

* load R2 
* load ARO 
* load AR1 
* load RC 
* CALL LATINV 
* 

* ARGUMENT ASSIGNMENTS: 

* ARGUMENT I FUNCTION 
I 

RZ I f(O,n) = x(n) 
* ARO I ADDRESS OF FILTER COEFFICIENTS (k(1)) 
* AR1 I ADDRESS OF BACKWARD PROPAGATION 
* I VALUES (b(0,n-1)) 
* RC I R C = p - 2  

* REGISTERS USED AS INPUT: R2, ARO, AR1, RC 
* REGISTERS MODIFIED: RO, R1, R2, R3, RS, RE, RC, ARO, AR1 

REGISTER CONTAINING RESULT: R2 (f(p,n)) 
* 

PROGRAM SIZE: 10 WORDS 
* 
* EXECUTION CYCLES: 13 + 3 * (p-1) 
* 
* 

.global LATINV 
* 
* 1 - 1  
* 
LATINV MPYF3 *ARO, *ARl, RO 
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* ; k(1) * b(0,n-1) -> RO 
* ; Assume f(0,n) -> R2. 

LDF R2,R3 ; Put b(0,n) = f(O,n) -> R3. 
MPYF3 *ARO++(l),R2,Rl 

* ; k(1) * f(0,n) -> R1 
* 

* 
RPTB LOOP 
MPYF3 *ARO,*++ARl(l),RO 

) I  ADDF3 R2,RO1R2 
* 

* 
* 

ADDF3 *-AR1(1), R1, R3 

I I STFR3, *-ARl(1) 
* 
LOOP MPYF3 *ARO++(l),R2,Rl 
4 

* 
* I = P+l (CLEANUP) 

ADDF3 *AR1, R1, R3 

I I STF R3, *AR1 
* 

* RETURN SEQUENCE 
* 

RETS ; RETURN 

* end 
* 

.end 

The forward lattice filter is similar in structure to the inverse filter, as shown in 
Figure 11-7. 

Figure 11-7. Structure of the (Forward) Lattice Filter 
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These corresponding equations describe the lattice filter: 

f ( i - l , n ) = f ( i , n ) - k ( i ) b ( i - l 1 n - 1 )  
b (i,n) = b ( i-  1 , n -  1) + k ( i )  f ( i-  1,n) 

Initial conditions: 

f (pin) = x  (n), b ( i , n - 1 )  = 0 fori = 1 ,..., p 

Final conditions: 

The data memory organization is identical to that of the inverse filter, as shown 
in Figure 11-6 on page 11 -1 26. Example 11-41 shows the implementation of 
the lattice filter on the TMS320C3x. 

Example 1 1-4 1. Lattice Filter 

* T I T L E  LATTICE F I L T E R  
* 
* 
* SUBROUTINE LATICE 
* 

LOAD ARO 
LOAD AR1 
LOAD RC 
CALL LATICE 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTION 

R 2  I F ( P , N )  = E ( N )  = EXCITATION 
ARO I ADDRESS OF F I L T E R  C O E F F I C I E N T S  ( K ( P ) )  
AR1 I ADDRESS OF BACKWARD PROPAGATION VALUES ( B ( P - 1 , N - 1 ) )  
IRO 1 3  
RC I R C - P - 3  

REGISTERS USED AS INPUT: R 2 ,  ARO, AR1, RC 
REGISTERS MODIFIED: RO, R 1 ,  R 2 ,  R 3 ,  R S ,  RE, RC, ARO, AR1 
REGISTER CONTAINING RESULT: R 2  ( f ( 0 , n ) )  

STACK USAGE: NONE 

PROGRAM S I Z E :  1 2  WORDS 

EXECUTION CYCLES: 15 + 3 * ( P- 2 )  
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.global LATICE 
* 
* 
LATICE MPYF3 *ARO,*AR1,RO 
* ; K(P) * B(P-1,N-1) -> RO 

; Assume F(P,N) -> R2 
SUBF3 RO , R2, R2 ; F(P,N)-K(P)*B(P-1,N-1) 

; = F(P-1,N) -> R2 
( ( MPYF3 *--ARO(l) l*--AR1(l)lRO 

; K(P-1) * B(P-2,N-1) -> RO 
SUBF3 RO , R2, R2 ; F(P-1,N)-K(P-l)*B(P-2,N-l) 

; F(P-2,N) -> R2 
1 1  MPYF3 *--ARO(l),*--ARl(l),RO 

; K(P-2) B(P-3,N-1) -> RO 
MPYF3 R2,*+ARO(l),Rl ; F(P-2,N) * K(P-1) -> R1 
ADDF3 Rlr*+AR1(1),R3 ; F(P-2,N) * K(P-1) + B(P-2,Wl) 

I I B(P-1,N) -> R3 

RPTB LOOP 
SUBF3 RO , R2, R2 ; F(1,N) - K(1) B(1-1,Wl) 

I Z= F(1-1,N) -> R2 
I (  MPYF3 *--ARO(l),*--ARl(l),RO 

STF R3, *+ARl (IRO ) ; B(I+l,N) -> B(I+l,N-1) 
1 )  MPYF3 R2,*+ARO(l),Rl ; F(1-1,N) * K(1) -> R1 
LOOP ADDF3 Rl,*+ARl(l) ,R3 ; F(1-1,N) * K(1) + B(1-1,N-1) 

STF R3,*+AR1(2) ; B(1,N) -> B(1,N-1) 
STF R2,*tAR1(1) ; F(OIN) -> B(0,N-1) 

* RETURN SEQUENCE 
* 

RETS 
* 

END 
* 
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11.5 Programming Tips 

Programming style reflects personal preference. The purpose of this section 
is not to impose any particular style; rather, it is to highlight features of the 
TMS320C3x that can help to produce faster and/or shorter programs. The tips 
cover the C compiler, assembly language programming, and low-power-mode 
wakeup. 

11.5.1 C-Callable Routines 

The TMS320C3x was designed with a large register file, software stack, and 
large memory space to implement a high-level language (HLL) compiler easi- 
ly. The first such implementation supplied is a C compiler. Use of the C compil- 
er increases the transportability of applications that have been tested on large, 
general-purpose computers, and it decreases their porting time. 

For best use of the compiler, complete the following steps: 

1) Write the application in the high-level language. 

2) Debug the program. 

3) Determine whether it runs in real-time. 

4) If it doesn't, identify the places where most of the execution time is spent. 

5) Optimize these areas by writing assembly language routines that implement 
the functions. 

6) Call the routines from the C program as C functions. 

When writing a C program, you can increase the execution speed by maximiz- 
ing the use of register variables. For more information, refer to the 
TMS320C3x C Compiler Reference Guide. 

You must observe certain conventions when writing a C-callable routine. 
These conventions are outlined in the Runtime Environment chapter of the 
TMS320C3x C Compiler Reference Guide. Certain registers are saved by the 
calling function, and others need to be saved by the called function. The C 
compiler manual helps achieve a clean interface. The end result is the read- 
ability and natural flow of a high-level language combined with the efficiency 
and special-feature use of assembly language. 

11.5.2 Hints for Assembly Coding 

Each program has particular requirements. Not all possible optimizations will 
make sense in every case. You can use the suggestions presented in this sec- 
tion as a checklist of available software tools. 

Software Applications 1 1 - 1 3 1 



Programming Tips 

Use delayed branches. Delayed branches execute in a single cycle; reg- 
ular branches execute in four cycles. The following three instructions are 
also executed whether the branch is taken or not. If fewer than three in- 
structions can be used, use the delayed branch and append NOPs. Ma- 
chine cycles (time) are still being saved. 

Q Apply the repeat singlelblock construct. In this way, loops are achieved 
with no overhead. Nesting such constructs will not normally increase effi- 
ciency, so try to use the feature on the most often performed loop. Note 
that RPTS is not interruptible, and the executed instruction is not refetched 
for execution. This frees the buses for operands. 

u Use parallel instructions. It is possible to have a multiply in parallel with 
an add (or subtract) and to have stores in parallel with any multiply or ALU 
operation. This increases the number of operations executed in a single 
cycle. For maximum efficiency, observe the addressing modes used in 
parallel instructions and arrange the data appropriately. 

Q Maximize the use of registers. The registers are an efficient way to ac- 
cess scratch-pad memory. Extensive use of the register file facilitates the 
use of parallel instructions and helps avoid pipeline conflicts when you use 
the registers in addressing modes. 

Use the cache. This is especially important in conjunction with external 
slow memory. The cache is transparent to the user, so make sure that it 
is enabled. 

Q Use internal memory instead of external memory. The internal 
memory (2K x 32 bits RAM and 4K x 32 bits ROM) is considerably faster 
to access. In a single cycle, two operands can be brought from internal 
memory. You can maximize performance if you use the DMA in parallel 
with the CPU to transfer data to internal memory before you operate on it. 

Avoid pipeline conflicts. If there is no problem with program speed, 
ignore this suggestion. For time-critical operations, make sure you do not 
miss any cycles because of conflicts. To identify conflicts, run the trace 
function on the development tools (simulator, emulators) with the program 
tracing option enabled. The tracing immediately identifies the pipeline 
conflicts. Consult the appropriate section of this user's guide for an expla- 
nation of the reason for the conflict. You can then take steps to correct the 
problem. 

The above checklist is not exhaustive, and it does not address the more de- 
tailed features outlined in other sections of this manual. To learn how to exploit 
the full power of the TMS320C3x, study the architecture, hardware configura- 
tion, and instruction set of the device. These subjects are described in earlier 
chapters. 
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11.5.3 Low-Power-Mode Wakeup Example 

There are two instructions by which theTMS320C31 is placed in the low power 
consumption mode: 

IJ IDLE2 
IJ LOPOWER 

The LOPOWER instruction will slow down the H1/H3 clock by a factor of 16 
during the read phase of the instruction. The MAXSPEED instruction will wake 
the device from the low-power mode and return it to full frequency during 
MAXSPEED'S read cycle. However, the H1/H3 clock may resume with the 
phase opposite from before the clocks were shut down. 

The IDLE2 instruction has the same functions that the IDLE instruction has, 
except that the clock is stopped during the execute phase of the IDLE2 instruc- 
tion. The clock pin will stop with H I  high and H3 low. The status of all of the 
signals will remain the same as in the execute phase of the IDLE2 instruction. 
In emulation mode, however, the clocks will continue to run, and IDLE2 will op- 
erate identically to IDLE. The external interrupts INT(O-3) are the only signals 
that start the processor up from the mode the device was in. Therefore, you 
must enable the external interrupt before going to IDLE2 power-down mode. 
(See Example 11-42.) If the proper external interrupt is not set up before 
executing IDLE2 to power down, the only way to wake up the processor is with 
a device RESET. 

Example 11-42. Setup of IDLE2 Power-Down-Mode Wakeup 

* TITLE IDLE2 POWER-DOWN MODE WAKEUP ROUTINE SETUP 
* 
* THIS EXAMPLE SETS UP THE EXTERNAL INTERRUPT 0, INTO, BEFORE 

EXECUTING THE IDLE2 INSTRUCTION. WHEN THE INTO SIGNAL IS RECEIVED 
* LATER, THE PROCESSOR WILL RESUME FROM ITS PREVIOUS 
* STATE. NOTE: THE "INTRPT" SECTION IS MAPPED FROM THE 
* ADDRESS 0 FROM THE RESET AND INTERRUPT VECTORS. 
* 

. sect "INTRPT" 
RESET .word START ; Reset vector 
INTO .word INTO-ISR ; INTO interrupt vector 
INTI .word INTI-ISR ; INTl interrupt vector 
INT2 .word INT2-ISR ; INT2 interrupt vector 
INT3 .word INT3-ISR ; INT3 interrupt vector . . . . . . . . 

.text . . . . 
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I 

LDP 
L D I  
OR 
IDLE 2 

INTO- ISR 

@SP-ADR 
@SP-ADR,SP ; Set up stack pointer 
Olh, I E  ; Enable INTO 

; Set G I E  = 1 and stop clock 

: 

RETI  ; Return to instruction after IDLE2 

There will be one cycle of delay while waking up the processor from the IDLE2 
power-down mode before the clocks start up. This adds one extra cycle from 
the time the interrupt pad goes low until the interrupt is taken. The interrupt pad 
needs to be low for at least two cycles. The clocks may start up in the phase 
opposite from before the clocks were stopped. 
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The TMS320C3x's advanced interface design can implement many system 
configurations. Its two external buses and DMA capability provide a parallel 
32-bit interface to external devices, while the interrupt interface, dual serial 
ports, and general-purpose digital I10 provide communication with many 
peripherals. 

This chapter describes how to use the TMS320C3xfs interfaces to connect to 
various external devices. Specific discussions include implementation of par- 
allel interface to devices with and without wait states, use of general-purpose 
110, and system control functions. All interfaces shown in this chapter have 
been built and tested to verify proper operation and apply to the TMS320C30. 
Comparable designs for the other TMS320C3x devices can be implemented 
with appropriate logic. 

Major topics discussed in this chapter are as follows: 

Topic Page 
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12.1 System Configuration Options Overview 
The various TMS320C3x interfaces connect to many different device types. 
Each of these interfaces is tailored to a particular family of devices. 

12.1.1 Categories of Interfaces on the TMS320C3x 

The TMS320C3x interface types fall into several categories, depending on the 
devices to which they are intended to be connected. Each interface comprises 
one or more signal lines that transfer information and control its operation. 
Figure 12-1 shows the signal line groupings for each of these various inter- 
faces. 

Figure 12- 1. External Interfaces on the TMS320C3x 
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All of the interfaces are independent of one another, and you can perform dif- 
ferent operations simultaneously on each interface. 

The primary and expansion buses implement the memory-mapped interface 
to the device. The external direct memory access (DMA) interface allows ex- 
ternal devices to cause the processor to relinquish the primary bus and allow 
direct memory access. 
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12.1.2 Typical System Block Diagram 

The devices that can be interfaced to the TMS320C3x include memory, DMA 
devices, and numerous parallel and serial peripherals and I10 devices. 
Figure 12-2 illustrates a typical configuration of a TMS320C3x system with 
different types of external devices and the interfaces to which they are con- 
nected. 

Figure 12-2. Possible System Configurations 

Memory .tt-----C DMADevices -F Memory 
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b 

--b- Primary Bus Expansion Bus 4- 
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Peripherals < = lnte*,.. Timer Interface b 110 Devices 

rt External Flags 

System Serial Serial 
Control Ports Ports 

Bit I10 

Generators, 
etc. Analog I10 

This block diagram constitutes essentially a fully expanded system. In an actual 
design, you can use any subset of the illustrated configuration as appropriate. 
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12.2 Primary Bus Interface 
The TMS320C3x uses the primary bus to access the majority of its 
memory-mapped locations. Therefore, typically, when a large amount of exter- 
nal memory is required in a system, it is interfaced to the primary bus. The ex- 
pansion bus (discussed in Section 12.3 on page 12-1 9) actually comprises two 
mutually exclusive interfaces, controlled by the MSTRB and IOSTRB signals, 
respectively. Cycles on the expansion bus controlled by the MSTRB signal are 
essentially equivalent to cycles on the primary bus, except that bank switching 
is not implemented on the expansion bus. Accordingly, the discussion of pri- 
mary bus cycles in this section applies equally to MSTRB cycles on the expan- 
sion bus. 

Although you can use both the primary bus and the expansion bus to interface 
to a wide variety of devices, the devices most commonly interfaced to these 
buses are memories. Therefore, this section presents detailed examples of 
memory interface. 

12.2.1 Zero-Wait-State Interface to Static RAMs 

Zero-wait-state read access time for the TMS320C3x is determined by the dif- 
ference between the cycle time (specification 10 in Table 13-1 2 on page 
13-31) and the sum of the times for HI  low to address valid (specification 14.1 
in Table 13-1 3 on page 13-34) and data setup before next HI  low (specifica- 
tion 15.1 in Table 13-1 3 on page 13-34): 

For example, for full-speed, zero-wait-state interface to any device, the 60-ns 
TMS320C3x requires a read access time of 30 ns from address stable to data 
valid. Because for most memories access time from chip select is the same 
as access time from address, it is theoretically possible to use 30-ns memories 
at full speed with the TMS320C3x-33. This requires that there be no delays 
between the processor and the memories. However, because of 
interconnection delays and because some gating is normally required for chip- 
select generation, this is usually not the case. Therefore, slightly faster memo- 
ries are required in most systems. 

Among currently available RAMs, there are two distinct categories of devices 
with different interface characteristics: 

IJ RAMs without output enable control lines (m), which include the one-bit- 
wide organized RAMs and most of the four-bit wide RAMs 

RAMs with controls, which include the byte-wide RAMs and a few of 
the four-bit wide RAMS 
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Many of the fastest RAMs do not provide C)E control; they use chip-select (m) 
controlled write cycles to ensure that data outputs do not turn on for write oper- 
ations. In =-controlled write cycles, the write control line (Ew ) goes low be- 
fore - goes low, and internal logic holds the outputs disabled until the cycle 
is completed. Using =-controlled write cycles is an efficient way to interface 
fast RAMs without controls to the TMS320C30 at full speed. 

In the case of RAMs with controls, using this signal can add flexibility to 
many systems. Additionally, many of these devices can be interfaced by using - 
CS-controlled write cycles with tied low in the same manner as with RAMs 
without controls. There are, however, two requirements for interfacing to - 
OE RAMs in this manner. First, the RAM'S input must be gated with chip 
select and WE internally so that the device's outputs do not turn on unless a 
read is being performed. Second, the RAM must allow its address inputs to 
change while WE is low; some RAMs specifically prohibit this. 

Figure 12-3 shows the TMS320C3x interfaced to Cypress Semiconductor's 
CY7C186 25-11s 8K x &bit CMOS static RAM with the =control input tied low 
and using a --controlled write cycle. 
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Figure 12-3. TMS320C3x lnterface to Cypress Semiconductor C M C  186 CMOS SRA M 

In this circuit, the two chip selects on the RAM are driven by STRB and m, 
which are ANDed together internally. locates the RAM at addresses 
OOOOOh through 03FFFh in external memory, and STRB establishes the m- 
controlled write cycle. The WE control input is then driven by the TMS320C3x 
~ m s i g n a l ,  and the input is not used and is therefore connected to ground. 

The timing of read operations, shown in Figure 12-4, is very straightforward 
because the two chip-select inputs are driven directly. The read access time 
of the circuit is therefore the inverter propagation delay added to the RAM'S 
chip-select access time, or t l  + t p  = 5 + 25 = 30 ns. This access time therefore 
meets the TMS320C3x-33's specified 30-ns read access time requirement. 
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Figure 12-4. Read Operations Timing 

-- 
CSl = STRB 

D31-00 Valid 

During write operations, as shown in Figure 12-5, the RAM'S outputs do not 
turn on at all, because of the use of the chip-select controlled write cycles. The 
chip-select controlled write cycles are generated because goes active 
(low) before the STRB term of the chip-select input. Because the RAM'S output 
drivers are disabled whenever the WE input is low (regardless of the state of 
the input), bus conflicts with the TMS320C3x are automatically avoided 
with this interface. The circuit's data setup and hold times (tl and t2 in the timing 
diagram) of approximately 50 and 20 ns, respectively, also easily meet the 
RAM'S timing requirements of 10 and 0 ns. 
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Figure 12-5. Write Operations Timing 

-- 
CS1 = STRB 

If you require more complex chip-select decode than can be accomplished in 
time to meet zero-wait-state timing, you should use wait states (see subsec- 
tion 12.2.2) or bank-switching techniques (see subsection 12.2.3). 

Note that the CWC186's = control is gated internally with CS; therefore, the 
RAM'S outputs are not enabled unless the device is selected. This is critical 
if there are any other devices connected to the same bus; if there are no other 
devices connected to the bus, need not be gated internally with chip select. 

You can easily interface RAMS without controls to the TMS320C3x by us- 
ing an approach similar to that used with RAMs with = controls. If only one 
bank of memory is implemented and no other devices are present on the bus, 
the memories' CS input can usually be connected to STRB directly. If several 
devices must be selected, however, a gate is generally required to AND the 
device select and STRB to drive the CS input to generate the chip-select con- 
trolled write cycles. In either case, the WE input is driven by the TMS320C3x 
~m signal. Provided sufficiently fast gating is used, 25-ns RAMs can still be 
used. 

As with the case of RAMs with =control lines, this approach works well if only 
a few banks of memory are implemented where the chip-select decode can 
be accomplished with only one level of gating. If many banks are required to 
implement very large memory spaces, bank switching can be used to provide 
for multiple bank select generation while still maintaining full-speed accesses 
within each bank. Bank switching is discussed in detail in subsection 12.2.3. 
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12.2.2 Ready Generation 

The use of wait states can greatly increase system flexibility and reduce hard- 
ware requirements over systems without wait-state capability. The 
TMS320C3x has the capability of generating wait states on either the primary 
bus or the expansion bus; both buses have independent sets of ready control 
logic.This subsection discusses ready generation from the perspective of the 
primary bus interface; however, wait-state operation on the expansion bus is 
similar to that on the primary bus. Therefore, these discussions also pertain 
to expansion bus operation. Accordingly, ready generation is not included in 
the specific discussions of the expansion bus interface. 

Wait states are generated on the basis of: 

Q the internal wait-state generator, - 
the external ready input (RDY), or 

Q the logical AND or OR of the two. 

When enabled, internally generated wait states affect all external cycles, re- 
gardless of the address accessed. If different numbers of wait states are re- - 
quired for various external devices, the external RDY input may be used to tai- 
lor wait-state generation to specific system requirements. 

If the logical AND (electrical OR) of the wait count and external ready signals 
is selected, the later of the two signals will control the internal ready signal, and 
both signals must occur. Accordingly, external ready control must be imple- 
mented for each wait-state device, and the wait count ready signal must be en- 
abled. 

If the logical OR (or electrical AND, since the signals are low true) of the exter- 
nal and internal wait-count ready signals is selected, the earlier of the two sig- 
nals will generate a ready condition and allow the cycle to be completed. Both 
signals need not be present. 

ORing of the Ready Signals 

The OR of the two ready signals can implement wait states for devices that 
require a greater number of wait states than are implemented with external 
logic (up to seven). This feature is useful, for example, if a system contains 
some fast and some slow devices. In this case, fast devices can generate a 
ready signal externally with a minimum of logic, and slow devices can use the 
internal wait counter for larger numbers of wait states. Thus, when fast devices 
are accessed, the external hardware responds promptly with a ready signal 
that terminates the cycle. When slowdevices are accessed, the external hard- 
ware does not respond, and the cycle is appropriately terminated after the in- 
ternal wait count. 
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You can use the OR of the two ready signals if conditions occur that require 
termination of bus cycles prior to the number of wait states implemented with 
external logic. In this case, a shorter wait count is specified internally than the 
number of wait states implemented with the external ready logic, and the bus 
cycle is terminated after the wait count. This feature can also be a safeguard 
against inadvertent accesses to nonexistent memory that would never re- 
spond with ready and would therefore lock up the TMS320C3x. 

If the OR of the two ready signals is used, however, and the internal wait-state 
count is less than the number of wait states implemented externally, the exter- 
nal ready generation logic must have the ability to reset its sequencing to allow 
a new cycle to begin immediately following the end of the internal wait count. 
This requires that, under these conditions, consecutive cycles be from inde- 
pendently decoded areas of memory and that the external ready generation 
logic be capable of restarting its sequence as soon as a new cycle begins. 
Otherwise, the external ready generation logic might lose synchronization with 
bus cycles and therefore generate improperly timed wait states. 

ANDlng of the Ready Slgnals 

The AND of the two ready signals can be used to implement wait states for de- 
vices that are equipped to provide a ready signal but cannot respond quickly 
enough to meet the TMS320C3x's timing requirements. In particular, if these 
devices normally indicate a ready condition and, when accessed, respond with 
a wait until they become ready, the logical AND of the two ready signals can 
be used to save hardware in the system. In this case, the internal wait counter 
can provide wait states initially and become ready after the external device has 
had time to send a not ready indication. The internal wait counter then remains 
ready until the external device also becomes ready, which terminates the 
cycle. 

Additionally, the AND of the two ready signals can extend the number of wait 
states for devices that already have external ready logic implemented but re- 
quire additional wait states under certain unique circumstances. 

External Ready Generation 

In the implementation of external ready generation hardware, the particular 
technique employed depends heavily on the specific characteristics of the sys- 
tem. The optimum approach to ready generation varies, depending on the rel- 
ative number of wait-state and non-wait-state devices in the system and on the 
maximum number of wait states required for any one device. The approaches 
discussed here are intended to be general enough for most applications and 
are easily modifiable to comprehend many different system configurations. 
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In general, ready generation involves the following three functions: 

IJ Segmentating the address space in some fashion to distinguish fast and 
slow devices 

IJ Generating properly timed ready indications 

Q Logically ORing all of the separate ready timing signals together to con- 
nect to the physical ready input 

Segmentation of the address space is required to obtain a unique indication 
of each particular area within the address space that requires wait states. This 
segmentation is commonly implemented in a system in the form of chip-select 
generation. In many cases, you can use chip-select signals to initiate wait 
states; however chip-select decoding considerations might occasionally pro- 
vide signals that will not allow ready input timing requirements to be met. In this 
case, you could make coarse address space segmentation on the basis of a 
small number of address lines, where simpler gating allows signals to be gen- 
erated more quickly. In either case, the signal indicating that a particular area 
of memory is being addressed is normally used to initiate a ready or wait-state 
indication. 

Once the region of address space being accessed has been established, a 
timing circuit of some sort is normally used to provide a ready indication to the 
processor at the appropriate point in the cycle to satisfy each device's unique 
requirements. 

Finally, since indications of ready status from multiple devices are typically - 
present, the signals are logically ORed by using a single gate to drive the RDY 
input. 

Ready Control Logic 

You can take one of two basic approaches in the implementation of ready con- - 
trol logic, depending on the state of the ready input between accesses. If RDY 
is low between accesses, the processor is always ready unless a wait state is - 
required; if RDY is high between accesses, the processor will always enter a 
wait state unless a ready indication is generated. 
- 

If ROY is low between accesses, control of full-speed devices is straightfor- 
ward; no action is necessary because ready is always active unless otherwise 
required. Devices requiring wait states, however, must drive ready high fast 
enough to meet the input timing requirements. Then, after an appropriate 
delay, a ready indication must be generated. This can be quite difficult in many 
circumstances because wait-state devices are inherently slow and often re- 
quire complex select decoding. 
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- 
If RDY is high between accesses, zero-wait-state devices, which tend to be 
inherently fast, can usually respond immediately with a ready indication. Wait- 
state devices might delay their select signals appropriately to generate a 
ready. Typically, this approach results in the most efficient implementation of 
ready control logic. Figure 12-6 shows a circuit of this type, which can be used 
to generate zero, one, or two wait states for multiple devices in a system. 

Figure 124. Circuit for Generation of Zero, One, or Two Wait States for Multiple Devices 
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Example Circuit 

In this circuit, full-speed devices drive ready directly through the '74AS21, and 
the two flip-flops delay wait-state devices' select signals one or two H1 cycles 
to provide one or two wait states. 

Considering the TMS320C3x-33's ready delay time of eight ns following ad- 
dress, zero-wait-state devices must use ungated address lines directly to drive 
the input of the '74AS21, since this gate contributes a maximum propagation - 
delay of six ns to the RDY signal. Thus, zero-wait-state devices should be 
grouped together within a coarse segmentation of address space if other de- 
vices in the system require wait states. 

With this circuit, devices requiring wait states might take up to 36 ns from aval- 
id address on the TMS320C3x to provide inputs to the '74AS20's inputs. This 
usually allows sufficient time for any decoding required in generating select 
signals for slower devices in the system. For example, the 74ALS138, driven - 
by address and STRB, can generate select decodes in 22 ns, which easily 
meets the TMS320C3x-33's timing requirements. 

With this circuit, unused inputs to either the 74AS20s or the 74AS21 should 
be tied to a logic high level to prevent noise from generating spurious wait 
states. 

If more than two wait states are required by devices within a system, other ap- 
proaches can be employed for ready generation. If between three and seven 
wait states are required, additional flip-flops can be included in the same man- 
ner shown in Figure 12-6, or internally generated wait states can be used in 
conjunction with external hardware. If more than seven wait states are re- 
quired, an external circuit using a counter may be used to supplement the ca- 
pabilities of the internal wait-state generators. 

12.2.3 Bank Switching Techniques 

The TMS320C3x1s programmable bank switching feature can greatly ease 
system design when large amounts of memory are required. Because, in gen- 
eral, devices take longer to release the bus than they take to drive the bus, 
bank switching is used to provide a period of time for disabling all device se- 
lects that would not be present otherwise (refer to Section 7.4 on page 7-30 
for further information regarding bank switching). During this interval, slow de- 
vices are allowed time to turn off before other devices have the opportunity to 
drive the data bus, thus avoiding bus contention. 
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When bank switching is enabled, any time a portion of the high order address - 
lines changes, as defined by the contents of the BNKCMPR register, STRB - 
goes high for one full HI cycle. Provided STRB is included in chip-select de- 
codes, this causes all devices to be disabled during this period. The next bank 
of devices is not enabled until STRB goes low again. 

In general, bank switching is not required during writes, because these cycles 
always exhibit an inherent one-half H I  cycle setup of address information be- 
fore - goes low. Thus, when you use bank switching for readtwrite de- 
vices, a minimum of half of one H1 cycle of address setup is provided for all 
accesses. Therefore, large amounts of memory can be implemented without 
wait states or extra hardware required for isolation between banks. Also, note 
that access time for cycles during bank switching is the same as that for cycles 
without bank switching, and, accordingly, full-speed accesses can still be ac- 
complished within each bank. 

When you use bank switching to implement large multiple-bank memory sys- 
tems, an important consideration is address line fanout. Besides parametric 
specifications for which account must be made, AC characteristics are also 
crucial in memory system design. Wlth large memory arrays, which commonly 
require large numbers of address line inputs to be driven in parallel, capacitive 
loading of address outputs is often quite large. Because all TMS320C3xtiming 
specifications are guaranteed up to a capacitive load of 80 pF, driving greater 
loads will invalidate guaranteed AC characteristics. Therefore, it is often nec- 
essary to provide buffering for address lines when driving large memory ar- 
rays. AC timingsfor buffer performance can then be derated according to man- 
ufacturer specifications to accommodate a wide variety of memory array sizes. 

The circuit shown in Figure 12-7 illustrates the use of bank switching with Cy- 
press Semiconductor's CY7C185 25-1-1s 8K x 8 CMOS static RAM. This circuit 
implements 32K 32-bit words of memory with one-wait-state accesses within 
each bank. 

A wait state is required with this implementation of bank memory because of 
the added propagation delay presented by the address bus buffers used in the 
circuit. The wait state is not a function of the memory organization of multiple 
banks or the use of bank switching. When bank switching is used, memory ac- 
cess speeds are the same as without bank switching, once bank boundaries 
are crossed. Therefore, no speed penalty is paid when bank switching is used, 
except for the occasional extra cycle inserted when bank boundaries are 
crossed. Note, however, that if the extra cycle inserted when bank boundaries 
are crossed does impact software performance significantly, you can often re- 
structure code to minimize bank boundary crossings, thereby reducing the ef- 
fect of these boundary crossings on software performance. 
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The wait state for this bank memory is generated by using the wait-state gener- 
ator circuit presented in the previous section. Because A23 is the signal that 
enables the entire bank memory system, the inverted version of this signal is 
ANDed with STRB to derive a one-wait-state device select. This signal is then 
connected in the circuit along with the other one-wait-state device selects. 
Thus, any time a bank memory access is made, one wait state is generated. 

Each of the four banks in this circuit is selected by using a decode of A1 &A1 3 
generated by the 74AS138 (see Figure 12-8). With the BNKCMPR register 
set to OBh, the banks will be selected on even 8K-word boundaries starting at 
location 080A000h in external memory space. 

Figure 12-7. Bank Switching for Cypress Semiconductor's C V C  185 
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Figure 12-8. Bank Memory Control Logic 

74ALS2541 

74AS138 9 
A15 - 
A14 - 
A13-A 

A 2 3 - ~ 1  

- 
G2B m3-- 

c y1 
y2 

Y4 
Y5 
Y6 

- 
G2A Y8 

+ BANKSELO 
+ BANKSELl 

~33----BANKSEL2 74AS04 - - BSTRB 

n- 



Primary Bus Interface 

The 74ALS2541 buffers used on the address lines are necessary in this design 
because the total capacitive load presented to each address line is a maximum 
of 16 x 10 pF or 160 pF (bank memory plus zero-wait-state static RAM), which 
exceeds the TMS320C3x rated capacitive loading of 80 pF. Using the 
manufacturer's derating curves for these devices at a load of 80 pF (the load 
presented by the bank memory) predicts propagation delays at the output of 
the buffers of a maximum of 16 ns. The access time of a read cycle within a 
bank of the memory is therefore the sum of the memory access time and the 
maximum buffer propagation delay, or 25 + 16 = 41 ns, which, since it falls be- 
tween 30 and 90 ns, requires one wait state on the TMS320C3x-33. 

The 74ALS2541 buffers offer one additional system-performance enhance- 
ment in that they include 25-ohm resistors in series with each individual buffer 
output. These resistors greatly improve the transient response characteristics 
of the buffers, especially when driving CMOS loads such as the memories 
used here. The effect of these resistors is to reduce overshoot and ringing, 
which is common when driving predominantly capacitive loads such as 
CMOS. The result is reduced noise and increased immunity to latch-up in the 
circuit, which in turn results in a more reliable memory system. Having these 
resistors included in the buffers eliminates the need to put discrete resistors 
in the system, which is often required in high-speed memory systems. 

This circuit cannot be implemented without bank switching because data out- 
put's turn-on and turn-off delays cause bus conflicts. Here, the propagation 
delay of the 74AS138 is involved only during bank switches, when there is suf- 
ficient time between cycles to allow new chip selects to be decoded. 

The timing of this circuit for read operations using bank switching is shown in 
Figure 12-9. With the BNKCMPR register set to OBh, when a bank switch oc- 
curs, the bank address on address lines ,423-A1 3 is updated during the extra 
HI  cycle while STRB is high. Then, after chip-select decodes have stabilized 
and the previously selected bank has disabled its outputs, STRB goes low for 
the next read cycle. Further accesses occur at normal bus timings with one 
wait state, as long as another bank switch is not necessary. Write cycles do 
not require bank switching due to the inherent address setup provided in their 
timings. 
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Figure 12-9. Timing for Read Operations Using Bank Switching 
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This timing is summarized in Table 12-1 

Table 12- 1. Bank Switching Interface Timing 

Timer Interval Event Time Period 

t l  H I  falling to address validISTRB rising 14 ns 

t2 Address valid to select delay 10 ns 

t3 Memory disable from STRB 10 ns 

t4 H I  falling to STRB 10 ns 

t5 STRB to select delay 4.5 ns 

t6 Memory output enable delay 3 ns 

t Timing for the TMS320C3x-33 
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12.3 Expansion Bus Interface 

The TMS320C30's expansion bus interface provides a second complete par- 
allel bus, which can be used to implement data transfers concurrently with (and 
independently of) operations on the primary bus. The expansion bus com- 
prises two mutually exclusive interfaces controlled by the MSTRB and 
IOSTRB signals, respectively. This subsection discusses interface to the ex- 
pansion bus using IOSTRB cycles; MSTRB cycles are essentially equivalent 
in timing to primary bus cycles and are discussed in Section 12.2, beginning 
on page 12-4. This section applies to TMS320C30 devices. 

Unlike the primary bus, both read and write cycles on the 110 portion of the ex- 
pansion bus are two H1 cycles in duration and exhibit the same timing. The 
XR/FS signal is high for reads and low for writes. Since I10 accesses take two 
cycles, many peripherals that require wait states if interfaced either to the pri- 
mary bus or by using MSTRB can be used in a system without the need for wait 
states. Specifically, in cases where there is only one device on the expansion 
bus, devices with address access times greater than the 30 ns required by the 
primary bus, but less than 59 ns, can be interfaced to the I10 bus of the 
TMS320C30-33 without wait states. 

12.3.1 AID Converter Interface 

AJD and DIA converters are commonly required in DSP systems and interface 
efficiently to the I10 expansion bus. These devices are available in many 
speed ranges and with a variety of features. While some might require one or 
more wait states on the I10 bus, others can be used at full speed. 

Figure 12-10 illustrates a TMS320C30 interface to an Analog Devices 
AD1 678 analog-to-digital converter. The AD1678 is a 12-bit, 5-p.9 converter 
that allows sample rates up to 200 kHz and has an input voltage range of 10 
volts, bipolar or unipolar. The converter is connected according to manufactur- 
er's specifications to provide 0- to t10-volt operation. This interface illustrates 
a common approach to connecting devices such as this to the TMS320C30. 
Note that the interface requires only a minimum amount of control logic. 
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Figure 12- 10. Interface to AD 1678 A/D Converter 

XD Bus ) - 
The AD1 678 is a very flexible converter and is configurable in a number of dif- 
ferent operating modes. These operating modes include byte or word datafor- 
mat, continuous or noncontinuous conversions, enabled or disabled chip-se- 
lect function, and programmable end-of-conversion indication. This interface 
utilizes 12-bit word data format, rather than byte format, to be compatible with 
the TMS320C3x. Noncontinuous conversions are selected so that variable 
sample rates can be used; continuous conversions occur only at a rate of 200 
kHz. With noncontinuous conversions, the host processor determines the con- 
version rate by initiating conversions through write operations to the converter. 
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The chip-select function is enabled, so the chip-select input is required to be 
active when accessing the device. Enabling the chip select function is neces- 
sary to allow a mechanism for the AD1 678 to be isolated from other peripheral 
devices connected to the expansion bus. To establish the desired operating 
modes, the SYNC and 12/8 inputs to the converter are pulled high and EOCEN 
is grounded, as specified in the AD1678 data sheet. 

In this application, the converter's chip select is driven by XA12, which maps 
this device at 804000h in 110 address space. Conversions are initiated by writ- 
ing any data value to the device, and the conversion results are obtained by 
reading from the device after the conversion is completed. To generate the de- 
vice's start conversion (SC) and output enable (m) inputs, IOSTRB is ANDed 
with X R ~ .  Therefore, the converter is selected whenever XA12 is low; is 
driven when reads are performed, while SC is driven when writes are per- 
formed. 

As with many AID converters, at the end of a read cycle the AD1 678 data out- 
put lines enter a high-impedance state. This occurs after the output enable 
(m) or read control line goes inactive. Also common with these types of de- 
vices is that the data output buffers often require a substantial amount of time 
to actually attain a full high-impedance state. When used with the 
TMS320C30-33, devices must have their outputs fully disabled no later than 
65 ns following the rising edge of IOSTRB because the TMS320C30 will begin 
driving the data bus at this point if the next cycle is a write. If this timing is not 
met, bus conflicts between the TMS320C30 and the AD1 678 might occur, po- 
tentially causing degraded system performance and even failure due to dam- 
aged data bus drivers. The actual disable time for the AD1 678 can be as long 
as 80 ns; therefore, buffers are required to isolate the converter outputs from 
the TMS320C30. The buffers used here are 74LS244s that are enabled when 
the AD1678 is read and turned off 30.8 ns following IOSTRB going high. 
Therefore, the TMS320C30-33 requirement of 65 ns is met. 

When data is read following a conversion, the AD1 678 takes 100 ns after its - 
OE control line is asserted to provide valid data at its outputs. Thus, including 
the propagation delay of the 74LS244 buffers, the total access time for reading 
the converter is 11 8 ns. This requires two wait states on the TMS320C30-33 
expansion I10 bus. 

The two wait states required in this case are implemented using software wait 
states; however, depending on the overall system configuration, it might be 
necessary to implement a separate wait-state generator for the expansion bus 
(refer to subsection 12.2.2 on page 12-9). This would be the case if multiple 
devices that required different numbers of wait states were connected to the 
expansion bus. 
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Figure 12-11 shows the timing for read operations between the 
TMS320C30-33 and the AD1 678. At the beginning of the cycle, the address 
and X R m  lines become valid t j  = 10 ns following the falling edge of HI. Then, 
after tp = 10 ns from the next rising edge of HI, IOSTRB goes low, beginning 
the active portion of the read cycle. After t3 = 5.8 ns (the control logic propaga- 
tion delay), the signal goes low, asserting the input to the ADI 678. The 
'74LS244 buffers take tq = 30 ns to enable their outputs, and then, following 
the converters access delay and the buffer propagation delay (t5 = 100 t 18 
= 11 8 ns), data is provided to the TMS320C30. This provides approximately 
46 ns of data setup before the rising edge of IOSTRB. Therefore, this design 
easily satisfies the TMS320C30-33's requirement of 15 ns of data setup time 
for reads. 

Figure 12- 1 1. Read Operations Timing Between the TMS320C30 and AD 1678 
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Unlike the primary bus, read and write cycles on the I10 expansion bus are 
timed the same with the exception that XW- is high for reads and low for 
writes and that the data bus is driven by the TMS320C30 during writes. When 
writing to the AD1 678, the '74LS244 buffers do not turn on and no data is trans- 
ferred. The purpose of writing to the converter is only to generate a pulse on 
the converter's SC input, which initiates a conversion cycle. When a conver- 
sion cycle is completed, the AD1 678's EOC output is used to generate an inter- 
rupt on the TMS320C30 to indicate that the converted data can be read. 

It should be noted that for different applications, use of TLC1225 or TLC1550 
N D  converters from Texas Instruments can be beneficial. The TLC1225 is a 
self-calibrating 12-bit-plus-sign bipolar or unipolar converter, which features 
10-ps conversion times. The TLC1550 is a 10-bit, 6-ps converter with a high- 
speed DSP interface. Both converters are parallel-interface devices. 
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12.3.2 DIA Converter Interface 

In many DSP systems, the requirement for generating an analog output signal 
is a natural consequence of sampling an analog waveform with an AJD conver- 
ter and then processing the signal digitally internally. Interfacing DIA conver- 
ters to the TMS320C30 on the expansion I/O bus is also quite straightforward. 

As with AID converters, DIA converters are also available in a number of vari- 
eties. One of the major distinctions between various types of DIA converters 
is whether or not the converter includes both latches to store the digital value 
to be converted to an analog quantity, and the interface to control those 
latches. With latches and control logic included with the converter, interface 
design is often simplified; however, internal latches are often included only in 
slower D/A converters. 

Because slower converters limit signal bandwidths, the converter used in this 
design was selected to allow a reasonably wide range of signal frequencies 
to be processed, and to illustrate the technique of interfacing to aconverter that 
uses external data latches. 

Figure 12-12 shows an interface to an Analog Devices AD565A digital-to- 
analog converter. This device is a 12-bit, 250-ns current output DAC with an 
on-chip 10-volt reference. Using an offchip current-to-voltage conversion cir- 
cuit connected according to manufacturers specifications, the converter ex- 
hibits output signal ranges of 0 to +I 0 volts, which is compatible with the con- 
version range of the AID converter discussed in the previous section. 
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Figure 12-12. Interface Between the TMS320C30 and the AD565A 
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Because this DAC essentially performs continuous conversions based on the 
digital value provided at its inputs, periodic sampling is maintained by periodi- 
cally updating the value stored in the external latches. Therefore, between 
sample updates, the digital value is stored and maintained at the latch outputs 
that provide the input to the DAC. This results in the analog output remaining 
stable until the next sample update is performed. 
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The external data latches used in this interface are174LS377 devices that have 
both clock and enable inputs. These latches serve as a convenient interface 
with the TMS320C30; the enable inputs provide a device select function, and 
the clock inputs latch the data. Therefore, with the enable input driven by in- 
verted XA12 and the clock input by m, which is the AND of IOSTRB and 
X R ~ ,  data will be stored in the latches when a write is performed to I10 ad- 
dress 805000h. Reading this address has no effect on the circuit. 

Figure 12-1 3 shows a timing diagram of a write operation to the DIAconverter 
latches. 

Figure 12-13. Write Operation to the D/A Converter Timing Diagram 

Because the write is actually being performed to the latches, the key timings 
for this operation are the timing requirementsfor these devices. For proper op- 
eration, these latches require simply a minimal setup and hold time of data and 
control signals with respect to the rising edge of the clock input. Specifically, 
the latches require a data setup time of 20 ns, enable setup of 25 ns, disable 
setup of 10 ns, and data and enable hold times of 5 ns. This design provides 
approximately 60 ns of enable setup, 30 ns of data setup, and 7.2 ns of data 
hold time. Therefore, the setup and hold times provided by this design are well 
in excess of those required by the latches. The key timing parameters for this 
interface are summarized in Table 12-2. 

Hardware Applications 12-25 



Expansion Bus Interface 

Table 12-2. Key Timing Parameter for D/A Converter Write Operation 

Time n m ~  
Interval Event Periodt 

t 1 H I  falling to address valid 

t2 XA12 to delay 

t3 H I  rising to falling 10 ns 

t4 IOSTRB to IOW delay 5.8 ns 

t5 Data setup to 30 ns 

b Data hold from IOW 7.2 ns 

t Timing for the TMS320C30-33 



System Control Functions 

12.4 System Control Functions 
Several aspects of TMS320C3x system hardware design are critical to overall 
system operation. These include such functions as clock and reset signal gen- 
eration and interrupt control. 

12.4.1 Clock Oscillator Circuitry 
You can provide an input clock to the TMS320C3x either from an external clock 
input or by using the onboard oscillator. Unless special clock requirements ex- 
ist, the onboard oscillator is generally a convenient method for clock genera- 
tion. This method requires few external components and can provide stable, 
reliable clock generation for the device. 
Figure 12-1 4 shows the external clock generator circuit designed to operate 
the TMS320C3x at 33.33 MHz. Since crystals with fundamental oscillation fre- 
quencies of 30 MHz and above are not readily available, a parallel-resonant 
third-overtone crystal is used with crystal frequency of 13 MHz. 

Figure 12- 14. Crystal Oscillator Circuit 

6 

In a third-overtone oscillator, the crystal fundamental frequency must be 
attenuated so that oscillation is at the third harmonic. This is achieved with an 
LC circuit that filters out the fundamental, thus allowing oscillation at the third 
harmonic. The impedance of the LC circuit must be inductive at the crystal fun- 
damental and capacitive at the third harmonic. The impedance of the LC circuit 
is represented by 

Therefore, the LC circuit has a 0 at 
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At frequencies significantly lower than wp the l/(wC) term in (3) becomes the 
dominating term, while oL  can be neglected. This is expressed as 

forw < wp 

In (5 ) ,  the LC circuit appears conductive at frequencies lower than wp On the 
other hand, at frequencies much higher than wp the oL  term is the dominant 
term in (3), and 1I(oC) can be neglected. This is expressed as 

z(w) = jwL forw < w, 
(3) 

The LC circuit in (6) appears increasingly inductive as the frequency increases 
above w p  This is shown in Figure 12-1 5, which is a plot of the magnitude of 
the impedance of the LC circuit of Figure 12-1 4 versus frequency. 

Figure 12-15. Magnitude of the Impedance of the Oscillator LC Network 
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Based on the discussion above, the design of the LC circuit proceeds as fol- 
lows: 

1) Choose the pole frequency u p  slightly above the crystal fundamental. 
2) The circuit now appears inductive at the fundamental frequency and ca- 

pacitive at the third harmonic. 

In the oscillator of Figure 12-1 4 on page 12-27, choose fp = 13 MHz, which 
is slightly above the fundamental frequency of the crystal. Choose C = 15 pF. 
Then, using equation (4), L = 10 pH. 

12.4.2 Reset Signal Generation 

The reset input controls initialization of internal TMS320C3x logic and also 
causes execution of the system initialization software. For proper system ini- 
tialization, the reset signal must be applied for at least ten H I  cycles, i.e., 600 
ns for a TMS320C3x operating at 33.33 MHz. Upon power-up, however, it can 
take 20 ms or more before the system oscillator reaches a stable operating 
state. Therefore, the power-up reset circuit should generate a low pulse on the 
reset line for 100 to 200 ms. Once a proper reset pulse has been applied, the 
processor fetches the reset vector from location 0, which contains the address 
of the system initialization routine. Figure 12-1 6 shows acircuit that will gener- 
ate an appropriate power-up reset circuit. 

Figure 12- 16. Reset Circuit 
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The voltage on the reset pin (RESET) is controlled by the R1 C1 network. After 
a reset, this voltage rises exponentially according to the time constant R1 C1, 
as shown in Figure 12-1 7. 

Figure 12- 1 7. Voltage on the TMS320C30 Reset Pin 

Voltage I 

The duration of the low pulse on the reset pin is approximately t l ,  which is the 
time it takes for the capacitor C1 to be charged to 1.5 V. This is approximately 
the voltage at which the reset input switches from a logic 0 to a logic 1. The 
capacitor voltage is expressed as 

where t = R1 C1 is the reset circuit time constant. Solving equation (7) for t re- 
sults in 

Setting the following: 

results in t = 167 ms. Therefore, the reset circuit of Figure 12-1 6 provides a 
low pulse of long enough duration to ensure the stabilization of the system os- 
cillator. 
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Note that if synchronization of multiple TMS320C3xs is required, all proces- 
sors should be provided with the same input clock and the same reset signal. 
After power-up, when the clock has stabilized, all processors can be synchro- 
nized by generating a falling edge on the common reset signal. Because it is 
the falling edge of reset that establishes synchronization, reset must be high 
for at least ten H I  cycles initially. Following the falling edge, reset should re- 
main low for at least ten HI  cycles and then be driven high. This sequencing 
of reset can be accomplished using additional circuitry based on either RC 
time delays or counters. 
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12.5 Serial-Port Interface 

For applications such as modems, speech, control, instrumentation, and ana- 
log interface for DSPs, acomplete analog-to-digital (ND) and digital-to-analog 
(DIA) inputloutput system on a single chip might be appropriate. The 
TLC32044 analog interface circuit (AIC) integrates a bandpass, switched-ca- 
pacitor, antialiasing input filter, 1 4-bit resolution AID and D/A converters, and 
a low-pass, switched-capacitor, output-reconstruction filter, all on a single 
monolithic CMOS chip. The TLC32044 offers numerous combinations of mas- 
ter clock input frequencies and conversion/sampling rates, which can be 
changed via digital signal processor control. 

Four serial port modes on the TLC32044 allow direct interface to TMS320C3x 
processors. When the transmit and receive sections of the AIC are operating 
synchronously, it can interface to two SN54299 or SN74299 serial-to-parallel 
shift registers. These shift registers can then interface in parallel to the 
TMS320C30, to other TMS320 digital processors, or to external FIFO circuitry. 
Output data pulses inform the processor that data transmission is complete or 
allow the DSP to differentiate between two transmitted bytes. Aflexible control 
scheme is provided so that the functions of the AIC can be selected and ad- 
justed coincidentally with signal processing via software control. Refer to the 
TLC32044 data sheet for detailed information. 

When you interface the AIC to the TMS320C3x via one of the serial ports, no 
additional logic is required. This interface is shown in Figure 12-1 8. The serial 
data, control, and clock signals connect directly between the two devices, and 
the AIC's master clock input is driven from TCLKO, one of the TMS320C3x's 
internal timer outputs. The AIC's WORDJBYTE input is pulled high, selecting 
16-bit serial port transfers to optimize serial port data transfer rate. The 
TMS320C3x's XFO pin, configured as an output, is connected to the AIC's re- 
set (w) input to allow the AIC to be reset by the TMS320C3x under program 
control. This allows the TMS320C3x timer and serial port to be initialized be- 
fore beginning conversions on the AIC. 
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Figure 12-1 8. AIC to TMS320C30 Interface 
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To provide the master clock input for the AIC, the TCLKO timer is configured 
to generate a clock signal with a 50% duty cycle at a frequency of f(H1)14 or 
4.1 67 MHz. To accomplish this, the global control register for timer 0 is set to 
the value 3Cl h, which establishes the desired operating modes. The period 
register for timer 0 is set to 1, which sets the required division ratio for the H I  
clock. 

To properly communicate with the AIC, the TMS320C30 serial port must be 
configured appropriately by initializing several TMS320C30 registers and 
memory locations. First, reset the serial port by setting the serial port global 
control register to 21 70300h. (The AIC should also be reset at this time. See 
description below of resetting the AIC viaXFO.) This resets the serial port logic, 
configures the serial port operating modes, including data transfer lengths, 
and enables the serial port interrupts. This also configures another important 
aspect of serial port operation: polarity of serial port signals. Because active 
polarity of all serial port signals is programmable, it is critical to set appropriate- 
ly the bits in the serial port global control register that control the polarity. In this 
application, all polarities are set to positive except FSX and FSR, which are 
driven by the AIC and are true low. 

The serial port transmit and receive control registers must also be initialized 
for proper serial port operation. In this application, both of these registers are 
set to I l l  h, which configures all of the serial port pins in the serial port mode, 
rather than the general-purpose digital I10 mode. 
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When the operations described above are completed, interrupts are enabled, 
and, provided that the serial port interrupt vector(s) are properly loaded, serial 
port transfers can begin after the serial port is taken out of reset. You can do 
this by loading E170300h into the serial port global control register. 

To begin conversion operations on the AIC and subsequent transfers of data 
on the serial port, first reset the AIC by setting XFO to 0 at the beginning of the 
TMS320C3x initialization routine. Set XFO to 0 by setting the TMS320C3x IOF 
register to 2. This sets the AIC to a default configuration and halts serial port 
transfers and conversion operations until reset is set high. Once the 
TMS320C3x serial port and timer have been initialized as described above, 
set XFO high by setting the IOF register to 6. This allows the AIC to begin oper- 
ating in its default configuration, which in this application is the desired mode. 
In this mode, all internal filtering is enabled, sample rate is set at approximately 
6.4 kHz, and the transmit and receive sections of the device are configured to 
operate synchronously. This mode of operation is appropriate for a variety of 
applications; if a 5.1 84-MHz master clock input is used, the default configura- 
tion results in an 8-kHz sample rate, which makes this device ideal for speech 
and telecommunications applications. 

In addition to the benefit of a convenient default operating configuration, the 
AIC can also be programmed for a wide variety of other operating configura- 
tions. Sample rates and filter characteristics can be varied, and numerous con- 
nections in the device can be configured to establish different internal architec- 
tures by enabling or disabling various functional blocks. 

To configure the AIC in afashion different from the default state, you must first 
send the device a serial data word with the two LSBs set to 1. The two LSBs 
of a transmitted data word are not part of the transferred data information and 
are not set to 1 during normal operation. This condition indicates that the next 
serial transmission will contain secondary control information, not data. This 
information is then used to load various internal registers and specify internal 
configuration options. Four different types of secondary control words are dis- 
tinguished by the state of the two LSBs of the transferred control information. 
Note that each transferred secondary control word must be preceded by a data 
word with the two LSBs set to 1. 

The TMS320C3x can communicate with the AIC either synchronously or 
asynchronously, depending on the information in the control register. The op- 
erating sequence for synchronous communication with the TMS320C30 
shown in Figure 12-1 9 is as follows: 

1) The FSX or FSR pin is brought low. 
2) One 16-bit word is transmitted, or one 16-bit word is received. 
3) The FSX or FSR pin is brought high. 
4) The or EODR pin emits a low-going pulse. 
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Figure 12-1 9. Synchronous Timing of TLC32044 to TMS320C3x 

SHIFT CLK 

-- 
FSR. FSX '-\ ,- f- 

DX D2 )( D l  

-- 
EODR, EODX 

- 
For asynchronous communication, the operating sequence is similar, but FSX 
and i?% do not occur at the same time (see Figure 12-20). After each receive 
and transmit operation, the TMS320C30 asserts an internal receive (RINT) 
and transmit (XINT) interrupt, which can be used to control program execution. 

Figure 12-20. Asynchronous Timing of TLC32044 to TMS320C30 

- 
FSR 

Hardware Applications 
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12.6 Low-Power-Mode lnterrupt Interface 

This section explains how to generate interrupts when the IDLE2 power-down 
mode is used. 

The execution of the IDLE2 instruction causes the H I  and H3 processor clocks 
to be held at a constant level until the occurrence of an external interrupt. To 
use the TMS320C31 IDEL2 power management feature effectively, interrupts 
must be generated with or without the presence of the H1 clock. For normal 
(non-IDLE2) operation, however, the interrupt inputs must be synchronized 
with the falling edge of the HI  clock. An interrupt must satisfy the following 
conditions: 

C] It must meet the setup time on the falling edge of HI ,  and 
It must be at least one cycle and less than two cycles in duration. 

For an interrupt to be recognized during IDLE2 operation and turn the clocks 
back on, it must first be held low for one H I  cycle. The logic in Figure 12-21 
can be used to generate an interrupt signal to the TMS320C31 with the correct 
timing during non-IDLE2 and IDLE2 operation. Figure 12-21 shows the inter- 
rupt circuit, which uses a 16R4 PLD to generate the appropriate interrupt sig- 
nal. 

Figure 12-21. Interrupt Generation Circuit for Use With IDLE2 Operation 

Example 12-1 shows the PLD equations for the 16R4 using the ABELTM lan- 
guage. This implementation makes the following assumptions regarding the 
interrupt source: 

Q The interrupt source is at least one HI  cycle in duration. One H I  cycle is 
required to turn the H1 clock on again. 

Q The interrupt source is a low-going pulse or a falling edge. If the interrupt 
source stays active for more than one ti1 cycle, it is regarded as the same 
interrupt request and not a new one. 
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Notice that the interrupt is driven active as soon as the interrupt source goes 
active. It goes inactive again on detection of two H3 rising edges. These two 
rising edges ensure that the interrupt is recognized during normal operation 
and after the end of IDLE2 operation (when the clocks turn on again). The inter- 
rupt goes inactive after the two H3 clocks are counted and does not go inactive 
again until after the interrupt source again goes inactive and returns to active. 

Example 12- 1. State Machine and Equations for the Interrupt Generation 16R4 PLD 

MODULE INTERRUPT-GENERATION 
TITLE' INTERRUPT-GENERATION FOR IDLE2 AND NON-IDLE2 TMS320C31A 

c3xu5 device 'P16R4'; 

"inputs 
h 3 Pin 1; 
intsrc- Pin 2; "Interrupt source 

"output 
intx- Pin 12; "Interrupt input signal to the TMS320C31 

sync-src-Pin 14; "Internal signal used to synchronize the 
"input to the H1 clock 

s me- Pin 15; "Keeps track if the new interrupt source 
"has occurred. If active, no new interrupt 
"has occurred. 

"This logic makes the following assumptions: 
"The duration of the interrupt source is at least one H1 
"cycle in duration. It takes one H1 cycle to turn the H1 
"clock on again. 

"The interrupt source is pulse- or level-triggered. If the 
"source stays active after being asserted, it is regarded 
"as the same interrupt request and not a new one. 

"Name Substitutions for Test Vectors and Equations 

source = lintsrc-; 
sync = Isync-src-; 
samesrc = Isme-; 
c3xint = 1 intx-; 

"state bits 
outstate = [smesrc,sync]; 

idle = ^boo; 
sync-st = ^b01; "synchronize state 
wait = ^b10; "wait for interrupt source to go inactive 
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state-diagram outstate 

state idle: 
if (source) then sync-st 
else idle; 

state sync-st: 
if (source) then wait 
else idle: 

state wait: 
if (source) then wait 
else idle ; 

equations 
lintx- = (source # sync) & Isamesrc; 

"Test interrupt generation logic 
test-vectors 
([he, source] -> [outstate1c3xint] 
[ CI L ] -> [idle, L 
[ L, H ] -> [idle, H 
[ CI H I-> [sync-st, H 
[ CI L ] -> [idle, L 
[ CI L ] -> [idle, L 
LI H ] -> [idle, H 

[ LI H ] -> [idle, H 
[ CI H I - >  [sync-st, H 
[ CI L ] -> [idle, L 
[ CI H I-> [sync-st, H 
[ CI H ] -> [wait, L 
[ c, H ] -> [wait, L 
[ CI L ] -> [idle, L 
[ LI H ] -> [idle, H 
[ LI H ] -> [idle, H 
[ LI H ] -> [idle, H 
end interrupt-generation 

1 
1; "check start from idle 
1; "test normal interrupt operation 
1 ; 
I; 
I; 
1; "test coming out of idle2 operation 
I ;  
I; 
I; 
1; "test same source 

I ; 
1; "test idle2 operation 
I ; 
I ; 
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12.7 XDS Target Design Considerations 

12.7.1 Designing Your MPSD Emulator Connector (12-Pin Header) 

The 'C3x uses a modular port scan device (MPSD) technology to allow com- 
plete emulation via a serial scan path of the 'C3x. To communicate with the 
emulator, your targetsystem must have a 12-pin header(2 rows of 6 pins) with 
the connections that are shown in Figure 12-22.To use the target cable, sup- 
ply the signals shown in Table 12-3 to a 12-pin header with pin 8 cut out to pro- 
vide keying. For the latest information, refer to the JTAG/MPSD Emulation 
Technical Reference (literature number SPDU079). 

Figure 12-22. 12- Pin Header Signals and Header Dimensions 

EMUI~-1 GND 

Pin-to-pin spacing, 0.1 00 in. (X,Y) 
Pin width: 0.025-in. square post 
Pin length: 0.235-in. nominal 

~ 3 1 1 1  1 2 l G N D  

t These signals should always be pulled up with separate 20-kQ resistors to VCC. 
$ While the corresponding female position on the cable connector is plugged to prevent improper 

connection, the cable lead for pin 8 is present in the cable and is grounded as shown in the 
schematics and wiring diagrams in this document. 

Table 124.12-Pin Header Signal Descriptions and Pin Numbers 

XDS510 'C30 'C31 
Slanai Description Pin Number Pin Number 

-- 

EMU0 Emulation pin 0 

EMU1 Emulation pin 1 E l5  125 

EMU2 Emulation pin 2 F13 126 

EMU3 Emulation pin 3 El4  123 

PD Presence detect. Indicates that the emulation cable is con- 
nected and that the target is powered up. PD should be tied to 
VCC in the target system. 

Although you can use other headers, recommended parts include: 

straight header, unshrouded DuPont Connector Systems 
part numbers: 6561 0-1 12 

65611-112 
37996-1 12 
67997-1 12 
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Figure 12-23 shows a portion of logic in the emulator pod. Note that 3 3 4  re- 
sistors have been added to the EMUO, EMU1, and EMU2 lines; this minimizes 
cable reflections. 

Figure 12-23. Emulator Cable Pod Interface 

GND (Pins 

74LVr240 

EMU1 

33 52 
EMUO 

33 52 - EMU2 

180 52 

EMU3 (Pin 9) 

180 52 

H3 (Pin 1 1 )  - 

PD (VCC Pin 7) U 

12.7.2 MPSD Emulator Cable Signal Timing 

(Pin 1 )  

(Pin 2) 

(Pin 3) 

Figure 12-24 shows the signal timings for the emulator pod. Table 12-4 de- 
fines the timing parameters. The timing parameters are calculated from values 
specified in the standard data sheets for the emulator and cable pod and are 
for reference only. Texas Instruments does not test or guarantee these timings. 
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Figure 12-24. Emulator Cable Pod Timings 

EMUO '-)(-' 

EMU1 

Table 12-4. Emulator Cable Pod Timing Parameters 

No. Reference Description Mln Max Unit 

1 tH3 rnin H3 period 35 200 nS 
t ~ 3  max 

2 t ~ 3  high rnin H3 high pulse duration 15 ns 

3 tH3 low rnin H3 low pulse duration 15 ns 

4 td (EMUO, 1,2) EMUO, 1, 2 valid from H3 low 7 23 ns 

5 tsu (EMUS) EMU3 setup time to H3 high 3 ns 
6 thd (EMU31 EMU3 hold time from H3 high 11 ns 

12.7.3 Connections Between the Emulator and the Target System 

It is extremely important to provide high-quality signals between the emulator 
and the 'C3x on the target system. In many cases, the signal must be buffered 
to produce high quality. The need for signal buffering can be divided into three 
categories, depending on the placement of the emulation header: 

No signals buffered. In this situation, the distance between the emulation 
header and the 'C3x should be no more than two inches. (See 
Figure 12-25.) 
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Figure 12-25. Signals Between the Emulator and the 'C3x With No Signals Buffered 

iJ Transmission signals buffered. In this situation, the distance between 
the emulation header and the 'C3x is greater than two inches but less than 
six inches. The transmission signals, H3 and EMU3, are buffered through 
the same package. (See Figure 12-26.) 

2 inches or less 

"cc 

Figure 12-26. Signals Between the Emulator and the 'C3x With Transmission Signals 
Buffered 

TMS320C3x 

EMU0 

EMU1 

EMU2 

EMU3 

H3 

- 

Emulator Header 

Emulator Header , PD 
EMU0 

'- 
l1 

EMU1 

EMU2 

EMU3 

H3 

- GND 
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Q All signals buffered. The distance between the emulation header and the 
'C3x is greater than 6 inches but less than 12 inches. All 'C3x emulation 
signals, EMUO, EMU1, EMU2, EMU3, and H3, are buffered through the 
same package. (See Figure 12-27.) 

Figure 12-27. All Signals Buffered 

+ 6 to 12 inches --+ 

H3 Buffer Restrictions 

Don't connect any devices be- 
tween the buffered H3 output 
and the header! Otherwise, 
you will degrade the quality 
of the signal. 

I I 

12.7.4 Mechanical Dimensions for the 12-Pin Emulator Connector 

The 'C3x emulator target cable consists of a three-foot section of jacketed 
cable, an active cable pod, and a short section of jacketed cable that connects 
to the target system. The overall cable length is approximately three feet, ten 
inches. Figure 12-28 and Figure 12-29 show the mechanical dimensions for 
the target cable pod and short cable. Note that the pin-to-pin spacing on the 
connector is 0.100 inches in both the X and Y planes. The cable pod box is 
nonconductive plastic with four recessed metal screws. 

Emulator Header , PD 
EMU0 

EMU1 

EMU2 

EMU3 

H3 

TMS320C3x 

EMU0 

EMU1 

EMU2 

EMU3 

H3 
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Refer to Figure 12-29. 

Note: All dimensions are in inches and are nominal unless otherwise specified. 
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Figure 12-29. 12- Pin Connector Dimensions 

Cable 

Cable 

I 

\ Connector, A Side View 

Connector, Front View 

Pin 1 ,  3, 5, 7, 9, 11 Pin 2,4,  6, 8, 10, 12 

Note: All dimensions are in inches and are nominal unless otherwise specified. 

12.7.5 Diagnostic Applications 

For system diagnostics applications, or to embed emulation compatibility on 
your target system, you can connect a 'C3x device directly to a TI ACT8990 
test bus controller (TBC) as shown in Figure 12-30. The TBC is described in 
the Texas Instruments Advanced Logic and Bus Interface Logic Data Book (lit- 
erature number SCYD001). A TBC can connect to only one 'C3x device. 
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Figure 72-30. TBC Emulation Connections for 'C3x Scan Paths 

Notes: 1) In a 'C3x design, the TBC can connect to only one 'C3x device. 

2) The 'C3x device's H I  clock drives TCKl on the TBC. This is different from the 
emulation header connections where H3 is used. 

22 kn 22 kQ 

- 

TMSl 

TDO 

TCKO 

C3x 

EMU0 

EMU1 

EMU2 

EMU4 

- - 
* - 

- 
H I  (Clock) 

EMU3 

EMU5 

EMU6 

TCKl 

TDlO 

TDll 

TMSYEVNTO 

TMS3lEVNT1 

TMS4lEVNT2 

TMS51EVNT3 

- 
- - 

- 
- 
- 
- 



TMS320C3x Signal Descriptions 
and Electrical Characteristics 

This chapter covers the TMS320C3x pinouts, signal descriptions, and 
electrical characteristics. 

Major topics discussed in this chapter are as follows: 

Topic Page 
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13.1 Pinout and Pin Assignments 

13.1 .I TMS320C30 Pinouts and Pin Assignments 

The TMS320C30 digital signal processor is available in a 181 -pin grid array 
(PGA) package. Figure 13-1 and Figure 13-2 show the pinout for this pack- 
age. Figure 13-3 shows the mechanical layout. Table 13-1 shows the 
associated pin assignments alphabetically; Table 13-2 shows the pin assign- 
ments numerically. 
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Figure 13-1. TMS320C30 Pinout (Top View) 

1 2  3  4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

H3 D2 D3 07 Dl0  Dl3 Dl8  Dl7  D l9  022 D25 D28 XAO XA1 XA5 
n n n n n n n n n n  n n n n n  
V V V V V V V V V V  V  V  V  V  V  

X2ICWNCVss H1 M D8 Dl1 Dl5  Dl8  D20 D24 D27 D31 XA4 ~VSS XA8 
n n n n n n n n n n  n n n n n  
V V V V V V V V V W  V V V V V  

EMUS X1 DVSS DO D5 DQ Dl4 VSS D21 D26 D30 XA3 DVSS XA7 XAlO 
h n n n n n n n n n  n n h n n  
W V V V V V V V V V  V V V V V  

Vgep DDVDD D l  D6 Dl2 VDD D23 D29 XA2 ADVDD XAB XA11 M C W ~  
n n n n n n n n n m  n n n n n  
W V V V V V V V V V  V V V U V  - -- 

RDY HOLDA MSTRB ~ S U B S  LOCATOR DDVDD XA8 XA12 EMU3 EMU1 

n n n n n  n  fi n  n  n  
V V V V V  V  V  V  V  V  ---- 

RESET STRB HOLD IOSTRB E M U ~ / ~  EMU2 EMU0 A0 

n n n n  n n n n  
V V V V  V U U V  

- 
IACK XFO W 1  @ A1 A2 A3 A4 

n n n n  n n n n  
V V V V  V V V Y  

- - 
INTI INTO VSS VDD MDVDD TMS320C30 ~ V D D  VDD VSS A8 A5 
n n n n n  Top View n n n n n  
V V V V V  V V V V V  

- - 
INT2 INT3 RSVO RSVl A l l  AQ A8 A7 

n n n n  n n n n  
V  V  V  V  V V V V  

RSV2 RSV3 RSVS RSW A17 A14 A12 A10 

n n n n  n n n n  
V  V  V  V  V V V V  

RSV4 RSV8 RSV9 C M 1  IODVDD A22 A18 A15 A13 

n  n  n  n  n  n n n n  
U V V V  V  V V V V  

RSV8 RSVIO FSRI PDVDD CLKXO EMU6 XD5 VDD XD18 XD22 XD27 IODVDD A21 A19 A18 

m n n n n n n n n n  n n n n n  
W W ~ V ~ ~ V Y Y Y  V V V V V  

DR1 CLKX1 DVSS C M O  TCLKl XD2 XD7 VSS XD14 XD19 XD23 XD28 DVSS A23 &?0 

n n n n n n n n n h  n n n h n  
~ V ~ V ~ V U V W ~  V V V V U  

FSX1 DX1 FSRO TCLKO XD1 XD4 XD8 XDlO XD13 XD17 XD20 XD24 XD23 CVSS XD31 
n n n n n n n n n n  n  n  n  n  n  
~ ~ ~ V ~ V ~ V ~ V  V  V  V  V  V  

DRO FSXO DXO XDO XD3 XD6 XD9 XDl l  XD12 XD15 XDl8 XD21 XD25 XD26 XD30 

n n n n n n n n n n  n n n n h  
~ ~ V ~ ~ V V ~ Y Y  V V V V W  
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Figure 13-2. TMS320C30 Pinout (Bottom View) 

1 5 1 4  13 1 2 1 1  10 9 8 7 6 5 4 3 2 1 

XA5 XA1 XAO D26 D25 D22 D l 9  D l 7  D l 6  D l 3  D l 0  D7 D3 D2 H3 . . . . . . . . . . . . . . .  
XA6 IVSS XA4 031 D27 D24 D20 D l 6  D l 5  D l1  D6 D4 H I  CVssX2/CLKIN . . . . . . . . . . . . . . .  

XA10 XA7 DVSS XA3 D30 D26 D21 VSS D l 4  D9 D5 DO DVSS X I  EMU5 . . . . . . . . . . . . . . .  
M C I ~  X A l l  XA9 ADVDD XA2 D29 D23 VDD D l 2  D6 D l  DDVDD V B B ~  XRDY xF@ . . . . . . . . . . . . . . .  

-- - 
EMU1 EMU3 XA12 XA6 DDVDD LOCATOR VSUBS MSTRB HOLDA RDY . . . .  . . . . . .  

A0 EMU0 EMU2 E M U ~ I ~  
---- 
IOSTRB HOLD STRB RESET . . . .  . . . .  

- 
A4 A3 A2 A1 Rm W 1  WO lACK 

. . a .  . . * .  
TMS320C30 - - 

A5 1.6 VSS VDD ~ V D D  MDVDD VDD vss INTO INTI 
Bottom View e . . . .  . . . . .  

- - 
A7 A6 A9 A l l  RSV1 RSVO INT3 INT2 . . . .  . . . .  
A10 A12 A14 A17 RSW RSVS RSV3 RSV2 . . . .  . . . .  
A13 A15 A16 A22 IODVDD CLKRI RSV9 RSV6 RSV4 . . . .  . . . . .  
A16 A19 A21 IODVDD XD27 XD22 XD16 VDD XD5 EMU6 CLK%O PDVDD FSR1 RSVIO RSV6 . . . . . . . . . . . . . . .  
A20 A23 DVSS XD28 XD23 XD19 XD14 VSS XD7 XD2 TCLKI C W O  DVSS C M 1  DR1 . . . . . . . . . . . . . . .  

XD31 CVSS XD29 XD24 XD20 XD17 XD13 XDlO XD6 XD4 XD1 TCLKO FSRO DX1 FSXl . . . . . . . . . . . . . . .  
XD30 XD26 XD25 XD21 XDl6 XD15 XD12 XD11 XD9 XD6 XD3 XDO DXO FSXO DRO . . . . . . . . . . . . . . .  
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Figure 13-3. TMS320C30 18 I -Pin PGA Dimensions--GEL Package 

Parameter OCMl 

ROJC 2.0 ----- 
ROJA 21.8 

R ~ J A  N/A 
ROJA N/A 
R ~ J A  N/A 
ROJA NIA 
R ~ J A  N/A 
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Air Flow 
LFPM 

NIA -------- 
0 

200 
400 
600 
800 
1 000 

Thermal Resistance Characteristics 

40.38 (1.590) 
39.62 (1.560) 

40.38 (1.590) 
39.62 (1.560) 

+ 

2.92 (.115) (181 Places) 

2,54 (0.100) T.P. 7 

L 
K 
J 

35.86 (1.412) H 
35.26 (1.388) G 

L F 

e 

R @ @ @ @ @ @ @ @ @ @ @ @ @ @ @  
P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0000 0 0000 
0000 Bottom 0000 
0000 view 0000 
00000 00000 
0 0 0 0 Locator 0 0 0 0 
0000 c 0000 

E 0 0 0 0 0  0 0000 
D 0 0 0 0 0 0 0 0 0 ~ ~ 0 ~ 0 0  
C @ @ @ @ @ @ @ @ @ @ @ @ @ @ @  2,54 (0.100) TYP 

000000000000008 
A @ 0 0 0 0 0 0 0 0 0 0 0 0 0 @ .  

1 2 3 4 5 6 7 8 9 101112131415 
7 

All linear dimensions are in millimeters and parenthetically in inches. 
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D23 D9 
D24 B10 
D25 A1 1 
D26 C10 
D27 B l l  

D28 A1 2 
D29 D l  0 
D30 C11 
D31 B12 

Table 13-1. TMS320C30-PGA Pin 

Signal Pin 

A0 F15 
A1 G I2  
A2 GI3  
A3 G I4  
A4 GI5  

D7 A4 (1 EMU6 M6 
t ADVDD, CVSS, DDVDD, DVSS, IODVDD, ~VSS 

device. 

Signal Pin 
D8 85 
D9 C6 
D l 0  A5 
Dl1 B6 
D l 2  D7 

CLKRO N4 
CLKRI L4 
CLKXO M5 

ssignments (~lphabetical)? 

DRO R 1 
DR1 N1 
DVss C3 

Signal 

FSRO 
FSRl I FSXO R2 

FSXI P 1 
H I  83 
H3 A1 
HOLD F3 
HOLDA E2 

- 
INTI - H I  
INT2 - J1 
I NT3 J2 
IODVDD L8 

IODVDD MI2  
IOSTRB F4 

~VSS 81 4 
LOCATOR E5 
M C / ~  D l 5  
MDVDD H5 
MSTRB E3 
PDVDD M4 - 
RDY E 1 
RESET F1 
RSVO J3 
RSVl J4 
RSV2 K1 
RSV3 K2 
RSV4 L1 
RSV5 K3 
RSV6 L2 
RSV7 K4 
RSV8 M 1 
RSV9 L3 
RSVI 0 M2 
RIW G4 
STRB F2 
TCLKO P4 
TCLKl N 5 

- 
IACK - 
INTO H2 

X2/CLKIN B1 
XAO A1 3 
XA1 A1 4 
XA2 Dl1 

XA3 C12 
XA4 B13 
XA5 A1 5 
XA6 81 5 
XA7 C14 

- - 
V~~~~ E4 
X I  C2 

XA8 E l 2  
XA9 D l 3  
XAIO C15 
XA11 D l 4  
XA12 E l 3  
XDO R4 
XD 1 P5 
XD2 N 6 
XD3 R5 
XD4 P6 
XD5 M7 
XD6 R6 
XD7 N7 
XD8 P7 
XD9 R7 
XD10 P8 
X D l l  R8 
XD12 R9 
XD13 P9 
XD14 N9 

XD16 

1 XD17 P I  0 
XD18 R l l  

I XD19 N10 
XD20 P I  1 
XD21 R12 
XD22 M I0  
XD23 N11 
XD24 P I  2 

XD25 R13 
XD26 R14 
XD27 MI1 
XD28 N12 
XD29 P I  3 

XD30 R15 
XD31 P I  5 
XFO G2 
XF1 G3 
XRDY D2 
X R ~  D I 

IDVDD, PDVDD, VDD, and VSS pins are on acorr on plane internal to the 
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device. 

Table 13-2. 

Slgnal Pln 
H3 A1 
D2 A2 
D3 A3 
D7 A4 
D l  0 A5 

D l  3 A6 
D l  6 A7 
D l  7 A8 
D l 9  A9 
D22 A10 
D25 A l l  
D28 A12 
XAO A13 
XA1 A14 
XA5 A15 
X2/CLKIN B1 
CVSS 82 
H1 83 
D4 84 
D8 B5 

D l  1 B6 
D l 5  87 
D l  8 B8 
D20 B9 
D24 B10 
027 B11 
D31 B12 
XA4 813 
~"SS 814 
XA6 815 
EMU5 C1 
X I  C2 
DVSS C3 
DO C4 
05 C5 
D9 C6 
D l 4  C7 

VSS C8 
D21 C9 
D26 C10 

7 ADVDD, CVSS, DDVDD, 
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TMS320C30-PGA Pin 

Signal Pin 
D30 C11 
XA3 C12 
DVSS C13 
XA7 C14 
XAlO C15 

X R ~  D l  
XRDY D2 

VBBP D3 
DDVDD D4 
D l  135 
D6 D6 
D l 2  D7 

VDD D8 
D23 D9 
D29 D l 0  
XA2 Dl1  
ADVDD D l 2  
XA9 D l 3  
XA11 D l 4  
M C / ~  D l 5  - 
RDY E 1 
HOLDA E2 
MSTRB E3 

v~~~~ E4 
LOCATOR E5 
DDVDD E8 
XA8 E l 2  
XA12 E l3  
EMU3 E l 4  
EMU1 E l 5  
RESET F1 - 
STRB F2 
HOLD F3 
IOSTRB F4 
 EMU^/^ F12 
EMU2 F13 
EMU8 F14 
A0 - F15 
IACK G I  
XFO G2 
DVSS, IODVDD, IVSS, and 

Assignments 

Slgnal Pln 
XF1 G3 
RIVV G4 
A1 GI2  
A2 GI3  
A3 GI4  
A4 GI5  - 
INTI H I  - 
INTO H2 

VsS H3 
VDD H4 
MDVDD H5 
A D V D ~  HI1 
VDD H I 2  
VSS HI3  
A6 HI4  
A5 HI5  - - INT2 J 1 
INT3 J2 
RSVO J3 
RSVl J4 

A1 1 J12 
A9 J13 
A8 J14 
A7 J15 
RSV2 K1 
RSV3 K2 
RSV5 K3 
RSV7 K4 
A17 K12 
A14 K13 

A1 2 K14 
A10 K15 
RSV4 L1 
RSV6 L2 
RSV9 L3 
CLKRI L4 
10DVDD L8 
A22 L12 
A18 L13 
A15 L14 

MDVDD, PDVDD, VDD, 

(Numerical)t 

Signal Pin 
A13 L15 
RSV8 M I  
RSV10 M2 
FSRl M3 
PDVDD M4 

CLKXO M5 
EMU6 M6 
XD5 M7 

VDD M8 
XD16 M9 
XD22 MI0  
XD27 MI1 
10DVDD MI2  
A20 MI3  
A19 MI4  
A16 MI5  
DRI N1 
CLKXl N2 
DVSS N3 
CLKRO N4 
TCLKI N5 
XD2 N6 
XD7 N7 

Vss N8 
XD14 N9 
XD19 N10 
XD23 N11 
XD28 N12 
DVsS N13 
A23 N14 

A21 N15 
FSX1 P 1 
DX1 P2 
FSRO P3 
TCLKO P4 
XD1 P5 
XD4 P6 
XD8 P7 
XD10 P8 
XD13 P9 
VSS pins are on a common 

Signal Pln 
XD17 P I  0 
XD20 P I  1 
XD24 P I  2 
XD29 P I  3 
CVSS P I  4 
XD31 P I  5 
DRO R1 
FSXO R2 
DXO R3 
XDO R4 
XD3 R5 
XD6 R6 
XD9 R7 
XD11 R8 
XD12 R9 
XD15 R10 
XD18 R11 
XD21 R12 
XD25 R13 
XD26 R14 

XD30 R15 

plane internal to the 



Pinout and Pin Assignments 

13.1.2 TMS320C30 PPM Pinouts and Pin Assignments 

The TMS320C30 PPM device is packaged in a 208-pin plastic quad flat pack 
(PQFP) JDEC standard package. Figure 13-4 shows the pinouts for this pack- 
age, and Figure 13-5 shows the mechanical layout. Table 13-3 shows the as- 
sociated pin assignments alphabetically; Table 13-4 shows the assignments 
numerically. 

Figure 134 .  TMS320C30 PPM Pinout (Top View) 



Pinout and Pin Assiqnments 

Figure 13-5. TMS320C30 PPM 208-Pin Plastic Quad Flat Pack-PQL Package 

Notes: 1) All linear dimensions are in millimeters and parenthetically in inches. 

2) This drawing is subject to change without notice. 

3) Contact a field sales office to determine if a tighter coplanarity requirement is available for this package. 
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Table 13-3. TMS320C30-PPM Pin Assignments (~1phabetical)t 

t ADVDD, CVSS, DDVDD, DVSS, IODVDD, IVSS, MDVDD, PDVDD, VDD, andVss pins are on acommon plane internal tothe 
device. 

Signal Pin 
A0 139 
A1 138 
A2 137 
A3 136 
A4 135 
A5 134 
A6 129 
A7 128 
A8 127 
A9 126 
A1 0 125 
A1 1 124 
A1 2 123 
A1 3 122 
A1 4 119 

A1 5 118 
A1 6 117 
A1 7 116 
A1 8 115 
A1 9 114 
A20 113 
A21 112 
A22 Ill 
A23 110 
ADVDD 120 
ADVDD 121 
ADVDD 157 
ADVDD 158 
CLKRO 57 
CLKRI 47 
CLKXO 58 
CLKXl 48 

CVSS 3 
CVSS 4 
CVSS 107 
CVSS 108 
DO 203 
D l  202 
D2 201 
D3 200 
D4 199 
D5 198 

Signal Pin 
D6 197 
0 7  196 
D8 195 
D9 194 
D l 0  193 
D l1  192 
D l 2  191 
D l 3  190 
D l 4  189 
D l 5  188 
D l 6  187 
D l 7  186 
D l 8  480 
D l 9  179 
D20 178 

D21 177 
D22 176 
D23 175 
D24 174 
D25 173 
D26 170 
D27 169 
D28 168 
D29 167 
D30 166 
D31 165 
DDVDD 171 
DDVDD 172 
DDVDD 206 
DDVDD 207 
DRO 55 
DRI 45 

DVSS 1 
DVSS 2 
DVSS 5 1 
DVSS 52 
DVSS 105 
DVSS 106 
DVSS 155 
DVSS 156 
DXO 60 
DX1 50 

Signal Pin 
EMU0 140 
EMU1 141 
EMU2 142 
EMU3 143 
 EMU^/^ 144 
EMU5 9 
EMU6 63 
FSRO 56 
FSRI 46 
FSXO 59 
FSXl 49 
H I  204 
H3 205 
HOLD 15 
HOLDA 14 - 
IACK - 24 
INTO - 25 
INTI 31 - 
INT2 - 32 
INT3 33 
10DVDD 67 
10DVDD 68 
10DVDD 102 
10DVDD 103 
lVss 153 
lVss- 154 
MCIMP 145 
MDVDD 16 
MDVDD 17 
MSTRB 11 
NC 28 
NC 79 
N C 104 
N C 183 
N C 208 
PDVDD 53 
PDVDD 54 - 
RDY 18 
RESET 21 
RSVO 34 
RSVI 35 
RSV2 36 

Signal Pin 
RSV3 37 
RSV4 38 
RSV5 39 
RSV6 40 
RSV7 4 1 
RSV8 42 
RSV9 43 
RSV10 44 
~m 20 - 
STRB 19 
TCLKO 6 1 
TCLKI 62 

VBBP 8 
VDD 26 
VDD 27 

VDD 77 

VDD 78 
V~~ 130 
VDD 131 
VDD 181 
VDD 182 

VSS 29 
VSS 30 
VSS 80 
Vss 8 1 
Vss 132 
VsS 133 
VSS 184 
VSS 185 

v s ~ ~ ~  7 
X I  6 
X2/CLKIN 5 
XAO 164 
XA1 163 
XA2 162 
XA3 161 
XA4 160 
XA5 159 
XA6 152 
XA7 151 
XA8 150 
XA9 149 

Signal Pin 
XAlO 148 
X A l l  147 
XA12 146 
XDO 64 
XD1 65 
XD2 66 
XD3 69 
XD4 70 
XD5 71 
XD6 72 
XD7 73 
XD8 74 
XD9 75 
XD10 76 
XD11 82 

XD12 83 
XD13 84 
XD14 85 
XD15 86 
XD16 87 
XD17 88 
XD18 89 
XD19 90 
XD20 91 
XD21 92 
XD22 93 
XD23 94 
XD24 95 
XD25 96 
XD26 97 
XD27 98 
XD28 99 
XD29 100 
XD30 101 
XD31 109 
XFO 23 
XF1 22 
XRDY 10 
X R ~  13 
XSTRB 12 



Pinout and Pin Assignments 

Table 13-4. TMS320C30-PPM Pin Assignments (~urnerical't 

Pin Signal 
1 DVss 
2 DVss 
3 cvss 
4 cvss 
5 X2 
6 XI  
7 v~~~~ 
8 VBBP 
9 EMU5 - 
10 XRDY 

11 MSTRB 
12 XSTRB 
13 XW 
14 HOLDA - 
15 HOLD 

MDVDD - 
RDY - 
STRB 
R r n  
RESET 
XF1 
XFO - 
IACK - 
i NTO 

27 VDD 
28 NC 

29 vss 
30 vss - 
31 iNTl - 
32 iNT2 - 
33 INT3 
34 RSVO 
35 RSVl 
36 RSV2 
37 RSV3 
38 RSV4 
39 RSV5 
40 RSV6 
41 RSV7 
42 RSV8 

Pin Signal 
43 RSV9 
44 RSV10 
45 DR1 
46 FSRl 
47 CLKR1 
48 CLKX1 
49 FSX1 
50 DX1 
51 DVSS 
52 DVSS 
53 PDVDD 
54 PDVDD 
55 DRO 
56 FSRO 
57 CLKRO 
58 CLKXO 
59 FSXO 
60 DXO 
61 TCLKO 
62 TCLK1 
63 EMU6 
64 XDO 
65 XD1 
66 XD2 

70 XD4 
71 XD5 
72 XD6 

73 XD7 
74 XD8 
75 XD9 
76 XDlO 

77 VDD 
78 VDD 
79 NC 

80 Vss 
81 Vss 
82 XDl l  
83 XD12 
84 XD13 

Pin Signal 
85 XD14 

124 A l l  
125 A10 

Pin Signal 
127 A8 

147 XA l l  
148 XA10 
149 XA9 
150 XA8 
151 XA7 
152 XA6 
153 lVss 
154 lVss 
155 DVSS 
156 DVSS 

157 ADVDD 
158 ADVDD 
159 XA5 
160 XA4 
161 XA3 
162 XA2 
163 XA1 
164 XAO 
165 D31 
166 D30 
167 029 
168 028 

Pin Slgnal 
169 D27 
170 D26 
171 DDVDD 
172 DDVDD 

- 

t ADvDD, CVSS, DDVDD, DVSS, IODVDD, IVSS, MDVDD, PDVDD, VDD, and VSS pins are on acommon plane internal tothe 
device. 
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Pinout and Pin Assianments 

13.1.3 TMS320C31 Pinouts and Pin Assignments 

The TMS320C31 device is packaged in a 132-pin plastic quad flat pack 
(PQFP) JDEC standard package. Figure 13-6 shows the pinoutsforthis pack- 
age, and Figure 13-7 shows the mechanical layout. Table 13-5 shows the as- 
sociated pin assignments alphabetically; Table 1 3 4  shows the pin assign- 
ments numerically. 

Figure 13-6. TMS320C3 1 Pinout (Top View) 

] FSXO 

I vss 
] CLKXO 
] CLKRO 
] FSRO 

I vss 
] DRO 
-Jim 
3 INT2 

] XF1 

I VDD 
] XFO 
] RESET 

I E  
] STRB 
]RDY 
I= 
] HOLD 
IHoLDA 
I X l  
] XZlCLKlN 

I vss 
I vss 
I vss 



Pinout and Pin Assignments 

Figure 13-7. TMS320C3 1 132- Pin Plastic Quad Flat Pack-PQL Package 
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Thermal Resistance Characteristics 

Parameter 

~ J C  
-----,-- 

R ~ J A  
R ~ J A  
R ~ J A  
R ~ J A  
ReJA 
R ~ J A  

All linear dimensions are in millimeters and parenthetically in inches. 

-- 

"C/W 

11.0 

49.0 
35.5 
28.0 
23.5 
21.6 
20.0 

Air Flow 
L F ~ ~  

NIA ------ 
0 

200 
400 
600 
800 
1000 
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Table 13-5. TMS320C3 1 Pin Assignments (A1phabetical)t 

Signal Pin 

A0 29 
A 1 28 
A2 27 
A3 26 
A4 25 
A5 24 
A6 23 
A7 22 
A8 2 1 
A9 20 
A1 0 19 
A1 1 18 
A1 2 17 
A1 3 16 
A1 4 15 

A20 9 
A21 8 
A22 7 
A23 6 
CLKRO 5 
CLKXO 4 
DO 3 
D l  2 
D2 1 
D3 130 

t vDD and VSS pins are 

Signal Pin 

D4 76 
D5 75 
D6 74 
D7 73 
D8 68 
D9 67 
D l  0 64 
D l  1 63 
D l 2  62 
D l  3 60 

D l  4 58 
D l  5 56 
D l  6 55 
D l  7 54 
D l  8 53 
D l  9 52 
D20 50 
D21 48 
D22 47 
D23 46 
D24 45 
D25 44 
D26 43 
027 41 
D28 39 
029 38 
D30 34 
D3 1 3 1 
DRO 1 08 
DXO 11 6 

)n a common plane inte 

Signal Pin 
EMU0 124 
EMU1 125 
EMU2 126 
EMU3 123 
FSRO 110 
FSXO 114 
H I  81 
H3 82 
HOLD 90 
HOLDA 89 - 
IACK - 99 
INTO - 100 
INTI 103 - 
INT2 106 - 
INT3 107 
M C B L / ~  127 - 
RDY 92 
RESET 95 
~ r n  - 94 
SHZ 11 8 

STRB 93 
TCLKO 120 
TCLK1 122 

VDD 6 
VDD 15 
VDD 24 
VDD 32 
VDD 33 

~ a l  to the device. 

Signal Pin 

VDD 40 
VDD 49 
VDD 59 
VDD 65 

Signal Pin 

v~~ 84 
"SS 85 
VSS 86 
Vss 101 

Vss 11 3 
v~~ 117 
Vss 11 9 
v~~ 128 
X I  88 
X2/CLKIN 87 
XFO 96 
XF1 98 



Pinout and Pin Assignments 

Table 13-6. TMS320C3 1 Pin Assignments (Numerica1)t 

tvDD and VSS pins are on a common plane internal to the device. 

Pln Signal 

1 A21 
2 A20 

3 VSS 
4 VSS 
5 A1 9 

6 VDD 
7 A1 8 
8 A1 7 
9 A1 6 
10 A15 
11 A14 
12 A13 
13 A12 
14 A l l  

15 VDD 
16 A10 

17 VSS 
18 A9 

19 Vss 
20 A8 
21 A7 
22 A6 
23 A5 

24 VDD 
25 A4 
26 A3 
27 A2 
28 A1 
29 A0 

30 VSS 
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Pin Signal 
121 VDD 
122 TCLKI 
123 EMU3 
124 EMU0 
125 EMU1 
126 EMU2 
127 M C B U ~  
128 Vss 
129 A23 
130 A22 
131 VDD 
132 VDD 

Pin Signal 

31 D31 

32 VDD 
33 V~~ 
34 D30 

35 VSS 
36 VSS 
37 VSS 
38 D29 
39 D28 

40 VDD 
41 D27 

42 VSS 
43 D26 
44 D25 
45 D24 
46 D23 
47 D22 
48 D21 

49 VDD 
50 D20 

51 VSS 
52 D l9  
53 D l8  
54 D l 7  
55 D l6  
56 D l5  

57 VSS 
58 D l4  

59 VDD 
60 D l3  

Pin Signal 

61 VSS 
62 D l2  
63 Dl1 
64 D l 0  

65 VDD 
66 VDD 
67 D9 
68 D8 

69 VSS 
70 VSS 
71 VSS 
72 D7 
73 D6 

74 VDD 
75 D5 
76 D4 
77 03 
78 D2 
79 DI 
80 DO 
81 H I  
82 H3 

83 VDD 
a4 VSS 
85 VSS 
86 VSS 
87 X2JCLKIN 
88 X I  
89 HOLDA - 
90 HOLD 

Pin Signal 

91 VDD - 
92 RDY 
93 STRB 
94 R/% 
95 RESET 
96 XFO 

97 VDD 
98 XF1 - 
99 IACK - 
100 INTO 

101 Vss 
102 Vss - 
103 lNTl 

104 VDD 
105 VDD - 
106 INT2 - 
107 INT3 
108 DRO 
109 Vss 
110 FSRO 
111 CLKRO 
112 CLKXO 
113 Vss 
114 FSXO 
115 VDD 
116 DXO 
117 VsS 
118 SHZ 
119 Vss 
120 TCLKO 



Signal Descriptions 

13.2 Signal Descriptions 

13.2.1 TMS320C30 Signal Descriptions 

Table 13-7 describes the signals that the TMS320C30 device uses in the 
microprocessor mode. It lists the signalJport1bit name; the number of pins allo- 
cated; the input (I), output (0), or high-impedance state (2) operating modes; 
a brief description of the signal's function; and the condition that places an out- 
put pin in high impedance. A line over a signal name (for example, RESET) 
indicates that the signal is active (low) (true at a logic 0 level). Pins labeled NC 
are not to be connected by the user. The signals are grouped according to 
function. 



Signal Descriptions 

Table 13-7, TMS320C30 Signal Descriptions 

Condition When 
Slgnai/Port # Pins I/O/Zt Description Signal Is In High Z* 

Primary Bus Interface (61 Pins) 

D31-DO 32 I/O/Z 32-bit data port of the primary bus interface S H R 

A23-A0 24 O/Z 24-bit address port of the primary bus inter- S H R 
face 

R ~ W  1 O/Z Readtwrite signal for primary bus interface. This S H R 
pin is high when a read is performed and low 
when a write is performed over the parallel inter- 
face. 

STRB 1 O/Z External access strobe for the primary bus S H 
interface 

- 
RDY 1 I Ready signal. This pin indicates that the exter- S 

nal device is prepared for a primary bus inter- 
face transaction to complete. 

HOLD 1 1 -  Hold signal for primary bus interface. When 
HOLD is a logic low, any ongoing transaction is 
co9leted. The A23-AO, D31-DO, STRB, and 
R/W signals are placed in a high-impedance 
state, and all transactions over the primary bus 
interface are held until HOLD becomes a logic 
high or the NOHOLD bit of the primary bus con- 
trol register is set. 

HOLDA 1 O/Z Hold acknowledge signal for primary bus inter- S 
face. This signal is generated in response to a 
logic low on HOLDS signals that 1423-AO, D31- 
DO, STRB, and R/W are placed in a high-impe- 
dance state and that all transactions over the 
bus will be held. HOLDAwill be high in response 
to a logic high of HOLD or when the NOHOLD 
bit of the primary bus control register is set. 

- -- 

Expansion Bus Interface (49 Pins) 

XD3 1 -XDO 32 I/O/Z 32-bit data port of the expansion bus interface S R 

XAI 2-XAO 13 O/Z 13-bit address port of the expansion bus inter- S R 
face 

x R ~  1 O/Z Readtwrite signal for expansion bus interface. S R 
When a read is performed, this pin is held high; 
when a write is performed, this pin is low. 

MSTRB 1 O/Z External memory access strobe for the expan- S 
sion bus interface 

t Input (I), output (O), high-impedance state (Z) 
$ S = SHZ active, H = active, R = RESET active 
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Table 13-7. TMS320C30 Signal Descriptions (Continued) 
Condition When 

Signai/Port # Pins I/ORt Description Slgnal Is In High Z* 

Expansion Bus Interface (49 Pins) (Continued) 

IOSTRB 1 O/Z External I/O access strobe for expansion bus S 
interface 

XRDY 1 I Ready signal. This pin indicates that the exter- 
nal device is prepared for an expansion bus in- 
terface transaction to complete. 

Control Signals (9 Pins) 

RESET 1 I Reset. When this pin is a logic low, the device is 
 laced in the reset condition. After reset be- 
comes a logic high, execution begins from the 
location specified by the reset vector. 

-- 
INT3-INTO 4 I External interrupts 
- - 
IACK 1 OIZ Interrupt acknowledge signal. IACK is set to 1 S 

(logic high) by the IACK instruction. This can be 
used to indicate the beginning or end of an in- 
terrupt service routine. 

M C / ~  1 I Microcomputer/microprocessor mode pin 

XF1, XFO 2 I/O/Z External flag pins. They are used as general- S R 
purpose I10 pins or to support interlocked pro- 
cessor instructions. 

Serial Port 0 Signals (6 Pins) 

CLKXO 1 I/O/Z Serial port 0 transmit clock. Serves as the serial S R 
shift clock for the serial port 0 transmitter. 

DXO 1 I/o/Z Data transmit output. Serial port 0 transmits se- S R 
rial data on this pin. 

FSXO 1 I/O/Z Frame synchronization pulse for transmit. The S R 
FSXO pulse initiates the transmit data process 
over pin DXO. 

CLKRO 1 I/O/Z Serial port 0 receive clock. Serves as the serial S R 
shift clock for the serial port 0 receiver. 

DRO 1 I/O/Z Data receive. Serial port 0 receives serial data S R 
via the DRO pin. 

FSRO 1 I/O/Z Frame synchronization pulse for receive. The S R 
FSRO pulse initiates the receive data process 
over DRO. 

t Input (I), output (O), high-impedance state (Z) * S = SHZ active, H =HOLD active, R = RESET active 
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Table 13-7, TMS320C30 Signal Descriptions (Continued) 
Conditlon When 

Signal/Port # Pins i/O/Zt Description Signal Is i n  High b 

Serlal Port 1 Slgnals (6 Plns) 

CLKXl 1 I/O/Z Serial port 1 transmit clock. Serves as the seri- S R 
al shift clock for the serial port 1 transmitter. 

CLKRl 

1 I/O/Z Data transmit output. Serial port 1 transmits S R 
serial data on this pin. 

1 I/O/Z Frame synchronization pulse for transmit. The S R 
FSXl pulse initiates the transmit data process 
over pin DX1. 

1 I/O/Z Serial port 1 receive clock. Serves as serial S R 
shift clock for the serial port 1 receiver. 

1 I/O/Z Data receive. Serial port 1 receives serial data S R 
via the DR1 pin. 

FSR1 1 I/O/Z Frame synchronization pulse for receive. The S R 
FSRl pulse initiates the receive data process 
over DR1. 

Timer 0 Signals (1 Pin) 
- - - - - - - 

TCLKO 1 I/O/Z Timer clock. As input, TCLKO is used by timer 0 S R 
to count external pulses. As output pin, TCLKO 
outputs pulses generated by timer 0. 

Timer 1 Signals (1 Pin) 

TCLKl 1 I/O/Z Timer clock. As input, TCLKl is used by timer 1 S R 
to count external pulses. As output pin, TCLKl 
outputs pulses generated by timer 1. 

- - --- 

Supply and Osclllator Slgnals (29 Pins) 

VDDB-VDDO 4 I Four t5-V supply pins 5 
10DVD~ll  IODVDD~ 2 I TWO t5-V supply pins 5 

ADVDD~, ADVDDO 2 I Two t5-V supply pins 5 

PDVDD 1 I One t5-V supply pin 5 
t Input (I), output (O), high-impedance state (Z) 
$ S = SHZ active, H = HOLD active, R = RESET active 
§The recommended decoupling capacitor is 0.1 WF. 
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Table 13-7. TMS320C30 Signal Descriptions (Continued) 
Condition When 

SlgnalIPort # Pins IIORt Description Slgnal Is in High Z* 

Supply and Oscillator Signals (29 Pins) (Continued) 

DDVDD~, DDVDDO 2 I Two t5-V supply pins 9 

MDVDD 1 I One t5-V supply pin § 

v ~ ~ 3 - v ~ ~ ~  4 I Four ground pins 

DVSS~-DVSSO 4 I Four ground pins 

C V s s l ~  ~ V S S O  2 I Two ground pins 

~VSS 1 I One ground pin 

VBBP 1 NC VBB pump oscillator output 

v~~~~ 1 I Substrate pin. Tie to ground. 

1 0 Output pin from internal oscillator for the crystal. 
If crystal not used, pin should be left uncon- 
nected. 

X2lCLKIN 1 I Input pin to internal oscillator from a crystal or a 
clock 

1 O K  External HI clock-has a period equal to twice S 
CLKIN. 

1 O K  External H3 clock-has a period equal to twice S 
CLKIN. 

t Input (I), output (O), high-impedance state (2) 
$ S = SHZ active, H =m active, R = RESET active 
5 Follow the connections specified for the resewed pins. 18- to 22-kQ pull-up resistors are recommended. All +5-volt supply pins 

must be connected to a common supply plane, and all ground pins must be connected to a common ground plane. 
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Table 13-7. TMS320C30 Signal Descriptions (Continued) 
Condition When 

SlgnallPort # Pins VO/Zt Description Slgnal Is In High Z* 

Reserved (18 Pins) 5 

EMU2-EMU0 3 I Reserved. Use pull-ups to +5 volts. See Sec- 
tion 12.7 on page 12-39. 

EMU3 1 0 Reserved. See Section 12.7 on page 12-39. 

 EMU^/^ 1 I Shutdown high impedance. An active low shuts 
down the TMS320C30 and places all pins in a 
high-impedance state. This signal is used for 
board-level testing to ensure that no dual drive 
conditions occur. CAUTION: An active low on 
the SHZ pin corrupts TMS320C30 memory and 
a s t e r  contents. Reset the device with an 
SHZ=1 to restore it to a known operating condi- 
tion. 

EMU6, EMU5 2 NC Reserved. 

RSV10-RSV5 6 110 Reserved. Use pull-ups on each pin to +5 volts. 

RSV4-RSVO 5 I Reserved. Tie pins directly to +5 volts. 

Locator (1 Pin) 

Locator 1 NC Resewed. See Figure 13-1 on page 13-3 and 
Table 13-1 on page 1 3-6. 

3 Input (I), output (O), high-impedance state (2) * S = SHZ active, H = active, R = RESET active 
5 Follow the connections specified for the reserved pins, 18- to 22-kQ pull-up resistors are recommended. All +5-volt supply pins 

must be connected to a common supply plane, and all ground pins must be connected to a common ground plane. 

TMS320C3x Signal Descriptions and Electrical Characteristics 13-21 



13.2.2 TMS320C31 Signal Descriptions 

Table 13-8 describes the signals that the TMS320C31 device uses in the 
microprocessor mode. They are listed according to the signal name; the num- 
ber of pins allocated; the input (I), output (0), or high-impedance state (Z) op- 
erating modes; a brief description of the signal's function; and the condition 
that places an output pin in high impedance. A line over a signal name (for ex- 
ample, RESET) indicates that the signal is active (low) (true at a logic 0 level). 

Table 13-8. TMS320C3 1 Signal Descriptions 
Condition When 

SIgnallPort # Pins I/O/Zt Description Slgnal Is In High Z* 

Primary Bus Interface (61 Pins) 

32 I/O/Z 32-bit data port S H R  

A23-A0 24 O/Z 24-bit address port S H R  
- 
HOLD 1 I Hold signal. When HOLD is a logic low, any on- 

going t r a n w o n  is completed. The ,423-AO, 
D31-DO, STRB, and R/W signals are placed in 
a high-impedance state, and all transactions 
over the primary bus interface are held until 
HOLD becomes a logic high or until the NO- 
HOLD bit of the primary bus control register is 
set. 

HOLDA 1 OIZ Hold acknowledge signal. This signal is gener- S 
ated in response to a logic I o w H O L D .  Ilsig- 
nals that A23-AO, D31-DO, STRB, and R/W are 
placed in a high-impedance state and that all 
transactions over the bus will be held. HOLDA 
will be high in response to a logic high of HOLD 
or until the NOHOLD bit of the primary bus con- 
trol register is set. 

RAT' 1 OIZ Readlwrite signal. This pin is high when a read S H R 
is performed and low when a write is performed 
over the parallel interface. 

- 
RDY 1 I Ready signal. This pin indicates that the exter- 

nal device is prepared for a transaction comple- 
tion. 

STRB 1 O/Z External access strobe S H 

t Input (I), output (O), high-impedance (2) state 
$ S = SHZ active, H = HOLD active, R = RESET active 



Sianal Des~f i~t ions 

Table 13-8. TMS320C3 1 Signal Descriptions (Continued) 

Slgnal/Port # Plns I/O/Zt Descrlptlon 
Condltlon When 
Signal Is In Hlgh Z* 

Control Signals (10 Plns) 
-- 
INT3-INTO 4 I External interrupts 
- 
IACK 

- 
1 012 Interrupt acknowledge signal. IACK is set to 1 S 

by the IACK instruction. This can be used to in- 
dicate the beginning or end of an interrupt ser- 
vice routine. 

M C B I J ~  1 I Microcomputer boot loader/microprocessor 
mode pin 

RESET 1 I Reset. When this pin is a logic low, the device is 
placed in the reset condition. When reset be- 
comes a logic 1, execution begins from the loca- 
tion specified by the reset vector. 

- 
SHZ 1 I Shut down high Z. An active (low) shuts down 

the TMS320C31 and places all pins in a high- 
impedance state. This signal is used for board- 
level testing to ensure that no dual drive condi- 
tions occur. CAUTION: An active (low) on the 
SHZ pin corrupts TMS320C31 memory andreg- 
ister contents. Reset the device with an SHZ = 1 
to restore it to a known operating condition. 

XF1, XFO 2 I/OR External flag pins. These are used as general- S R 
purpose I/O pins or to support interlocked pro- 
cessor instructions. 

Serial Port 0 Signals (6 Pins) 
-- -- -- 

CLKRO 1 I/O/Z Serial port 0 receive clock. This pin serves as S R 
the serial shift clock for the serial port 0 receiver. 

CLKXO 1 I/O/Z Serial port 0 transmit clock. Serves as the serial S R 
shift clock for the serial port 0 transmitter. 

DRO 1 I/O/Z Data receive. Serial port 0 receives serial data S R 
via the DRO pin. 

DXO 1 I/O/Z Data transmit output. Serial port 0 transmits se- S R 
rial data on this pin. 

FSRO 1 I/O/Z Frame synchronization pulse for receive. The S R 
FSRO pulse initiates the receive data process 
over DRO. 

7 Input (I), output (O), high-impedance state (Z) 
$ S = SHZ active, H = active, R = RESET active 
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Table 13-8. TMS320C3 1 Signal Descriptions (Continued) 

SIgnallPort # Pins i/O/Zt Description 
Condition When 
Signal is in Hlgh Z* 

Serial Port 0 Slgnals (6 Plns) (Continued) 

FSXO 1 IIOIZ Frame synchronization pulse for transmit. The S R 
FSXO pulse initiates the transmit data process 
over pin DXO. 

Timer Slgnals (2 Plns) 

TCLKO 1 I/O/Z Timer clock 0. As an input, TCLKO is used by S 
timer 0 to count external pulses. As an output 
pin, TCLKO outputs pulses generated by timer 
0. 

TCLK1 1 IIOIZ Timer clock 1. As an input, TCLKO is used by S 
timer 1 to count external pulses. As an output 
pin, TCLKI outputs pulses generated by timer 
1. 

Supply and Oscillator Signals (49 Pins) 
p~~ - -- 

1 012 External H I  clock. This clock has a period S 
equal to twice CLKIN. 

1 OIZ External H3 clock. This clock has a period S 
equal to twice CLKIN. 

VDD 20 I +5-VDc supply pins. AII pins must be con- 
nected to a common supply plane. § 

VSS 25 I Ground pins. All ground pins must be con- 
nected to a common ground plane. 

1 012 Output pin from the internal crystal oscillator. If 
a crystal is not used, this pin should be left un- 
connected. 

X2lCLKI N 1 I The internal oscillator input pin from a crystal or 
a clock. 

Reserved (4 Pins) 

EMU2-EMU0 3 I Reserved. Use 20-kQ pull-up resistors to t5 
volts. 

EMU3 1 0 Reserved. 

t Input (I), output (O), high-impedance state (Z) * S = SHZ active, H = active, R = RESET active 
5 The recommended decoupling capacitor value is 0.1 pF. 
7 Follow the connections specified for the reserved pins. 18- to 22-kfi  pull-up resistors are recommended. All +5-volt supply pins 

must be connected to a common supply plane, and all ground pins must be connected to a common ground plane. 



Electrical Specifications 

13.3 Electrical Specifications 

Table 13-9, Table 13-1 0, Table 13-1 1, and Figure 13-8 show the electrical 
specifications for the TMS320C3x. 

Table 13-9.Absolute Maximum Ratings Over Specified Temperature Range 
ConditionICharacteristic I 'C30/'C31 Range I 'LC31 Range 

Supply voltage range, VDD 

Input voltage range 1 -0.3 V to 7 V I -0.3 V to 5 V 

Output voltage range I -0.3 V to 7 V I -0.3 V to 5 V 

Continuous power dissipation (worst case) 3.1 5 W for TMS320C30-33 1 1.7 W for TMS320C3193 I (See Note 3) 

Operating case temperature range 

1.1 W 
(See Note 3) 

Storage temperature range 1 -55 "C to 1 50°C 1 -55 "C to 150°C 

TMS320C30GEL 0" C to 85 OC 
TMS320C31 PQL 0" C to 85 "C 
TMS320C31 PQA -40 " C to + 125 "C 

Notes: 1) All voltage values are with respect to VSS. 

0°C to 85°C 

2) Stresses beyond those listed above may cause permanent damage to the device. This is a stress rating only; 
functional operation of the device at these or any other conditions beyond those indicated in Table 13-1 0 is not im- 
plied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 

3) Actual operating power will be less than stated. These values were obtained under specially produced worst-case 
test conditions, which are not sustained during normal device operation. These conditions consist of continuous 
parallel writes of a checkerboard pattern to both primary and expansion buses at the maximum rate possible. See 
nominal (IDD) current specification in Table 13-11. 
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Electrical Specifications 

VSs Supply voltages (CVss, etc.) 0 I 0 I 

Table 13- 10. Recommended Operating Conditions 

VIH High-level input voltage 1 

Parameter 

VDD Supply voltages (DDVDD, etc.) 

VIL Low-level input voltage 0.8 1-0.3t 0.6 1 

'C3O/'C31 'LC3133 

Min Nom Max Min Nom Max 

4.75 5 5.25 3.13 3.3 3.47 

loH High-level output current I -300 1 -300 1 
loL Low-level output current I * 1 1 

VTH CLKlN high-level input voltage 2.6 VDD 
for CLKlN + 0.3t 

T Operating case temperature 
range 

t Guaranteed from characterization but not tested 

Note: All voltage values are with respect to VSS. All input and output voltages except those for CLKlN are TTL compatible. 
CLKlN can be driven by a CMOS clock. 

0 



Electrical Specifications 

Table 13- 1 1. Electrical Characteristics Over Specified Free-Air Temperature Ranget 

t All input and output voltage levels are TTL compatible. * All nominal values are at VDD = 5 V, TA = 25°C. 
5 For 'C30 PPM: Vo~(max)=O.B V, except for the following: 

Vo~(max)=l V for A(O-31) 
Vo~(max)=O.S V for XA(O-12), D(O-31) 
Vo~(max)=O.7 V for m, m, m, FSXO/I, CLKXOI1, 
CLKROI1, DXO/1 Rm, X R m  

7 Pins with internal pull-up devices: m-m, MCIW, RSV10-RSVO. Although RSVl 0-RSVO have internal pullup devices, 
external pullups should be used on each pin as described in Table 13-7 beginning on page 13-17. 

# ~ c t u a l  operating current will be less than this maximum value. This value was obtained under specially produced worst-case 
test conditions, which are not sustained during normal device operation. These conditions consist of continuous parallel writes 
of acheckerboard pattern to both primary and expansion buses at the maximum rate possible. See Calculation of TMS320C30 
Power Dissipation, Appendix D. 

1 1  f, is the input clock frequency. The maximum value is 40 MHz. 
"Guaranteed by design but not tested 
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Unlt 

V 

v 

PA 

PA 

PA 

mA 

mA 

pF  

pF 

Electrlcal Characterlstlc 

VOH High-level output voltage (VDD = Min,  lo^ = 
Max) 

vOL§ Low-level output voltage (VDD = Min,  lo^ = 
Max) 

Iz Three-state current ( V D ~  = Max) 

11 Input current (VI = VSs to VDD) 

iIp Input current (Inputs with internal pull-ups) 7 

ICC Supply current (TA = 'C30-33 
25" C, V D - Max, fx 'C30-27 
= ~ a x ) # R  - '(230-40 

'C31-27 
'C31-33 
'C31-33 (ext, temp) 
'C31-40 
'C3 1 -50 
'C30 PPM 

IDD Supply current, standby; IDLE2, clocks shut 
off 

Ci Input capacitance All inputs except 
CLKIN 

CLKlN 

Co Output capacitance 

'C30/'C31 

M in  Nom* Max 

2.4 3 

0.3 0.6 

-20 20 

-1 0 10 

-400 20 

200 600 
175 500 
170 600 
120 260 
150 325 
150 325 
160 390 
200 425 
170 600 

50 

15" 

25 

20" 

'LC31 -33 

M ln   om* Max 

2.0 

0.4 

-20 20 

-10 1 0  

-400 1 0  

120 300 

21 

1 

25 

20" 



Electrical Specifications , 

Figure 13-8. Test Load Circuit 

Tester Pin 
Electronics 

Where: IOL = 2.0 mA (all outputs) 
IOH = 300 pA (all outputs) 
VLoad = 2.1 5 V 
CT = 80 pF typical load circuit capacitance 

Output 
Under 
Test 



Signal Transition Levels 

13.4 Signal Transition Levels 

13.4.1 lTL-Level Outputs 

TTL-compatible output levels are driven to a minimum logic-high level of 2.4 
volts and to a maximum logic-low level of 0.6 volt. Figure 13-9 shows the TTL- 
level outputs. 

Figure 13-9. TL-Leve l  Outputs 

TTL-output transition times are specified as follows: 

0 For a high-to-low transition, the level at which the output is said to be no 
longer high is 2.0 volts, and the level at which the output is said to be low 
is 1.0 volt. 

0 For a low-to-high transition, the level at which the output is said to be no 
longer low is 1.0 volt, and the level at which the output is said to be high 
is 2.0 volts. 

13.4.2 lTL-Level Inputs 

Figure 13-1 0 shows the TTL-level inputs. 

Figure 13-1 0. TTL-Level Inputs 

TTL-compatible input transition times are specified as follows: 

For a high-to-low transition on an input signal, the level at which the input 
is said to be no longer high is 2.0 volts, and the level at which the input is 
said to be low is 0.8 volt. 

For a low-to-high transition on an input signal, the level at which the input 
is said to be no longer low is 0.8 volt, and the level at which the input is said 
to be high is 2.0 volts. 
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13.5 Timing 

Timing specifications apply to the TMS320C30 and TMS320C31. 

13.5.1 X2/CLKIN, HI ,  and H3 Timing 

Table 13-1 2 defines the timing parameters for the X2/CLKIN, HI,  and H3 in- 
terface signals. The numbers shown in parentheses in Figure 13-11 and 
Figure 13-1 2 correspond with those in the No. column of Table 13-1 2. Refer 
to the RESET timing in Figure 13-23 on page 13-48 for CLKlN to H1/H3 delay 
specification. 

Table 13- 12. Timng Parameters for xZ/CU(IN, H 1, and HS 

No. Name Descr i~t ion 

tf (C I) CLKlN fall time 

~ ( C I L )  CLKlN low pulse 
duration 
~ ( c I )  = min 

~ ( C I H )  CLKlN high pulse 
duration 
~ ( c I )  = min 

tr(~1) CLKlN rise time 

~ ( c I )  CLKlN cycle time 

tf (HI HI/H3 fall time 

H1/H3 low pulse 
tw(HL) duration 

~,,,(HH) HI/H3 high pulse 
duration 

t r ( ~ )  HI/H3 rise time 

~(HL-HH) Delay from H I  (H3) 
low to H3(H1) high 

k ( ~ )  H11H3 cycle time 

- 
Unit - 
ns 

t Guaranteed from characterization but not tested 
$ Guaranteed by design but not tested 

p = tc(CI) 



Figure 13- 1 1. Timing for X2KL KIN 

Figure 13- 12. Timing for H 1/H3 
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Timing 

13.5.2 Memory Read~Write Timing 

Table 13-1 3 defines memory readlwrite timing parameters for (M)STRB. The 
numbers shown in parentheses in Figure 13-13 and Figure 13-14 corre- 
spond with those in the No. column of Table 13-1 3. 



Timing 

Table 13- 13. Timing Parameters for a Memory ( (M)STRB) = 0) ReaWrite 

$ Guaranteed by design but not tested 
5 For 'C30 PPM, &-J(H~L-(M)SL) (max)=7ns 
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Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

No. Name Descrlptlon 

(11) &~(H~L-(M)SL) H I  low to (M)STRB 
low delay 

(12) ~~(H~L-(M)sH) HIlowto(M)STRB 
high delay 

(13.1) ~ ~ ( H ~ H - R w L )  H l h i g h t o ~ m l o w  
delay 

(13.2) ~(H~H-XRWL)  H I  high to X R ~  
low delay 

(14.1) ~(HIL-A) Hl lowtoAval id 
delay 

(1 4.2) b ( ~ 1  L-XA) H I  low to XAvalid 
delay 

(I5.l) ~ U ( D ) R  D setup before H I  
low (read) 

5e2) ~u(XD)R XD setup before H I  
low (read) 

(16) ~~((x)D)R M D  hold time after 
H I  low (read) 
- 

(17.1) ~SU(RDY) RDY setup before 
H I  high 

(17.2) ~SURRDY) XRDY setup before 
H I  high 

(X)RDY hold time (I8) t h (Do~~Y)  atter high 

(1 9) b ( ~ 1  H-MRWH) H I  high to M R m  
high (write) delay 

(20) ~V(MD)W M D  valid after H I  
low (write) 

(21) ~ ( M D ) W  O D  hold time after 
H I  high (write) 

'C30-27 
'C31-27 

Mln Max 

0* 13 

0* 13 

0* 13 

O* 19 

0* 16 

0* 12 

18 

21 

0 

10 

11 

0 

13 

25 

O* 

'C30-33 
'C31-33 
'LC31 

Mln Max 

0* 10 

0* 10 

0* 10 

0* 15 

0* 14 

0* 10 

16 

18 

0 

8 

9 

0 

10 

20 

O* 

'C30-40 
'C3140 

Mln Max 

0* 68 

0* 6 

0* 9 

0* 13 

0* 11 

0* 9 

14 

16 

0 

8 

9 

0 

9 

17 

O* 

'C31-50 

Mln Max 

0* 4 

0* 4 

0* 7 

O* 9 

10 

0 

6 

0 

7 

14 

O* 



Table 13- 13. Timing Parameters for a Memory ( (M)STRB) = 0) ReactnNite (Continu@ 

t Guaranteed from characterization but not tested 
*Guaranteed by design but not tested 
8 For 'C30 PPM, t d ( ~ 1  L-(M)SL) (max)=7ns 

No. Name Description 

(22.1 ) td (H 1 H-A) H1 high to A valid 
on back-to-back 
write cycles (write) 
delay 

(22.2) t d ( ~ ~  H-XA) HI  high to XA valid 
on back-to-back 
write cycles (write) 
delay 

(26) t d ( , t - p ) ~ ~ ~ )  ( X )  delay from 
A valid delay 

Figure 13-13. Timing for Memory ( (M)STRB = 0) Read 

Note: (M)STRB will remain low during back-to-back read operations. 

'C30-27 
'C31-27 

Min Max 

23 

32 

10t 

'C31-50 

Min Max 

12 

6 

'C30-33 
'C31-33 
'LC31 

Mln Max 

18 

25 

8t  

- 

Unit 

ns 

ns 

ns 

'C30-40 
'C31-40 

Min Max 

15 

21 

7 t  
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Figure 13-14. Timing for Memory ( (M)STRB = 0) Write 

Table 13-1 4 defines memory read timing parameters for IOSTRB. The num- 
bers shown in parentheses in Figure 13-1 5 and Figure 13-1 6 correspond 
with those in the No. column of Table 13-14 and Table 13-1 5. 

Table 13-14. Timina Parameters for a Memorv / IOSTRB = 0) Read 

(12.1) t d ( ~ 1  H-IOSH) H l  high to IOSTRB high delay I 0 t  13 I 0 t  10 I o t  9 

- . , 
No. Name Description 

(11.1) ~(H~H- IOSL)  H I  high to low delay 

(1 5.3) ~SU(XD)R XD setup before HI  high 1 l9 1 l5 

(13.1) ~ (H~L-XRWH) H I  low to X R ~  high delay 

(14.3) t d ( ~ i ~ - x , q  H I  low to XA valid delay 

(16.1) ~ ~ ( x D ) R  XD hold time after H I  high 1 0 1 o 

'C30-27 

Min Max 

0t  13 

(17.3) ~SU(XRDY) XRDY setup before HI  high 11 I 9 

0 t  13 

0 t  13 

'C30-33 

Min Max 

0 t  10 
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'C30-40 

Min Max 

0t  9 

O* 10 

0 t  10 

(18.1) ~ ~ ( X R D Y ~  XRDY hold time after HI  high 

0 t  9 

O* 9 

t Guaranteed by design but not tested 

0 0 0 
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Figure 13-1 5. Timing for Memory ( IOSTRB = 0) Read 

3 

I (ll.l)+q ( 1 2 1  I 

I 
I 

IOSTRB I I 
I I I 

XD 

- 
(X) RDY 
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Figure 13-16. Timing for Memory (IOSTRB = 0) Write 

(X) RDY 

Table 13-1 5 defines memory write timing parameters for IOSTRB. The num- 
bers shown in parentheses in Figure 13-1 5 and Figure 13-16 correspond 
with those in the No. column of Table 13-1 4 and Table 13-1 5. 

Table 13-15. Timing Parameters for a Memory (IOSTRB = 0) Write 

t Guaranteed by design but not tested 

No. Name Description 

(23) b(Hl L - ~ ~ ~ ~ )  H i  low to X R ~  low delay 

(24) ~V(XD)W XD valid after H I  high 

(25) t h ( ~ ~ ) ~  XD hold time after H I  low 
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'C30-27 

Mln Max 

0 t  19 

38 

0 

'C30-33 

Mln Max 

0 t  15 

30 

0 

'c30-40 

Mln Max 

0 t  13 

25 

0 

Unit 

ns 

ns 

ns 



13.5.3 XFO and XF1 Timing When Executing LDFl or LDll 

Table 13-1 6 defines the timing parameters for XFO and XF1 during execution 
of LDFl or LDII. The numbers shown in parentheses in Figure 13-17 corre- 
spond with those in the No. column of Table 13-1 6. 
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Table 13-16. Timing Parameters for XFO and XFl When Eecuting LDFl or LDll 

Figure 13- 1 7. Timing for XFO and XF1 When Executing LDFI or LDll 

No. Name Description 

(1) ~ ~ ( H ~ H - X F ~ L )  H3 high to XFO low delay 

(2) t su (X~ l )  XF1 setup before H I  low 

(3) ~~(xFI) XF1 hold time after H I  low 

Fetch 
I LDFl or LDll I Decode I Read I Execute I 

H3 

(X)A 

(X) D 

()RDYx 

XFO Pin 

XF1 Pin 

'C30-27 
'C31-27 

Mln Max 

19 

13 

0 

TMS320C3x Signal Descriptions and Electrical Characteristics 

'C30-33 
'C31-33 
'LC31 

Min Max 

15 

10 

0 

'C3040 
'C3140 

Mln Max 

13 

9 

0 

'C31-50 

Min Max 

12 

9 

0 

Unit 

ns 

ns 

ns 
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13.5.4 XFO Timing When Executing STFl and STll 

Table 13-1 7 defines the timing parameters for the XFO and XF1 pins during 
execution of STFl or STII. The number shown in parentheses in Figure 13-1 8 
corresponds with the number in the No. column of Table 13-1 7. 

Table 13-1 7. Timing Parameters for XFO When Executing STFl or ST11 

XFO is always set high at the beginning of the execute phase of the interlock 
store instruction. When no pipeline conflicts occur, the address of the store is 
also driven at the beginning of the execute phase of the interlock store instruc- 
tion. However, if a pipeline conflict prevents the store from executing, the ad- 
dress of the store will not be driven until the store can execute. 

Figure 13-1 8. Timing for XFO When Executing an STFl or STll 

Fetch 
I STFl or STll I Decode I Read 

H3 

I 

'C30-33 
'c31-33 
'LC31 

Min Max 

15 

'C30-40 
'C31-40 

Mln Max 

13 

No. Name Description 

(1) t d ( ~ 3 ~ - ~ ~ ~ ~ )  H3 high to XFO high delay 

M D  

(X) R DY 

XFO Pin 

'C30-27 
'C31-27 

Min Max 

19 

'c31-50 

Min Max 

12 

Unit 

ns 



13.5.5 XFO and XF1 Timing When Executing SlGl 

Table 13-1 8 defines the timing parameters for the XFO and XF1 pins during 
execution of SIGI. The numbers shown in parentheses in Figure 13-1 9 corre- 
spond with those in the No. column of Table 13-1 8. 

(1) ~~ (H~H-XFOL)  H3 high to XFO low delay 12 

(2) ~~ (H~H-XFOH)  H3 high to XFO high delay 

(3) ku(x~1)  XF1 setup before H I  low 

(4) t h ( ~ ~ l )  

Table 13-1 8. Timing Parameters for XFO and XFl When Executing SlGl 

Figure 13- 19. Timing for XFO and XF 1 When Executing SlGl 

No. Name Description 

Fetch 

I SlGl I Decode 1 Read 1 Execute I 
H3 

H I  

(3) --Y k- 
XFO 

I I 
I 1  
I I 

'C30-27 
'C31-27 

Min Max Unlt - 
ns 
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'C31-50 

Mln Max 

'C30-33 
'C31-33 
'LC31 

Min Max 

'C30-40 
'C31-40 

Min Max 
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13.5.6 Loading When the XF Pin Is Configured as an Output 

Table 13-1 9 defines the timing parameter for loading the XF register when the 
XF pin is configured as an output. The number shown in parentheses in 
Figure 13-20 corresponds with the number in the No. column of Table 13-1 9. 

Table 13-19. Timing Parametes for Loading the XF Register When Configured as an Ouput 
Pin 

Figure 13-20. Timing for Loading XF Register When Configured as an Output Pin 
Fetch Load 

I Instruction I Decode I Read I Execute I 

No. Name Description 

(1) ~"(H~H-xF) H3 high to XF valid 

OUTXF 
Bit 

'C3040 
'C3140 

Min Max 

13 

-4 p- (1) 

XF Pin 

'C30-27 
'C31-27 

Min Max 

19 

'C30-33 
'C31-33 
'LC31 

Min Max 

15 

'C31-50 

Min Max 

12 

Unit 

ns 
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13.5.7 Changing the XF Pin From an Output to an lnput 

Table 13-20 defines the timing parameters for changing the XF pin from an 
output pin to an input pin. The numbers shown in parentheses in Figure 13-21 
correspond with those in the No. column of Table 13-20. 

Table 13-20. Timing Parameters of XF Changing From OuQut to lnput Mode 

(1) ~ ~ ( H ~ ~ x F o I )  XF hold after H3 high 

(2) ku(xF) XF setup before HI  low 

Figure 13-21. Timing for Change of XF From Output to lnput Mode 

Unit 

(3) th(xF) XF hold after HI low 

'C31-50 

Min Max No. Name Descri~tion 

19 

13 

I I I I 
H 1 

- 
IOXF 

Bit 
I 

I 

t For 'C30 PPM, tn(H3&XF01) (max)=14ns 

o 

Execute 
Load of IOF 

XF Pin 

'C30-27 
'C31-27 

Mln Max 

15 

10 

INXF Bit 

o 

H3 

Buffers Go 
From Output 

'Data \ 
Sam~led 9 I 

'C30-33 
'c31-33 
'LC31 

Min Max 

13t 

9 

Data 
Seen 

'C30-40 
'C31-40 

Mln Max 

o 

to Output Seen in IOF 
Synchronizer 

Delay 
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9 

Value on Pin 

ns 

ns 

o ns 
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13.5.8 Changing the XF Pin From an input to an Output 

Table 13-21 defines the timing parameter for changing the XF pin from an in- 
put pin to an output pin. The number shown in parentheses in Figure 13-22 
corresponds with the number in the No. column of Table 13-21. 

Figure 13-22. Timing for Change of XF From Input to Output Mode 

Table 13-21. Timing Parameters of XF Changing From lnput to O@ut Mode 

I 
Execution of 
Load of IOF I 

No. Name Description 

(1) ~~(H~H-XFIO)  H3 high to XF switching 
from input to output delay 

XF Pin P 

'C30-40 
'C31-40 

Min Max 

17 

I 

I I 
I 

'C30-27 
'C31-27 

Min Max 

25 

- 
IOXF 

Bit 

'c31-50 

Mln Max 

17 

'C30-33 
'C31-33 
'LC31 

Min Max 

20 

I 
I 

Unit 

ns 

I 
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13.5.9 Reset Timlng 

RESET is an asynchronous input that can be asserted at any time during a 
clock cycle. If the specified timings are met, the exact sequence shown in 
Figure 13-23 on page 13-48 will occur; otherwise, an additional delay of one 
clock cycle is possible. 

The asynchronous reset signals include XFO/1, CLKXO/1, DXO/1 , FSXO/1 P 

CLKRO/1, DROII , FSRO/1, and TCLKOI1. 

Table 13-22 ('C30) and Table 13-23 ('C31) define the timing parameters for 
the -signal. The numbers shown in parentheses in Figure 13-23 corre- 
spond with those in the No. column of Table 13-22 or Table 13-23. 

Resetting the device initializes the primary and expansion bus control regis- 
ters to seven software wait states and therefore results in slow external ac- 
cesses until these registers are initialized. 

Note also that is an asynchronous input and can be asserted during 
reset. 
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L 

Table 13-22. Timing Parameters for RESET for the TMS320C30 

No. - 
(1 ) 

Name Description 

 RESET) Setup for RESET before 
CLKIN low 

~(CLKINH-HI H) CLKlN high to H I  high delay* 

~(CLKINH-HI L) CLKlN high to H1 low delay* 

~(RESETH-H 1 L) Setup for RESET high 
before H I  low and after 10 HI  
clock cycles 

~(CLKINH-H~L) CLKlN high to H3 low delay* 

~(CLKINH-H~H) CLKlN high to H3 high delay* 

H1 high to M D  disabled (high 
impedance) 

bis(H3H-(X)~) H3 high to M A  disabled (high 
impedance) 

~(H~H-CONTROLH) H3 high to control signals high 
delay 

b ( ~ 1  H-RWH) HI  high to ~m high delay 

b (H 1 H-IACKH) H I  high to lACK high delay 

RESET low to asynchronous- 
ly reset signals disabled (high 
impedance) 

1 Min Max I Unlt 

'C30-27 

Min Max 

t Characterized but not tested * See Figure 13-24 for temperature dependence for the 33-MHz TMS320C30. See Figure 13-25 for temperature dependence 
for the 40-MHz TMS320C30. 
p =tc(cl) 

'C30-33 

Min Max 

28 P ~ S  10 pt 



Table 13-23. Timing Parameters for ~ E T  for the TMS32OC31 
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- 

No. Name Description 

(I) t s u ( ~ ~ ~ ~ ~ )  Setup for RESEt 
before CLKlN low 

PI1 ~(CLKINH-HIH) CLKlN highto H I  
high delay 8s 

(2.2) ~(CLKINH-HI L) CLKlN highto H I  
low delay §# 

(3) ~~~(RESETH-HIL) Setup for RESET 
high before H I  
low and after 10 
H I  clock cycles 

(5.1) ~(CLKINH-H~L) CLKlNhightoH3 
low delay §# 

(5.2) ~(CLKINH-H~H) CLKlNhightoH3 
high delay 

(8) b i s ( H l ~ - & ) ~ )  H I  high to D 
disabled (high 
impedance) 

(9) bis(H3H-(X)A) H3 high to A 
disabled (high 
impedance) 

(I0) ~(H~H-CONTROLH) H3 high to 
control signals 
high delay 

(I2) b ( ~ 1  H-RWH) H I  high to ~m 
high delay 

(I3) b ( ~ 1  H-IACKH) H I  high t o m  
high delay 

(I4) ~~~(RESETL-ASYNCH) RESET low to 
asynchronously 
reset signals dis- 
abled (high im- 
pedance) 

t Characterized but not tested * 14 ns for the extended temperature 'C31-33 
5 See Figure 13-25 for temperature dependence for the TMS320C31-27, TMS320C31-33, and the extended-temperature 

TMS320C31-33. 
n p  =tc(CI) 
#See Figure 13-26 for temperature dependence for the TMS320C31-50. 

'C31-27 

Min Max 

28 P ~ V  

2 12 

2 12 

13 

2 12 

2 12 

19t 

13t 

13t 

13t 

13t 

31 t 

'C31-33 
'LC31 

Mln Max 

10 P ~ V  

2 12* 

2 12* 

10 

2 12* 

2 12* 

15t 

10t 

10t 

10t 

10t 

25t 

'C31-40 

Mln Max 

10 P ~ V  

2 12 

2 12 

9 

2 12 

2 12 

13t 

9 t 

9 t  

9 t  

9 t  

21 t 

'C31-50 

Min Max 

10 P ~ T  

2 10 

2 10 

7 

2 10 

2 10 

12t 

8 t  

8 t  

8 t  

8 t  

17t 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 
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Figure 13-23. Timing for RESET 

CLKIN 1 I 1 
- 9  * ( I l l  i 
RESET X I  I ,  + 

. . 
M A  I 

(Notes 2,7) 1 I 

Control I 
Signals 

I 

(Note 3) 1 7 I 
J k n l )  I 

.. .- ~ 

Asynchronous (14) 
Reset Signals 3 

(Note 4) 

Notes: 1) (X)D includes D31-DO and XD31-XDO. 

2) @)A includes A23-A0 and XA12-XAO. 
3) Control signals include m, m, and m. 
4) Asynchronously reset signals include XFO/l, CLKXO/l, DXO/l, FSXOll, CLKRO/l , DRO/l, FSROIl, and TCLK011. 

5) RESET is an asynchronous input and can be asserted at any point during a clock cycle. If the specified timings are 
met, the exact sequence shown will occur; otherwise, an additional delay of one clock cycle is possible. 

6) Note that the R m  and X R m  outputs are placed in a high-impedance state during reset and can be provided with 
a resistive pull-up, nominally 1 El-22 kQ, if undesirable spurious writes could be caused when these outputs go low. 

7) In microprocessor mode, the reset vector is fetched twice, with seven software wait states each time. In microcom- 
puter mode, the reset vector is fetched twice, with no software wait states. 
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Figure 13-24. CL KIN to H 1/H3 as a Function of Temperature 

o ?  , , , , , , , I I I I , , , , , , , , ,  

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100 

Case Temperature (CO) 

Figure 13-25. CLKlN to H 1/H3 as a Function of Temperature 

22 TMS320C31-27 

20 TMS320C31-33 

18 TMS320C31-33 (extended temperature) 
V) 

E. 16 TMS320C30-40 

14 4.75 v s VDD s 5.25 V 

F 12 

10 g 8 

6 

4 

2 

0 

105110 115120125 

Case Temperature (CO) 
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Figure 13-26. CLKlN to H 1/H3 as a Function of Temperature 

Case Temperature (CO) 
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13.5.10 SHZ Pin Timing 

Table 13-24 defines the timing parameters for the SHZ pin. The numbers 
shown in parentheses in Figure 13-27 correspond with those in the No. col- 
umn of Table 13-24. 

Table 13-24. Timing Parameters for the Pin 

No. Name Description 
- 

(1) h i s ( s ~ z )  SHZ low Gll 0, 110 pins disabled 
(high impedance) 
- 

(2) L,(SHZ) SHZ high to all 0, I10 pins enabled I 0t 2 ~ t *  I ns 
(active) 

t Characterized but not tested 
*P = ~ ( c I )  

Figure 13-27. Timing for Pin 

All I/O Pins \- 

Note:  nabl ling =destroys ~ ~ S 3 2 0 C 3 x  register and memory contents. Assert SHZ = 1 and reset the TMS320C3x to restore 
it to a known condition. 
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13.5.11 lnterrupt Response Timing 

Table 13-25 defines the timing parameters for the INT signals. The numbers 
shown in parentheses in Figure 13-28 correspond with those in the No. col- 
umn of Table 13-25. 

t Characterized but not tested * P = tc (H) 

-- 
Table 13-25. Timing Parameters for IN T3-IN TO 

The interrupt (mv pins are asynchronous inputs that can be asserted at any 
time during a clock cycle. The TMS320C3x interrupts are level-sensitive, not 
edge-sensitive. Interrupts are detected on the falling edge of H1. Therefore, 
interrupts must be set up and held to the falling edge of H1 for proper detection. 
The CPU and DMA respond to detected interrupts on instruction fetch bound- 
aries only. 

For the processor to recognize only one interrupt on a given input, an interrupt 
pulse must be set up and held to: 

Unit 

ns 

ns 

A minimum of one H I  falling edge, and 
0 No more than two H I  falling edges. 

No. Name Descrlptlon 
-- 

(1) b U ( , ~ ~ )  INT3-INTO setup before H I  
low 

(2) t w ( l ~ ~ )  lnterrupt pulse duration to 
guarantee only one interrupt 

The TMS320C3x can accept an interrupt from the same source every two H I  
clock cycles. 

'C30-33 
'c31-33 
'LC31 

Min Max 

15 

P 2 ~ t *  

'C30-27 
'C31-27 

Mln Max 

19 

P 2 ~ t *  

If the specified timings are met, the exact sequence shown in Figure 13-28 will 
occur; otherwise, an additional delay of one clock cycle is possible. 

13-52 TMS320C3x User's Guide 

'C30-40 
'C31-40 

Min Max 

13 

P 2 ~ t *  

'C31-50 

Min Max 

10 

P 2 ~ t *  
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Figure 13-28. Timing for m3-INTO Response 

Interrupt 
Vector Read 

Fetch First 
Instruction of 

Service Routine I I 

I I I I 
INT3 -INTO I I I I I 

Flag I I I 
I I I I 
I I I I 

ADDR 

Data 
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13.5.12 Interrupt Acknowledge Timing 
- 

The IACK output goes active on the first half-cycle (HI rising) of the decode 
phase of the IACK instruction and goes inactive at the first half-cycle (HI rising) 
of the read phase of the IACK instruction. 

- 
Table 13-26 defines the timing parameters for the IACK signal. The numbers 
shown in parentheses in Figure 13-29 correspond with those in the No. col- 
umn of Table 13-26. 

Figure 13-29. Timing for EK 

Table 13-26. Timing Parameters for TK 

Fetch IACK Decode IACK ~ACK Data 1 Instruction I Instruction I Read I I 
H3 

- 
IACK 

No. Name Description 
- 

(1) t d ( ~ l ~ - ~ ~ ~ ~ ~ )  HI high to IACK low delay 
- 

(2) ~~(H~H-IACKH) HI high to IACK high delay 

ADDR 

Data 

Note: The lACK output is active for the entire duration of the bus cycle and is therefore extended if the bus cycle utilizes wait 
states. 

Unit 

ns 

ns 

'C30-40 
'(231-40 

Min Max 

9 

9 

'C30-27 
'C31-27 

Min Max 

13 

13 

'C31-50 

Min Max 

7 

7 

'C30-33 
'C31-33 
'LC31 

Min Max 

10 

10 
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13.5.1 3 Data Rate Timing Modes 

Unless otherwise indicated, the data rate timings shown in Figure 13-30 and 
Figure 13-31 are valid for all serial port modes, including handshake. For a 
functional description of serial port operation, refer to subsection 8.2.12 on 
page 8-30. 

Table 13-27 defines the serial port timing parameters for eight 'C3x devices. 
The numbers shown in parentheses in Figure 13-30 and Figure 13-31 corre- 
spond with those in the No. column of Table 13-27. 

Figure 13-30. Timing for Fixed Data Rate Mode 

I I I I I 

DX Bit n-1 x Bit n-2 " Bit 0 
I I I 

FSR 

Notes: 1) Timing diagrams show operations with CLKXP = CLKRP = FSXP = FSRP = 0. 

2) Timing diagrams depend on the length of the serial port word, where n = 8, 16,24,  or 3 2  bits, respectively. 
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Figure 13-31. Timing for Variable Data Rate Mode 

I 

I 

5 - C -  
(1 5) ++I 

Bit n-2 )( Bit n-3 T F  . , 
FSR 

Notes: 1) Timing diagrams show operation with CLKXP = CLKRP = FSXP = FSRP = 0. 

2) Timing diagrams depend on the length of the serial port word, where n = 8, 16, 24, or 32 bits, respectively. 

3) The timings that are not specified expressly for the variable data rate mode are the same as those that are specified 
for the fixed data rate mode. 
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Table 13-27. Serial-Port Timing Parameters 

No. Name Descrlptlon 

TMS320C30-27/TMS320C31-27 

Min Max 

H I  high to internal C L W R  delay 

Unlt 

C L W R  cycle time C L W R  ext 

CLIWR int 

C L W R  highbow pulse C L W R  ext 
duration 

C L W R  int 

C L W R  rise time 

C L W R  fall time 

CLKX to DX valid delay CLKX ext 

CLKX int 

DR setup before CLKR ex! 

CLKR low CLKR int 

DR hold from CLKR ext 

CLKR low CLKR int 

CLKX to internal CLKX ext 

CLKX int 

CLKR ext 

FSX highllow delay 

FSR setup before CLKR 
low 

CLKR int 

C L W R  ext FSWR input hold from 
C L W R  low 

C L W R  int 

CLKX ext External FSX setup be- 
fore CLKX 

CLKX int 

CLKX to first DX bit, FSX CLKX ext 
precedes CLKX high 
delay 

CLKX int 

FSX to first DX bit, CLKX precedes FSX 
delay 

CLKX high to DX high impedance following 
last data bit delav 

t Guaranteed by design but not tested * Not tested 
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Table 13-27. Serial-Port Timing Parameters (Continued) 

No. Name Descrlptlon 

(1) C ~ ( H ~ ~ C K )  H I  high to internal C L W R  delay 

Mln Max I Unit 

(2) ~ ( S C K )  CLWR cycle time CLWR ext 1 k(H)*.6t I ns 
CLWR int 1 k(~)xz~ k (H)&=* I 

C L W R  highllow pulse C L W R  ext 
(3) h(scK) duration C L W R  int 

(4) ~~(scK) C L W R  rise time 

(5) ~~(scK) C L W R  fall time 

(6) ~ ( D x )  CLKX to DX valid delay CLKX ext 
CLKX int 

DR setup before CLKR ext 

CLKR low CLKR int 

DR hold from CLKR ext 

CLKR low CLKR int 

CLKX to internal CLKX ext 
FSX highllow delay CLKX int 

FSR setup before CLKR ext 
CLKR low CLKR int 

FSNR input hold from C L W R  ext 
C L W R  low C L W R  int 

External FSX setup be- CLKX ext 
fore CLKX CLKX int 

CLKX to first DX bit, FSX CLKX ext 
precedes CLKX high CLKX int 
delay 

FSX to first DX bit, CLKX precedes FSX 
delay 

CLKX hi h to DX high impedance following last 
(' 5, data bit 8elaY 

17t I ns 
I 

t Guaranteed by design but not tested * Not tested 
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(3) t w o  C L W R  hightlow pulse dura- C L W R  ext 
tion C L W R  int 

Table 13-27. Serial-Port Timing Parameters (Continued) 

(4) ~~(scK) C L W R  rise time 

(5) ~~(scK) C L W R  fall time 

No. Name Descrlptlon 

(1) b ( H 1 - ~ ~ ~  H I  high to internal C L W R  delay 

(2) ~ ( S C K )  C L W R  cycle time C L W R  ext 
C L W R  int 

(6) ~ ( D x )  CLKX to DX valid delay CLKX ext 
CLKX int 

(7) ~ U ( D R )  DR setup before CLKR low CLKR ext 
CLKR int 

TMS320C31-50 

Min Max 

10 

L(H) x 2.6t k ( ~ )  x 232$ 
k ( ~ )  x 2 

(8) ~ ( D R )  DR hold from CLKR low 
CLKR int 

Unit 

ns 

ns 

(9) ~ ( F S X )  CLKX to internal FSX high/ CLKX ext I 22 
low delay CLKX int 15 

( lo) ~,(FSR) FSR setup before CLKR low CLKR ext 7 
CLKR int I 

(11) th (~s)  FSWR input hold from 
C L W R  low 

(12) External FSX setup before CLKX ext -[tc(~)-8] [~(sC1(112]-1 0f 1 ns 
CLKX CLKX int 

(1 3) ~ ( C H - D X ) ~  CLKX to first DX bit, FSX pre- CLKX ext 
cedes CLKX high delay CLKX int 

-[tc(H)-21] k (scqMS 
24 
14 

(14) ~ ( F S X - D X ) ~  FSX to first DX bit, CLKX precedes FSX 

f Assured by design but not tested * Not tested 

1 ns 
24 

delay 1 ns 
ns CLKX high to DX high impedance following 

b(Dxn last data bit delay 
14t 



HOLD is an asynchronous input that can be asserted at any time during a clock 
cycle. If the specified timings are met, the exact sequence shown in 
Figure 13-32 will occur; otherwise, an additional delay of one clock cycle is 
possible. 

Table 13-28 defines the timing parameters for the and signals. 
The numbers shown in parentheses in Figure 13-32 correspond with those in 
the No. column of Table 13-28. 

The NOHOLD bit of the primary bus control register (see subsection 7.1 .I on 
page 7-3) overrides the HOLD signal. When this bit is set, the device comes 
out of hold and prevents future hold cycles. 

Asserting HOLD prevents the processor from accessing the primary bus. Pro- 
gram execution continues until a read from or a write to the primary bus is re- 
quested. In certain circumstances, the first write will be pending, thus allowing 
the processor to continue until a second write is encountered. 

Figure 13-32. Timing for =D/HOL DA 

H 1 

I I I -w k l )  
- 

I 
HOLD 

- 
HOLDA 

- 
STRB 

I 
wt- (11) 

m I I, 
I 

I 'l 

I 
A 

D 

- - 
Note: HOLDA will go low in response to HOLD going low and will continue to remain low until one H I  cycle after HOLD goes 

back high, as shown in Figure 13-32. 
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Table 13-28. Timing Parameters for ~ / H O L D A  

(3) t V ( ~ 0 u q  HOLDA valid 
after H 1 low 1 ° *  l4 1°* lo 

(1)  HOLD) HOLD setup 
before H1 low 

(4) b(H0LD5) HOLD low du- 1 %(H) 1 &(HI 
ration 

'C30-33 
'C31-33 
'LC31 

Mln Max No. Name Description 

(6) ++qHoroq HOLDA O W  du- 1 &-st 1 iH -a t  
ration 

'C30-27 
'C31-27 

Min Max 

19 

(7) ~(HIL-SH)H) H1! to 
STRB high for 
a delay lo* l3 lo* 

15 

(8) t d i s ( ~ 1 ~ 4 )  EL!!! to lo*  1 3 t I 0 *  10t 
STRB disabled 
(high-impe- 
dance state) 

(9) kn(H1 LS) !!&!low 
STRB enabled 
(active) 

(1 0) $J~(H~L-RW) H1 low to RAV 
disabled (high- 
impedance 
state) 

(1 1) t e n ( H 1 L ~  H1 IOW to ~m 
enabled (ac- 
tive) 

(1 2) t d i s ( ~ l ~ + y  H I  low to ad- 
dress disabled 
(high-impe- 
dance state) 

(13) bn(~lL+y H I  low to ad- 
dress enabled 
(valid) 

(1 5) ~ ( H ~ H - Q  HI  high to data 1 O* 13t 1 O* 10t 
disabled (high- 
impedance 
state) I I 

Min Max Min Max 

t Characterized but not tested * Not tested 
5 m i s  an asynchronous input and can be asserted at any point during aclock cycle. If the specified timings are met, the exact 

sequence shown will occur; otherwise, an additional delay of one clock cycle is possible. 

- 
- Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 



13.5.1 5 General-Purpose I10 Timing 

Peripheral pins include CLKXOII, CLKRO11, DXO11, DROI1, FSXO11, FSRO11, 
and TCLKO11. The contents of the internal control registers associated with 
each peripheral define the modes for these pins. 

13.5.15.1 Peripherai Pin l/O Timing 

Table 13-29 defines peripheral pin general-purpose I10 timing parameters. 
The numbers shown in parentheses in Figure 13-33 correspond with those in 
the No. column of Table 13-29. 

No. Name Description 1 Min Max 1 Min Max 1 Min Max 

Table 13-29. Timing Parameters for Peripheral Pin General-Purpose I/O 

(2) ~ ~ ( G P I O H ~  1) General-purpose input hold 
time after H I  low l o  l o  lo  

'C30-40 
'C31-40 

'C30-27 
'C31-27 

(1) k U ( ~ p ~ 0 ~ 1  L) General-purpose input setup 
before H I  low 

(3) t q ~ p 1 0 ~ 1  H) General-purpose output 1 l9 1 l5 1 13 
delay after H I  high 

'C30-33 
'C31-33 
'LC31 

15 

Note: Peripheral pins include CLKXOI1 , CLKROI1 ,DXO/~, DROI1, F S X O ~ ,  FSROIl, and TCLKOI1 .The modes of these pins are 
defined by the contents of internal control registers associated with each peripheral. 

Figure 13-33. Timing for Peripheral Pin General-Purpose I/O 

H 1 

(2) 1 
(1) I (3) -h -4 I (3) 

I n -  
Peripheral )(-i--+:r$-, 

Pin 

13.5.15.2 Changing the Peripherai Pin I/O Modes 

Table 13-30 and Table 13-31 show the timing parameters for changing the 
peripheral pin from a general-purpose output pin to a general-purpose input 
pin and vice versa. The numbers shown in parentheses in Figure 13-34 and 
Figure 13-35 correspond to those shown in the No. column of Table 13-30 
and Table 13-31, respectively. 
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Table 13-30. Timing Parameters for Peripheral Pin Changing From General-Purpose Oulput 
to lnput Mode 
- - -- - 

Table 1 3 3  1. Timing Parameters for Peripheral Pin Changing From General-Purpose lnput to 
Output Mode 

No. Name Description 

) t h ( ~ 3 ~ )  Hold after H I  high 

(2) t s u ( ~ p 1 o ~ 1 ~  Peripheral pin setup before 
H l  low 

(3) ~ ~ ( G P I O H ~ L  Peripheral pin hold after H I  
low 

Figure 1334. Timing for Change of Peripheral Pin From General-Purpose Output to 
lnput Mode 

No. Name Description 

(1) t d ( ~ p 1 0 ~ 1 ~ )  H I  high to peripheral pin 
switching from input to out- 
put delay 

'C30-27 
'C31-27 

Min Max 

19 

13 

0 

10 
I I 

Control Bit I 
J w - ~ i \  I I I 

'c31-50 

Min Max 

10 

9 

0 

'C30-27 
'C31-27 

Min Max 

19 

Execution of 
Store of 

Peripheral 
Control 

Register 

Peripheral 
Pin 

'C30-33 
'C31-33 
'LC31 

Min Max 

15 

10 

0 

Unit 

ns 

ns 

ns 

Data Bit 

'C30-40 
'C3140 

Min Max 

13 

9 

0 

'C30-33 
'C31-33 
'LC31 

Min Max 

15 

H3 

Buffers Go 
From Output 

to lnput 

'C30-40 
'C3140 

Min Max 

13 

Synchronizer Delay 

Value on Pin 
Seen in 

Peripheral 
Control 
Register 

'C31-50 

Min Max 

10 

Unit 

ns 



Figure 13-35. Timing for Change of Peripheral Pin From General-Purpose Input to 
Output Mode 

Execution of Store 
of Peripheral Control 

Register 

10 
Control 

Bit 

Peripheral 
Pin 
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13.5.16 Timer Pin Timing 

Valid logic-level periods and polarity are specified by the contents of the inter- 
nal control registers. 

Table 13-32 and Table 13-33 define the timing parameters for the timer pin. 
The numbers shown in parentheses in Figure 13-36 correspond with those in 
the No. column of Table 13-32 and Table 13-33. 

Table 13-32. Timing Parameters for Timer Pin 

Guaranteed by design but not tested 
*Timing parameters 1 and 2 are applicable for a synchronous input clock. Timing parameters 4 and 5 are applicable for an 

asynchronous input clock. 

No. Name ~escrlptlon* 

(1) ~ , ,~CU<H~L  TCLK ext TCLK 
setup before ext 
H l  low 

(2) t h f l c ~ , ~  TCLKext TCLK 
hold after ext 
H l  low 

(3) ~ ~ c u ( H ~ H )  HI high to TCLK 
TCLK int int 
valid delay 

(4) t,.vcug TCLK cycle TCLK 
time ext 

TcLK 
int 

(5) t,,,vcug TCLK high/ TCLK 
low pulse ext 
duration 

T C w  
int 

'C30-27/'C31-27 

Mln Max 

15 

0 

13 

k(~lx2.6t 

'c(~)x2 k(H)d3'+ 

t,-(H)+12t 

l'?qc@I-15 k(~c@I+5 

'C30-33/'C31-33 

Mln Max 

12 

0 

10 

' c (~ )d .6 t  

k (H)d  k(H) x232t 

k(~)+12+ 

k(~c@I-15 k(~c@I+5 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 



Table 13-33. Timing Parameters for Timer Pin 

(1) t s u v ~ ~ l ~ )  TCLK ext set- TCLK 
up before H1 ext 
low 

No. Name Descrlptlon* 

(2) t h v c m 1  L) TCLK ext hold TCLK 
after H1 low ext 

'C30-4O/'C31-40 

Mln Max 

(3) ~ W U < H ~ H )  H1 high to TCLK 
TCLK int valid int 
delay 

(4) ~ ~ C U Q  TCLK cycle 
time 

TCLK 
int 

(5) ~,,~cuQ TCLK high/ TCLK 
low pulse du- ext 
ration 

int TcLK I 

Mln Max 
- 
Unit - 
ns 

t Guaranteed by design but not tested 
*Timing parameters 1 and 2 are applicable for a synchronous input clock. Timing parameters 4 and 5 are applicable for an 

asynchronous input clock. 

Figure 13-36. Timing for Timer Pin 
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Instruction O~codes 

The opcode fields for all TMS320C3x instructions are shown in Table A-1 . Bits 
in the table marked with a hyphen are defined in the individual instruction de- 
scriptions (see Chapter 10). Table A-1 , along with the instruction descriptions, 
fully defines the instruction words. The opcodes are listed in numerical order. 
Note that an undefined operation may occur if an illegal opcode is executed. 



Instruction Opcodes 

Table A- 1. TMS320C3x Instruction Opcodes 

INSTRUCTION 31 30 29 28 27 26 25 24 23 

ABSF 0 0 0 0 0 0 0 0 0  

ABSl 

ADDC 

ADDF 0 0 0 0 0 0 0 1 1  

ADD1 0 0 0 0 0 0 1 0 0  

AND 0 0 0 0 0 0 1 0 1  

ANDN 0 0 0 0 0 0 1 1 0  

ASH 0 0 0 0 0 0 1 1 1  

CMPF 

CMPl 

FIX 

FLOAT 

IDLE 

IDLE2 

LDE 

LDF 

LDFl 0 0 0 0 0 1 1 1 4  

LDI 0 0 0 0 1 0 0 0 0  

LDll 0 0 0 0 1 0 0 0 1  

LDM 

LDP 

LSH 0 0 0 0 1 0 0 1 1  
LOPOWER 0 0 0 1 0 0 0 0 1  
MAXSPEED 0 0 0 1 0 0 0 0 1  

MPYF 0 0 0 0 1 0 1 0 0  

MPYI 0 0 0 0 1 0 1 0 1  

NEGB 0 0 0 0 1 0 1 1 0  

NEGF 0 0 0 0 1 0 1 1 1  

NEGl 0 0 0 0 1 1 0 0 0  



Instruction Opcodes 

Table A-1. TMS320C3x Instruction Opcodes (Continued) 

INSTRUCTION 31 30 29 28 27 26 25 24 23 

NOP 0 0 0 0 1 1 0 0 1  
NORM 0 0 0 0 1 1 0 1 0  
NOT 0 0 0 0 1 1 0 1 1  
POP 0 0 0 0 1 1 1 0 0  
POPF 0 0 0 0 1 1 1 0 1  
PUSH 0 0 0 0 1 1 1 1 0  
PUSHF 0 0 0 0 1 1 1 1 1  
OR 0 0 0 1 0 0 0 0 0  
RND 0 0 0 1 0 0 0 1 0  
ROL 0 0 0 1 0 0 0 1 1  
ROLC 0 0 0 1 0 0 1 0 0  
ROR 0 0 0 1 0 0 1 0 1  
RORC 0 0 0 1 0 0 1 1 0  
RPTS 0 0 0 1 0 0 1 1 1  
STF 0 0 8 1 0 1 0 0 0  
STFl 0 0 0 1 0 1 0 0 1  
ST1 0 0 0 1 0 1 0 1 0  
ST1 l  0 0 0 1 0 1 0 1 1  
SlGl 0 0 0 1 0 1 1 0 0  
SUBB 0 0 0 1 0 1 1 0 1  
SUBC 0 0 0 1 0 1 1 1 0  
SUBF 0 0 0 1 0 1 1 1 1  
SUB1 0 0 0 1 1 0 0 0 0  
SUBRB 0 0 0 1 1 0 0 0 1  
SUBRF 0 0 0 1 1 0 0 1 0  
SUBRl 0 0 0 1 1 0 0 1 1  

TSTB 0 0 0 1 1 0 1 0 0  

XOR 0 0 0 1 1 0 1 0 1  

IACK 0 0 0 1 1 0 1 1 0  
ADDC3 0 0 1 0 0 0 0 0 0  
ADDF3 0 0 1 0 0 0 0 0 1  
ADD13 0 0 1 0 0 0 0 1 0  
AND3 0 0 1 0 0 0 0 1 1  
ANDN3 0 0 1 0 0 0 1 0 0  
ASH3 0 0 1 0 0 0 1 0 1  
CMPF3 0 0 1 0 0 0 1 1 0  
CMP13 0 0 1 1 0 0 0 1 1 1  

Instruction Opcodes A-3 



Instruction Omodes 

Table A- 1. TMS320C3x Instruction Opcodes (Continued) 

INSTRUCTION 31 30 29 28 27 26 25 24 23 

LSH3 0 0 1 0 0 1 0 0 0  

LDFcond 0 1 0 0 -  - - - - 
LD l  cond 0 1 0 1 -  - - - - 

CALL 

RPTB 

SWI 

~ c o n d ( ~ )  t 0 1 1 0 1 0 -  - - 
D~cond(D)t 0 1 1 0 1 1 -  - - 
CALLcond 0 1 1 1 0 0 -  - - 
TRAPcond 0 1 1 1 0 1 0 -  - 
RETl cond 0 1 1 1 1 0 0 0 0  

RETScond 0 1 1 1 1 0 0 0 1  

t Opcode same for standard and delayed instructions. 



Instruction Opcodes 

Table A- 1. TMS320C3x Instruction Opcodes (Concluded) 

INSTRUCTION 31 30 29 28 27 26 26 24 23 

MPY1311SUB13 1 0 0 0 1 1 0 0 -  
1 0 0 0 1 1 0 1 -  
1 0 0 0 1 1 1 0 -  

XOR311STI 1 1 1 0 1 1 1 -  - 
Reservedforreset, 0 1 1 1 1 1 1 1 1 
traps, and interrupts 

Instruction Opcodes A-5 





Development SupportlPart Ordering Information 

This appendix provides development support information, device part num- 
bers, and support tool ordering information for the TMS320C3x generation. 

Each TMS320C3x support product is described in the TMS320 Family Devel- 
opment Support Reference Guide (literature number SPRUOl l).ln addition, 
more than 100 third-party developers offer products that support the TI 
TMS320 family. For more information, refer to the TMS320 Third-Party Refer- 
ence Guide (literature number SPRU052). 

For information on pricing and availability, contact the nearest TI field sales of- 
fice or authorized distributor. 

This appendix discusses the following major topics: 

Topic Page 



TMS320C3x Development Support Tools 

B.l TMS320C3x Development Support Tools 

Texas Instruments offers an extensive line of development tools for the 
TMS320C3x generation of DSPs, including tools to evaluate the performance 
of the processors, generate code, develop algorithm implementations, and ful- 
ly integrate and debug software and hardware modules. 

The following products support development of 'C3x applications: 

Code Generation Tools 

Q Optimizing ANSl C compiler. Translates ANSl C language directly into 
highlyoptimized assembly code. You can then assemble and link this code 
with the TI assembler/linker, which is shipped with the compiler. It supports 
both 'C3x and 'C4x assembly code. This product is currently available for 
PC (DOS, DOS extended memory, and 0S/2), VAXNMS, and SPARC 
workstations. Refer to the TMS320 Floating-Point DSP Optimizing C 
Compiler User's Guide (SPRU034) for detailed information. 

Assembler/linker. Converts source mnemonics to executable object code. 
It supports both 'C3x and 'C4x assembly code. This product is currently 
available for PC (DOS, DOS extended memory, and OS/2). The 'C3xlC4x 
assembler for the VAXNMS and SPARC workstations is only available as 
part of the optimizing 'C3xlC4x compiler. Refer to the TMS320 Floating- 
Point DSP Assembly Language Tools User's Guide (SPRU035) for de- 
tailed information. 

System Integration and Debug Tools 

Simulator. Simulates via software the operation of the 'C3x and can be 
used in C and assembly software development. This product is currently 
available for PC (DOS and Windows) and SPARC workstations. Refer to 
the TMS32OC3x C Source Debugger User's Guide (SPRU054) for de- 
tailed information. 

XDS510 emulator. Performs full-speed in-circuit emulation with the 'C3x, 
providing access to all registers as well as to internal and external memory. 
It can be used in C and assembly software development and has the capa- 
bility of debugging multiple processors. This product is currently available 
for PC (DOS, Windows, and OSl2) and SPARC workstations. This product 
includes the emulator board (emulator box, power supply, and SCSl con- 
nector cables in the SPARC version), the 'C3x C source debugger soft- 
ware, and the JTAG cable. 



TMS320C3x Development Support Tools 

Because 'C3x and 'C5xXDS51O emulators also come with the same emu- 
lator board (or box), you can buy the 'C3x C source debugger software as a 
separate product called 'C3x C Source Debugger Conversion Software. 
This enables you to debug 'C3QC4QC5x applications with the same 
emulator board. The emulator cable that comes with the 'C5x XDS510 
emulator is not compatible with the 'C3x. You need a JTAG emulation con- 
version cable. Refer to the TMS320C3x C Source Debugger User's Guide 
(SPRU053) for detailed information on the 'C3x emulator. 

Evaluation module (EVM). Each EVM comes complete with a PC halfcard 
and software package. The EVM board contains the following: 

H A TMS320C30 and a 33-MFLOPS, 32-bit floating-point DSP 

H A 16K-word, zero-state SRAM, allowing coding of most algorithms di- 
rectly on the board 

H A speakerlmicrophone-ready analog interface for multimedia, 
speech, and audio applications development 

A multiprocessor serial port interface for connecting to multiple EVMs 

A host port for PC communications 

The system also comes with all the software required to begin applications 
development on a PC host. Equipped with a C and assembly language 
source level debugger for the DSP, the EVM has a window-oriented, 
mouse-driven interface that enables the downloading, executing, and de- 
bugging of assembly code or C code. 

The TMS320C3x assembler~linker is also included with the EVM. For us- 
ers who prefer programming in a high-level language, an optimizing ANSI 
C compiler and Ada compiler are offered separately. 
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TMS320C3x Development Support Tools 

Emulation porting kit (EPW. Enables you to integrate emulation technolo- 
gy directly into your system without the need of an XDS510 board. This 
product is intended to be used by third parties and high-volume board 
manufacturers and requires a licensing agreement with Texas Instru- 
ments. The kit contains host (or PC) source and object code, which lets 
you tailor 'C30 EVM-like capabilities to your TMS320C3x system via the 
SM74ACT8990 test bus controller (TBC). The EPK can be used in such 
applications as program download for system self-test and initialization or 
system emulation and debug to feature resident emulation support. EPK 
software includes the TI high-level language (HLL) debugger in object as 
well as source code for the TBC communication interface. The HLL code 
is the windowed debugger found with many TI DSP simulators, evaluation 
modules (EVMs), and emulators. With the EPK, the HLL user interface 
can be ported directly to the system board. The source code for the TBC 
communication interface consists of such commands as readlwrite, 
memory run, stop, and reset that communicate with the TMS320C3x de- 
vice. Using the EPK reduces system and development cost and speeds 
time to market. For more information on the kit, call the DSP hotline at 
(71 3) 274-2320. 

B.1.1 TMS320 Third Parties 

The TMS320 family is supported by product and service offerings from more 
than 100 independent vendors and consultants, known as third parties. These 
support products take various forms (both software and hardware) from cross- 
assemblers, simulators, and DSP utility packages to logic analyzers and emu- 
lators. Additionally, TI third parties offer more than 150 algorithms that are 
available for license through the TMS320 software cooperative. These algo- 
rithms can greatly reduce development time and decrease time to market. The 
expertise of those involved in support services ranges from speech encoding 
and vector quantization to softwarelhardware design and system analysis. 

For a more detailed description of services and products offered by third par- 
ties, refer to the TMS320 Third Party Support Reference Guide (literature 
number SPRU052) and the TMS320 Software Cooperative Data Sheet Pack- 
et (literature number SPRT111). Call the Literature Response Center at (800) 
477-8924 to request a copy. 



TMS320C3x Development Support Tools 

8.1.2 TMS320 Llterature 

Extensive DSP documentation is available; this includes data sheets, user's 
guides, and application reports. In addition, DSP textbooks that aid research 
and education have been published by Prentice-Hall, John Wiley and Sons, 
and Computer Science Press. To order literature or to subscribe to the DSP 
newsletter Details on Signal Processing (for up-to-date information on new 
products and services), call the Literature Response Center at (800) 
477-8924. 

8.1.3 DSP Hotline 

For answers to TMS320 technical questions on device problems, develop- 
ment tools, documentation, upgrades, and new products, you can contact the 
DSP hotline via: 

Cj Phone at (71 3)274-2320 Monday through Friday from 8:30 a.m. to 500 
p.m. central time 

Cj Fax at (71 3)274-2324 

Cj Electronic mail at 4389750@mcimail.com. 

Q European fax at 33-13070-1 032 

Cj Semiconductor Product Information Center (PIC) at (214) 644-5580 

To ask about third-party applications and algorithm development packages, 
contact the third party directly. Refer to the TMS320 Third-Party Support Ref- 
erence Guide (literature number SPRU052) for addresses and phone 
numbers. 

Extensive DSP documentation is available; this includes data sheets, user's 
guides, and application reports. Call the hotline at (800) 477-8924for informa- 
tion on literature that you can request from the Literature Response Center. 

The DSP hotline does not provide pricing information. Contact the nearest TI 
field sales office or the TI PIC for prices and availability of TMS320 devices and 
support tools. 

8.1.4 Bulletin Board Service (BBS) 

The TMS320 DSP Bulletin Board Service (BBS) is a telephone-line computer 
service that provides information on TMS320 devices, specification updates 
for current or new devices and development tools, silicon and development 
tool revisions and enhancements, new DSP application software as it be- 
comes available, and source code for programs from any TMS320 user's 
guide. 
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You can access the BBS via the following: 

a Modem: (300-, 1200-, or 2400-bps) dial (713)274-2323. Set your modem 
to 8 data bits,l stop bit, no parity. 

Internet: Use anonymous ftp to ti.com (Internet port address 192.94.94.1). 
The BBS content is located in the subdirectory called mirrors. 

To find out more about the BBS, refer to the TMS320 Family Development 
Support Reference Guide (literature number SPRUO11). 

8.1.5 Technical Training Organization ( T O )  TMS320 Workshop 

The TMS320C3x DSP design workshop is tailored for hardware and software 
design engineers and decision-makers who will be designing and utilizing the 
TMS320C3x generation of DSP devices. Hands-on exercises throughout the 
course give participants a rapid start in utilizing TMS320C3x design skills. Mi- 
croprocessorlassembly language experience is required. Experience with dig- 
ital design techniques and C language programming experience is desirable. 
The following topics are covered in the TMS320C3x workshop: 

TMS320C3x architecturelinstruction set 
Use of the PC-based TMS320C3x software simulator and EVM 

0 Floating-point and parallel operations 
Q Use of the TMS320C3x assembler~linker 
a C programming environment 
Q System architecture considerations 

Memory and I10 interfacing 
0 TMS320C3x development support 

For registration, pricing, or enrollment information on this and other TTO 
TMS320 workshops, call (800) 3365236, ext. 3904. 



TMS320C3x Part Orderjn~ Information 

8.2 TMS320C3x Part Ordering lnformation 

This section provides the device and support tool part numbers. Table B-1 
lists the part numbers for the TMS320C30 and TMS320C31; Table 5 2  gives 
ordering information for TMS320C3x hardware and software support tools. An 
explanation of the TMS320 family device and development support tool prefix 
and suffix designators follows the two tables to assist in understanding the 
TMS320 product numbering system. 

Table 5 1 .  TMS320C3x Digital Signal Processor Part Numbers 

Operating 
Frequency 

Typical Power 
Dlsslpatlon Device Technology 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

Package Type 

33 MHz 

27 MHz 

40 MHz 

40 MHz 

33 MHz 

27 MHz 

40 MHz 

33 MHz 

50 MHz 

28 MHz 

Ceramic 181 -pin PGA 

Ceramic 181 -pin PGA 

Ceramic 181 -pin PGA 

Plastic 208-pin QFP 

TMS320C31 PQUPQA Plastic 132-pin QFP 

Plastic 132-pin QFP 

Plastic 132-pin QFP 

TMS320LC31 PQL Plastic 132-pin QFP 

Plastic 132-pin QFP 

Ceramic 141 -pin PGA 
Ceramic 132-pin QFP 
Ceramic 141 -pin PGA 
Ceramic 132-pin PGA 

33 MHz Ceramic 181 -pin PGA 
Ceramic 196-pin QFP 

0.8-pm CMOS 

0.8-pm CMOS 28 MHz Ceramic 181 -pin PGA 
Ceramic 196-pin QFP 

25 MHz Ceramic 181 -pin PGA 
Ceramic 196-pin QFP 

0.8-pm CMOS 
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Table 8-2. TMS320C3x Support Tool Part Numbers 

Tool Descrlptlon Operatlng System Part Number 

(a) Software 

C Compiler 81 Macro Assembler1 Linker V W M S  TMDS3243255-08 
PC-DOSIMS-DOS TMDS3243855-02 

AssemblerIUnker 

Simulator 

Tartan Floating-Point Library 

SPARC (Sun O S ) ~  TMDS3243555-08 
PC-DOSIMS-DOS; OS12 TMDS3243850-02 

VAX VMS TM DS3243251-08 
PC-DOSIMS-DOS TMDS3243851-02 
SPARC (SUN 0S)t  TMDS3243551-09 

PC-DOS 320 FLO-PC C30 
SPARC (Sun 0s) 320 FLO-Sun-C30 

Digital Filter Design Package PC-DOS DFDP 

Tartan C t t  CompilerIDebugger PC-DOS; OSl2, Wiredown TAR-CCM-PC-C3x 
SPARC (Sun 0s) TAR-CCM-SP-C3x 

Tartan C t t  Compiler PC-DOS; OSl2, Wiredown TAR-SIM-PC-C3x 
SPARC (Sun 0s) TAR-SI M-SP-C3x 

TMS320C3x Emulation Porting Kit TMSX3240030 

(b) Hardware 

XDS51O Emulator PCIMS-DOS TMDS3260131 

Evaluation Module (EVM) PC-DOSIMS-DOS TMDX3260030 
t Note that SUN UNlX supports TMS320C3x software tools on the 68000 family-based SUN9 series workstations and on the 

SUN4 series machines that use the SPARC processor, but not on the SUN-3861 serles of workstations. 

8.2.1 Device and Development Support Tool Prefix Designators 
Prefixes to TI part numbers designate phases in the product's development 
stage for both devices and support tools, as shown in the following definitions: 

Device Development Evolutionary Flow 

Q TMX: Experimental device that is not necessarily representative of the fi- 
nal device's electrical specifications 

TMP: Final silicon die that conforms to the device's electrical specifica- 
tions but has not completed quality and reliability verification 

Q TMS: Fully qualified production device 

Support Tool Development Evolutionary Flow 

Q TMDX: Development support product that has not yet completed Tl's in- 
ternal qualification testing for development systems 

IJ TMDS: Fully qualified development support product 



TMS320C3x Part Orderins lnformation 

TMX and TMP devices and TMDX development support tools are shipped with 
the following disclaimer: 

"Developmental product is intended for internal evaluation purposes." 

1 

Note: Prototype Devices 

TI recommends that prototype devices (TMX or TMP) not be used in produc- 
tion systems because their expected end-use failure rate is undefined but 
predicted to be greater than standard qualified production devices. 

TMS devices and TMDS development support tools have been fully character- 
ized, and their quality and reliability have been fully demonstrated. Tl's stan- 
dard warranty applies to TMS devices and TMDS development support tools. 

TMDX development support products are intended for internal evaluation pur- 
poses only. They are covered by Ti's Warranty and Update Policy for Micropro- 
cessor Development Systems products; however, they should be used bycus- 
tomers only with the understanding that they are developmental in nature. 

8.2.2 Device Suffixes 

The suffix indicates the package type (for example, N, FN, or GE) and temper- 
ature range (for example, L). 

Figure 51 presents a legend for reading the complete device name for any 
TMS320 family member. 
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Figure 6-1. TMS320 Device Nomenclature 
TMS 320 C 30 GE L 

Pnflx 

TMX = Experimental Device 
TMP = Prototype Device 
TMS = Qualified Device 
SMJ = MIL-STD-883C 

Devlco ~ a r n l l ~  
320 = TMS320 Family 

Twhnology A 
C 3 CMOS 
E = CMOS EPROM 
P = OTPEPROM 
No Letter = NMOS 

Devlcr 
I st-generation DSP: 

10 
14 
15 
16 
I 7  

2nd-generation DSP: 
20 
25 
26 

3rd-generation DSP: 
30 
31 

4thgeneration DSP: 
40 

5thgeneration DSP: 
50 
51 

I P*cbgr Typo 

N = Plastic DIP 
JD = Ceramic DIP Side-Brazed 
FN = Plastic Leaded CC 
60 = Ceramic POA 
FJ = Ceramic Leaded CC 
FD = Leadless Ceramic CC 
FZ = Ceramic Leaded CC 
GE x Ceramic PGA, Glase Seal 
HU = Ceramic Quad Flatpeck 
HT = Ceramic Quad Flatpack 

(gull wing) 
PQ = Plastic Quad Flatpack 

See electrical specifications for TMS320C31 PQA case temperature ratings. 



Quality and Reliability 

The quality and reliability of Texas Instruments (TI) microprocessor and 
microcontroller products, which include TMS320 digital signal processors, re- 
lies on feedback from the following: 

0 Our customers, 

!J Our total manufacturing operation from front-end wafer fabrication to final 
shipping inspection, and 

0 Product quality and reliability monitoring. 

Our customer's perception of quality is the governing criterion for judging per- 
formance. This concept is the basis for TI Corporate Quality Policy, which is 
as follows: 

"For every product or service we offer, we shall define the requirements that 
solve the customer's problems, and we shall conform to those requirements 
without exception." 

Texas Instruments has developed a leadership reliability qualification system, 
based on years of experience with leading-edge memory technology and on 
years of research into customer requirements. To achieve constant improve- 
ment, programs that support that system respond to customer input and inter- 
nal information. 

This appendix presents the following major topics: 

Topic Page 
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Reliability Stress Tests 

Accelerated stress tests are performed on new semiconductor products and 
process changes to qualify them and ensure excellence in product reliability. 
The following test environments are typical: 

Q High-temperature operating life 
0 Storage life 
Q Temperature cycling 
Q Biased humidity 

Autoclave 
Q Electrostatic discharge 
Q Package integrity 
Q Electromigration 
Q Channel-hot electrons (performed on geometries less than 2.0 pm) 

Typical events or changes that require internal requalification of a product in- 
clude the following: 

Q New die design, shrink, or layout 

C] Wafer process (baseline/wntrol systems, flow, mask, chemicals, gases, 
dopants, passivation, or metal systems) 

Q Packaging assembly (baseline control systems or critical assembly equip- 
ment) 

Q Piece parts (such as lead frame, mold compound, mount material, bond 
wire, or lead finish) 

0 Manufacturing site 

TI reliability control systems extend beyond qualification. Total reliability wn- 
trols and management include product reliability monitoring as well as final 
product release controls. MOS memories, utilizing high-density active ele- 
ments, serve as the leading indicator in wafer-process integrity at TI MOS fab- 
rication sites, enhancing all MOS logic device yields and reliability. TI places 
more than several thousand MOS devices per month on reliability tests to en- 
sure and sustain built-in product excellence. 

Table C-1 lists the microprocessor and microcontroller reliability tests, the du- 
ration of the test, and sample size. Table C-2 contains definitions and descrip- 
tions of terms used in those tests. 
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Table GI. Microprocessor and Microcontroller Tests 

Sample S l u  
Test Duratlan Plastic Ceramic 

Operating life, 125" C, 5.0 V 

Storage life, 150" C 

Biased humidity, 85' Cl85 percent 
RH, 5.0 V 

Autoclave, 121" C, 1 ATM 

Temperature cycle, -65 to 150' C 

Temperature cycle, 0 to 125" C 

Thermal shock,-65 to 150' C 

Electrostatic discharge, t 2 kV 

Latch-up (CMOS devices only) 

Mechanical sequence 

Thermal sequence 

ThermaVmechanical sequence 

PlND 

Internal water vapor 

Solderability 

Solder heat 

Resistance to solvents 

Lead integrity 

Lead pull 

Lead finish adhesion 

Salt atmosphere 

Flammability (UL94-VO) 

Thermal impedance 

1000 hrs 129 

1 000 hrs 45t 

1000 hrs 77 

240 hrs 45 

1000 cyc* 77 

3000 CYC n 

200 CYC n 

15 

5 

t If junction temperature does not exceed plasticity of package 
$ For severe environments; reduced cycles for office environments 
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Table G2. Definitions of Microprocessor Testing Terms 

Term Deflnitlon/Descrlptlon Ref erencoa 

Average Outgoing Quality (AOQ) Amount of defective product in a popu- 
lation, usually expressed in terms of 
parts per million (PPM). 

Storage Life 

Biased Humidity 

Temperature Cycle 

Electrostatic Discharge 

Failure in Time (FIT) Estimated field failure rate in number of 
failures per billion power-on device 
hours; 1000 FITS equal 0.1 percent fail- 
ure per 1000 device hours. 

Operating Life Device dynamically exercised at a high 
ambient temperature (usually 125" C) to 
simulate field usage that would expose 
the device to a much lower ambient 
temperature (such as 55" C). Using a 
derived high temperature, a 55°C ambi- 
ent failure rate can be calculated. 

Device exposed to 150" C unbiased 
condition. Bond integrity is stressed in 
this environment. 

Moisture and bias used to accelerate 
corrosion-type failures in plastic pack- 
ages. Conditions include 85" C ambient 
temperature with 85% relative humidity 
(RH). Typical bias voltage is t5V and is 
grounded on alternating pins. 

Autoclave (Pressure Cooker) Plastic-packaged devices exposed to 
moisture at 121" C using a pressure of 
one atmosphere above normal pres- 
sure. The pressure forces moisture per- 
meation of the package and acceler- 
ates corrosion mechanisms (if present) 
on the device. External package con- 
taminants can also be activated and 
caused to generate inter-pin current 
leakage paths. 

Device exposed to severe temperature 
extremes in an alternating fashion (-65" 
C for 15 minutes and 150" C for 15 min- 
utes per cycle) for at least 1000 cycles. 
Package strength, bond quality, and 
consistency of assembly process are 
tested in this environment. 

Device exposed to electrostatic 
discharge pulses. Calibration is accord- 
ing to MIL STD 88% method 3015.6. 
Devices are stressed to determine fail- 
ure threshold of the design. 



Reliability Stress Tests 

Thermal Sequence 

Table G2, Definitions of Microprocessor Testing Terms (Continued) 

Term Deflnltlon/Deecrlption Reference8 

Thermal Shock Test similar to the temperature cycle MIL-STD-883C, Method 101 1 
test, but involving a liquid-to-liquid 
transfer. 

Particle Impact Noise Detection A nondestructive test to detect loose 
(PIND) particles inside a device cavity. 

Mechanical Sequence Fine and gross leak MIL-STD-883C, Method 101 4 
Mechanical shock MIL-STD-883C, Method 2002, 

1500 g, 0.5 ms, Condition B 
PlND (optional) MIL-STD-883C, Method 2020 
Vibration, variable frequency MIL-STD-883C, Method 2007, 

20g, Condition A 
Constant acceleration MIL-STD-883C, Method 2001 
Fine and gross leak MIL-STD-883C, Method 1 01 4 
Electrical test To data sheet limits 

Fine and gross leak MIL-STD-883C, Method 1 01 4 
Solder heat (optional) MIL-STD-750C, Method 1 01 4 
Temperature cycle MIL-STD-883C, Method 1 01 0, 
(1 0 cycles minimum) -65 to + 150 "C, Condition C 
Thermal shock MIL-STD-883C, Method 101 1, 
(1 0 cycles minimum) -55 to +I25 "C, Condition B 
Moisture resistance MIL-STD-883C, Method 1 004 
Fine and gross leak MIL-STD-883C, Method 101 4 
Electrical test To data sheet limits 

ThermalIMechanical Sequence Fine and gross leak MIL-STD-883C, Method 101 4 
Temperature cycle MIL-STD-883C, Method 101 0, 
(1 0 cycles minimum) -65 to +I50 "C, Condition C 
Constant acceleration MIL-STD-883C, Method 2001, 

30 kg, Y1 Plane 
Fine and gross leak MIL-STD-883C, Method 1014 
Electrical test To data sheet limits 
Electrostatic discharge MIL-STD-883C, Method 301 5 
Solderability MIL-STD-883C, Method 2033 
Solder heat MIL-STD-750C, Method 2031, 

10 sec 
Salt atmosphere MIL-STD-883C, Method 1009, 

Condition A, 24 hrs min 
Lead pull MIL-STD-883C, Method 2004, 
Lead integrity Condition A 

MIL-STD-883C, Method 2004, 
Condition B1 

Electromigration Accelerated stress testing of 
conductor patterns to ensure 
acceptable lifetime of power- 
on operation 

Resistance to solvents MIL-STD-883C, Method 201 5 
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Reliabilitv Stress Tests 

Table C-3 lists the TMS320C3x devices, the approximate number of transis- 
tors, and the equivalent gates. The numbers have been determined from de- 
sign verification runs. 

Table C-3. TMS320C3x Transistors 

Devlce # Transistors # Gate8 

CMOS: TMS320C30 600K-700K 200K 

CMOS: TMS320C31 500K400K 1 OOK 

t ! 

Note: MOS SemDconductors 

Texas Instruments reserves the right to make changes in MOS semiconduc- 
tor test limits, procedures, or processing without notice. Unless prior ar- 
rangements for notification have been made, TI advises all customers to re- 
verify current test and manufacturing conditions prior to relying on published 
data. 

I I 



TMS320C3 1 PQFP Reflow Soldering Precautions 

C.2 TMS320C31 PQFP Reflow Soldering Precautions 

Recent tests have identified an industry-wide problem experienced by sur- 
face-mounted devices exposed to reflow soldering temperatures. This prob- 
lem involves a package-cracking phenomenon sometimes experienced by 
large (for example, 132-pin) plastic quad flat pack (PQFP) packages during 
surface-mount manufacturing. This phenomenon occurs if the TMS320C31 
PQAor PQL is exposed to uncontrolled levels of humidity prior to reflow solder. 
This moisture can flash to steam during solder reflow and cause sufficient 
stress to crack the package and compromise device integrity. Once the device 
is soldered or socketed into the board, no special handling precautions are re- 
quired. 

To minimize moisture absorption, TI ships the TMS320C31 PQAor PQL in dry 
pack shipping bags with a relative humidity (RH) indicator card and moisture- 
absorbing desiccant. These moisture-barrier shipping bags will adequately 
block moisture transmission to allow shelf storage for 12 months from date of 
seal when stored at less than 60% RH and less than 30" C. Devices may be 
stored outside the sealed bags indefinitely if stored at less than 25% RH and 
less than 30" C. 

Once the bag seal is broken, the devices should, within two days of removal, 
be reflow soldered and stored at less than 60% RH and less than 30" C. If these 
conditions are not met, TI recommends baking the devices in a clean oven at 
125" C and 10% maximum RH for 25 hours. This procedure restores the de- 
vices to their dry-packed moisture level. 

Note: ESD Precautions 

Shipping tubes will not withstand the 125" C baking process. Before baking, 
transfer the devices to a metal tray or tube. Follow standard ESD precau- 
tions. 

I J 

TI recommends that the reflow process not exceed two solder cycles and that 
the temperature not exceed 220" C. 

If you have questions or concerns, please contact your local TI representative. 
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Calculation of TMS320C30 Power Dissipation 

The TMS320C30 is a state-of-the-art, high-performance, 32-bit floating-point 
digital signal processing (DSP) microprocessor fabricated in CMOS 
technology. This device is the first member of the third generation of TMS320 
family single-chip DSP microprocessors. Since 1982, when the first-genera- 
tion TMS32010 was introduced, the TMS320 family has established itself as 
the industry standard for DSP. The TMS320C301s innovative architecture and 
specialized instruction set provide high-speed and increased flexibility for DSP 
applications. This combination makes it possible to execute up to 40 million 
floating point operations per second (MFLOPS). 

As device sophistication and levels of integration increase with evolving semi- 
conductor technologies, actual levels of power dissipation vary widely and de- 
pend heavily on the particular application in which the device is used and the 
nature of the program being executed. In addition, due to the inherent charac- 
teristics of CMOS technology, power requirements vary according to clock 
rates and data values being processed. 

This appendix presents the information necessary to determine TMS320C30 
power supply current requirements under different operating conditions. With 
this information, you can determine the device's power dissipation, which, in 
turn, you can use to calculate thermal management requirements. 

This appendix discusses the following major topics: 

Topic Page 



Fundamental Power Dissipation Characteristics 

Fundamental Power Dissipation Characteristics 

Typically, an IC's (integrated circuit) power specification is expressed as a 
function of operating frequency, supply voltage, operating temperature, and 
output load. As devices become more complex, the specification must also be 
based on device functionality. CMOS devices inherently draw current only dur- 
ing switching through the linear region. Therefore, the power supply current 
is related to the rate of switching. Furthermore, since the output drivers of the 
TMS320C30 are specified to drive direct current (DC) loads, the power supply 
current resulting from external writes depends not only on switching rate but 
also on the value of data written. 

D.l .I Components of Power Supply Current Requirements 

There are four basic components of the power supply current: 

Quiescent, 
0 Internal Operations, 
a Internal Bus Operations, and 

External Bus Operations 

The power supply current consumption depends on many factors. Four are 
system-related: 

a Operating frequency, 
Supply voltage, 

a Operating temperature, and 
Output load 

Several others are also related to TMS320C30 operation, including: 

a Duty cycle of operations, 
Number of buses used, 
Wait states, 

a Cache usage, and 
a Data value 



Fundamental Power Dissipation Characteristics 

The total power supply current for the device is described in this equation, 
which applies the four basic power supply current components and the depen- 
dencies described above: 

where 

Iq is the quiescent current component, 

liops is the current component due to internal operations, 

libus is the current component due to internal bus usage, including data value 
and cycle time dependencies, 

IXbus is the current component due to external bus usage, including data 
value, wait state, cycle time, and capacitive load dependencies, 

FV is a scale factor for frequency and supply voltage, and 

T is a scale factor for operating temperature. 

Application of this equation and determination of all of the dependencies are 
described in detail in this appendix. 

This appendix explains, in detail, how to determine the power supply current 
requirement for the TMS320C30. If a less detailed analysis is sufficient, the 
minimum, typical, and maximum values can be used to determine a rough esti- 
mate of the power supply current requirements. The minimum power supply 
current requirement is 11 0 mA. The typical and average current consumption 
is 200 mA, as described in the TMS320C30 data sheet, and will be associated 
with most algorithms running on the device unless data output is excessive. 

If an extremely conservative approach is desired, the maximum value can be 
used. 
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Fundamental Power Dissipation Characteristics 

D.1.3 Determining Algorithm Partitioning 

Each part of an algorithm behaves differently, depending on its internal and ex- 
ternal bus usage. To analyze the power supply current requirement, you must 
partition an algorithm into segments with distinct concentrations of internal or 
external bus usage. The analysis that follows is applied to each distinct pro- 
gram segment to determine the power supply current requirement for that sec- 
tion. The average power supply current requirement can then be calculated 
from the requirements of each segment of the algorithm. 

D.1.4 Test Setup Description 

All TMS320C30 supply current measurements were performed on the test set- 
up shown in Figure D-1. The test setup consists of a TMS320C3OI8K words 
of zero-wait-state Cypress Semiconductor SRAMs (CY7C18625PC), and 
RC loads on all data and address lines. A Tektronix Current Probe (P6042) 
measures the power supply current in all VDD lines of the device. The supply 
voltage on the output load is 2.1 5 V. Unless otherwise specified, all measure- 
ments are made at a supply voltage of 5.0 V, an input clock frequency of 33 
MHz, a capacitive load of 80 pF, and an operating temperature of 25°C. 

Figure D-I. Current Measurement Test Setup 



Current Requirement for lnternal Circuitry 

D.2 Current Requirement for lnternal Circuitry 

The power supply current requirement for internal circuitry consists of three 
components: quiescent, internal operations, and internal bus operations. 
Quiescent and internal operations are constants, but the internal bus opera- 
tions component varies with the rate of internal bus usage and the datavalues 
being transferred. 

D.2.1 Quiescent 

Quiescent refers to the baseline supply current drawn by the TMS320C30 dur- 
ing minimal internal activity, such as executing the IDLE instruction or branch- 
ing to self. It includes the current required to fetch an instruction from on- or 
off-chip memory. The quiescent requirement for the TMS320C30 is 11 0 mA. 
Examples of quiescent current include: 

0 Maintaining timers and serial ports 
0 Executing the IDLE instruction 
0 TMS320C30 in HOLD mode pending external bus access 
0 TMS320C30 in reset 
0 Branching to self 

D.2.2 internal Operations 

lnternal operations are those that require more current than quiescent activity 
but do not include external bus usage or significant internal bus usage. lnternal 
operations include register-to-register multiplication, ALU operations, and 
branches. They add a constant 55 mA above the quiescent so that the total 
contribution of quiescent and internal operations is 165 mA. Note, however, 
that internal and/or external bus operations executed via an RPTS instruction 
do not contribute an internal operations power supply current component and 
hence do not add 55 mA to quiescent current. During an instruction in RPTS, 
activity other than the instruction being repeated is suspended; therefore, 
power supply current is related only to the operation performed by the instruc- 
tion being executed. The next contributing factor to the power supply current 
requirement is internal bus operations. 
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Current Requirement for Internal Circuitry 

D.2.3 Internal Bus Operations 

The internal bus operations include all operations that utilize the internal buses 
extensively, such as accessing internal RAM every cycle. No distinction is 
made between internal reads (such as instruction or operand fetches from in- 
ternal ROM or internal RAM banks) and internal writes (such as operand 
stores to internal RAM banks), because internally they are equal. Significant 
use of internal buses adds a term to the power supply current requirement that 
is data-dependent. Since switching requires more current, moving changing 
data at high rates requires higher power supply current. 

Pipeline conflicts, use of cache, fetches from external wait-state memory, and 
writes to external wait-state memory all affect the internal and external bus 
cycles of an algorithm executing on the TMS320C30. Therefore, the internal 
bus usage of the algorithm must be determined to accurately calculate power 
supply current requirements. The TMS320C30 software simulator and XDS 
emulator both provide benchmarking and timing capabilities that allow bus 
usage to be determined. 

The current resulting from internal bus usage varies roughly exponentially with 
transfer rates. Figure D-2 shows internal bus current requirements for trans- 
ferring alternating data (AAAAAAAAh to 55555555h) at several transfer rates 
(expressed as the transfer cycle time). A transfer rate less than 1 implies multi- 
ple accesses per single H I  cycle (that is, using direct memory access (DMA), 
etc.). Transfer cycle times greater than 1 refer to single-cycle transfers with 
one or more cycles between them. The minimum transfer cycle time is one- 
third, which corresponds to three accesses in a single H I  cycle. 

The data set AAAAAAAAh to 55555555h exhibits the maximum current for 
these types of operations. Less current is required for transferring other data 
patterns, and current values can be derated accordingly as described later in 
this subsection. 

As the transfer rate decreases (that is, transfer cycle time increases), the in- 
cremental IDD approaches 0 mA. Transfer rates corresponding to more than 
seven H I  cycles do not add any current and are considered insignificant. This 
figure represents the incremental IDD due to internal bus operations and is 
added to quiescent and internal operations current values. 

For example, the maximum transfer rate corresponds to three accesses every 
cycle or one-third H1 transfer cycle time. At this rate, 85 mA is added to the 
quiescent (11 0 mA) and internal operation (55 mA) current values for a total 
of 250 mA. 



Current Reauirernent for lnternal Circuitrv 

IncrementalFigure D-2 shows the internal bus current requirement when tran- 
sferring As, followed by 5s, for various transfer rates. Figure D-3 shows the 
data dependence of the internal bus current requirement when the data is oth- 
er than As followed by 5s. The trapezoidal region bounds all possible data val- 
ues transferred. The lower line represents the scale factor for transferring the 
same data. The upper line represents the scale factor for transferring alternat- 
ing data (all 0s to all Fs or all As to all 5s, etc.). 

Figure 0-2. lnternal Bus Current Versus Transfer Rate 

lnternal Bus Rate of Transfer Analysis [As/5s] 

Transfer Cycle Time (H 1 Cycles) 

Figure 03. lnternal Bus Current Versus Data Complexity Derating Curve 

lnternal Bus Data Dependency 

Relative Data Complexity 
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Current Requirement for Internal Circuitry 

Since the possible permutations of data values is quite large, the extent to 
which data varies is referred to as relative data complexity. This term repre- 
sents a relative measure of the extent to which data values are changing and 
the extent to which the number of bits are changing state. Therefore, relative 
data complexity ranges from 0, signifying minimal variation of data, to a nor- 
malized value of 1, signifying greatest data variation. 

If a statistical knowledge of the data exists, Figure D-3 can be used to deter- 
mine the exact power supply requirement according to internal bus usage. For 
example, Figure D-3 indicates a 63% scale factor when all Fs are moved inter- 
nally every cycle with two accesses per cycle. This scale factor is multiplied 
by 55 mA (from Figure D-2, at one-half H I  cycle transfer time), yielding 34.65 
mA because of internal bus usage. Therefore, an algorithm running under 
these conditions requires about 200 rnA of power supply current (1 10 + 55 + 
34.65). 

Since astatistical knowledge of the data might not be readily available, a nomi- 
nal scale factor will suffice. The median between the minimum and maximum 
values at 50% relative data complexity yields a value of 0.80. This value will 
serve as an estimate of a nominal scale factor. Therefore, you can use this 
nominal data scale factor of 80% for internal bus data dependency, adding 44 
mA to 11 0 mA (quiescent) and 55 mA (internal operations) to yield 21 0 mA. As 
an upper bound, assume worst case conditions of three accesses of alternat- 
ing data every cycle, adding 85 mA to 11 0 mA (quiescent) and 55 mA (internal 
operations) to yield 250 mA. 



Current Requirement for Output Driver Circuitry 

D.3 Current Requirement for Output Driver Circuitry 

The output driver circuits on the TMS320C30 are required to drive significantly 
higher DC and capacitive loads than internal device logic. Therefore, they are 
designed to drive larger currents than internal devices. Because of this, output 
drivers impose higher supply current requirements than other sections of cir- 
cuitry on the device. 

Accordingly, the highest values of supply current are exhibited when external 
writes are being performed at high speed. During reads, or when the external 
buses are not being used, the TMS320C30 is not driving the data bus; this 
eliminates the most significant component of output buffer current. Further- 
more, in typical cases, only a few address lines are changing, or the whole ad- 
dress bus is static. Under these conditions, an insignificant amount of supply 
current is consumed. Therefore, when no external writes are being performed 
or when writes are performed infrequently, current due to output buffer circuitry 
can be ignored. 

When external writes are being performed, the current required to supply the 
output buffers depends on several considerations. As with internal bus opera- 
tions, current required for output drivers depends on the data being transferred 
and the rate at which transfers are being made. Additionally, output driver cur- 
rent requirements depend on the number of wait states implemented, because 
wait states affect rates at which bus signals switch. Finally, current values are 
also dependent upon external bus DC and capacitive loading. 

External operations involve writes external to the device and constitute the 
major power supply current component. The power supply current for the ex- 
ternal buses is made up of three components and is summarized in the follow- 
ing equation: 

where 

ibase is the 60-mA baseline Current component 

lprim is the primary bus current component 

IeXp is the expansion bus current component 

The remainder of this section describes in detail the calculation of external bus 
current components. 
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Current Requirement for Output Driver Circuitry 

D.3.1 Primary Bus 

The current due to primary bus writes varies roughly exponentially with both 
wait states and write cycle time. Also, current components due to output driver 
circuitry are represented as offsets from the baseline value. Since the baseline 
value is related to internal current components, negative valuesfor current off- 
set are obtained under some circumstances. Note, however, that actual nega- 
tive current does not occur. 

As previously mentioned, to obtain accurate current values, you must first es- 
tablish timing of write cycles on the buses. To determine the rate and timings 
at which write cycles to the external buses occur, you must analyze program 
activity, including any pipeline conflicts that may exist. Information from this 
manual and the TMS320C30 emulator or simulator is useful in making these 
determinations. Note that effects from the use of cache must also be ac- 
counted for in these analyses because use of cache can affect whether in- 
structions are fetched from external memory. 

When evaluating external write activity in a given program segment, you must 
consider whether a particular level of external write activity constitutes signifi- 
cant activity. If writes are being performed at a slow enough rate, they do not 
significantly impact supply current requirements; therefore, current due to ex- 
ternal writes can be ignored. This is the case, however, only if writes are being 
performed at very slow rates on both the primary and the expansion buses. If 
writes are being performed at high speed on only one of the two external 
buses, you should still use the approach described in this section to calculate 
current requirements. 

Note that, although you obtain negative incremental current values under 
some circumstances, the total contribution for external buses, including base- 
line current, must always be positive. The reason is that, when external buses 
are used minimally, total current requirements always approach the current 
contribution due to internal components, which is solely a function of internal 
activity. This places a lower limit on current contributions resulting from the pri- 
mary and expansion buses, because the total current due to external buses 
is the sum of the 60-mA baseline value and the primary and expansion bus 
components. This effect is discussed in further detail in the rest of this subsec- 
tion. 



Current Requirement for Output Driver Circuitry 

When you have established bus-write cycle timing, you can use Figure D-4 
to determine the contribution to supply current due to this bus activity. 
Figure D-4 shows values of current contribution from the primary bus for vari- 
ous numbers of wait states and H I  cycles between writes. These characteris- 
tics are exhibited when writes of alternating 55555555h and AAAAAAAAh are 
being performed at a capacitive load of 80 pF per output signal line. The condi- 
tions exhibit the highest current values on the device. The values presented 
in the figure represent incremental or additional current contributed by the pri- 
mary bus output driver circuitry under the given conditions. Current values ob- 
tained from this graph are later scaled and added to several other current 
terms to calculate the total current for the device. As indicated in the figure, the 
lower curve represents the current contribution for 18 or more cycles between 
writes. 

Figure W. Primary Bus Current Versus Transfer Rate and Wait States 

Primary Bus Analysis [80 pF, AsI5sJ 
200 I I I 

q = Number of cycles between writes I 

Wait States 

Note that number of cycles between writes refers to the number of H I  cycles 
between the active portion of the write cycles as defined in Chapter 13--that 
is, between H I  cycles when m, m, or IOSTRB and ~m (or ~ m ,  
as the case may be) are low. As shown in Figure D-4, the minimum number 
of cycles between writes is 1 because with back-to-back writes there is one HI  
cycle between active portions of the writes. 

To further illustrate the relationship of current and write cycle time, Figure D-5 
shows the characteristics of current for various numbers of cycles between 
writes for zero wait states. The information on this curve can be used to obtain 
more precise values of current if zero wait states are being used and the num- 
ber of cycles between writes does not fall on one of the curves in Figure 0-4. 
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Current Requirement for Output Driver Circuitry 

Figure D-5. Primary Bus Current Versus Transfer Rate at Zero Wait States 

Primary Bus Duty Cycle Analysis [80 pF, As/5s] 

H I  Cycles Between Writes 

Note that, although these graphs contain negative current values, negative 
current has not necessarily actually occurred. The negative values exist be- 
cause the graphs represent a current offset from a common baseline current 
value, which is not necessarily the lowest current exhibited. Using this ap- 
proach to depict current contributions due to different components simplifies 
current calculations because it allows calculations to be made independently. 
Independent calculations are possible because information about relation- 
ships between different sections of the device are included implicitly in the in- 
formation for each section. 

Figure D-4 and Figure D-5 show that the contribution of writes for external 
bus activities becomes insignificant if writes are being performed at intervals 
of more than 18 cycles. Under these conditions, you should use the incremen- 
tal value of-30-mAcurrent contribution due to the primary bus. Note, however, 
that you should use a value of -30 mA only if the expansion bus is being used 
extensively. This is because the total contribution for external buses, including 
baseline current, must always be positive. If the expansion bus is not being 
used and the primary bus is being used minimally, the current contribution due 
to the primary bus must always be greater than or equal to 20 mA. This ensures 
that the correct total current value is obtained when summing external bus 
components. Once a current value has been obtained from Figure D-4 or 
Figure 0-5, this value can, if necessary, be scaled by a data dependency fac- 
tor, as described at the end of this section. This scaled value is then summed 
along with several other current terms to determine the total supply current. 
Calculation of total supply current is described in detail in Section D.4 on page 
D-18. 



Current Reouirement for Output Driver Circuitry 

D.3.2 Expansion Bus 

Currents due to the primary and expansion buses are similar in characteristics 
but differ slightly because of several factors, including the fact that the expan- 
sion bus has 11 fewer address outputs than the primary bus (1 3 rather than 
24). This difference is exhibited in an overall current contribution that is slightly 
lower from the expansion bus than from the primary bus. 

Accordingly, determination of expansion bus current follows the same basic 
premises as determination of the primary bus current. Figure D-6 and 
Figure 0-7 show the same current relationships for the expansion bus as 
Figure D-4 and Figure D-5 show for the primary bus. Also, since the total ex- 
ternal buses' current contributions must be positive, if the primary bus is not 
being used and the expansion bus is being used minimally, then the minimum 
current contribution due to the expansion bus is -30 mA. Finally, as with the 
primary bus, current values obtained from these figures may require scaling 
by a data dependency factor, as described in subsection D.3.3 on page D-14. 

Figure D-6. Expansion Bus Current Versus Transfer Rate and Wait States 

Expansion Bus Analysis [80 pF, As/5s] 

L I a = ~urnber  of cycles between writes I I I 

0 1 2 3 4 5 6 7 

Wait States 
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Current Requirement for Output Driver Circuitry 

Figure LI-7. Expansion Bus 

H I  Cycles Between Writes 

D.3.3 Data Dependency 

Data dependency of current for the primary and expansion buses is expressed 
as a scale factor that is a percentage of the maximum current exhibited by ei- 
ther of the two buses. Data dependencies for the primary and expansion buses 
are shown in Figure D-8 and Figure D-9, respectively. 

These two figures show normalized weighting factors that you can use to scale 
current requirements on the basis of patterns in data being written on the exter- 
nal buses. The range of possible weighting factors forms a trapezoidal pattern 
bounded by extremes of data values. As can be seen from Figure D-8 and 
Figure D-9, the minimum current is exhibited by writing all Os, while the maxi- 
mum current occurs when writing alternating 55555555h and AAAAAAAAh. 
This condition results in a weighting factor of 1, which corresponds to using the 
values from Figure 0-4 and/or Figure D-5 directly. 

As with internal bus operations, data dependencies for the external buses are 
well defined, but accurate prediction of data patterns is often either impossible 
or impractical. Therefore, unless you have precise knowledge of data patterns, 
you should use an estimate of a median or average value for scale factor. If 
you assume that data will be neither 5s and As nor all 0s and will be varying 
randomly, a value of 0.85 is appropriate. Otherwise, if you prefer a conserva- 
tive approach, you can use a value of 1.0 as an upper bound. 



Current Reauirement for Out~ut  Driver Circuitry 

Regardless of the approach you take for scaling, once you determine the scale 
factors for primary and expansion buses, apply these factors to scale the cur- 
rent values found by using the graphs in the previous two subsections. For ex- 
ample, if a nominal scale factor of 0.85 is used and the system uses zero wait 
states with two cycles between accesses on both the primary and expansion 
buses, the current contribution from the two buses is as follows: 

Primary: 0.85 x 80 mA = 68 mA 
Expansion: 0.85 x 40 mA = 34 mA 

Figure M. Primary Bus Current Versus Data Complexity Derating Curve 

Primary Bus Data Dependency Analysis [80 p q  
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D.4 Calculation of Total Supply Current 

The previous sections have discussed currents contributed by several 
sources on the TMS320C30. Because determinations of actual current values 
are unique and independent for each source, each current source was dis- 
cussed separately. In an actual application, however, the sum of the indepen- 
dent contributions from each current determines the total current requirement 
for the device. This total current value is exhibited as the total current supplied 
to the device through all of the VDD inputs and returned through the VSS con- 
nections. 

Note that numerous VDD and VSS pins on the device are routed to avariety of 
internal connections, not all of which are common. Externally, however, all of 
these pins should be connected in parallel to 5 V and ground planes, respec- 
tively, with as low impedance as possible. 

As mentioned previously, because different program segments inherently per- 
form different operations that are often quite distinct from each other, it is typi- 
cally appropriate to consider current for each of the different segments inde- 
pendently. Once this is done, peak current requirements are readily obtained. 
Further, you can use average current calculations to determine heating effects 
of power dissipation. In turn, you can use these effects to determine thermal 
management considerations. 

D.4.1 Combining Supply Current Due to All Components 

To determine the total supply current requirements for any given program ac- 
tivity, calculate each of the appropriate components and combine them in the 
following sequence: 

1) Start with 11 0-mA quiescent current requirement. 

2) Add 55 rnAfor internal operations unless the device is dormant, as during 
execution of IDLE, NOPs, or branches-to-self, or performance of internal 
and/or external bus operations using an RPTS instruction (see subsection 
D.2.2 on page D-5). Internal or external bus operations executed via 
RPTS do not contribute an internal operations power supply current com- 
ponent and hence do not add 55 mA to quiescent current. Therefore, cur- 
rent components in the next two steps might still be required, even though 
the 55 mA is omitted. 



Calculation of Total Supply Current 

3) If significant internal bus operations are being performed (see subsection 
D.2.2 on page D-5), add the calculated current value. 

4) If external writes are being performed at high speed (see section D.3 on 
page D-9), add 60 mA and then add the values calculated for primary and 
expansion bus current components. If only one external bus is being used, 
the appropriate incremental current for the unused bus should still be in- 
cluded because the current offsets include components required for oper- 
ating both buses. Note, however, that, as discussed previously, the total 
current contribution for external buses, including baseline, must always be 
positive. 

The current value resulting from summing these components is the total de- 
vice current requirement for a given program activity. 

D.4.2 Supply Voltage, Operating Frequency, and Temperature Dependencies 

Current dependencies specific to each supply current component (such as in- 
ternal or external bus operations) are discussed in subsection 0.1.2 on page 
D-2. Supply voltage level, operating temperature, and operating frequency 
affect requirements for the total supply current and must be maintained within 
required device specifications. 

Once the total current for a particular program segment has been determined, 
the dependencies that affect total current requirements are applied as a scale 
factor in the same manner as data dependencies discussed in other sections. 
Figure D-11 shows the relative scale factors to be applied to the supply current 
values as a function of both VDD and operating frequency. 

Power supply current consumption does not vary significantly with operating 
temperature. However, if desired, ascalefactor of 2% normalized IDD per 50°C 
change in operating temperature may be used to derate current within the spe- 
cified range noted in the TMS320C30 data sheet. This temperature depen- 
dence is shown graphically in Figure D-12. Note that a temperature scale fac- 
tor of 1.0 corresponds to current values at 25"C, which is the temperature at 
which all other references in the document are made. 
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Figure D- 1 1. Current Versus Frequency and Supply Voltage 

 ID^ Versus ~(CLKIN) and Supply Voltage 
1.2 r I I I I I I 

Figure D-12. Current Versus Operating Temperature Change 

Change in Operating Temperature ("C) 
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0.4.3 Design Equation 

The procedure for determining the power supply current requirement can be 
summarized in the following equation: 

where 

Iq = 110 mA 

IIops = 55 mA 

l~bus = Dl x f, (see Table D-1) 

- 
Ixbus - Iprirn + ' ~ X P  

with 

'base = 60 mA 

lprim = D2 x C2 x f2 (see Table D-1) 

Iexp = D3 x C3 x f3 (see Table D-1) 

N is the scale factor for frequency and supply voltage, and 

T is the scale factor for operating temperature. 

Table D-1 describes the symbols used in the power supply current equation. 
The table displays figure numbers from which the value can be obtained. 
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Table &I. Current Equation Symbols 
Symbol Description GraphNalue 

f 1 internal Bus Current Requirement Figure D-2 

Ixbus External Bus Operations Current t 
External Bus Base Current 

Primary Bus Operations Current 

Primary Bus Data Scale Factor 

Primary Bus Cap Load Scale Factor 

Primary Bus Current Requirement 

Expansion Bus Operations Current 

Expansion Bus Data Scale Factor 

Expansion Bus Cap Load Scale Factor 

Expansion Bus Current Requirement 

Figure D-8 

Figure D-10 

Figure D-4 or 
Figure D-5 
t 

Figure D-9 

Figure D-10 

Figure D-6 or 
Figure 0-7 

RI FreqISupply Voltage Scale Factor Figure D-11 

T Temperature Scale Factor Figure D-12 

t See equation in subsection D.4.3 on page D-21. 

D.4.4 Peak Versus Average Current 
If current is observed over the course of an entire program, some segments 
will usually exhibit significantly different levels of current required for different 
durations of time. For example, a program may spend 80% of its time perform- 
ing internal operations, drawing a current of 250 mA, and spend the remaining 
20% of its time performing writes at full speed to the expansion bus, drawing 
300 rnA. 

While knowledge of peak current levels is important in order to establish power 
supply requirements, some applications require information about average 
current. This is particularly significant if periods of high peak current are short 
in duration. Average current can be obtained by performing a weighted sum 
of the currents due to the various independent program segments over time. 
In the example above, the average current can be calculated as follows: 

I = 0.8 x 250 mA + 0.2 x 300 mA = 260 mA 
Using this approach, averag@ current for any number of program segments 
can be calculated. 
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D.4.5 Thermal Management Considerations 

Heating characteristics of the TMS320C30 depend on power dissipation, 
which in turn depends on power supply current. When you make thermal man- 
agement calculations, you must consider the manner in which power supply 
current contributes to power dissipation and to the time constant of the 
TMS320C30 package thermal characteristics. 

Depending on sources and destinations of current on the device, some current 
contributions to IDD do not constitute a component of power dissipation at 5 
volts. Accordingly, if you use the total current flowing intoVDD to calculate pow- 
er dissipation at 5 volts, you will obtain erroneously large values for power dis- 
sipation. Power dissipation is defined as: 

(where P is power, I is current, and V is voltage). If device outputs are driving 
any DC load to a logic high level, only a minor contribution is made to power 
dissipation because CMOS outputs typically drive to a level within a few tenths 
of avolt of the power supply rails. If this is the case, subtract these current com- 
ponents out of the total supply current value; then calculate their contribution 
to power dissipation separately and add it to the total power dissipation (see 
Figure D-13). If this is not done, these currents resulting from driving a logic 
high level into a DC load will cause unrealistically high power dissipation val- 
ues. The error occurs because the currents resulting from driving a logic high 
level into a DC load will appear as a portion of the current used to calculate 
power dissipation due to VDD at 5 volts. 

Figure lF13. Load Currents 

TMS320C30 ID"' : k~~ output Driven High 

~ ~ ~ 3 2 0 ~ 3 0  I D  :,' 4be Output Driven Low 
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Furthermore, external loads draw supply-only current when outputs are being 
driven high, because, when outputs are in the logic 0 state, the device is sink- 
ing current that is supplied from an external source. Therefore, the power dissi- 
pation due to this current component will not have a contribution through IDD 
but will contribute to power dissipation with a magnitude of: 

where VOL is the low-level output voltage and IOL is the current being sunk by 
the output as shown in Figure D-13. The power dissipation component due 
to outputs being driven low should be calculated and added to the total power 
dissipation. 

When outputs with DC loads are being switched, the power dissipation compo- 
nents from outputs being driven high and outputs being driven low are aver- 
aged and added to the total device power dissipation. You should calculate 
power components due to DC loading of the outputs separately for each pro- 
gram segment before you calculate average power. 

Note that any unused inputs that are left disconnected may float to a voltage 
level that will cause input buffer circuits to remain in the linear region and there- 
fore contribute a significant component to power supply current. Accordingly, 
any unused inputs should be made inactive by being either grounded or pulled 
high if absolute minimum power dissipation is desired. If several unused inputs 
must be pulled high, they may be pulled high together through one resistor to 
minimize component count and board space. 

When you use power dissipation values to determine thermal management 
considerations, you should use the average power unless the time duration of 
individual program segments is long. The thermal characteristics of the 
TMS320C30 in the 181 -pin grid analysis (PGA) package are exponential in na- 
ture, with a time constant t = 4.5 minutes. Therefore, when subjected to a 
change in power, the temperature of the device package will, after 4.5 minutes, 
reach approximately 63% of the total temperature change. Accordingly, if the 
time duration of program segments exhibiting high power dissipation values 
is short (on the order of a few seconds), you can use average power, calculated 
in the same manner as average current (as described in subsection D.4.4 on 
page D-22). 

Otherwise, you should calculate maximum device temperature on the basis 
of the actual time duration of the program segments involved. For example, 
if a particular program segment lasts for seven minutes, then, using the expo- 
nential function, you can calculate that a device will reach approximately 80% 
of the temperature due to the total power dissipation during the program seg- 
ment. 
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Note that the average power should be determined by calculating the power 
for each program segment (including considerations described above) and 
performing a time average of these values, rather than simply multiplying the 
average current as determined in the previous subsection by VDD. 

Specific device temperature calculations are made by using the TMS320C30 
thermal impedance characteristics included in Chapter 13. 
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D.5 Example Supply Current Calculations 
A Fast Fourier Transform (FFT) represents a typical DSP algorithm. The FFT 
code in Section D.8 on page D-30 processes data in the RAM blocks and 
writes the result out to zero-wait-state external SRAM on the primary bus. The 
program executes out of zero-wait-state external SRAM on the primary bus, 
and the TMS320C30's cache is enabled. The entire algorithm consists mainly 
of internal bus operations and so includes quiescent and internal operations 
in general. At the end of processing, the 1024 results are written out on the pri- 
mary bus. Therefore, the algorithm exhibits a higher current requirement dur- 
ing the write portion, where the external bus is being used significantly. 

D.5.1 Processing 

The processing portion of the algorithm is 95% of the total algorithm. During 
this portion, the power supply current is required only for the internal circuitry. 
Data is processed in several loops that compose a majority of the algorithm. 
During these loops, two operands are transferred on every cycle. The current 
required for internal bus usage, then, is 55 mA, taken from Figure D-2 on page 
D-7. The data is assumed to be random. A data value scale factor of 0.8 is 
used from Figure D-3 on page 0-7. This value scales 55 mA, yielding 44 mA 
for internal bus operations. Adding 44 mA to the quiescent current requirement 
and internal operations current requirement yields a current requirement of 
209 mA for the major portion of the algorithm. 

D.5.2 Data Output 

The portion of the algorithm corresponding to writing out data is approximately 
5% of the total algorithm. Again, the data that is being written is assumed to 
be random. From Figure D-3 on page D-7 and Figure D-8 on page D-15, 
scale factors of 0.80 and 0.85 are used for derating due to data value depen- 
dency for internal and primary buses, respectively. During the data dump por- 
tion of the code, a load and store are performed every cycle; however, the par- 
allel IoadJstore instruction is in an RPTS loop, so there is no contribution due 
to internal operations, because the instruction is fetched only once. The only 
internal contributions are due to quiescent and internal bus operations. 
Figure 0-4 on page D-1 1 indicates a 170-mA current contribution due to back- 
to-back zero-wait-state writes, and Figure D-6 on page D-13 indicates a 
-80-mA contribution due to the expansion bus being idle (that is, with more 
than 18 H I  cycles between writes). Therefore, the total contribution due to this 
portion of the code is: 



Example Supply Current Calculations 

0.5.3 Average Current 

The average current is derived from the two portions of the algorithm. The pro- 
cessing portion took 95% of the time and required about 21 0 mA, and the data 
dump portion took the other 5% and required about 280 mA. The average is 
calculated as: 

From the thermal characteristics specified in Chapter 13, it can be shown that 
this current level corresponds to a case temperature of 43°C. This temperature 
meets the maximum device specification of 85°C and hence requires no 
forced air cooling. 

D.5.4 Experimental Results 

A photograph of the power supply current for the FFT is shown Section D.7 on 
page 0-29. During the FFT processing, the measured current varied between 
180 and 220 mA. The peak of the current during external writes was 270 mA, 
and the average current requirement, as measured on a digital multimeter, 
was 200 mA. The calculations yielded results that were extremely close to the 
actual measured power supply current. 

Calculation of TMS320C30 Power Dissipation D-27 



Summary 

D.6 Summary 

An accurate power supply current requirement for the TMS320C30 cannot be 
expressed simply in terms of operating frequency, supply voltage, and output 
load capacitance. The specification must be more complete and depends on 
device functionality and system parameters. The current components related 
to device functionality are due to quiescent current, internal operations, inter- 
nal bus operations, and external bus operations. Those related to system pa- 
rameters are due to operating frequency, supply voltage, output load capaci- 
tance, and operating temperature. The typical power supply current require- 
ment is 200 mA, and the minimum, or quiescent, is 11 0 mA. 

This application report presents information required to determine power sup- 
ply specifications. Specifications are based on an algorithm's use of internal 
and external buses on the TMS320C30. As devices become more complex, 
the calculation of power dissipation becomes more critical. 



Photo of IDD for FFT 

D.7 Photo of IDD for FFT 

Input Clock Frequency = 33 MHz 
Voltage Level = 5.0 VDD 
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0.8 FFT Assembly Code 

. GLOBL . GLOBL . GLOBL . GLOBL 
SINTAB : 

.WORD 
RAM0 : 

.WORD 
OUTBUF : 

e WORD 

FFT: LDP 

FFT 
N 
M 
SINE 

SINE 

809800h 

800h 

; setup 

; processing portion: 
; quiescent, internal and 
; bus operations 

LDI N, IRO 
LSH -1, IRO 

; LENGTH-TWO BUTTERFLIES 

LD I @RAMO,ARO 
LDI IRO , RC 
SUB1 1,RC 

RPTB BLK 1 
ADDF *tAROI*AROtt,RO 
SUBF *mot*-AR0,Rl 

BLKl STF RO , *-ARO 
1 I STF R1, *mot+ 

; FIRST PASS OF THE DO-20 LOOP (STAGE K=2 IN DO-10 LOOP) 

LD I @RAMO,ARO 
LDI 2, IRO 
LD I N,RC 
LSH -2 , RC 
SUB1 1,RC 

RPTB BLK2 
ADDF *+ARO(IR~),*AROtt(IRO),RO 
SUBF *mot*-ARO(IRO),Rl 
NEGF * tARO , RO 

I I STF RO , *-ARO ( IRO ) 
BLKZ STF Rl,*ARO++(IRO) 
I I SIT RO,*+ARO 

; MAIN LOOP (FFT STAGES) 
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LDI 
LSH 
LDI 
LDI 
LDI 

LOOP LSH 
LSH 
LSH 

N, IRO 
-2, IRO 
3,R5 
1,R4 
2 ,R3 
-1, IRO 
1,R4 
1,R3 

; INNER LOOP (DC-20 LOOP IN THE PROGRAM) 

LDI 
INLOP : 

LD I 
ADDI 
LDI 
LDI 
ADDI 
LDI 
ADD I 
LDI 
SUBI 
ADD I 
LDF 
ADDF 
SUBF 

I I STF 
NEGF 
NEGF 

I I STF 
STF 

@RAM0 , ARS 

IRO , ARO 
@SINTAB,ARO 
R4, IR1 
AR5,ARl 
1,ARl 
ARl,AR3 
R3, AR3 
AR3, AR2 
2 ,AR2 
R3 ,AR2 ,AR4 
*ARS++(IRl),RO 
*+ARS(IRl),RO,Rl 
RO1*++ARS(IR1),RO 
R1,*-ARS(IR1) 
R 0 
*++AR5(IR1)IR1 
RO, *AR5 
R1, *ARS 

; INNERMOST LOOP 

LDI 
LSH 
LD I 
SUBI 

RPTB 
MPYF 
MPYF 
MPYF 

I I ADDF 
MPYF 
SUBF 
SUBF 
ADDF 

I I STF 
ADDF 

I I STF 
SUBF 

N,IRl 
-2, IR1 
R4 I RC 
2,RC 

BLK3 
*AR3,*+ARO(IRl),RO 
*AR4,*AROIR1 
*AR4,*+ARO(IRl),R1 
ROIRlIR2 
*AR3,*ARO++(IRO),RO 
RO,Rl,RO 
*AR2, RO , R1 
*AR2, RO, R1 
R1, *AR3++ 
*AR1, R2, R1 
R1, 'AR4-- 
R2, *AR1 ,Rl 
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I I STF 
BLK3 STF 

SUB1 
ADDI 
CMP I 
BLTD 
ADDI 
NOP 
NOP 

ADDI 
CMPI 
BLE 

DUMP LDI 
LDI 

LDF 
RPTS 
LDF 

I I STF 
STF 

LDI 

LDI 
XOR 
ST1 

@RAMO,AR5 
R4 ,AR5 
N, AR5 
INLOP 
@RAM0 ,AR5 

1,R5 
M, R5 
LOOP 

@RAMO,ARO ; data dump portion 
@OUTBUF,AR~ ; quiescent, internal bus 

*mot+, RO ; ops and primary bus ops 
N-2 
*ARO+t , RO 
RO, *ARl++ 
RO , *ARl++ 

@RAMO,ARO ; swap RAM banks 
400h,ARO 
ARO, *AR1 

FFT 



SMJ320C3x Digital Signal Processor 
Data Sheet 

This appendix contains the standalone data sheet for the military version of the 
'C3x digital signal processor, the SMJ320C3x Digital Signal Processor. 





SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

Processed to MIL-STD-883, Class B TWO Address Generators With Eight 

Operating Temperature Range: Auxiliary Registers and TWO Auxlliary 

-55°C to 125°C Register Arithmetic Units 

Two 1K x 32-Bit Single-Cycle Dual-Access Zero-Overhead Loops With Single-Cycle 

On-Chip RAM Blocks Branches 

Validated ADA Compiler Interlocked Instructions for 
Muitlprocesslng Support 64-Word x 32-Bit lnstruction Cache 

32-Bit lnstruction and Data Words, 24-Bit 
32-Bit Barrel Shlfter 

Addresses Eight Extended-Precision Registers 
(Accumulators) 

401 32-Bit Floating-point /Integer Multlpiier 
and ALU TWO- and Three-Operand Instructions 

Parallel ALU and Multiplier Execution in a Conditional Calls and Returns 

Single Cycle Block Repeat Capability 

On-Chip Direct Memory Access (DMA) 0.8-pm EPICr" CMOS Technology 
Controller for Concurrent I1 0 and CPU 
Operation 
integer, Floating-Point, and Logical 
Operations 

SMJ320C30 Key Features 
Performance - SMJ320C30-33 (604s Cycle) 

33 MFLOPS 
16.7 MlPS 

- SMJ320C30-28 (70-11s Cycie) 
28.6 MFLOPS 
14.3 MlPS 

One 4K x 32-Bit Single-Cycle Dual-Access 
On-Chip ROM Block 
Two 32-Bit External Ports (24- and 13-Bit 
Address) 
TWO Seriai Ports With Support for 
8 / 16 124 132-Bit Transfers 
Two 32-Bit Timers 
Packaging 
- 181 -Pin Grid Array Ceramic Package 

(GB Suffix) 
- 196-Pin Quad Flat Pack With 

Nonconductive Tie-Bar (HFG Suffix) 
- 244-Pad JEDEC Standard TAB Frame 
SMD Approval for 28- and 33-MHz Versions 

SMJ320C31 Key Features 
Performance 
- SMJ320C31-40 (50-11s Cycle) 

40 MFLOPS 
20 MlPS 

- SMJ320C31-33 (60-11s Cycie) 
33.3 MFLOPS 
16.7 MlPS 

- SMJ320C31-27 (74-11s Cycie) 
27 MFLOPS 
13.5 MlPS 

Flexible Boot Program Loader 
One Serial Port to Support 
81 16124132-Bit Transfers 
One 32-Bit Data Bus (24-Bit Address) 
Packaging 
- 132-Pin Ceramic Quad Fiat Pack With 

Nonconductive Tie-Bar (HFG Sufflx) - 141 -Pin Staggered Grld Array 
(GFA Sufflx) 

- 244-Pad JEDEC-Standard TAB Frame 
SMD Approval for 27- and 33-MHz Versions 

EPIC is a trademark of Texas Instruments Incorporated. 

m W ~ N  DATA Mormldon b cvr~nt  r of Copyright @ 1994, Texas instruments Incorporated 
~oductl contwm to wclfie~tioru per w t m r  of ~%'k%m% 
a d r d  w m W .  ProducU~ pocwlng dwr MI nraurdly Insludr 
tntlq of 111 pIrImr(m 
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SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

SMJ320C30.. . GB PACKAGE SMJ320C31 ... GFA PACKAGE 
(BOTTOM VIEW) (BOTTOM VIEW) 

A B C D E F G H J K L M N P R  

SMJ320C30.. . HFG PACKAGE 
(TOP VIEW) 

NOTE: Refer to mechanical data section for TAB drawing. 

B D F H K M  P T V  
A C E G J L N R U W  

SMJ320C31 ... HFG PACKAGE 
(TOP VIEW) 

INSTRUMENTS 
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SGUSOl4A- FEBRUARY 1991 -REVISED SEPTEMBER 1894 

The SMJ320C3x1s internal busing and special digital signal processing (DSP) instruction set have the speed 
and flexibility to execute up to 33 MFLOPS (million floating-point operations per second). The SMJ320C3x 
optimizes speed by implementing functions in hardware that other processors implement through software or 
microcode. This hardware-intensive approach provides performance previously unavailable on a single chip. 

The emphasis on total system cost has resulted in a less expensive processorthat can be designed into systems 
currently using costly bit-slice processors. Also, appropriate selection based on cost and performance is 
enhanced by the different processors in the SMJ320C3x line: 

SMJ320C30-33: 60-ns single-cycle execution time, 10% supply 
SMJ320C30-28: 70-11s single-cycle execution time, 5% supply 
SMJ320C31-40: Low cost, reduced overall size, 504s single-cycle execution time, 10% supply 
SMJ320C31-33: Low cost, reduced overall size, 60-ns single-cycle execution time, 10% supply 
SMJ320C31-27: Low cost, reduced overall size, 74-17s single-cycle execution time, 10% supply 

The SMJ320C30 and SMJ320C31 can perform parallel multiply and ALU operations on integer or floating-point 
data in a single cycle. Each processor also possesses a general-purpose register file, a program cache, 
dedicated auxiliary register arithmetic units (ARAU), internal dual-access memories, one DMA channel 
supporting concurrent I/O, and a short machine-cycle time. High performance and ease of use are results of 
these features. 

General-purpose applications are greatly enhanced by the large address space, multiprocessor interface, 
internally and externally generated wait states, external interface ports (two on the SMJ320C30, one on the 
SMJ320C31), two timers, serial ports (two on the SMJ320C30, one on the SMJ320C31), and multiple interrupt 
structure. The SMJ320C3x supports a wide variety of system applications from host processor to dedicated 
coprocessor. 

High-level language support is easily implemented through a register-based architecture, large address space, 
powerful addressing modes, flexible instruction set, and well-supported floating-point arithmetic. 
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SMJ320C30 Terminal Assignment 
I TERMINAL 11 TERMINAL TERMINAL 

NUMBER 

GB HFG NAME 
PKG PKG 

R2 7 FSXO 

N4 5 CLKRO 

M5 6 CLKXO 

R1 3 DRO 

R3 8 DXO 
M3 191 FSR1 

P1 194 FSXl 

L4 192 CLKRl 

N2 193 CLKXl 
N1 190 DR1 
P2 195 DX1 

F14 63 EMU0 

E l 5  84 EMU1 

F13 65 EMU2 

E l 4  66 EMU3 

F12 67 EMU4lSHZ 

C1 155 EMU5 

M6 11 EMU6 

83 145 H1 
A1 146 H3 

C2 152 X1 

B l  151 X2lCLKIN 
P4 9 TCLKO 

N5 10 TCLK1 

G2 169 XFO 
G3 168 XF1 

D3 154 V B B ~  

E4 153 VSUBS 
H4 123 VDD 

D8 73 VDD 

M8 74 VDD 

H12 124 VDD 
N8 27 VSS 

A13 107 XAO 

A14 106 XA1 

Dl1 105 XA2 
C12 104 XA3 

NOTES: 1. ADVDD, DDVDD, IODVDD, MDVDD, and PDVDD are on a common plane internal to the device. 
2. VDD is on a common plane Internal to the device. 
3. VSS, CVSS, and IVSS are on a common plane internal to the device. 
4. DVSS is on a common plane internal to the device. 

NAME 

XA4 

XA5 
XA6 

XA7 

XA8 
XA9 
XAlO 
X A l l  

XA12 
RSVO 

RSVl 

RSV2 

RSV3 

RSV4 

RSV5 
RSV6 

RSV7 
RSV6 

RSV9 

RSV10 

ADVDD 
ADVDD 

DDVDD 

DDVDD 
IODVDD 
IODVDD 

IODVDD 

MDVDD 

MDVDD 

PDVDD 

CVss 

CVss 

V s s  

VSS 

VSS 
XDO 

XD1 

GB 
PKG 

813 

A15 

B15 

C14 

E l 2  

D l 3  

C15 
D l 4  

E l 3  

J3 

J4 
K1 

K2 

L1 
K3 

L2 

K4 

M I  

L3 

M2 

D l 2  

HI1 
D4 

E8 

L8 

M12 

H5 

M4 

82 

P I4  
C8 

H3 

H I 3  
R4 

P5 

INSTRUMENTS 
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TERMINAL 

NUMBER 

HFG 
PKG 

103 

102 

95 
94 

93 
92 

91 

90 

89 
179 

180 

181 

182 

183 

184 

185 

186 

187 

188 
189 

100 
64 

114 
147 

15 

16 

49 
162 

163 

1 

51 

52 
28 

75 

76 

12 
13 

NAME 

XD2 

XD3 

XD4 

XD5 

XD6 
XD7 

XD8 

XD9 
XDlO 

XD11 

XD12 

XD13 

XD14 

XD15 

XDl6 

XD17 

XD18 

XD19 

XD20 

XD21 
XD22 

XD23 

XD24 

XD25 

XD26 

XD27 

XD28 
XD29 

XD30 

XD31 

DVss 

DVSS 

DVSS 

DVSS 

IVSS 

lVss 

TERMINAL 

0 6  
PKG 

N6 

R5 

P6 

M7 

R6 

N7 

P7 
R7 

P6 
R8 

R9 

P9 
N9 

RlO 

M9 
P I0  

R11 

N10 
PI1 

R12 

MI0 

N11 

P12 

R13 

R14 

MI1 

N12 
PI3 

R15 

P I 5  

C3 

C13 

N3 

N13 

B14 

NUMBER 

HFG 
PKG 

14 

17 
18 

19 

20 
21 

22 

23 

24 
29 

30 

31 
32 

33 

34 

35 

36 

37 
38 

39 
40 

41 

42 
43 

44 

45 

46 

47 

48 

53 

50 

98 

148 

196 

96 

97 
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NOTES: 5. CVSS, VSSL, IVSS are on the same plane. 
6. AVDQ, DVQD, CVDQ, PVDD are on the same plane. 
7. VSUBS connects to die metallization. Tie this terminal to clean ground. 

INSTRUMENTS 
POST OFFICE BOX 1443 HOUSTON. TEXAS 77251-1443 
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termlnal functions 

This section gives signal descriptions for the SMJ320C3x devices in the microprocessor mode. The following 
tables list each signal, the number of terminals, and type of operating mode(s) (i.e., input, output, or 
high-impedance state as indicated by I, 0, or Z), and a brief function description. All terminals labeled NC are 
special functions of the device and should not be connected by the user. A line over a signal name (e.g., RESET) 
indicates that the signal is active low (true at logic 0 level). The signals are grouped according to function. 

SMJ320C30 Terminal Functions 

A23-A0 24 

R/W 

m% 1 
- 
RDY 1 

m 1 

CONDITIONS 
WHEN 

SIGNAL IS Z TYPE* 

TERMINAL 

NAME Q M  

Hmx 1 

-- - - 
RESET 1 

PRIMARY BUS INTERFACE 

D31 -DO 32 1 I /O/Z 132-bit data port of the primary bus interface I S  H 

O/Z 

OIZ 

OIZ 

I 

, 

XA12-XAO 13 

XR/W 
- 
MSTRB 1 

IOSTRB 1 
- .,--. , 

XF1, XFO 2 

M P E ~  

EXPANSION BUS INTERFACE 

XD31 -XDO 32 1 i /O/Z I 32-bit data port of the expansion bus interface I S R 
4 

O/Z 

bus-interface transaction to complete. I 
CONTROL SIGNALS 

Reset. When RESET is a logic low, the device is in the reset condition. When ( 

DESCRIPTION 

24-bit address port of the primary bus interface 

Readlwrite for primary bus interface. RIW is high when a read is performed and low 
when a write is performed over the parallel interface. 

External access strobe for the primary bus interface 

Ready. RDY indicates that the external device is prepared for a primary-bus-interface 
transaction to complete. 

Hold for primary bus interface. When is a logic low, any ongoing transaction 
is completed. A23-AO, D31 -DO, m, and RIW are in the high-impedance state 
and all transactions over the primary bus interface are held until becomes a 

O/Z 

O/Z  

O/Z 

OIZ 

, 

S H R  

S H 

logic high or the NOHOLD bit of the primary-buscontrol register is set. - 
Hold acknowledge for primary bus Interface. HOLDA is genera= responseto a 
logic low on m. indicates that A23-AO, D31 -DO, STRB, and R G  
in the high-impedance state and that ail transactions over the bus are held. HOLDA 
is high in response to a logic high of HOLD or when the NOHOLD bit of the 
primary-buscontrol register is set. 

t I = input, 0 = output, Z = high-impedance state * S = SHZ active, H = HOLD active, R = RESET active 

S 

13-bit address port of the expansion bus interface 

Readlwrite signal for expansion bus inter f~e.  When a read is performed, XRIW is 
held high; when a write is performed, XRIW is low. 

External memory access strobe for the expansion bus interface 

External I10 access strobe for the expansion bus interface 

Ready signal. XRDY indicates that the external device is prepared for an expansion- 

becomes a logic high, execution begins from the location specified by thereset vector. 

External inter~pts 

interrupt acknowledge. is setto a logic high by the IACKinstruction. This signal 
can be used to indicate the beginning or end of an interrupt-service routine. 

Microcomputerlmicroprocessor mode 

External flags. XF1 and XFO are used as general-purpose 1/05 or to support 
interlocked processor instructions. 

INSTRUMENTS 
POST OFFICE BOX 1443 ' HOUSTON, TEXAS 77261-1443 
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S R 

S 

S 

R 
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INSTRUMENTS 
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443 

TCLKO 

TCLKI 

TERMINAL 

NAME QN 
N P E ~  

SMJ320C30 Terminal Functions (Continued) 

IIOIZ 

I/OlZ 

DESCRIPTION 

SUPPLY AND OSCILLATOR SIGNALS 

- 
CONDITIONS 

WHEN 
SIGNAL IS z TYPES 

CLKXO 

DXO 1 

FSXO 

CLKRO 1 

DRO 1 

FSRO 

CLKXl 

DX1 1 

FSXl 

CLKRI 1 

DR1 1 

FSRl 

Timer clock 0. As an input, TCLKO is used by timer 0 to count external pulses. As an 
output, TCLKO outputs pulses generated by timer 0. 

TIMER 1 SIGNALS 

Timer clock 1. As an input, TCLKl is used by timer 1 to count external pulses. As an 
output, TCLKl outputs pulses generated by timer 1. 

VDD 4 

IODVDD 2 

ADVDD 2 

PDVDD 1 

, DDVDD 2 
MDVDD 1 

VSS 4 

DVSS 4 

CVSS 2 

llO/Z 

110/2 

I/O/Z 

I/O/Z 

I/OlZ 

I /O/Z 

IIO~Z 

I/O/Z 

I/O/Z 

I/OlZ 

S R 

S R 

SERIAL PORT 0 SIGNALS 

t I =input, 0 =output, Z = high-impedance state * S = SHZ active, H = HOLD active, R = RESET active 
5 Recommended decoupling capacitor is 0.1 bF. 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Serial port 0 transmit clock. CLKXO is the serial shift clock for the serial port 0 
transmitter. 

Data transmit output. Serial port 0 transmits serial data on DXO. 

Frame synchronization pulse for transmit. The FSXO pulse initiates the transmit data 
process over DXO. 

Serial port 0 receive clock. CLKRO is the serial shift clockfor the serial port0 receiver. 

Data receive. Serial port 0 receives serial data via DRO. 

Frame synchronization pulse for receive. The FSRO pulse initiates the receive data 
process over DRO. 

.5-vsupplY§ 

5-V suppiy~ 

5-vsupplYs 

5-v supply§ 

5-v supply§ 

5-vsuppiY5 

Ground 

Ground 

Ground 

S R 

S R 

S R 

S R 

S R 

S R 

SERIAL PORT 1 SIGNALS 

Serial port 1 transmit clock. CLKXl is the serial shift clock for the serial port 1 
transmitter. 

Data transmit output. Serial port 1 transmits serial data on DX1. 

Frame synchronization pulse for transmit. The FSXl pulse initiates the transmit data 
process over DX1. 

Serial port 1 receive clock. CLKRl is the serial shift clock for the serial port 1 receiver. 

Data receive. Serial port 1 receives serial data via DR1. 

Frame synchronization pulse for receive. The FSRl pulse initiates the receive data 
process over DR1. 

S R 

S R 

S R 

S R 

S R 

S R 

TIMER 0 SIGNALS 
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I I I 

SUPPLY AND OSCILLATOR SIGNALS (CONTINUED) (see Note 5) 

SGUS014A- FEBRUARY 1 QQl -REVISED SEPTEMBER 1894 

SMJ320C30 Terminal Functions (Continued) 

POSTOFFICE BOX I 4 4 3  ' HOUSTON, TEXAS 77251-1443 

CONDrrlONS 
WHEN 

SIGNAL IS z TYPES 

TERMINAL 

NAME QTY 

lVss 1 

VBBP 1 

v~~~~ 1 

X I  , 
X2lCLKIN 1 

H I  1 

H3 1 

 TYPE^ 

I 

NC 

I 

OIZ 

I 

012  

012  

DESCRIPTION 

RESERVED§ 

Ground 

VBB pump oscillator output 

Substrate terminal. Tie to ground. 

Output from the internal oscillator for the crystal. If a crystal is not used, X I  should 
be left unconnected. 

Input to the internal oscillator from the crystal or a clock 

External H I  clock. H I  has a period equal to twice CLKIN. 

External H3 clock. H3 has a period equal to twice CLKIN. 

S 

S 

S 
EMUO-EMU2 3 

EMU3 1 

EMU41SHZ 1 

EMUS, EMU8 2 

RSVO-RSV10 11 

Locator 1 

t I = input, 0 = output, Z = high-impedance state 
$ S = SHZ active, H = HOLD active, R = RESET active 
5 Follow the connections specified for the resewed terminals. Use 18-kR-22-kR pullup resistors for best results. All 5-V supply terminals must 

be connected to a common supply plane, and all ground terminals must be connected to a common ground plane. 

I 

012  

I 

NC 

I 

NC 

Resewed. Use pullup resistors to 5 V. 

Resewed 

Shutdown high impedance. When active, ~ M U 4 I m s h u t s  down the SMJ320C30 
and places all terminals in the high-impedance state. E M U ~ I ~  is used for 
board-level testing to ensure that no dual drive conditions occur. CAUTION: A low 
on =corrupts SMJ320C30 memory and register contents. Reset the device with - 
SHZ high to restore it to a known operating condition. 

Resewed 

Resewed. Use pullup resistors to 5 V. 

Resewed 
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SMJ320C31 Terminal Functions 

TERMINAL 

QTY 
DESCRIPTION 

PRIMARY BUS INTERFACE 

CONDITIONS 1 
WHEN 

D31-DO 32 1 I /O/Z 132-bit data port I S  H R 

A23-A0 24 

R / m  

O/Z 

- 
STRB 1 

- 
RDY 1 

- 
HOLD 1 

- 
HOLDA 

O/Z 

I 

I 

External access strobe 

Ready. RDY indicates that the external device is prepared for a transaction 
completion. 
- 

Hold. W h e n L D  is a logic low, any ongoing transaction is completed. A23-AO, 
D31 -DO, STRB, and R/W are in the high-impedance state and all transactions over 
the primary bus interface are held until HOLD becomes a logic high or the NOHOLD 
bit of the orimaw-bus-control reoister beina set. 

CONTROL SIGNALS 

24-bit address port 

Readlwrite. R/Wis high when aread is performed and lowwhen a write is performed 
over the parallel Interface. 

S H 

OIZ 

- 
IACK 

M C B L / ~  1 

S H R 

S H R 

Reset. When -is a logic low, the device is in the reset condition. When RESET 
becomes a logic high, execution begins from the location specified by the reset vector. 

External interrupts 

- 
RESET 1 
-- 
iNT3-INTO 4 

- 
SHZ 1 

XF1 , XFO 

. , 

Hold acknowledge. =is generated in response to a logic low on m. = 
indicates that A23-AO, D31 -DO, m, and R* in the high-impedance state 
and thaeansact ions over the bus are held. HOLDA is high in response to a logic 
high of HOLD or the NOHOLD bit of the primary-bus-control register being set. 

I 

I 

OIZ 

I 

SERIAL PORT 0 SIGNALS 

I FSXO 

S 

Interrupt acknowledge. lACK is set to a logic high by the IACK instruction. This signal 
can be used to indicate the beginning or end of an interrupt-service routine. 

Microcomouter boot loader/microorocessor mode select 

I 

CLKRO 

CLKXO , 
DRO 1 

DXO 1 

FSRO 

Frame synchronization pulse for transmit. The FSXO pulse initiates the transmit data 
orocess over DXO. 

- 

Shutdown high impedance. When active, SHZ shuts down the SMJ320C31 and 
places all terminals in the high-impedance state. SHZ is used for board-level testing 
to ensure that no dual drive conditions occur. CAUTION: A low on SHZ corrupts 
SMJ320C31 memoryand registercontents. Resetthedevice w i t h w h i g h  to restore 
it to a known operating condition. 

External flags. XF1 and XFO are used as general-purpose i/Os or to support 
interlocked processor instruction. 

t I =input, 0 =output, Z = high-impedance state * S = SHZ active, H = HOLD active. R = RESET active 

I,OlZ 

IIOIZ 

I/O/Z 

I/O/Z 

POST OFFICE BOX 1443 HOUSTON. TEXAS 77251-1443 

Serial port 0 receive clock. CLKRO is the serial shift clock for the serial 
port 0 receiver. 

Serial port 0 transmit clock. CLKXO is the serial shift clock for the serial 
port 0 transmitter, 

Data receive. Serial port 0 receives serial data via DRO. 

Data transmit output. Serial port 0 transmits serial data on DXO. 

Frame synchronization pulse for receive. The FSRO pulse initiates the receive data 
process over DRO. 

S R 

S R 

S R 

S R 

S R 
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SMJ320C31 Terminal Functions (Continued) 
CONDITIONS 

WHEN 
SIGNAL IS Z TYPE* 

DESCRIPTION 

TIMER SIGNALS 

Tmer clock 0. As an input, TCLKO is used by timer 0 to count external pulses. As 
an output, TCLKO output pulses generated by timer 0. 

nmer clock 1. As an input, TCLKO is used by timer 1 to count external pulses. As 
an output, TCLKl outputs pulses generated by timer 1. 

TERMINAL 

NAME Q M  

TCLKO , 
TCLK1 

M P E ~  

I/O/Z 

IIOIZ 

SUPPLY AND OSCILLATOR SIGNALS 

H I  1 

H3 1 

VDD 20 

VSS 20 

X I  

X2lCLKIN 1 

 RESERVED^ 
EMU2-EMU0 3 1 I I Resewed. Use pullup resistors to 5 V. I 
EMU3 1 I 012 ( ~ e s e w e d  I S 1 
t I = input, 0 = output, Z = high-impedance state * S = SHZ active, H = HOLD active, R = RESET active 
5 Recommended decoupling capacitor value is 0.1 pF. 
7 Follow the connections specified for the resewed terminals. Use 18-kR-22-kR pullup resistors for best results. All 5-V supply terminals must 
be connected to a common supply plane, and all ground terminals must be connected to a common ground plane. 

OIZ 

012 
1 

1 

O/Z 

I 

External H I  clock. H1 has a period equal to twice CLKIN. 

External H3 clock. H3 has a period equal to twice CLKIN. 

5-V supply. All must be connected to a common supply plane.5 

Ground. All grounds must be connected to a common ground plane. 

Output from the internal crystal oscillator. If a crystal is not used, X1 should be left 
unconnected. 

Internal oscillator input from a crystal or a clock 
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absolute maximum ratingst 
Supply voltage range, VCC (see Note 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -0.3 V to 7 V 
lnputvoltagerange,V~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -0 .3Vto7V 
Output voltage range, Vo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -0.3 V to 7 V 
Continuous power dissipation (see Note 9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.1 5 W 
Minimum free-air operating temperature, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - 55°C 
Maximum operating case temperature, TC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125°C 
Storagetemperaturerange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -65"CtoI5OoC 

t Stresses beyond those listed under 'absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and 
functional operation of the device at these or any other conditions beyond those indicated under 'recommended operating conditions" is not 
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 

NOTES: 8. All voltage values are with respect to VSS. 
9. Actual operating power is less. This value was obtained under specially produced worst-case testconditions, which are not sustained 

during normal device operation. These conditions consist of continuous parallel writes of a checkerboard pattern to both primary and 
extension buses at the maximum rate possible. See normal (Icc) current specification in the electrical characteristics table and also 
read Calculation of TMS320C30 Power Dissipation Application Repod. 

recommended operating conditions (see Note 10) 

I MIN NOMS MAX I UNIT I 

VDD Supply voltage V 

'320631 -27 
'320C31- 33 4.5 5.5 

1 VIL Low-level input volage 1 -0.38 0.0- 1--v l 

........ 

VSS Supply voltage (CVSS, etc.) 

V ~ H  High-level input voltage 

VTH High-level i n ~ u t  voltaae for CLKlN 

POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443 

0 

2.1 VDD + 0.38 

3 ~ n n + 0 . 3 6  

IOH High-level output current 

IOL Low-level output current 

TA Operating free-air temperature 

TC Operating case temperature 

V 

V 

V 

*All nominal values are at VDD = 5 V, TA = 25°C. 
6 These values are derived from characterization and not tested. 
NOTE 10: All input and output voltage levels are l T L  compatible. 

- 300 

2 

- 55 

125 

m A 

OC 

"C 
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electrical characteristics over recommended ranges of supply voltage (unless otherwise noted) 
(see Note 10) 

IZ High-impedance current I VDD =MAX I + 2 0 (  pA 

UNIT 

V 

V 

V 

ICC Supply current 

PARAMETER 

VOH High-level output voltage 

11 Input current 

Ilp Input current 

IIC l n ~ u t  current /W/CLKIN\ 

TEST CONDITIONS~ 

VDD = MIN, IOH = MAX 

VDD = MIN, IOL = MAX 

Vnn = MIN, In1 = MAX 
VOL Low-level output voltage 

MIN TYPS MAX 

2.4 3 

0.65 

0.3 0.6 

For XA12-XAO 

All others 

V l=  VSS to VDD 
Inputs with internal pullups (see Note 11) 

VI = Vcc to V r r  

TA = 2VC, VDD = MAX 
~ ( C I )  = h41N 
(see Note 12) 

t For conditions shown as MINIMAX, use the appropriate value specified in recommended operating conditions. 
*All typical values are at VDD = 5 V, TA = 25°C. 
§These values are derived from characterization but not tested. 
TThese values are derived by design but not tested. 
NOTES: 10. All input and output voltage levels are l T L  compatible. 

11. Terminals with Internal pullup devices: INTO-INT3, MC/m, RSVO-RSV10. Although RSVO-RSV10 have internal pullup devices, 
external pullups should be used on each terminal as identified in the Terminal Functions tables. 

12. Actual operating current is less than this mawimum value. This value was obtained under specially produced worst-case test 
conditions, which are not sustained during normal device operation. These conditions consist of continuous parallel writes of a 
checkerboard pattern to both primary and expansion buses at the maximum rate possible. See Calculation of TMS320C30 Power 
Dissipation Application Report. 

Co Output capacitance I I 20n 1 pF 

POST OFFICE BOX 1443 HOUSTON. TEXAS 77251-1443 

+ I 0  

-400 20 

+ 50 

'320C31-33 

'320C30 - 28 

'32OC31-27 

C, XZICLKIN capacitance 

pA 

PA 

uA 

25a I pF 

150 325 

175 500 

125 250 

mA 
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PARAMETER MEASUREMENT INFORMATION 

Tester Pin 
Electronics 

Output 
Under 
Test 

Where: IOL = 2 mA (all outputs) 
IOH = 300 pA (all outputs) 
VLOAD = 2.1 5 V 
CT = 80-pF typical loadcircuit capacitance 

Figure 1. Test Load Circuit 

slgnal transition levels 

TTL-level outputs are driven to a minimum logic-high level of 2.4 V and to a maximum logic-low level of 0.6 V. 
Output transition times are specified as follows: 

For a high-to-low transition on a TTL-compatible output signal, the level at which the output is said to be 
no longer high is 2 V, and the level at which the output is said to be low is 1 V. 

For a low-to-high transition, the level at which the output is said to be no longer low is 1 V, and the level at 
which the output is said to be high is 2 V. 

Figure 2.lTL-Level Outputs 

Transition times for TTL-compatible inputs are specified as follows: 

For a high-to-low transition on an input signal, the level at which the input is said to be no longer high is 
2.1 V, and the level at which the input is said to be low is 0.8 V. 

For a low-to-high transition on an input signal, the level at which the input is said to be no longer low is 
0.8 V, and the level at which the input is said to be high is 2.1 V. 

Figure 3.lTL-Level Inputs 

POST OFFICE BOX 1443 ' HOUSTON, TEXAS 77251-1443 
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PARAMETER MEASUREMENT INFORMATION 

tlming parameter symbology 

Timing parameter symbols used herein were created in accordance with JEDEC Standard 100-A. In order to 
shorten the symbols, some of the terminal names and other related terminology have been abbreviated as 
follows, unless otherwise noted: 

INT includes m-m 
(M)S in symbols and (M)STRB in description includes STRB and MSTRB 
M A  includes AZ3-A0 and -12-XAO 
M D  includes D31 -DO and XD13-XDO 
M R W  in symbols and ( X ) R m  description includes RIW and XRIW 
MRDY includes RDY and XRDY 

I'STRUMENTS 
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443 
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timing parameters for CLKIN, HI,  and H3 (see Note 10) 

$These values are derived from characterization but not tested. 
NOTES: 10. All input and output voltage levels are 7TL compatible. 

13. Rise and fall times, assuming a 35 - 65% duty cycle, are incorporated within this specification (see Figure 4). 
14. p = ~ ( c I )  

WICLKIN 
(1.5 V) 

I I 
P 2 - H  

Figure 4. X2lCLKIN Timing 

Figure 5. HllH3 Timing 

INSTRUMENTS 
POSTOFFICE BOX 1443 HOUSTON, TDVIS 77251-1443 
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Figure 6. CLKlN to H I  1H3 as a Function of Temperature 

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1984 

SMJ320C30-33 
4.5 V 5 VDD r 5.5 V 

POST OFFICE BOX 1443 ' HOUSTON, TEXAS 77251-1443 
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memory-read-cycle and memory-write-cycle timing ((M)STRB = 0) (see Figures 7 and 8) 

POST OFFICE BOX 1443 ' HOUSTON. TEXAS 77251-1 443 

NO. 

11 

12 

' 13.1 

13.2 

14.1 

14.2 

15.1 

15.2 

, 16 
17.1 

17.2 

l8 

20 

21 

22'1 

22'2 

a 
t These * These values are derived from characterization but not tested. 

~[H~L-(M)SLI Delaytime, H1 lowto(M)STRBlow 

Delay time, H I  low to (M)STRB 
b[HlL-(M)SH] high 

~ ( H ~ H - R W L )  Delay time, H1 h i g h t o ~ l W 1 0 ~  

~~H~H-(X)RWLI Delay time, H1 high to MRIWIOW 

b(H1 L-A) Delay time, H I  low to A valid 

~ ~ H ~ L - M A I  Delay time, H I  low to M A  valid 

Setup time, D valid before H I  low 
~SU(D)R (read) 

Setup time, M D  before H I  low 
~SU(XD)R (read) 

~~[MDIR Hold time, (X)D after H I  low (read) 

~SU(RDY) Setup time, RDY before H I  high 

~SU(XRDY) Setup time, (X)RDY before H I  high 

t h l M R ~ ~  Hold time, (X)RDY afler H1 high 

Delay time, H I  high to (X)R/W 
b[H1 H-(X)RWHl high (write) 

~V [MD~W Valid time, (X)D after H I  low (write) 

Hold time, M D  after H I  high 
~~[(X)D]W (write) 

Delay time, H I  high to A valid on 
b(H1 H-A) back-to-back write cycles (write) 

Delay time, HI  high to (X)Avalid on 
b[H1 H-(X)A] back-to-back write cycles (write) 

b [ ~ - M R D V  Delay time, (X)RDY from A valid 

values are derived by design but not tested. 

'320C30-33 
,320C31-33 

MIN MAX 

0 t  10 

0 t  10 

0 t  10 

0 t  15 

07 14 

0 t  10 

16 

16 

0 t  

8 

9 

0 

10 

20 

0 t  

16 

25 

8* 

'32OC31-27 

MIN MAX 
0 t  10 

O* 10 

O* 10 
- 

O* 16 
- 

18 

1 

0 t  

10 
- 

0 

12 

20 

0t 

22 

- 

6* 

'32OC30-28 

MIN MAX 

0 t  10 

0 t  10 

0 t  10 

0 t  17 

O* 16 

0 t  13 

19 

20 

0 t  

10 

10 

0 

12 

20 

0 t  

22 

32 

8* 

'32OC31-40 

MIN MAX 

0 t  6 

0 t  6 

0 t  9 
- 

0 t  10 
- 

14 

- 

0 t  

6 
- 

0 

9 

17 

0 t  

15 

- 
7* 

UNIT 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 
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Figure 7. Memory-Read-Cycle Timing ((M)STRB = 0) 

Figure 8. Memory-Write-Cycle Timing ((M)STRB = 0) 

POST OFFICE BOX 1443 HOUSTON. TEXAS 772511443 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

memory-read-cycle timing (IOSTRB = 0, SMJ320C30 only) 

Figure 9. SMJ320C30 Memory-Read-Cycle Timing (m = 0) 

NO. 

27 

28 

29 

30 

31 

32 

33 

34 

POST OFFICE BOX 1443 HOUSTON. TU(AS 77251-1443 

t These values are derived by design but not tested. 
$These values are derived from characterization but not tested. 

~ ~ 

~ (H~H-IOSL) Delay time, H I  high to low 

~ (H~H- IOSH)  Delay time, H1 high to m h i g h  

~[H~L-MRWHI Delay time, H1 low to M R / W  high 

~ ~ H ~ L - M A I  Delay time, H1 low to M A  valid 

~ S U ~ M D ~ R  Setup time, O D  before H I  high 

thlMD]R Hold time. O D  afler H I  high 

~SU[MRDYI Setup time, (X)RDY before H1 high 

~~[MRDYI Hold time, (X)RDY after H1 high 

'32OC30-28 

MIN MAX 

0 t  11 

0 t  10 

0 t  11 

12 

15 

O* 

10 

0 

'320C30-33 

MIN MAX 

0 t  10 

0 t  10 

0 t  10 

0 t  10 

15 

O* 

9 

0 

UNIT 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 
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Figure 10. SMJ320C30 Memory-Write-Cycle Timing (IOSTRB = 0) 

memory-wrlte-cycle timing (IOSTRB = 0, SMJ320C30 only) 

POST OFFICE BOX 1443 ' HOUSTON. TEXAS 77251-1443 

UNIT 

ns 

ns 

n8 

t These values are derived by design but not tested. 

'320C30-33 

MIN MAX 

0 t  15 

30 

0 

'320C30-28 

MIN MAX 

0 t  15 

30 

0 

NO. 

35 

36 

37 

t , j ( ~ l  L-XRWL) Delay time, H I  low to XRIW low 

t V [ m ~ 1 w  Valid time, O D  after H1 high 

t h [ ( ~ ) ~ ] w  Hold time, O D  after H I  low 
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timing for XFO and XF1 when executing LDFl or LDll 

Fetch 
I LDFl or LDll I Decode I Read I Execute I 

NO. 

38 

39 

40 

- 
ORDY I 

I 
I 
I 

3 s - h  rt 

XFO 39- h- 
I I 

M- 40 

XF1 

Figure 11. Timing for XFO and XF1 When Executing LDFl or LDll 

~(H~H-XFOL)  Delay time, H I  high to XFO low 

kuO(F1) Setup time, XF1 valid before H I  low 

th(XF1) Hold time, XF1 after H I  low 

IN~TRUMENTS 
POSTOFFICE BOX 1443 HOUSTON, TEXAS 77251-1443 

'32OC31-27 

MIN MAX 

19 

13 

0 

'32OC30-28 

MIN MAX 

15 

15 

0 

'320C30-33 
,320C3133 

MIN MAX 

15 

12 

0 

'320C31-40 

MIN MAX 

13 

9 

0 

UNIT 

ns 
ns 

ns 
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timing for XFO when executing a STFl or STll 
'320C30 - 33 

'320C30-28 ,320C31 -33 
'320C31-40 

MIN MAX MIN MAX MIN MAX 
NO. 

41 

- 
M R D Y  

XFO 

Figure 1. Timing for XFO When Executing a STFl or STll 

k~u?u.ucnu\ Delav time. HI hiah to XFO hiah 

POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443 

'320C31-27 

MIN MAX 

19 
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timing for XFO and XF1 when executing SlGl 

Fetch I SlGl I Decode I Read I Execute I 
H3 

XFO 

XF1 

Figure 2. Timing for XFO and XF1 When Executing SlGl 

timing for loading XF register when configured as an output 

MIN MAX I MIN M N  I MIN MAX 1 
45 I t V ( ~ j ~ . x ~  Valid time, H3 high to XF valid 20 1 15 ( 131  ns 

'32OC31-27 

Fetch Load 
I lnstructlon I Decode I Read I Execute I 

H3 

OUTXF Bit 

UNIT I '320C30-28 

XFx 

Figure 3. Timing for Loading XF Register When Configured as an Output 

'320C30-33 
,320C31 *33 

POST OFFICE aox 1 ~ 3  HOUSTON, EMS 7 7 2 5 1 - 1 ~ 3  

'32OC31-40 
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change of XF from output to lnput mode 

Buffen Go Value on 
I Execute I I From Output 1 Synchronlzer I Termlnal I I Load of IOF ) ] to Input I Delay I Seen In IOF 1 

I 

NO. 

46 

47 

48 

XFx 

Data 
Sampled 

t These values are derived from characterization but not tested. 

~~(H~H-XFOI) H O I ~  time, XF after HI high 

tsu ixn Setup time, XF before H1 low 

t h ~ n  Hold time, XF after H1 low 

~ ~ I O X F X  represents either bit 1 or bit 5 of the IOF register, and INXFx represents either bit 3 or bit 7 of the IOF register 
depending on whether XFO or XF1, respectively, is being affected. 

Figure 4. Change of XFx From Output to lnput Mode 

'320C31-27 

MIN MAX 

20t 

12 

0 

POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443 

'320C30-28 

MIN MAX 

20t 

12 

0 

'32OC30-33 
,320C31 -33 

MIN MAX 

157 

12 

0 

'320C31-40 

MIN MAX 

13t 

9 

0 

UNIT 

ns 

r)8 

ns 
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change of XFx from input to output mode 

Execution of 1 Load of IOF I 

NO. 

49 

L 
ti/OXFx represents either bit 1 or bit 5 of the IOF register, and INXFx represents either bit 3 or bit 7 of the IOF register 

depending on whether XFO or XF1, respectively, is being affected. 

Figure 5. Change of XF From Input to Output Mode 

Delay time, H3 high to XF switching 
b(H3H-xFIO) from input to output 

POST OFFCE BOX 1 443 HOUSTON, ' E M S  77251-1443 

'320C31-27 

MIN MAX 

20 

'32OC30-28 

MIN MAX 

20 

'32OC30-33 
,320C31 

MIN MAX 

20 

'32OC31-40 

MIN MAX 

17 

UNIT 

ns 
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reset timing 

RESET is an asynchronous input that can be asserted at any time during a clock cycle. If the specified timings 
are met, the exact sequence shown in Figure 17 occurs; otherwise, an additional delay of one clock cycle may 
occur. R/W and XR/W are in the high-impedance state during reset and can be provided with a resistive pullup, 
nominally 18 kR to 22 kQ, to prevent spurious writes from occurring. The asynchronous reset signals include 
XFOI1, CLKXOI1, DXO/l, FSXOI1, CLKRO/l , DRO/l, FSRO/1 , and TCLKOI1 . HOLD is an asynchronous input and 
can be asserted during reset. 

Resetting the device initializes the primary- and expansion-bus control registers to seven software wait states 
and, therefore, results in slow external accesses until these register are initialized. 

% TEXAS 
INSTRUMENTS 

POSTOFFICE SOX 1443 HOUSTON, E X A S  77251-1443 €29 

UNIT 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

*These values are derived by design but not tested. 
See NO TAG for temperature dependence for the 33-MHz SMJ320C30 and SMJ320C31. 

'320C31.40 

MIN MAX 

PS 

14 

14 

9 

14 

14 

15t  

9 t  

9 t  

9 t  

21t 

'320C30-33 
,320C31 - .  
MIN MAX 

,,t 

14 

14 

10 

14 

14 

18t  

10t 

r o t  

1 o t  

25t 

'32OC31-27 

MIN MAX 

pt 

14 

14 

13 

14 

14 

19t  

12t 

l o t  

12t 

25t 

'32OC30-28 

MIN MAX 

pt 

la 

15 

20t 

12t 

l o t  

12t 

25t 

reset timing [P = t,(cl)] 

NO. 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

t These 

~ e t u p t i m e , m b e f o r e  
~SU(RESET) CLKlN low 

Delay time, CLKlN high to 
~(CLKINH-H~H) H I  highs 

Delay time, CLKlN high to 
~(CLKINH-HIL) HI low§ 

Setup time. RESET high 

t s u ( ~ ~ s ~ ~ ~ - ~ l ~ )  beforeHl low after 10 H1 
clock cycles 

Delay time, CLKIN high to 
b(CLKINH-H3L) H3 lows 

Delay time, CLKlN high to 
~(CLKINH-H3H) H3 highs 

H I  high to O D  high- 
bls(H1 H-XD) impedance state 

H3 high to M A  high- 
bis(H3H-XA) impedance state 

Delay time, H3 high to 
b(H3H-C0NTR0LH) control signals high 

Delay time, H I  high to 
b(H1 H-IACKH) - IACK high 

- 
RESET low to 
asynchronously reset 

~~~(RESETL-ASYNCH) signals to high-impedance 
state 

values are derived from characterization but not tested. 
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I I - 
RESET 1 I " /r 

J 53 

H l  

H3 
I 
I 
I I 

000 I I 
(see Note A) I -. I 5 5 4  It $+ 57 I 

4 4  

WA I 8 8 

(see Notes A 
I 
I 

and 6) I 
I I 

Control Signals 
(see Note C) 

NOTES: A. Reset vector is fetched three times with 7 software wait states each. 
B. (X)A includes A23-AO, XA12-XAO, and ( X ) R / ~ .  
C. Control signals include m, m, and IOSTRB. 
D. Asynchronously reset signalsincludeXF1, XFO, CLKXO, DXO, FSXO, CLKRO, DRO, FSRO, CLKX1, DX1, FSX1, CLKRl , DRI, FSR1, 

TCLKO, and TCLK1. 

Figure 6. Reset Timing 

POST OFFICE BOX 1443 HOUSTON. TEXAS 77251-1443 
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once. 
2. INT3-INTO are asynchronous inputs and can be asserted at any point during a clock cycle. The SMJ320C3x interrupts are level 

sensitive, not edge sensitive, Interrupts are detected on the falling edge of HI .  For the processor to recognize only one interrupt on 
a given input, an interrupt pulse must be set up and held to a minimum of one H I  falling edge and no more than two HI falling edges. 
The SMJ320C3x can accept an interrupt from the same source every two H l  clock cycles. If the specified timings are met, the exact 
sequence shown occurs; othemise, an additional delay of one clock cycle may occur. 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

-- 
INT3-INTO response timing [Q = tC(H)] 

Reset o r  
Interrupt Fetch First 
Vector lnstructlon of 

I Read I I Sewlce Routine I 

UNIT 

ns 

ns 

Vector Address 
1 I 

Addr 

t These values derived from characterization but not tested. 
NOTES: 1, Interrupt pulse duration must be at least 1 Q wide to assure it is seen. It must be less than 2Q wide to assure B is responded to only 

'32OC31-40 

MIN MAX 

13 

Q < 2 ~ t  

-- 

Data 

'32OC30-33 
,320C31 -33 

MIN MAX 

15 

Q < 2 ~ t  

1 

Figure 7. m-INTO Response Tlming 

'32OC31-27 

MIN MAX 

15 

Q < 2 a  

POST OFFICE BOX 1443 HOUSTON. TEXAS 77251-1443 

'32OC30-28 

MIN MAX 

15 

Q < 2Qt 

NO. 

61 

62 

t 

I I 

-- 
Setup time, lNT3-INTO 

~SU(INT) before H I  low 

Pulse duration, m-m, :ir$ot85 and 2) to assure only one interrupt 
seen 

INT3-INTO I 
1 lnstructlon I 

Flag I 
I I Address 7 1 

I 
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interrupt-acknowledge (m) timing 

Fetch IACK IACK 
) lnstructlon I 1 Data Read I I 

NO. 

63 

l 
l e e 4  

- 
IACK 

Addr 

~ ( H ~ H - I A C K L )  Delay time, H I  high to iE% low 

Data 

64 I ~ ( H ~ H - I A C K H )  Delay time, H I  high to lACK high 

Figure 8. Interrupt-Acknowledge lACK Timing 

'32OC30-28 

MIN MAX 

12 

POSTOFFICE BOX 1443 HOUSTON, TEXAS 77251-1443 

12 

'320631 -27 

MIN MAX 

12 

12 

'320C30-33 
,320C31 

MIN MAX 

10 

10 

'320C31-40 

MIN MAX 

9 

UNIT 

ns 

9 ns 
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HI  

C L W R  

DX 

DR 

FSR 

FSX (lnt) 

FSX (ext) 

NOTES: A. Timing diagrams show operations with the serial-port global-control register bits CLKXP = CLKRP = FSXP = FSRP = 0. 
B. These timings are valid for all serial port modes, including handshake, except where otherwise indicated. For afunctional description 

of serial port operation, refer to the TMS320C3x User's Guide. 
C. liming diagrams depend upon the length of the serial-port word, where n = 8. 16, 24, or 32 bits, respectively. 

Figure 1. Serial-Port Timing, Fixed-Data-Rate Mode 

CLKXIR A \ / \ ;; A \ 
I 

FSX (lnt) I $I 
I I 

I 
FSX (ext) I 

--y u- 79 

DX 811 n - 2 

FSR 

NOTES: A. Timing diagrams show operations with the serial-port global-control register bits CLKXP = CLKRP = FSXP = FSRP = 0. 
B. These timings are valid for all serial-port modes, including handshake, except where otherwise indicated. 
C. Timings not expressly specified for variable-data-rate mode are the same as those for futed-data-rate mode. 
D. Timing diagrams depend upon the length of the serial-port word, where n = 8, 16, 24, or 32 bits, respectively. 

Figure 2. Serial-Port Timing, Variable-Data-Rate Mode 

WSTOFFlCE BOX 1443 HOUSTON. TEXAS 77251-1443 
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NO. 

80 

81 

82 

83 

84 

85 

86 

" 

89 

t These 
*These values are derived from characterization but not tested. 
NOTE 1: HOLD is an asynchronous input and can be asserted at any point during a clock cycle. if the specified timings are met, the exact 

sequence shown in Figure 3 occurs; otherwise, an additional delay of one clock cycle can occur. The NOHOLD bit of the 
primary-buscontrol register (refer to the TMS320C3x User's Guide) overrides the signal. When this bit is set, the device comes 
out of hold and prevents future hold cycles from occurring. 

HOLDIHOLDA timing (see Note 1) 

Setup time, 
tsu(HOLD) before H1 low 

Valid time, after 
~(HOLDA) Hl low 

Pulse duration, HOLD 
~W(HOLD) 

Pulse duration, 
tw(H0LDA) 10, 

Delay time, H I  low to 
h(H1L-SH)H STRB high for a HOLD 

Disable time, H1 low to 
b i ~ ( H l L - ~ )  high impedance 

Enable low to 
bn(H1 L-S) STRB active 

Disable time* low to 
bis(HIL-RW) R / m  high impedance 

Enable time, H1 low to 
bn(H1 L-RW) R/W active 

Disable time, H I  low to 
t j i s ( ~ l  L-A) address high 

impedance 

Enable time, H I  low to 
L-A) address valid 

Disabletime, '1 high '0 
H-D) data high impedance 

values are derived by design but not tested. 

'32OC30-28 

MIN MAX 

15 

0t 

&(H) 

'C(H) -5* 

o t  l o *  

o t  l o$  

0 t  

o t  l o $  

o t  l o $  

o t  15$ 

o t  15$ 

o t  15$ 

'320C31-27 

MIN MAX 

15 

Ot 

*(HI 

'C(H)-~* 

~t IO* 

o t  l o *  

o t  l o t  

o t  l o$  

o t  l o$  

o t  13$ 

o t  15* 

o t  15$ 

'320C30-33 
B320C31 -33 

MIN MAX 

15 

Ot 

w-0 

'c(H)-~* 

~t lo$  

~t l o *  

o t  

o t  

~t l o $  

0 t  l o $  

O+ 15$ 

o t  15$ 

'320'231 -40 

MIN MAX 

13 

0$ 9 

*(H) 

'C(H)-~* 

~t 9$ 

~t 9$ 

o t  9$ 

o t  9$ 

~t 9$ 

0 t  9$ 

~t 

o t  12$ 

UNIT 

na 

na 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

1 3 $ n s  

ns 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1981 -REVISED SEPTEMBER $694 

- 
HOLDA 

- 
STRB I 1 %  

I I I 
I 9-w- E7 *m , , 

D Wrlte Data 

NOTE A: HOU)A goes low in response to going low and continues to remain low through one HI cycle after returns to high. 

Figure 3. Timing 
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peripheral-terminal general-purpose I10 timing (see Note 2) 

NOTE 2: Peripheralterminals include CLKXOI1, CLKROI1, DXOI1, DRO11, FSXOI1, FSROIl, andTCLKO11. The modes ofthese terminals are 
defined by the contents of internal control registen associated with each peripheral. 

HI  

Perlpheral 
Termlnal 

Figure 4. Peripheral-Terminal General-Purpose I10 Timing 

%? TEXAS 
E-38 

INSTRUMENTS 
POST OFFICE BOX 1443 ' HWSTON. TEXAS 77251-1443 
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change of perlpherai terminal from general-purpose output to lnput mode 

Executa Store 
of Perlpheml 

Control 
Reglster 

UNIT NO. 

95 

96 

97 

VO 
Control Blt 

Peripheral 
Termlnal 

Data Btt 

320C31-27 

MIN MAX 

t These values are derived by desion but not tested. 

th(H3H) Hold time after H1 high 

t s u ( ~ p ~ o ~ l  L) Setup time, peripheral terminal before H1 low 

t h ( ~ p 1 0 ~ 1 ~ )  Hold time, peripheral terminal after H1 low 

Data Sampled \ /::: 

Value on 
Tennlnal Sean In 

Par lphml 
Control Raglater 

Buffem Go 
From Output to 

lnput 

Figure 5. Change of Peripheral Terminal From General-Purpose Output to lnput Mode 

'32OC30-33 
,320C31 -33 

MIN MAX ...... 

15t 

13 

0 

Synchronizer Delay 

INSTRUMENTS 
WSTOFFlCE BOX 1443 ' HOUSTON. TEXAS 77251-1443 

'32OC31-40 

MIN MAX .... ~ 

15t 

12 

0 

13t 

9 

0 

ns 

ns 

ns 
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Execution of Store of 
Peripheral Control 

Register 
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change of peripheral terminal from general-purpose input to output mode 

I 
I 

I 
I10 

Control I I 
Blt 1 

I 
J 9a 

Perlpheral 
Termlnal 

Figure 6. Change of Peripheral Termlnal From General-Purpose lnput to Output Mode 

NO. 

'* 

IN~TRUMENT~ 
POSTOFFICE BOX 1443 ' HOUSTON, TEXAS 77251-1443 

Delay time, HI high to peripheral terminal switching 
b(GPIOH1H) from input to output 

'32OC31-27 

MIN MAX 

15 

'320C30 -33 
,320C31 

MIN MAX 

15 

'32OC31-40 

MIN MAX 

13 

UNIT 

ns 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

tlmlna parameters for timer terminal 

Setup time, 
ITCLKext l  I 5  

before H1 lowt 

- .  

UNIT 

100 

101 

'320'231 -27 I '32OC31-40 
NO. UNIT 

MIN MAX MIN MAX 

'320C30-33 
'320C31-33 

MIN MAX 
NO. 

103 

'320C30-28 

MIN MAX 

Hold time, 
~~(TCLK-HI L) TCLK ext after 

H l  lowt 

Delay lime, HI  
L ~ ~ c L K - H ~ H )  high to TCLK 

I I '  in1 valid I I I I I 

Pulse duration, 
twvCLK) TCLK 

high/lowt 

99 

100 

i 

TCLK ext 

TCLK int 

TCLK ext 

TCLKint 

Setup time, 
~UCTCLK-H~L) TCwext  

before H I  iowt 

Hold time, 
t h ( ~ c ~ ~ . ~ l  L) TCLK ext afier 

H l  lowt 

NOTE A. Period and polarity of valid logic level are specified by contents of internal control registers. 

Figure 7. Timer-Terminal Timing 

- - 

0 

15 

TCLK ext 1 k(H) 2.6' j k ( ~ )  x 2.6* ns 

TCLK int 1 t c ( ~ )  x 2 k ( ~ )  x 232* 1 k(H) x 2 k ( ~ )  x 232* I ns 
lo2 

103 

POST OFFICE BOX 1443 HOUSTON. TEXAS 77251-1443 

k ( ~ )  + lo *  

[ ~ ( T c L K ) / ~ ] - ~  [k(T~LK)/21+5 

TCLK ext 

TCLK ext 

- -  - - 

cycle time, 
kCrcLK) T C L K ~  

0 

12 

t Tlmlng parameters 99 and 100 are applicable for a synchronous input cl- 102 and 103 are applicable for an synchronous 
input clock. 

*Assured by design but not tested 

Pulse duration, 
t w ~ c ~ ~  TCLK 

high/lowt 

ns 

ns 

k(H) + 12* 

[k(TCLK)/21-15 [k(Tcu<)/21+5 

15 

0 

ns 

"s 

TCLK ext 

TCLK int 

10 

0 

ne 

ns 

k ( ~ )  + 12* 

[ ~ ( T C L K ) / ~ ] - I ~  [ ~ ( T C L K ) / ~ ] + ~  

k ( ~ )  + 12* 

[k(T~LtQ/216 [~(TcLK) /21+5 

ns 

ns 
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- 
timing parameters for SHZ [P = tc(c1)] 

- I - ,  

1 I 
. 

I I I I I I 
t These values are derived from characterization but not tested. 

JIW L I I I I ~ ,  P"L I"** LU 5111 u, I,U 

- impedance? 
I 

Enable time, SHZ high to all 0,110 

All 110s A , = - = -  

$ Enabling SHZ destroys SMJ320C3x register and memory contents. Assert SHZ and reset the SMJ320C3x to restore it to a known condition. 

'32OC30-28 -.... 
MIN  MAX^ 1 MlN  MAX^ 1 MlN  MAX^ 1 MIN  MAX^ ( 

NO. 

Figure 8. Timing for SHZ 

- 
0 3 P t 1 5  

2p 

POST OFFICE BOX 1443 HOUSTON, EXAS 77251-1443 

104 
~ i ~ ~ p ~  A:-- OUT #*...a- ,.w n 0 ,A I I I I 

bis(SHZ) hiah, 0 3 P t 1 5  

0 2P 

0 3P+15 

0 2P 

0 3P+15 

0 2P 

ns 

ns 
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SMJ320C30 part order Information 

SMJ 320 C 30 GB M 28 

PROCESSING 
LEVEL 

Clase B 

Std 

DESC SMD 

Class B 

Std 

DESC SMD 

Class B 

Std 

DESC SMD 

Class B 

Std 

DESC SMD 

Figure 9. SMJ320C30 Device Nomenclature 

PACKAGE TYPE 

Ceramic 181-pin PGA 

Ceramic 181-pin PGA 

Ceramic 181-pin PGA 

Ceramic 181-pin PGA 

Ceramic 181-pin PGA 

Ceramic 181-pin PGA 

1g6-pin quad with 
nonconductive tie bar 

196-pin quad with 
nonconductive tie bar 

Ceramic 196-pin quad flatpack with 
nonconductive tie bar 

nonconductive 196-pin tie quad bar 
with 

Ceramic nonconductive 196-pin tie quad bar 
with 

1g6-pin quad 'Iatpack with 
nonconductive tie bar 

SPEED RANGE 
28 = 28 MHz 

SM = Standard Processing 33 = 33MHz 

TEMPERATURE RANGE 
M = - 55°C to 125°C 

DEVICE FAMILY L = 0°C to 70% 
320 = SMJ320 Family 

PACKAGE TYPE 
GB = Pin Grid Array (PGA) 

TECHNOLOGY HFG = 196-Pin Quad Flatpack with a 

POST OFFICE BOX 1443 HOUSTON. TEXAS 772511443 

OPERATING 
FREQUENCY 

28 MHz 

28 MHz 

28 MHz 

33 MHz 

33 MHz 

33 MHz 

28 MHz 

28 MHz 

28 MHz 

33 MHz 

33 MHz 

33 MHz 

C = CMOS 

POWER 
SUPPLY 

5 V + 5% 

5 V + 5% 

5 V + 5% 

5 V t 10% 

5 V t 10% 

5 V + 10% 

5 V + 5% 

5 V + 5% 

5 V + 5% 

5 V t 10% 

5 V + 10% 

5 V + 10% 

DEVICE 

SMJ320C30GBM28 

SM320C30GBM28 

5962-9052601MXA 

SMJ320C30GBM33 

SM320C30GBM33 

5962-9052803MXA 

SMJ320C30HFGM28 

SM320C30HFGM28 

5962-9052601 MUA 

SMJ320C30HFGM33 

SM320C30HFGM33 

5962-9052603MUA 

nonconductive tie bar 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8.pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0,8-pm CMOS 

DEVICE 
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SMJ320C31 part order information 

PREFIX 
SMJ = 883 Class B 
SM = Standard Processing 

DEVICE 

SMJ320C31GFAM27 

SM320C31GFAM27 

SMJ320C31GFAM33 

SM320C31GFAM33 

SMJ320C31GFAM40 

SM320C31GFAM40 

SMJ320C31HFGM27 

SM320C31HFGM27 

SMJ320C31 HFGM33 

SM320C31 HFGM33 

SMJ320C31HFGM40 

SM320C31HFGM40 

5962-9205801MXA 

5962-9205801MYA 

5962-9205802MXA 

5962-9205802MYA 

DEVICE FAMILY A 
320 = SMJ320 Family 

TECHNOLOGY I 
C = CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-vm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-vm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

31 GFA M 27 

L SPEEDRANGE 
27 = 27 MHz 
33 = 33 MHz 
40 = 40 MHz 

POWER 
SUPPLY 

5 V t 10% 

5 V t 10% 

5 V t 10% 

5 V t 10% 

5 V t 5% 

5 V t 5% 

5 V t 10% 

5 V t 10% 

5 V + 10% 

5 V t 10% 

5 V + 5% 

5 V t 5% 

5 V t 10% 

5 V t 10% 

5 V + 10% 

5 V t 10% 

TEMPERATURE RANGE 
M = - 55°C to125"C 
L = O°C to 70°C - PACKAGE TYPE 

GFA = 141 -Pin Staggered Pin Grid Array 
HFG = 196-Pin Quad Flatpack with a 

nonconductive tie bar 

OPERATING 
FREQUENCY 

27 MHz 

27 MHz 

33 MHz 

33 MHz 

40 MHz 

40 MHz 

27 MHz 

27 MHz 

33 MHz 

33 MHz 

40 MHz 

40 MHz 

27 MHz 

27 MHz 

33 MHz 

33 MHz 

DEVICE I 
Figure 10. SMJ320C31 Device Nomenclature 

PACKAGE TYPE 

Ceramic 141-pin staggered PGA 

Ceramic 141-pin staggered PGA 

Ceramic 141-pin staggered PGA 

Ceramic 141-pin staggered PGA 

Ceramic 141-pin staggered PGA 

Ceramic 141 -pin staggered PGA 

Ceramic 132-pin quad flatpack with a 
nonconductive tie bar 

Ceramic 132-pin quad flatpack with a 
nonconductive tie bar 

132-pin quad flatpack with a 
nonconductive tie bar 

132-pin quad flatpack with a 
nonconductive tie bar 

Ceramic 132-pin quad with a 
nonconductive tie bar 

Ceramic 132-pin quad flatpack with a 
nonconductive tie bar 

141-pin CPGA 

132-PIN CQFP 

141-pin CPGA 
- - 

132-PIN CQFP 

WSTOFFICE BOX 1443 HOUSTW, TD(AS 77'251-144 

PROCESSING 
LEVEL 

Class B 

Std 

Class B 
Std 

Class B 
Std 

Class B 

Std 

Class B 

Std 

Class B 

Std 

DESC SMD 

DESC SMD 

DESC SMD 

DESC SMD 
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MECHANICAL DATA 

SMJ320C30 HFG 196-lead ceramic quad flat pack with a nonconductive tie bar 

p : : P 1 
0,51 (0.020) 

MAX 

I I 

Y 
T v 

0,76 (0.030) 
0 33 (0 01 3) 3,30 

196. - TYP 
0,18 (0.007) (0.1 30) 

MAX 

Thermal Rerlatance Characterlrtlcr 
7 

0,20 (0.008) R ~ A  28.9 
0,lO (0.004) ' ' - 

0,30 (0.012) * 
0,65 (0.025) TYP 4-b- 2,67 (0.105) MAX 

0,15 (0.006) 

Cerarnlc Detall A (at braze pada) 

Detall B 

ALL LINEAR DIMENSIONSARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

TEXAS 
IN~TRUMENT~ 

W S T  OFFICE BOX 1443 HOUSTON, EXAS 77261-1443 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

SMJ320C30 196-lead ceramic quad flatpack (HU suffix) 
r 

RECOMMENDED FINAL LEAD-FORM DIMENSIONS FOR BOARD MOUNT 

I I 

30,48 (1.200) BSC 

0,25 (0.010) MIN Radius 

With Lead Flnlsh 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

NOTES: A. TI does not offer MIL-SPEC part in formed lead configuration. 
0. Lead forming should be performed at customer's facility or subcontracted. 

POST OFFICE BOX 1443 ' HOUSTON, 'TEXAS 77251-1443 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

2,54 (0.100) TYP--)( BOlTOM VIEW 

SQUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1894 

MECHANICAL DATA 

SMJ320C30 181-pln ceramlc grld array (GB suffix) 
TOP VIEW 

Index Cornsr 2 

r' 
Pln A1 

Corner lndlcaty 

40,4 (1.590) 
37,6 (1.480) 

1 

ALL 

- 
0 0000000000000 0 
00000000000000 0 
0 0000000000000 0 
0 000 0 000 0 
0 000 000 0 
0 000 000 0 
00000 0000 0 
0 000 Extra pin 0 0 0 0 
0000 6 000 0 
00000 0 000 0 
0 0000000000000 0 
000@@0000000000 2,54 (0.1 00) TYP 

@ @ @ @ @ @ @ @ @ @ @ @ @  0 
0000000000000 

1 2 3  4 5 6  7 8 91011121314  

4,70 (0.1 85) 

1,40 (0.055) 
1,14 (0.045) 

7 (0.050) NOM 
IA (4 Places) 

%a 
\ 

Dm$ 

-- ii' 
,&I v s s o ,  

VDD 
/ 

.INEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

Thermal Reslstancr Characterlstla 

POST OFFICE BOX 1443 . HOUSTON, TEXAS 77261-1443 
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MECHANICAL DATA 

SMJ320C30 244-pin TAB frame (PG5) socket, 203 OLBIILB 0.25-mm OLB pitch 

NOTES: A. Lead pitch in OLB windows is 250 pm. 
B. OLE lead width is 100 pm + 20 pm. 
C. Dimensions reference centerline to outside edge of lead. 
D. P0.25 t 0.01 x 49 = 12.25 + 0.02. 

- - -  

POST OFFICE BOX 1443 HOUSTON. TEXAS 77251-1443 
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MECHANICAL DATA 

SMJ320C30 TAB (PG5) 244-pin socket, 203 OLBIILB 0.25-mm OLB pitch (continued) 
I 1 

-- - 

POST OFFICE BOX 1443 HOUSTON. TEXAS 77261-1443 
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SMJ320C30 (rev 5) Inner Lead Bond lntormatlon tor TAB 
(tape automated bonding) 

203 Dle Slde Number 4 153 

Pad Number One - 1 

Dle Slde Number 1 Dle Slde Number 3 

Zero-Zero 
(orlgln) 

51 Dle Side Number 2 102 

Dle Dealgnator 

Figure 11. SMJ320C30 Die Numbering Format 
(Reference Table 1) 

The inner lead bond (ILB) pitch for the TAB leadframe is the same as the die bond pad pitch. Table 1 provides 
a reference for the following: 

A. The TAB lead numbers. The TAB lead numbers are the same as the die bond pad numbers. 

B. The "230 signal identities in relation to the pad numbers 

C. Which signal functions fan out to more than one test pad location. (There are 203 bond pad locations, 
203 TAB leads, and 244 test pad locations.) 

D. The 'C30 X,Y coordinates, where bond pad 51 serves as the origin (0,O) 

E. The ILB pitch for the TAB leadframe 

In addition, the following notes are significant: 

F. X,Y coordinate data is in microns. 

G. Coordinate origin is at 0,O (center of bond pad 51). 

H. Average pitch is 186 microns (7.33 mils). 

I. Smallest pitch value is 1568 microns (6.173 mils). 

J. The active silicon dimensions are 10224,OO pm x 11032,OO pm (402.52 mils x 434.33 mils). 

K. The die size is approximately 10337,80 pm x 11150,6 pm (409.00 mils x 439.00 mils). 

L. Distance from diced silicon to polyimide support ring is 1016,O pm (40 mils). 

M. Bond pad dimensions are 115,OO pm x 115,OO pm, 

N. Center of bond pad to edge of die rangesfrom 180 pm-220 pm (7.1 mils-8.6 mils). The rangeof 40 pm 
exists since the dicing process will result in some tolerance. Due to the consistency and precision of the 
bond pad locations in reference to each other, the center of bond pad 51 was chosen as the origin. 

E-50 POST OFFICE BOX 1-3 HOUSTON, TEXAS 77251-1443 
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Table 1. SMJ320C30 Dle PadITab Lead lnformatlon : rev 5 (0,8 pm) 

POSTOFFICE BOX 1443 ' HOUSTON. TEXAS 77251-1443 

C30 DIE 
BOND PAD 
LOCATIONS 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

DlVTAB 
BOND PAD 
IDENTIN 

PDVDD 
PDVDD 

DRO 
FSRO 

CLKRO 
CLKXO 
FSXO 
DXO 

TCLKO 
TCLK1 
EMU6 
XDO 
XD1 
XD2 

IODVDD 
IODVDD 

XD3 
XD4 
XD5 
XD6 
XD7 
XD8 
XD9 

XDlO 
VDD 
VDD 
VSS 
VSS 
XDl l  
XD12 
XD13 
XD14 
XD15 
XD16 
XD17 
XD18 
XD19 
XD20 
XD21 
XD22 
XD23 
XD24 
XD25 
XD26 
XD27 
XD28 
XD29 
XD30 

IODVDD 
IODVDD 

DIE SIDE #1 

X COORDINATE OF 
THE DIE 'OND PAD 

- 423.80 

- 

TAB C30 
TEST PAD 

LOCATIONS 

1 - 2  
3,4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

17,18 
19,20 

21 
22 
23 
24 
25 
26 
27 
28 

29,30 
31,32 

33, 34, 35 
36,37 

36 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 

58,59 
60,61 

Y COORDINATE OF 
THE DIE 'OND PAD 

9563.00 
9367.80 
9199.20 
9007.20 
6623.20 
8631.20 
8447.20 
8255.20 
8071.20 
7879.20 
7695.20 
7503.20 
7319.20 
7127.20 
6947.00 
6751.80 
6853.20 
6399.20 
6207.20 
6023.20 
5831.20 
5647.20 
5455.20 
5271.20 
5083.00 
4887.80 
4731.00 
4535.80 
4367.20 
4183.20 
3991.20 
3807.20 
361 5.20 
3431.20 
3239.20 
3055.20 
2863.20 
2679.20 
2487.20 
2303.20 
2111.20 
1927.20 
1735.20 
1551.20 
1359.20 
1175.20 
983.20 
799.20 
619.00 
423.80 

PITCH OF LEAD (#, Y) 
REFERENCE 

BOND PADS 

195.20 (1,2) 
168.60 (2,3) 
192.00 (3,4) 
184.00 (43) 
192.00 (5,6) 
184.00 (67) 
192.00 (73) 
184.00 (8,9) 

192.00 (9,lO) 
184.00 (10,ll) 
192.00 (11,12) 
184.00 (1 2,13) 
192.00 (13,14) 
180.20 (14,15) 
195.20 (15,16) 
168.60 (16,17) 
184.00 (17,18) 
192.00 (18,19) 
184.00 (19,ZO) 
192.00 (20,21) 
184.00 (21,22) 
192.00 (22,23) 
184.00 (23,24) 
l a . 2 0  (24,25) 
195.20 (2.526) 
156.80 (26,27) 
195.20 (2728) 
168.60 (2829) 
184.00 (29,30) 
192.00 (30,31) 
1 84.00 (31,32) 
192.00 (32,33) 
184.00 (33,34) 
192.00 (34,35) 
184.00 (35,36) 
192.00 (36,37) 
184.00 (37,38) 
192.00 (38,39) 
184.00 (39,40) 
192.00 (40,41) 
184.00 (41,42) 
192.00 (42,43) 
184.00 (43,44) 
192.00 (44,45) 
184.00 (4546) 
192.00 (46,47) 
184.00 (47,48) 
180.20 (48,49) 
195.20 (4950) 
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Table 1. SMJ320C30 Die PadlTab Lead Information : rev 5 (0.8 pm) (Contlnued) 

E-52 POST OFFICE BOX 1443 HOUSTON. TEXAS 77261-1 443 

C30 DIE 
BOND PAD 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 

DlVTAB 
BOND PAD 
lDENTm 

DVSS 
DVss 
CVSS 
CVSS 
XD31 
A23 
A22 
A21 
A20 
A19 
A1 8 
A17 
A1 6 
A1 5 
A14 

A D V ~ ~  
ADVDD 

A1 3 
A12 
A1 1 
A1 0 
A9 
A8 
A7 
A6 

VDD 
VDD 
VSS 
"SS 
A5 
A4 
A3 
A2 
A1 
A0 

EMU0 
EMU1 
EMU2 
EMU3 
EMU4 
M C I ~  
XA12 
XA11 
XAI 0 
XA9 
XA8 
XA7 
XA6 
~VSS 
~VSS 
DVSS 
DVss 

TAB C30 
TEST PAD 

62,63 
64 

65,66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 

79,80 
81 
82 
83 
84 
85 
86 
87 
88 
89 

90,91 
92,93 
94,95 
96,97 

98 
99 
1 00 
101 
102 
103 
104 
105 
106 
107 
106 
109 
110 
111 
112 
113 
114 
115 
116 

117, 118 
119 

120,121 
122 

DIE SIDE m 

X COORDINATE OF 
THE DIE BOND PAD 

0.00 
195.2 

374.80 
570.00 
746.60 
936.60 

1138.60 
1338.60 
1530.60 
1730.60 
1922.60 
2122.80 
2322.60 
2514.36 
2902.80 
271 4.60 
2902.80 
3098.00 
3274.60 
3474.60 
3666.60 
3866.60 
4258.60 
4458.60 
4650.60 
4846.80 
5042.00 
5214.80 
2410.00 
5578.60 
5776.60 
5970.60 
6170.60 
6370.60 
6562.60 
6774.80 
6990.80 
7198.80 
7402.60 
7606.80 
7822.80 
8026.60 
8218.60 
841 8.60 
8610.60 
881 0.60 
9010.60 
9202.60 
9398.80 
9594.00 
9756.80 
9954.00 

Y COORDINATE OF 
THE DIE BOND PAD 

0.00 

PITCH OF W D  (#, #) 
REFERENCE DIE 

BOND PADS 
195.20 (51, 52) 
179.60 (52, 53) 
195.~1(53,54) 
176.60 (54, 55) 
192.00 (55,58) 
200.00 (56,57) 
200.00 (57,58) 
192.00 (58, 59) 
200.00 (59,60) 
192.00 (60, 61) 
200.00 (61,62) 
200.00 (62,63) 
192.00 (63, 64) 
200.00 (64, 65) 
188.20 (65, 66) 
195.20 (66, 67) 
176.60 (67, 68) 
200.00 (68, 69) 
192.00 (69, 70) 
200.00 (70,71) 
200.00 (71,72) 
192.00 (72, 73) 
200.00 (73,74) 
192.00 (74, 75) 
196.20 (75, 76) 
195.20 (76, n) 
172.80 (77, 78) 
195.20 (78, 79) 
168.60 (79, 80) 
200.00 (80, 81) 
192.00 (81,62) 
200.00 (82, 83) 
200.00 (83,84) 
192.00 (84,85) 
212.20 (85,86) 
21 6.00 (86,87) 
206.00 (87,88) 
203.80 (88, 89) 
204.20 (89, 90) 
216.00 (90,91) 
203.60 (91,92) 
192.00 (92, 93) 
200.00 (93,94) 
192.00 (94,95) 
200.00 (95,96) 
200.00 (96, 97) 
192.00 (97, 98) 
196.20 (98,99) 
195.20 (99, 100) 
164.80 (100, 101) 
195.20 (101, 102) 
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Table 1. SMJ320C30 Die PadITab Lead Information : rev 5 (0.8 pm) (Continued) 
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C30 DIE 
BOND PAD 

LOCATIONS 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 

Y COORDINATE OF 
THE DIE BOND PAD 

430.60 
625.80 
764.40 
986.40 

1170.40 
1362.40 
1546.40 
1738.40 
1922.40 
2114.40 
2298.40 
2490.40 
2674.40 
2866.40 
3046.80 
3241.80 
3410.40 
3594.40 
3786.40 
3970.40 
4162.40 
4346.40 
4538.40 
4722.40 
4910.60 
5105.80 
5262.60 
5457.80 
5626.40 
5810.40 
6002.40 
6186.40 
6378.40 
6562.40 
8754.40 
6938.40 
7130.40 
7314.40 
7506.40 
7690.40 
7882.40 
8066.40 
6258.40 
8442.40 
8634.40 
8818.40 
9010.40 
9194.40 
9374.60 
9569.80 

PITCH OF LEAD (#, #) 
REFERENCE WHICH DIE 

BOND PADS 
195.20 (103,104) 
168.60 (104,105) 
192.00 (105,106) 
184.00 (106,107) 
192.00 (1 07,108) 
184.00 (108,109) 
192.00 (109,110) 
184.00 (110,111) 
192.00 (111,112) 
184.00 (112.113) 
192.00 (113,114) 
184.00 (114,115) 
192.00 (115,116) 
180.20 (116,117) 
195.20 (117,118) 
168.60 (118,119) 
184.00 (119,120) 
192.00 (120,121) 
184.00 (121,122) 
192.00 (122,123) 
184.00 (123,124) 
192.00 (1 24,125) 
184.00 (125,128) 
188.20 (126.127) 
195.20 (127,128) 
156.80 (128,129) 
195.20 (1 29,130) 
168.60 (130,131) 
184.00 (131,132) 
192.00 (132,133) 
184.00 (133,134) 
192.00 (134,135) 
184.00 (135,136) 
192.00 (136,137) 
184.00 (1 37,138) 
192.00 (138,139) 
184.00 (139,140) 
192.00 (140,141) 
184.00 (141,142) 
192.00 (142,143) 
184.00 (143,144) 
192.00 (144,145) 
184.00 (145,146) 
192.00 (146,147) 
184.00 (147,148) 
192.00 (148,149) 
184.00 (149,150) 
180.20 (150,151) 
195.20 (151,152) 

DlERAB 
BOND PAD 
IDENTITY 

ADVDD 
ADVDD 

XA5 
XA4 
XA3 
XA2 
XA1 
XAO 
D31 
D30 
D29 
D28 
D27 
D26 

DDVDD 
DDVDD 

D25 
D24 
D23 
D22 
D21 
D20 
D l 9  
D l 8  

V~~ 
VDD 
v~~ 
v~~ 
D l 7  
D l 6  
D l  5 
D l  4 
D l  3 
D l2  
Dl1 
D l0  
D9 
D8 
D7 
D6 
D5 
D4 
03 
D2 
D 1 
DO 
H 1 
H3 

DDVDD 
DDVDD 

TAB C30 
TEST PAD 

LOCATIONS 
123,124 
125,126 

127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 

139,140 
141,142 

1 43 
144 
145 
146 
147 
148 
149 
150 

151, 152 
153,154,155 

156,157 
158,159 

160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 

180,181 
182,183 

DIE SIDE 13 

X COORDINATE OF 
THE DIE BOND PAD 

10377.80 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 - RNISED SEPTEMBER 1994 

Table 1. SMJ320C30 Die PadITab Lead Information : rev 5 (0.8 pm) (Continued) 

POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443 

C30 DIE 
BOND PAD 
LOCATIONS 

153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
166 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 

TAB C30 
TEST PAD 

LOCATIONS 

184 
185, 186 

187 
188,189 

190 
191 

192,193 
194 
195 
196 
197 
196 
199 
200 
201 
202 

203,204 
205 
206 
207 
208 
209 
210 
211 
212 

213,214 
215.216 
217,218 
21 9,220 

221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 

241.242 
243,244 

BOND PAD 
IDENTITY 

DVSS 
D ~ S S  
CVSS 
~ V S S  

XyCLKIN 
X1 

VSUPS 
VBBP 
EMU5 
XRDY 

MSTRB 
IOSTRB 
XRW - 

HOLDA - 
HOUI 

MDVDD 
M-D 

RDY - 
STRB 
Rim - 

RESET 
XF1 
XFO - 
IACK - 
INTO 

VDD 
VDD 
v~~ 
VSS - 
INTl - 
INT2 - 
INT3 

RSVO 
RSVl 
RSV2 
RSV3 
RSV4 
RSV5 
RSV6 
RSV7 
RSV6 
RSV9 
RSVl 0 
DR1 
FSR1 

CLKRl 
CLKXl 
FSXI 
DX1 

D v ~ ~  
DVSS 

DIE SIDE 14 

X COORDINATE OF 
THE DIE BOND PAD 

9947.20 
9752.00 
9587.20 
9392.00 
921 7.00 
9043.80 
8696.00 
8535.40 
7935.40 
7739.40 
7551.40 
7359.40 
7175.40 
6991.40 
6795.20 
6611.20 
641 6.00 
6243.20 
6055.40 
5863.40 
5667.20 
5479.40 
5295.40 
5111.40 
4915.20 
4731.20 
4536.00 
4371.20 
4176.00 
4003.20 
3803.20 
3603.20 
3403.20 
3203.20 
3003.20 
2795.20 
2595.20 
2407.40 
2223.40 
2039.40 
1855.40 
1671.40 
1479.40 
1295.40 
1111.40 
927.40 
743.40 
559.40 
375.40 
195.20 

0.00 

Y COORDINATE OF 
THE DIE BOND PAD 

9986.60 
9986.80 

9993.60 

PITCH OF LEAD (#, Y) 
REFERENCE WHICH DIE 

BOND PADS 

195.20 (153,154) 
164.80 (1 54,155) 
195.20 (1 55,156) 
175.00 (1 56,157) 
173.20 (1 57,158) 
347.60 (1 58,159) 
160.60 (159,160) 
600.00 (1 60,161) 
196.00 (161,162) 
188.00 (162,163) 
192.00 (163,164) 
184.00 (164,165) 
184.00 (1 65,166) 
196.20 (1 66,167) 
184.00 (1 67,168) 
195.20 (1 68,169) 
172.80 (1 69,170) 
167.80 (170,171) 
192.00 (171,172) 
196.20 (172,173) 
187.80 (1 73,174) 
1 64. 00 (1 74,175) 
184.00 (1 7.51 76) 
196.20 (176,in) 
184.00 (1 77,178) 
195.20 (1 78,179) 
164.80 (1 79,180) 
195.20 (180,181) 
172.80 (181,182) 
200.00 (1 82,183) 
200.00 (1 83,184) 
200.00 (1 84,165) 
200.00 (165,186) 
200.00 (186,187) 
208.00 (1 87,188) 
200.00 (1 88,189) 
187.80 (1 89,190) 
184.00 (190,191) 
184.00 (191,192) 
184.00 (1 92,193) 
164.00 (193,194) 
192.00 (1 94,195) 
184.00 (1 951 96) 
184.00 (1 96,197) 
184.00 (1 97,198) 
184.00 (198,199) 
184.00 (1 99,200) 
184.00 (200,201) 
180.20 (201,202) 
195.20 (202,203) 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SQUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

MECHANICAL DATA 

SMJ320C31 132-lead nonconductive ceramic tie bar (HFG suffix) 

Pln 1 lndlcator 

Detail A (at braze pads) 

tall B 

Thermal Reslstance Characterlstlc 

I Detail B 

I ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

MECHANICAL DATA 

SMJ320C31 132-Lead ceramic quad flatpack (HU suffix) 

RECOMMENDED FINAL LEAD-FORM DIMENSIONS FOR BOARD MOUNT 

3,96 (0.1 56) MAX 

0,25 (0.010) MIN Radlur 

Wlth Lead Flnlsh 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

NOTES: A. TI does not offer MIL-SPEC part in formed lead configuration. 
B. Lead forming should be performed at customer's facility or subcontracted. 

INSTRUMENTS 
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1691 -REVISED SEPTEMBER 1884 

MECHANICAL DATA 
SMJ320C31 141-pin ceramic pin grid array (GFA suffix) 

Pln A1 

A \ 

C 
lndlcator 

27,43 (1 .OW) 
26,42 (1.040) 

/ 

TOP VIEW 

Thermal Rerlrtancr Chmctet lr t lo 

22,es (0.~00) 
REF 

Index Corner 
(0.020) REF x 45" 1 Place 

TYP 

' 3 Placer 

I ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

MECHANICAL DATA 

SMJ320C31 244-pin TAB frame (PG2) socket, 132 OLBIILB 0.30-mm OLB pitch 

NOTES: A. Lead pitch in OLB windows is 300 pm. 
B. OLB lead width is 120 pm 3 0  km. 
C. Dimensions reference centerline to outside edge of lead. 
D. P0.30 * 0.01 x 32 = 9.60 i 0.02. 

POSTOFFICE BOX 1443 HOUSTON. T E M S  77251-1443 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SQUS014A- FEBRUARY 1901 -REVISED SEPTEMBER 1884 

MECHANICAL DATA 

SMJ320C31 TAB (PG2) 244-pln socket, 132 OLBIILB 0.30-mm OLB pltch (contlnued) 
I 1 -------- 

OLB 

--, i 

(25 mll) I 

DIE 

POST OFFICE BOX 1443 ' HOUSTW, EXAS 77251-1443 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

SMJ320C31 inner Lead Bond lnformatlon for TAB 
(tape automated bondlng) 

132 Die Slde Number 4 100 

Pad Number One - 1 

Die Slde Number 1 Dle Side Number 3 

Zero-Zero 
(origin) 

34 Die Slde Number 2 66 

Dle Designator 

Figure 12. SMJ320C31 Dle Numberlng Format 
(Reference Table 2) 

The inner lead bond (ILB) pitch for the TAB leadframe is the same as the die bond pad pitch. Table 2 provides 
a reference for the following: 

A. The TAB lead numbers. The TAB lead numbers are the same as the die bond pad numbers. 

B. The 'C31 signal identities in relation to the pad numbers 

C. Which signal functions fan out to more than one test pad location. (There are 132 bond pad locations, 
132 TAB leads, and 244 test pad locations.) 

D. The 'C31 X,Y coordinates, where bond pad 34 serves as the origin (0,O) 

E. The ILB pitch for the TAB leadframe 

In addition, the following notes are significant: 

F. X,Y coordinate data is in microns. 

G. Coordinate origin is at 0,O (center of bond pad 34). 

H. Average pitch is 233 microns (1 1.2 mils). 

I. Smallest pitch value is 179,6 microns (7.07 mils). 

J. The active silicon dimensions are 1021 5,20 pm x 10324,OO pm (402.1 7 mils x 406.46 mils). 

K. The die size is approximately 10490,20 pm x 10566,40 pm (41 3.00 mils x 41 6.00 mils). 

L. Distance from diced silicon to polyimide support ring is 889,O pm (35 mils). 

POST OFFICE BOX 1 W HOUSTON. TEXAS 77251-1443 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1094 

Table 2. SMJ320C31 Die Pad /TAB Lead Information : rev 2.0 (0.8 pm) 

POST OFFICE BOX 1443 ' HWSTON. TEXAS 77261-1443 

PITCH OF LEAD (#, C )  
REFERENCE WHICH DIE 

BOND PADS 

314.20 (1,2) 
279.80 (2,3) 
278.80 (3,4) 
270.00 (4,5) 
283.80 (5,6) 
372.20 (8,7) 
270.40 (7,8) 
303.20 (8,s) 
300.80 (9,lO) 
240.00 (10,ll) 
342.80 (1 1,12) 
203.00 (12,131 
285.60 (13,14) 
330.80 (1 4,15) 
180.40 (15,18) 
397.40 (16,17) 
282.00 (1 7,18) 
338.00 (18,lS) 
180.40 (19.20) 
322.60 (20,21) 
277.40 (21 , a )  
295.60 (22,23) 
276.20 (23,24) 
290.20 (24,25) 
267.00 (2526) 
284.80 (28.27) 
346.60 (27,28) 
278.00 (28,29) 
278.20 (29,30) 
282.80 (30,31) 
273.80 (31,32) 
274.20 (32,33) 

Y COORDINATE OF 
THE CENTER OF 

BOND PAD 

9649.40 
9335.20 
9055.80 
8776.80 
8508.80 
8223.20 
7851.00 
7580.60 
7277.40 
6976.80 
6736.60 
6394.00 
8191.00 
5895.40 
5564.60 
5984.20 
4986.80 
4704.80 
4366.80 
4186.40 
3883.80 
3586.40 
3290.80 
301 4.60 
2724.40 
2457.40 
2172.80 
1826.00 
1550.00 
1271.80 
989.00 
715.20 
441 .OO 

DIE SIDE # I  

X COORDINATE OF 
THE CENTER OF 

BOND PAD 

- 484.80 

C31 DIE 
BOND PAD 
LOCATIONS 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
18 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

DIE/TAB 
BOND PAD 
IDENTITY 

SUBS 
SHZ 
DVSS 
TCLKO 
PVDD 
TCLKI 
EMU3 
EMU0 
EMU1 
EMU2 

MCBLJMP 
CVSS 
A23 
A22 

VDDL 
VDDL 
A21 
A20 

VSSL 
DVSS 
AI 9 

AVDD 
A18 
A1 7 
A1 6 
A1 5 
A14 
A1 3 
A1 2 
A1 1 

AVDD 
A10 

CVSS 

TAB C31 
TEST PAD 

LOCATIONS 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

Table 2. SMJ320C31 Die Pad /TAB Lead Information : rev 2.0 (0.8 pm) (Continued) 

INSTRUMENTS 
WST OFFICE BOX 1443 HOUSTON, EXAS 77251-1443 

C31 DIE 
BOND PAD 

LOCATIONS 

34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
86 

TAB C31 
TEST PAD 

LOCATIONS 

DIEITAB 
BOND PAD 
IDENTITY 

A9 
~ S S  

A8 
A7 
A6 
A5 

AVDD 
A4 
A3 
A2 
A1 
A0 

CVSS 
D31 

VDDL 
VDDL 
D30 

VSSL 
VSSL 
DVSS 
D29 
D26 

DVDD 
D27 
~VSS 
D26 
D25 
D24 
D23 
D22 
D2 1 

DVDD 
D20 

DIE SIDE m 
X COORDINATE OF 

THE CENTER OF 
BOND PAD 

0.00 
300.00 
569.20 
843.80 

11 37.00 
1415.60 
1710.80 
1974.00 
2251.40 
2536.40 
2809.80 
3108.20 
3406.00 
3662.80 
3983.60 
4164.00 
4457.80 
4821.40 
5001.40 
5316.80 
5594.60 
5673.20 
6193.40 
6543.20 
6796.40 
71 02.20 
7374.40 
7659.60 
7947.40 
8237.80 
8496.60 
8788.20 
9012.40 

Y COORDINATE OF 
THECENTEROF 

BOND PAD 

PITCH OF LEAD (1, # ) 
REFERENCE WHICH DIE 

BOND PADS 

300.00 (34, 35) 
269.20 (35,36) 
274.60 (36, 37) 
293.20 (37,38) 
278.60 (38, 39) 
295.20 (39,40) 
263.20 (40,41) 
277.40 (41,42) 
285.00 (42, 43) 
273.40 (43,44) 
298.40 (44,45) 
297.80 (45,46) 
256.80 (46,47) 
320.60 (47,46) 
160.40 (48,49) 
293.60 (49, 50) 
180.00 (51, 52) 
315.40 (52,53) 
278.00 (53, 54) 
278.40 (54, 55) 
320.20 (55, 56) 
349.80 (56, 57) 
253.20 (57, 56) 
305.80 (58, 59) 
272.20 (59, 60) 
285.20 (60,81) 
287.80 (61, 62) 
290.40 (62, 63) 
258.80 (63,64) 
291.60 (64,65) 
224.20 (65,66) 

. 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

Table 2. SMJ320C31 Dle Pad /TAB Lead Information : rev 2.0 (0.8 pm) (Continued) 

PITCH OF LEAD (U, U )  
REFERENCE WHICH DIE 

BOND PADS 

352.80 (87,88) 
280.80 (70,71) 
272.00 (69, 70) 
268.80 (70,71) 
243.20 (71,72) 
375.80 (72, 73) 
212.40 (73,74) 
314.00 (74,75) 
207.60 (75,76) 
400.80 (7677) 
214.60 (77,78) 
288.80 (78, 79) 
293.60 (79, 80) 
343.40 (80,81) 
179.60 (81,82) 
315.40 (82, 83) 
281.60 (83,84) 
285.20 (84, 85) 
340.00 (85,86) 
180.40 (88,87) 
289.80 (87, 88) 
288.40 (88,89) 
297.80 (89,90) 
267.00 (90,91) 
280.80 (91,92) 
282.40 (92, 93) 
284.80 (93, 94) 
278.00 (94,95) 
285.60 (95,96) 
290.40 (98, 97) 
274.40 (97,98) 
377.20 (98,gg) 

Y COORDINATE OF 
THECENTEROF 

BOND PAD 

508.80 
861.20 
1142.00 
1414.00 
1682.80 
1926.00 
2301.80 
2514.00 
2828.00 
3035.60 
3438.20 
3650.80 
3919.60 
4213.20 
4558.60 
4738.20 
5051.80 
5333.20 
5818.40 
5958.40 
81 38.80 
6428.40 
6714.80 
701 2.60 
7279.60 
7560.40 
7842.80 
81 27.60 
8403.60 
8689.20 
8979.60 
9254.00 
9631.20 

DIE SIDE #3 

X COORDINATE OF 
THE CENTER OF 

BOND PAD 

9780.40 

TAB C31 
TEST PAD 

LOCATIONS 

C31 DIE 
BOND PAD 
LOCATIONS 

87 
68 
89 
70 
71 
72 
73 
74 
75 
78 
77 
78 
79 
80 
81 
82 
83 
84 
85 
88 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

DIEITAB 
BOND PAD 
IDENTITY 

DVSS 
D l9  
D l  8 
D l  7 
D l6  
D l  5 

CVSS 
D l4  

DVDD 
D l  3 
~VSS 
D l  2 
Dl1 
D l0  

VDDL 
VDDL 

D9 
D8 

DVSS 
VSSL 
VSSL 

D7 
D8 

DVDD 
D5 
D4 
D3 
02 
D l  
DO 
H 1 
H3 

DVDD 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

Table 2. SMJ320C31 Die Pad /TAB Lead Information : rev 2.0 (0.8 pm) (Continued) 

INSTRUMENTS 
POST OFFICE BOX 1443 ' HOUSTON TWAS 77261-1443 

C31 DIE 
BOND PAD 
LOCATIONS 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
118 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 

DIEITAB 
BOND PAD 
IDENTITY 

DVSS 
CVSS 
~VSS 

X21CLKIN 
XI 

HoLDA - 
HOLD 

CVDD 
RDY 
STRB 
R/W 

RESET 
XFO 

CVDD 
XF1 - 
IACK 
INTO 

DVSS 
VSSL 
INTI 

VDDL 
VDDL 
INT2 
INT3 
DRO 

CVSS 
FSRO 

CLKRO 
CLKXO 

lVSS 
FSXO 
PVDD 
DXO 

TAB C31 
TEST PAD 

LOCATIONS 

DIE SIDE #4 

X COORDINATE OF 
THE CENTER OF 

BOND PAD 

9032.60 
8822.20 
8543.20 
8240.40 
8054.20 
7742.80 
7460.00 
7167.00 
6736.00 
6459.20 
6191.20 
5896.00 
5617.60 
5351 .OO 
5060.00 
4784.80 
4504.00 
4279.20 
3998.80 
3672.00 
3330.60 
3150.20 
2826.40 
2546.60 
2280.20 
1970.20 
1699.40 
1423.80 
11 43.20 
862.80 
601.40 
288.60 
-5.60 

Y COORDINATE OF 
THECENTEROF 

BOND PAD 

10074.00 

PITCH OF LEAD (#, I )  
REFERENCE WHICH DIE 

BOND PADS 

210.40 (100. 101) 
280.00 (101,102) 
301.80 (102, 103) 
186.20 (103,104) 
311.40 (104,105) 
282.80 (105,106) 
293.W (108,107) 
431.00 (107,108) 
278.80 (108, 109) 
266.00 (109,110) 
295.20 (110,111) 
278.40 (111, 112) 
268.60 (1 12, 11 3) 
281.00(113, 114) 
275.20 (114, 115) 
280.80 (115, 116) 
224.80 (116,117) 
280.40 (117, 118) 
328.80 (118,119) 
341.40 (119,120) 
180.40 (120, 121) 
323.80 (121, 122) 
279.80 (122, 123) 
268.40 (123, 124) 
310.00 (124, 125) 
270.80 (125, 126) 
275.60 (128, 127) 
280.60 (127, 128) 
280.40 (128,129) 
261.40 (129, 130) 
312.80 (130, 131) 
294.20 (1 31,132) 



Analog Interface Peripherals and 
ADDlications 

Texas Instruments (TI) offers many products for total system solutions, includ- 
ing memory options, data acquisition, and analog inputloutput devices. This 
appendix describes a variety of devices that interface directly to the TMS320 
DSPs in rapidly expanding applications. 

Major topics discussed in this appendix are listed below. 

Topic Page 



Multimedia Applications 

F.1 Multimedia Applications 

Multimedia integrates different media through a centralized computer. These 
media can be visual or audio and can be input to or output from the central 
computer via a number of technologies. The technologies can be digital-based 
or analog-based (such as audio or video tape recorders). The integration and 
interaction of media enhance the transfer of information and can accommo- 
date both analysis of problems and synthesis of solutions. 

Figure F-1 shows both the central role of the multimedia computer and the 
multimedia system's ability to integrate the various media to optimize informa- 
tion flow and processing. 

Figure F- 1. System Block Diagram 

1 T  
Music Input 

(MIDI) > Slides and Printing 

F.1.1 System Design Considerations 

Multimedia systems can include various grades of audio and video quality. The 
most popular video standard currently used (VGA) covers 640 x 480 pixels 
with 1, 2, 4, and 8-bit memory-mapped color. Also, 24-bit true color is sup- 
ported, and 1024 x 768 (beyond VGA) resolution has emerged. There are two 
grades of audio. The lower grade accommodates 11.25-kHz sampling for 8-bit 
monaural systems, while the higher grade accommodates 44.1 -kHz sampling 
for 16-bit stereo. 

Audio specifications include a musical instrument digital interface (MIDI) with 
compression capability, which is based on keystroke encoding, and an input1 
output port with a three-disc voice synthesizer. In the media control area, video 
disc, CD audio, and CD ROM player interfaces are included. Figure F-2 
shows a multimedia subsystem. 
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TheTLC32047 wide-band analog interface circuit (AIC) is well suited for multi- 
media applications because it features wide-band audio and up to 25-kHz 
sampling rates. The TLC32047 is a complete analog-to-digital and digital-to- 
analog interface system for the TMS320 DSPs. The nominal bandwidths of the 
filters accommodate 11.4 kHz, and this bandwidth is programmable. The 
application circuit shown in Figure F-2 handles both speech encoding and 
modem communication functions, which are associated with multimedia appli- 
cations. 

Figure F-2. Multimedia Speech Encoding and Modem Communication 
VOCODER (Speech Analysis) 
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9600-bps Modem (V.32 bis) 
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Controller il 
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Figure F-3 shows the interfacing of the TMS320C25 DSP to the TLC32047 
AIC, which constitutes a building block of the 9600-bpsV.32 bis modem shown 
in Figure F-2. 

Figure F-3. TMS320C25 to TLC3204 7 lnterface 
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F.1.2 Multimedia-Related Devices 
As shown in Table F-1 and Table F-2, TI provides a complete array of analog 
and graphics interface devices. These devices support the TMS320 DSPs for 
complete multimedia solutions. 

Table F- 1, Data Converter ICs 
- -- 

Device Descrlptlon 

- - -  

Resolution conversion 
110 (Bits) CLK Rate Appllcatlon 

-- - 

TLC320AC01 Analog interface (5 V only) Serial 14 43.2 kHz Portable modem and 
speech, multimedia 

TLC32047 Analog interface Serial 14 25 kHz Speech, modem, and 
(1 1.4 kHz BW) (AIC) multimedia 

TLC32046 Analog interface (AIC) Serial 14 25 kHz Speech and modems 

TLC32044 Analog interface (A1 C) Serial 14 19.2 kHz Speech and modems 

TLC32040 Analog interface (AIC) Serial 14 19.2 kHz Speech and modems 

TLC3407516 Video palette Parallel Triple 8 135 MHz Graphics 

TLC34058 Video palette 

TLC5502/3 Flash ADC 

TLC5602 Video DAC 

TLC5501 Flash ADC 

TLC5601 Video DAC 

TLC1550/1 ADC 

Parallel Triple 8 135 MHz Graphics 

Parallel 8 20 MHz Video 

Parallel 8 20 MHz Video 

Parallel 6 20 MHz Video 

Parallel 6 20 MHz Video 

Parallel 10 150 kHz Servo ctrl / speech 

TLC32071 Analog interface (AIC) Parallel 8 1 MHz Servo ctrl / disk drive 

TMS5701314 Dual audio DAC t digital Serial 1611 8 32, 37.8, Digital audio 
filter 44.1, 48 kHz 

- - -  - - - 

Table F-2. Switched-Capacitor Filter ICs 
Device Function Order Roll-Off Power Out Power Down 

TLC2470 Differential audio filter amplifier 4 5 kHz 500 mW Yes 

TLC2471 Differential audio filter amplifier 4 3.5 kHz 500mW Yes 

TLC10120 General-purpose dual filter 2 CLK + 50 NIA No 
CLK + 100 

TLC04114 Low pass, Butterworth filter 4 CLK + 50 NIA No 
CLK + 100 

For application assistance or additional information, please call TI Linear 
Applications at (21 4) 997-3772. 
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F.2 Telecommunications Applications 

The TI linear product line focuses on three primary telecommunications appli- 
cation areas: 

IJ Subscriber instruments (telephones, modems, etc.) 

includes the TCM508x DTMF tone encoder family, the TCM15Ox tone 
ringer family, the TCM1520 ring detector, and the TCM3105 FSK modem. 

a Central office line card products 

Includes the TCM29Cxx combo (combined FCM filter plus codec) family, 
the TCM420x subscriber line control circuit family, and the TCM1030160 
line card transient protector. 

0 Personal communications products 

Includes the TCM320AC3x family of 5-volt voice-band audio processors 
(VBAP). 

TI continues to develop new telecom integrated circuits, such as a high-perfor- 
mance three-volt combo family for personal communications applications and 
an RF power amplifier family for hand-held and mobile cellular phones. 

System Design Considerations. The size, network complexity, and com- 
patibility requirements of telecommunications central office systems create 
demanding performance requirements. Combo voice-band filter performance 
is typically t 0.1 5 dB in the passband. Idle channel noise must be on the order 
of 15 dBrnc0. Gain tracking (S/Q) and distortion must also meet stringent re- 
quirements. The key parameters for a SLlC device are gain, longitudinal bal- 
ance, and return loss. 
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Figure F-4. Typical DSP/Combo Interface 

Codec 
IN 

Codec 
OUT 

The TCM320AC36 combo interfaces directly to the TMS320C25 serial port 
with a minimum of external components, as shown in Figure F-4. Half of hex 
inverter U3 and crystal Y1 form an oscillator that provides clock timing to the 
TCM320AC36. The synchronous four-bit counters U1 and U2 generate an 
8-kHz frame sync signal. DCLKR on the TCM320AC36 is connected to VDD, 
placing the combo in fixed data-rate mode. Two 20-kQ resistors connected to 
ANLGIN and MIC-GS set the gain of the analog input amplifier to 1. The timing 
is shown in Figure F-5. 
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Figure F-5.OSP/Combo lnterface Timing 
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Telecommunlcatlons-Related Devlces. Data sheets for the devices in 
Table F-3 on page F-8 are contained in the 1991 Telecommunications Cir- 
cuits Databook (literature number SCTDOOl 0). To request your copy, contact 
your nearest TI field sales office or call the Literature Response Center at (800) 
477-8924. 

Analog Interface Peripherals and Applications F-7 



Telecommunications Ao~lications 

Table F-3. Telecom Devices 

Coding Clock Rates 
Devlce Number Law M H Z ~  # of Bits Comments 

TCM29C13 A and P 1.544, 1.536, 2.048 8 C.O. and PBX line cards 

TCM29C14 A and p 1.544, 1.536, 2.048 8 Includes 8th-bit signal 

TCM29C16 CI 2.048 8 16-pin package 

8 16-pin package 

8 Low-cost DSP interface 

TCM29Ci 9 P 4.536 8 Low-cost DSP interface 

TCM29C23 A and p Up to 4.096 8 Extended frequency range 

TCM29C26 A and p Up to 4.096 8 Low-power TCM29C23 

TCM320AC36 CI and Linear Up to 4.096 8 and 13 Single voltage (t5) VBAP 

TCM320AC37 A and Linear Up to 4.096 8 and 13 Single voltage (t5) VBAP 

TCM320AC38 p and Linear Up to 4.096 8 and 13 Single voltage ( 4 )  GSM 

TCM320AC39 A and Linear Up to 4.096 8 and 13 Single voltage (t5) GSM 

1.544, 1.536,2.048 8 National Semiconductor 
second source 

1.544, 1.536,2.048 8 National Semiconductor 
second source 

TLC320AC01 Linear 43.2 kHz 14 5-volt-only analog interface 

TLC32040/1 Linear Up to 19.2-kHz sampling 14 For high-dynamic linearity 

TLC3204415 Linear Up to 19.2-kHz sampling 14 For high-dynamic linearity 

TLC32046 Linear Up to 25-kHz sampling 14 For high-dynamic linearity 

TLC32047 Linear Up to 25-kHz sampling 14 For high-dynamic linearity 

Translent Suppressor 

TCM 1 030 Transient suppressor for SLIC-based line card (30 A max) 

TCM1060 Transient suppressor for SLIC-based line card (60 A max) 

7 Unless otherwise noted 
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Table F 4  is a list of switched-capacitor filter ICs. 

Table F-4. Switched-Capacitor Filter ICs 

Device Function Order Roll-Off Power Out Power Down - - . ~ -  

TLC2470 Differential audio filter amplifier 4 5 kHz 500 mW Yes 

TLC2471 Differential audio filter amplifier 4 3.5 kHz 500 mW Yes 

TLC10120 General-purpose dual filter 2 CLK+ 50 NIA No 
CLK + 100 

TLC04114 Low pass, Butterworth filter 4 CLK + 50 N/A No 
CLK + 100 

For further information on these telecommunications products, please call 
(21 4) 997-3772. 

Figure F-6 and Figure F-7 show telecom applications. 

Figure F-6. General Telecom Applications 
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Figure F-7. Generic Telecom Applications 
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F.3 Dedicated Speech Synthesis Applications 

For dedicated speech synthesis applications, TI offers a family of dedicated 
speech synthesizer chips. This speech technology has been used in a wide 
range of products, including games, toys, burglar alarms, fire alarms, autorno- 
biles, airplanes, answering machines, voice mail, industrial control machines, 
office machines, advertisements, novelty items, exercise machines, and 
learning aids. 

Dedicated speech synthesis chips are a good alternative for low-cost applica- 
tions. The speech synthesis technology provided by the dedicated chips is ei- 
ther linear-predictive coding (LPC) or continuously variable slope delta modu- 
lation (CVSD). Table F-5 shows the characteristics of the TI voice synthesiz- 
ers. 

Table F-5. TI Voice Synthesizers 

On-Chip 
Synthesis Memory External Data Rate 

Device Microprocessor Method I/O Pins (Bits) Memory (BItslSec) 

TSP50C4x &bit LPG10 20132 64K/128K VROM 1200-2400 

TSP50Cl x 8-bit LPG1 2 10 64W128K VROM 1200-2400 

TSP53C30 8-bit LPG10 20 NIA From host FP 1200-2400 

TSP50C20 8-bit LPG10 32 NIA EPROM 1200-2400 

TMS3477 NIA CVSD 2 None DRAM 16K32K 

In addition to the speech synthesizers, TI has low-cost memories that are ideal 
for use with these chips. TI can also be of assistance in developing and pro- 
cessing the speech data that is used in these speech synthesis systems. 
Table F-6 shows speech memory devices of different capabilities. Additional- 
ly, audio filters are outlined in Table F-7. 
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Table F-6. Speech Memories 

TSP6OCxx Famlly of Speech ROMs 

Famlly Slze No. of Pins Interface For use with: 
-- 

TSP60C18 256K 16 Parallel 4-bit TSP50Clx 

TSP60C19 256K 16 Serial TSP50C4x 

TSP60C80 1M 28 Serial TSP50C4x 

TSP60C81 1M 28 Parallel 4-bit TSP50Clx 

Table F-7. Switched-Capacitor Filter ICs 
Device Function Order Roll-Off Power Out Power Down 

TLC2470 Differential audio filter amplifier 4 5 kHz 500 mW Yes 

TLC2471 Differential audio filter amplifier 4 3.5 kHz 500 mW Yes 

TLC10120 General-purpose dual filter 

TLC04114 Low pass, Butterworth filter 

2 CLK+ 50 NIA 
CLK c 100 
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Table F-8 lists some of Tl's speech synthesis development tools. 

Table F-8. Speech Synthesis Development Tools 

Name Definition 

(a) Software 

EVM Code develo~ment tool 

(b) Speech 

SAB Speech audition board 

SD85000 PC-based speech analysis system 

(c) System 

SEB System emulator board 

SEB6OCxx System emulator boards for speech memories 

For further information, call Linear Applications at (21 4) 997-3772. 
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F.4 Servo ControlIDisk Drive Applications 

In the past, most servo control systems used only analog circuitry. However, 
the growth of digital signal processing (DSP) has made digital control theory 
a reality. Figure F-8 is a block diagram of a genericdigital control system using 
a DSP, along with an analog-to-digital converter (ADC) and a digital-to-analog 
converter (DAC) . 

Figure F-8. Generic Servo Control Loop 

In a DSP-based control system, the control algorithm is implemented via soft- 
ware. No component aging or temperature drift is associated with digital con- 
trol systems. Additionally, sophisticated algorithms can be implemented and 
easily modified to upgrade system performance. 

e(n) TMS1PO-Based 
Digital Controller 

System Design Considerations 

TMS320 DSPs have facilitated the development of high-speed digital servo 
control for disk drive and industrial control applications. In recent years, disk 
drives have increased storage capacity from 5 megabytes to over 1 gigabyte. 
This equates to a 23,900 percent growth in capacity. To accommodate these 
increasingly higher densities, the data on the servo platters, whether servo-po- 
sitioning or actual storage information, must be converted to digital electronic 
signals at increasingly closer points in relation to the platter pick-off point. The 
ADC must have increasingly higher conversion rates and greater resolution 
to accommodate the increasing bandwidth requirements of higher storage 
densities. In addition, the ADC conversion rates must increase to accommo- 
date the shorter data retrieval access time. 
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Figure F-9 is a block diagram of a disk drive control system. 

Figure F-9. Disk Drive Control System Block Diagram 
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Table F-9 lists analogldigital interface devices used for servo control. 

I 
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Table F-9. Control-Related Devices 

Function Devlce Blts Speed Channels Interface 

ADC TLC1550 

TLC1551 

TLC5502J3 

TLC0820 

TLC1225 

TLC1558 

TLC 1 543 

TLC1549 

DAC TLC7524 

TLC7628 

TLC5602 

AIC TLC32071 8 (ADC) 

50 ns (flash) 

1.5 ps 

21 ps 

9 MHz 

9 MHz 

30 MHz 

1 vs 
9 MHz 

1 (Diff.) 

8 

11 

(Dual) 

Parallel 

Parallel 

Parallel 

Parallel 

Parallel 

Parallel 

Serial 

Serial 

Parallel 

Parallel 

Parallel 

Parallel 

Figure F-10 shows the interfacing of the TMS320C14 and the TLC32071. 

Figure F-1 0. TMS320C 14-TLC32071 Interface 
f 
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TMS320C14 TLC32071 

For further information on these servo control products, please call TI Linear 
Applications at (21 4) 997-3772. 
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F.5 Modem Applications 

High-speed modems (9,600 bps and above) require a great deal of analog sig- 
nal processing in addition to digital signal processing. Designing both high- 
speed capabilities and slower fall-back modes poses significant engineering 
challenges. TI offers a number of analog front-end (AFE) circuits to support 
various high-speed modem standards. 

The TLC32040, TLC32044, TLC32046, TLC32047, and TLC320AC01 AlCs 
are especially suited for modem applications by the integration of an input mul- 
tiplexer, switched capacitor filters, high resolution 14-bit ADC and DAC, afour- 
mode serial port, and control and timing logic. These converters feature ad- 
justable parameters, such as filtering characteristics, sampling rates, gain se- 
lection, (sin x ) / ~  correction (TLC32044, TLC32046, and TLC32047 only), and 
phase adjustment. All of these parameters are software-programmable, mak- 
ing the AIC suitable for a variety of applications. Table F-10 has the descrip- 
tion and characteristics of these devices. 

Table F-10. Modem A FE Data Converters 

Device Description 
Resolution Conversion 

Yo (Bits) Rate 

TLC32040 Analog interface chip (AIC) Serial 14 19.2 kHz 

TLC32041 AIC without on-board VREF Serial 14 19.2 kHz 

TLC32044 Telephone speedlmodem AIC Serial 14 19.2 kHz 

TLC32045 Low-cost version of the TLC32044 Serial 14 19.2 kHz 

TLC32046 Wide-band AIC Serial 14 25 kHz 

TLC32047 AIC with 11.4-kHz BW Serial 14 25 kHz 

TLC320AC01 5-volt-only AIC Serial 14 43.2 kHz 

TCM29C18 Companding codeclfilter PCM 8 8 kHz 

TCM29C23 Companding codeclfilter PCM 8 16 kHz 

TCM29C26 Low-power codeclfilter PCM 8 16 kHz 

TCM320AC36 Single-supply codeclfilter PCM and 8 
Linear 

25 kHz 
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The AIC interfaces directly with serial-input TMS320 DSPs, which execute the 
modem's high-speed encoding and decoding algorithms. The TLC320C4x 
family performs level-shifting, filtering, and AJD and D/A data conversion. The 
DSP's software-programmable features provide the flexibility required for mo- 
dem operations and make it possible to modify and upgrade systems easily. 
Under DSP control, the AIC's sampling rates permit designers to include fall- 
back modes without additional analog hardware in most cases. Phase adjust- 
ments can be made in real time so that the AJD and D/A conversions can be 
synchronized with the upcoming signal. In addition, the chip has a built-in loop- 
back feature to support modem self-test requirements. 

For further information or application assistance, please call TI Linear Applica- 
tions at (21 4) 997-3772. 

Figure F-11 shows a V.32 bis modem implementation using the TMS320C25 
and a TLC320AC01. The upper TMS320C25 performs echo cancellation and 
transmit data functions, while the lower TMS320C25 performs receive data 
and timing recovery functions. The echo canceler simulates the telephone 
channel and generates an estimated echo of the transmit data signal. 

Figure F-11. High-Speed K32 Bis and Multistandard Modem With the TLC320AC01 AIC 
TLC320AC01 + 

ADC and DAC 

The TLC320AC01 performs the following functions: 

Upper TLC320AC01 DIA Path 

Converts the estimated echo, as computed by the upper TMS320C25, into 
an analog signal, which is subtracted from the receive signal 

0 Upper TLC320AC01 AJD Path 

Converts the residual echo to a digital signal for purposes of monitoring 
the residual echo and continuously training the echo canceler for optimum 
performance. The converted signal is sent to the upper TMS320C25. 
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Modem Applications 

Q Lower TLC320AC01 DIA Path 

Converts the upper TMS320C25 transmit output to an analog signal, per- 
forms a smoothing filter function, and drives the DAC 

Q Lower TLC320AC01 AID Path 

Converts the echo-free receive signal to a digital signal, which is sent to 
the lower TMS320C25 to be decoded 

Note: Modem Functions 

Figure F-11 is for illustration only. In reality, one singleTMS320C5x DSP can 
implement high-speed modem functions. 

1 I 
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F.6 Advanced Digital Electronics Applications for Consumers 

With the extensive use of the TMS320 DSPs in consumer electronics, much 
electromechanical control and signal processing can be done in the digital do- 
main. Digital systems generally require some form of analog interface, usually 
in the form of high-performance ADCs and DACs. Figure F-12 shows the gen- 
eral performance requirements for a variety of applications. 

Figure F-12. Applications Performance Requirements 
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Advanced Television System Design Considerations. Advanced 
Digital Television (ADTV) is a technology that uses DSP to enhance video and 
audio presentations and to reduce noise and ghosting. Because of these DSP 
techniques, a variety of features can be implemented, including frame store, 
picture-in-picture, improved sound quality, and zoom. The bandwidth require- 
ments remain at the existing six-MHz television allocation. From the intermedi- 
ate frequency (IF) output, the video signal is converted by an eight-bit video 
ADC. The digital output can be processed in the digital domain to provide noise 
reduction, interpolation or averaging for digitally increased sharpness, and 
higher quality audio. The DSP digital output is converted back to analog by a 
video DAC, as shown in Figure F-13. 
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Figure F- 13. Video Signal Processing Basic System 

Video casette recorders (VCRs), compact disc (CD) and digital audio tape 
(DAT) players, and personal computers (PCs) are a few of the products that 
have taken a major position in the marketplace in recent years. The audio 
channels for compact disc and DAT require 16-bit A/D resolution to meet the 
distortion and noise standards. See Figure F-14 for a block diagram of a typi- 
cal digital audio system. 
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Figure F-14. Typical Digital Audio Implementation 
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Advanced Digital Electronics Applications for Consumers 

The motion and motor control systems usually use 8- to 1 0-bit ADCs for the 
lower frequency servo loop. Tape or disk systems use motor or motion control 
for proper positioning of the record or playback heads. With the storage me- 
dium compressing data into an increasingly smaller physical size, the position- 
ing systems require more precision. 

The audio processing becomes more demanding as higher fidelity is required. 
Better fidelity translates into lower noise and distortion in the output signal. 

The TMS57013DW/57014DW one-bit DACs include an eight-times-over sam- 
pling digital filter designed for digital audio systems, such as compact disk 
players (CDPs), DATs, compact disks interactive (CDls), laser disk players 
(LDPs), digital amplifiers, and car stereos. They are also suitable for all sys- 
tems that include digital sound processing like TVs, VCRs, musical instru- 
ments, multimedia, etc. 

The converters have dual channels so that the right and left stereo signals can 
be transformed into analog signals with only one chip. There are some func- 
tions that allow the customers to select the conditions according to their appli- 
cations, such as muting, attenuation, de-emphasis, and zero data detection. 
These functions are controlled by external 16-bit serial data from a controller 
like a microcomputer. 

The TMS5703DW/57014DW adopt 129-tap finite impulse response (FIR) filter 
and third-order A Z modulation to get-75-dB stop band attenuation and 96-dB 
signal noise ratio (SNR). The output is pulse width modulation (PWM) wave, 
which facilitates analog signals through a low-pass filter. 

Table F-11 lists TI products for analog interfacing to digital systems. 
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Table F- 1 1. Audio/Wdeo Analog/Digital Interface Devices 

Functlon Devlce Bits S ~ e e d  Channels Interface 

Dual audio DAC + digital filter TMS5701314 1611 8 32, 37.8, 2 Serial 
44.1, 48 kHz 

Analog interface TLC32071 
A/D 8 2 CIS 8 Parallel 
DIA 8 15 ps 1 Parallel 

TLC1225 12 12 ps 1 Parallel 

N D  TLC1550 10 6 CIS 1 Parallel 

Video DIA TLC5602 8 50 ns 1 Parallel 

Video D/A TL5602 8 50 ns 1 Parallel 

Triple video DIA TL5632 8 16 ns 3 Parallel 

Triple flash N D  TLC5703 8 70 ns 3 Parallel 

Flash N D  TLC5503 8 100 ns 1 Parallel 

Flash N D  TLC5502 8 50 ns 1 Parallel 

For further information or application assistance, please call TI Linear Applica- 
tions at (21 4) 997-3772. 
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Boot Loader Source Code 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C31BOOT - TMS320C31 BOOT LOADER PROGRAM 

* (C) COPYRIGHT TEXAS INSTRUMENTS INC., 1990 
* 
* NOTE: 1. AFTER DEVICE RESET, THE PROGRAM IS SET TO WAIT FOR 

THE EXTERNAL INTERRUPTS. THE FUNCTION SELECTION OF 
* THE EXTERNAL INTERRUPTS IS AS FOLLOWS: 
* 
* INTERRUPT PIN I FUNCTION 
* I 
* 0 I EPROM boot loader from lOOOH 
* I 
* 1 I EPROM boot loader from 400000H 
* I 
* 2 I EPROM boot loader from FFFOOOH 
* I 
* 3 I Serial port 0 boot loader 
* 
* 
* 2 .  THE EPROM BOOT LOADER LOADS WORD, HALFWORD, OR BYTE- 
* WIDE PROGRAMS TO SPECIFIED LOCATIONS. THE 
* 8 LSBs OF FIRST MEMORY SPECIFY THE MEMORY WIDTH OF 
* THE EPROM. IF THE HALFWORD OR BYTE-WIDE PROGRAM IS 

SELECTED, THE LSBs ARE LOADED FIRST, FOLLOWED BY THE MSBs. 
* THE FOLLOWING WORD CONTAINS THE CONTROL WORD FOR 

THE LOCAL MEMORY REGISTER. THE PROGRAM BLOCKS FOLLOW. 
4 THE FIRST TWO WORDS OF EACH PROGRAM BLOCK CONTAIN 
* THE BLOCK SIZE AND MEMORY ADDRESS TO BE LOADED INTO. 
* WHEN THE ZERO BLOCK SIZE IS READ, THE PROGRAM BLOCK 
4‘ LOADING IS TERMINATED. THE PC WILL BRANCH TO THE 
* STARTING ADDRESS OF THE FIRST PROGRAM BLOCK. 
* 

3. IF SERIAL PORT 0 IS SELECTED FOR BOOT LOADING, THE 
* PROCESSOR WILL WAIT FOR THE INTERRUPT FROM THE 
* RECEIVE SERIAL PORT 0 AND PERFORM THE DOWNLOAD. 
* AS WITH THE EPROM LOADER, PROGRAMS CAN BE LOADED 
* INTO DIFFERENT MEMORY BLOCKS. THE FIRST TWO WORDS OF EACH 

PROGRAM BLOCK CONTAIN THE BLOCK SIZE AND MEMORY ADDRESS 
* TO BE LOADED INTO. WHEN THE ZERO BLOCK SIZE IS READ, 
* PROGRAM BLOCK LOADING IS TERMINATED. IN OTHER WORDS, 
* IN ORDER TO TERMINATE THE PROGRAM BLOCK LOADING, 

A ZERO HAS TO BE ADDED AT THE END OF THE PROGRAM BLOCK. 
* AFTER THE BOOT LOADING IS COMPLETED, THE PC WILL BRANCH 
* TO THE STARTING ADDRESS OF THE FIRST PROGRAM BLOCK. 
* 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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reset 
into 
int 1 
int2 
int3 
xintO 
rintO 

tint0 
tint1 
dint 

.global check 

.sect "vectors" 

.word check 

.word 809FClh 

.word 809FC2h 

.word 809FC3h 

.word 809FC4h 

.word 809FC5h 

.word 809FC6h 

.word 809FC7h 

.word 809FC8h 

.word 809FC9h 

.word 809FCAh 

.word 809FCBh 

.word 809FCCh 

.word 809FCDh 

.word 809FCEh 

.word 809FCFh 

.word 809FDOh 

.word 809FDlh 

.word 809FD2h 

.word 809FD3h 

.word 809FD4h 

.word 809FD5h 

.word 809FD6h 

.word 809FD7h 

.word 809FD8h 

.word 809FD9h 

.word 8 0 9FDAh 

.word 809FDBh 

.word 809FDCh 

.word 809FDDh 

.word 809FDEh 

.word 809FDFh 

.word 

.word 

.word 

.word . word 

.word 

.word 

.word 

.word 

.word 

.word 

Boot Loader Source Code 
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check: 

intloop 

LDI 4040h,ARO ; load peripheral mem. map 
LSH 9 ,ARO ; start addr. 808000h 
LDI 404Ch,SP ; initialize stack pointer to 
LSH 9,SP ; ram0 addr. 809800h 
LDI 0,RO ; set start address flag off 

TSTB 8, IF ; test for ext int3 
BN Z serial ; on int3 go to serial 

LDI 8,ARl ; load OOlOOOh / 2*9 -> AR1 
TSTB 1, IF ; test for into 
BN Z eprom-load ; branch to eprom-load if into = 1 

LDI 2000h,ARl ; load 400000h / 2*9 -> AR1 
TSTB 2, IF ; test for intl 
BN Z eprom-load ; branch to eprom-load if intl = 1 

LDI 7FF8h1AR1 ; load FFFOOOh / 2*9 -> AR1 
TSTB 4,IF ; test for int2 
BZ intloop ; if no intX go to intloop 

eprorn-load LSH 9,ARl ; eprom address = AR1 * 2*9 
LDI *ARl++(l),Rl ; load eprom mem. width 

LDI sub_w,AR3 ; full-word size subroutine 
; address -> AR3 

LSH 26,Rl ; test bit 5 of mem. width word 
BN load0 ; if '1' start PGM loading 

; (32 bits width) 
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NOP 
LDI 

jump last half word from mem. word 
half word size subroutine 
address -> AR3 
test bit 4 of mem. width word 
if '1' start PGM loading 
(16 bits width) 

LSH 
BN 

byte size subroutine address -> AR3 
jump last 2 bytes from mem. word 

LDI 
ADDI 

C ALLU load new word 
according to mem. width 
set primary bus control 

load new word according to 
mem. width 
set block size for repeat loop 
if 0 block size start PGM 

CALLU 

LDI 
CMPI 
B Z 
SUBI block size -1 

load new word according to 
mem. width 
set destination address 
test start address loaded flag 
load start address if flag off 
set start & dest. address flag on 
sub address with loop 

C ALLU 

LDI 
LDI 
LDIZ 
LDI 
SUBI 

load new word according to 
mem. width 
set dest. address flag off 
sub address without loop 
jump to load a new block 
when loop completed 

LDI 
ADDI 
BR 

. space 
serial words subroutine 
address -> AR3 
R1 = OOOOlllh 
set CLKRIDRIFSR as serial port pins 

serial LDI sub-s , AR3 i 

I 

lllh,Rl i 
RlI*+AR0(43h) ; 
OA30h1R2 
16,R2 i 
RZ1*+AR0(40h) ; 

I 

load2 I 

LDI 
ST1 
LDI 
LSH 
ST1 

R2 = A300000h 
set serial port global 
ctrl. register 
jump to load 1st block 

. space 
load-s i 
2Oh,IF 
sub-s i 
OFDFh, IF i 

PGM load loop loop-s 
sub-s 

RPTB 
TSTB 
BZ 
AND 

wait for receive buffer full 
reset interrupt flag 
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load-s 
end-s 

LDI *+AR0(4Ch),R1 
LDI R0,RO ; test load address flag 
BNN end-s 
ST1 Rl,*AR4++(1) ; store new word to dest. address 
RETSU ; return from subroutine 

loop-h RPTB 
sub-h LDI 

AND 
LDI 
LSH 
OR 
LDI 
BNN 
ST1 
RETSU 

load-h 
end-h 

load-h ; PGM load loop 
*ARl++(l),Rl ; load LSB half word 
OFFFFh, R1 
*ARl++(l),R2 ; load MSB half word 
16,R2 
R2 ,R1 ; R1 = a new 32-bit word 
RO , RO ; test load address flag 
end-h 
Rl,*AR4++(1) ; store new word to dest. address 

; return from subroutine 

loop-w 
sub-w 

load-w 
end-w 

loop-b 
sub-b 

load-b 
end-b 

RPTB load-w ; PGM load loop 
LD I *ARl++(l),Rl ; read a new 32-bit word 
LDI RO , RO ; test load address flag 
BNN end-w 
ST1 Rl,*AR4++(1) ; store new word to dest. address 
RETSU ; return from subroutine 

RPTB 
LDI 
AND 
LDI 
AND 
LSH 
OR 
LDI 
AND 
LSH 
OR 
LDI 

OR 
LDI 
BNN 
ST1 
RETSU 

load-b 
*ARl++(l),Rl 
OFFh,Rl 
*ARl++(l),R2 
OFFh,R2 
8,R2 
R2, R1 
*ARl++(l),R2 
OFFh, R2 
16,R2 
R2, R1 
*ARl++(l),R2 
LSH 24 ,R2 
R2,Rl 
RO , RO 
end-b 
Rl,*AR4++(1) 

; PGM load loop 

; load 1st byte ( LSB ) 

; load 2nd byte 

; load 3rd byte 
; load 4th byte ( MSB ) 

; R1 = a new 32-bit word 
; test load address flag 

; store new word to dest. address 
; return from subroutine 



12-pin emulator connector, dimensions 12-45 
12-pin header, MPSD 12-39 to 12-40 

A-law 
compression 11 -56 
expansion 11 -57 

A/D converter interface 12-1 9 to 12-22 
A/D inputloutput system 1 2-32 to 12-35 
abbreviations 10-1 4 to 10-1 5 
ABSF and STF instructions 

(parallel) 10-23 to 10-24 
ABSF instruction 10-22 
ABSl and ST1 instructions (parallel) 10-27 to 10-28 
ABSl instruction 10-25 to 10-26 
absolute value of floating-point instruction 10-22 
absolute value of integer instruction 10-25 
adaptive filters 11 -67 
ADC F-23 
add floating-point instruction 10-32 

3-operand instruction 10-33 
add integer instruction 10-37 

3-operand instruction 10-38 
add integer with carry instruction 10-29 

3-operand instruction 10-30 
ADDC instruction 10-29 
ADDC3 instruction 10-30 to 10-31 
ADDF instruction 10-32 
ADDF3 and MPYF3 instructions 

(parallel) 10-1 19 to 10-1 21 
ADDF3 and STF instructions 

(parallel) 10-35 to 10-36 
ADDF3 instruction 10-33 to 10-34 
ADD1 instruction 10-37 

ADD13 and MPY13 instructions 
(parallel) 10-1 30 to 10-1 32 

ADD13 and ST1 instructions 
(parallel) 10-40 to 10-41 

ADD13 instruction 10-38 to 10-39 
addition example 11 -39 
address space segmentation 12-1 1 
addressing 5-1 to 5-34 

bit-reversed 5-29 to 5-30 
FFT algorithms 5-29 to 5-30 

circular 5-24 to 5-28 
algorithm 5-26 
buffer 5-24 to 5-28 
operation 5-27 

modes 
conditional branch 2- 16, 5-23 
general 5- 19 to 5-20 
groups 5- 19 to 5-23 
long-immediate 2- 16 
parallel 2- 16, 5-2 1 to 5-22 
three-operand 2- 16, 5-20 to 5-2 1 

types 5-2 to 5-1 8 
direct 5-4 
indirect 5-5 to 5- 16 
long-immediate 5- 17 
PC-relative 5- 1 7 to 5- 18 
register 5-3 
short-immediate 5- 16 to 5- 17 
used in addressing modes 5-2 to 5- 18 

ADTV F-20 
advanced interface design 12-1 
algorithm partitioning D-4 
analog interface circuit (AIC) 12-32 to 12-35 
analog interface peripherals and applications 

F-1 to F-24 
dedicated speech synthesis F-11 to F-13 
digital electronics for consumers F-20 to F-24 



analog interface peripherals and applications assembler/linker 8-2 . . 
(continued) 
modem F-17 to F-19 
multimedia F-2 to F-4 

multimedia-related devices F-4 
system design considerations F-2 to F-3 

servo controlldisk drive F-14 to F-16 
telecommunications F-5 to F-10 

AND instruction 1 0-42 
AND3 and ST1 instructions 

(parallel) 10-45 to 10-46 
AND3 instruction 10-43 to 10-44 
ANDing of the ready signals 12-1 0 
ANDN instruction 10-47 
ANDN3 instruction 10-48 to 10-49 
application-oriented operations 11 -53 to 11 -1 30 

adaptive filters 11 -67 
companding 11 -53 to 11 -57 
fast Fourier transforms (FFT) 11 -73 to 11 -1 25 
FIR filters 11 -58 to 11 -60 
llR filters 11 -60 to 11 -66 
lattice filters 11 -1 25 to 11 -1 31 
matrix-vector multiplication 11 -70 to 11 -73 

applications, general listing 1-1 0 
architecture 2-2 

block diagram 2-3 
introduction 2-2 
overview 2-1 

arithmetic 
logic unit (ALU) 2-6 
operations 11 -23 to 11 -52 

bit manipulation 11 -23 to 11 -24 
bit-reversed addressing 11 -25 to 11 -26 
block moves 11 -25 
extended-precision arithmetic 11 -38 to 11 -4 1 
floating-point format conversion 

11-42tO 11-52 
integer and floating-point division 

11-26t0 11-33 
square root 11 -34 

arithmetic shift instruction 10-50 
3-operand instruction 10-52 

ASH instruction 10-50 to 10-51 
ASH3 and ST1 instructions 

(parallel) 10-54 to 10-55 
ASH3 instruction 10-52 to 10-53 
assembler syntax expression, example 10-19 
assembler syntax, optional 10-1 6 to 10-1 8 

assembly language 
condition codes and flags 10-1 0 to 10-1 3 
individual instructions 10-1 4 to 10-21 0 

example 10- 19 to 10-2 1 
general information 10- 14 to 10- 18 
optional assembler syntaxes 10- 16 to 10- 18 
symbols and abbreviations 10- 14 to 10- 15 

instruction set 10-2 to 10-9 
illegal instructions 10-9 
interlocked operations instructions 10-6 
load-and-store instructions 10-2 
low-power control instructions 10-5 
parallel operations instructions 10-7 to 10-8 
program control instructions 10-5 
three-operand instructions 10-4 
two-operand instructions 10-3 

assembly language instructions 10-1 to 10-1 8 
ABSF and STF instructions (parallel) 

10-23 to 10-24 
ABSF instruction 10-22 
ABSl and ST1 instructions (parallel) 

10-27 to 10-28 
ABSl instruction 10-25 to 10-26 
absolute value of floating-point 10-22 
absolute value of integer 10-25 to 10-26 
add floating-point 10-32 

3-operand instruction 10-33 to 10-34 
add integer 10-37 

3-operand instruction 10-38 to 10-39 
add integer with carry 10-29 

3-operand instruction 10-30 to 10-31 
ADDC instruction 10-29 
ADDC3 instruction 10-30 to 10-31 
ADDF instruction 10-32 
ADDF3 and MPYF3 instructions (parallel) 

10-119 to 10-121 
ADDF3 and STF instructions (parallel) 

10-35 to 10-36 
ADDF3 instruction 10-33 to 10-34 
ADD1 instruction 10-37 
ADD13 and MPY13 instructions (parallel) 

10-1 30 to 10-1 32 
ADD13 and ST1 instructions (parallel) 

10-40 to 10-41 
ADD13 instruction 10-38 to 10-39 
AND instruction 10-42 
AND3 and ST1 instructions (parallel) 

10-45 to 10-46 
AND3 instruction 1 0-43 to 10-44 



Index 

assembly language instructions (continued) 
ANDN instruction 10-47 
ANDN3 instruction 10-48 to 10-49 
arithmetic shift 10-50 to 10-51 

3-operand instruction 10-52 to 10-53 
ASH instruction 10-50 to 10-51 
ASH3 and ST1 instructions (parallel) 

10-54 to 10-55 
ASH3 instruction 10-52 to 10-53 
Bcond instruction 10-56 to 10-57 
BcondD instruction 10-58 to 10-59 
bitwise exclusive-OR 10-206 

3-operand instruction 10-207 to 10-208 
bitwise logical-AND 10-42 

3-operand instruction 10-43 to 10-44 
bitwise logical-AND with complement 10-47 

3-operand instruction 10-48 to 10-49 
bi i ise logical-complement 10-1 48 
bitwise logical-OR 10- 151 

3-operand instruction 10- 152 to 10- 153 
BR instruction 10-60 
branch conditionally (delayed) 10-58 to 10-59 
branch conditionally (standard) 10-56 to 10-57 
branch unconditionally (delayed) 10-61 
branch unconditionally (standard) 10-60 
BRD instruction 10-61 
CALL instruction 10-62 
call subroutine 10-62 
call subroutine conditionally 10-63 to 10-64 
CALLcond instruction 10-63 to 10-64 
categories 

illegal 10-9 
interlocked operation 10-6 
load and store 10-2 
low-power control 10-5 
parallel operation 107 to 10-8 
program control 10-5 
three-operand 10-4 
two-operand 10-3 

CMPF instruction 10-65 
CMPF3 instruction 10-66 to 10-67 
CMPl instruction 10-68 
CMP13 instruction 10-69 to 10-70 
compare floating-point 10-65 

3-operand instruction 10-66 to 10-67 
compare integer 10-68 

3-operand instruction 10-69 to 10-70 
condition codes 10-1 0 to 10-1 3 
condition for execution 10-1 0 to 10-1 3 
DBcond instruction 10-71 to 10-72 

assembly language instructions (continued) 
DBcondD instruction 10-73 to 10-74 
decrement and branch conditionally 

delayed 10- 73 to 10- 74 
standard 10-71 to 10-72 

example instruction 10-1 9 to 10-21 
FIX and ST1 instructions (parallel) 

10-77 to 10-78 
FIX instruction 10-75 to 10-76 
FLOAT and STF instructions (parallel) 

10-80 to 1 0-81 
FLOAT instruction 10-79 
floating-point-to-integer conversion 

10-75 to 10-76 
IACK instruction 10-82 
IDLE instruction 10-83 
idle until interrupt 10-83 
IDLE2 instruction 1 0-84 to 10-85 
individual instructions 10-1 4 to 10-21 0 
integer to floating-point conversion 10-79 
interrupt acknowledge 10-82 
LDE instruction 10-86 
LDF and LDF instructions (parallel) 

10-91 to 10-92 
LDF and STF instructions (parallel) 

10-93 to 10-94 
LDF instruction 10-87 
LDFcond instruction 10-88 to 10-89 
LDFl instruction 10-90 
LDI and LDI instructions (parallel) 

10-100 to 10-101 
LDI and ST1 instructions (parallel) 

10-102 to 10-103 
LDI instruction 10-95 to 10-96 
LDlcond instruction 10-97 to 10-98 
LDll instruction 10-99 
LDM instruction 10-1 04 
LDP instruction 10-1 05 
load data page pointer 10-1 05 
load floating-point 10-87 

interlocked 10-90 
load floating-point conditionally 10-88 to 10-89 
load floating-point exponent 10-86 
load floating-point mantissa 10-1 04 
load integer 10-95 to 10-96 

interlocked 10-99 
load integer conditionally 10-97 to 10-98 
logical shift 10-1 07 to 10-1 08 

3-operand instruction 10- 109 to 10- 1 1 1 
LOPOWER instruction 10-1 06 



assembly language instructions (continued) 
low-power idle 10-84 to 10-85 
LSH instruction 10-1 07 to 10-1 08 
LSH3 and ST1 instructions (parallel) 

10-112 to 10-114 
LSH3 instruction 10-109 to 10-111 
MAXSPEED instruction 10-1 15 
MPYF instruction 10-1 16 
MPYF3 and ADDF3 instructions (parallel) 

10-119t0 10-121 
MPYF3 and STF instructions (parallel) 

10-122 to 10-123 
MPYF3 and SUBF3 instructions (parallel) 

10-124 to 10-126 
MPYF3 instruction 10-11 7 to 10-1 18 
MPYl instruction 10-1 27 
MPY13 and ADD13 instructions (parallel) 

10-130t0 10-132 
MPY13 and ST1 instructions (parallel) 

10-133 to 10-134 
MPY13 and SUB13 instructions (parallel) 

10-135 to 10-137 
MPY13 instruction 10-1 28 to 10-129 
multiply floating-point 10-1 16 

3-operand instruction 10- 11 7 to 10- 118 
multiply integer 3-operand instruction 

10-1 28 to 10-1 29 
multiply integer instruction 10-1 27 
negative floating-point 10-1 39 
negative integer 10-1 42 
negative integer with borrow 10-1 38 
NEGB instruction 10-1 38 
NEGF and STF instructions (parallel) 

10-1 40 to 10-1 41 
NEGF instruction 10-1 39 
NEGI and ST1 instructions (parallel) 

10-1 43 to 10-1 44 
NEGI instruction 10-1 42 
no operation 1 0-1 45 
NOP instruction 10-145 
NORM instruction 10-1 46 to 10-1 47 
normalize 10-1 46 to 10-1 47 
NOT and ST1 instructions (parallel) 

10-1 49 to 10-1 50 
NOT instruction 10-1 48 
OR instruction 10-1 51 
OR3 and ST1 instructions (parallel) 

10-1 54 to 10-1 55 
OR3 instruction 10-1 52 to 10-1 53 

assembly language instructions (continued) 
parallel ABSF and STF instructions 

10-23 to 10-24 
parallel ABSl and ST1 instructions 

10-27 to 10-28 
parallel ADDF3 and MPYF3 instructions 

10-119t0 10-121 
parallel ADDF3 and STF instructions 

1 0-35 to 10-36 
parallel ADD13 and MPY13 instructions 

10-1 30 to 10-1 32 
parallel ADD13 and ST1 instructions 

10-40 to 10-41 
parallel AND3 and ST1 instructions 

1 0-45 to 10-46 
parallel ASH3 and ST1 instructions 

10-54 to 10-55 
parallel FIX and ST1 instructions 10-77 to 10-78 
parallel FLOAT and STF instructions 

10-80 to 10-81 
parallel instructions advantages 11 -1 32 
parallel LDF and LDF instructions 

10-91 to 10-92 
parallel LDF and STF instructions 

10-93 to 10-94 
parallel LDI and LDI instructions 

10-1 00 to 10-1 01 
parallel LDI and ST1 instructions 

10-1 02 to 10-1 03 
parallel LSH3 and ST1 instructions 

10-112 to 10-114 
parallel MPYF3 and ADDF3 instructions 

10-119 to 10-121 
parallel MPYF3 and STF instructions 

10-1 22 to 10-1 23 
parallel MPYF3 and SUBF3 instructions 

10-1 24 to 10-1 26 
parallel MPY13 and ADD13 instructions 

1 0-1 30 to 10-1 32 
parallel MPY13 and ST1 instructions 

10-1 33 to 10-1 34 
parallel MPY13 and SUB13 instructions 

10-1 35 to 10-1 37 
parallel NEGF and STF instructions 

10-1 40 to 10-1 41 
parallel NEGI and ST1 instructions 

10-143 to 10-144 
parallel NOT and ST1 instructions 

10-1 49 to 10-1 50 



assembly language instructions (continued) 
parallel OR3 and ST1 

instructions 10-1 54 to 10-1 55 
parallel STF and ABSF instructions 

10-23 to 10-24 
parallel STF and ADDF3 instructions 

10-35 to 10-36 
parallel STF and FLOAT instructions 

10-80 to 10-81 
parallel STF and LDF instructions 

10-93 to 10-94 
parallel STF and MPYF3 instructions 

10-122 to 10-123 
parallel STF and NEGF instructions 

10-140 to 10-141 
parallel STF and STF instructions 

10-1 76 to 10-1 77, 10-1 80 to 10-1 81 
parallel STF and SUBF3 instructions 

10-1 90 to 10-1 91 
parallel ST1 and ABSl instructions 

10-27 to 1 0-28 
parallel ST1 and ADD13 instructions 

1 0-40 to 1 0-41 
parallel ST1 and AND3 instructions 

10-45 to 10-46 
parallel ST1 and ASH3 instructions 

1 0-54 to 1 0-55 
parallel ST1 and FIX instructions 10-77 to 10-78 
parallel ST1 and LDI instructions 

10-102 to 10-103 
parallel ST1 and LSH3 instructions 

10-112 to 10-114 
parallel ST1 and MPY13 instructions 

10-1 33 to 10-1 34 
parallel ST1 and NEGl instructions 

10-143 to 10-144 
parallel ST1 and NOT instructions 

10-1 49 to 10-1 50 
parallel ST1 and OR3 instructions 

10-1 54 to 10-1 55 
parallel ST1 and SUB13 instructions 

10-1 95 to 10-1 96 
parallel ST1 and XOR3 instructions 

10-209 to 10-21 0 
parallel SUBF3 and MPYF3 instructions 

10-1 24 to 10-1 26 
parallel SUBF3 and STF instructions 

10-1 90 to 10-1 91 
parallel SUB13 and MPY13 instructions 

10-1 35 to 10-1 37 

assembly language instructions (continued) 
parallel SUB13 and ST1 instructions 

10-195 to 10-196 
parallel XOR3 and ST1 instructions 

10-209 to 10-21 0 
POP floating-point 10-1 57 
POP integer instruction 10-1 56 
POPF instruction 10-1 57 
PUSH floating-point 10-1 59 
PUSH integer instruction 10-1 58 
PUSHF instruction 10-1 59 
register syntax 10-1 8 
repeat block 10-1 70 
repeat single 10-1 71 to 10-1 72 
restore clock to regular speed 10-1 15 
RETlcond instruction 10-1 60 to 10-1 61 
return from subroutine conditionally 10-1 62 
RETScond instruction 10- 162 
return from interrupt conditionally 

10-1 60 to 10-1 61 
RND instruction 10-163 to 10-164 
ROL instruction 10-1 65 
ROLC instruction 10-1 66 to 10-1 67 
ROR instruction 10-1 68 
RORC instruction 10-1 69 
rotate 

lei? 10-165 
lei? through carry 10- 166 to 10- 167 
right 10- 168 
right through carry 10- 169 

round floating-point 10-1 63 to 10-1 64 
RPTB instruction 10-1 70 
RPTS instruction 10-1 71 to 10-1 72 
SlGl instruction 10-1 73 
signal, interlocked 10-1 73 
software interrupt 10-200 
STF and ABSF instructions (parallel) 

10-23 to 10-24 
STF and ADDF3 instructions (parallel) 

10-35 to 10-36 
STF and FLOAT instructions (parallel) 

10-80 to 10-81 
STF and LDF instructions (parallel) 

10-93 to 10-94 
STF and MPYF3 instructions (parallel) 

10-122 to 10-123 
STF and NEGF instructions (parallel) 

10-1 40 to 10-1 41 
STF and STF instructions (parallel) 

10-1 76 to 10-1 77 

Indexd 
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assembly language instructions (continued) 
STF and SUBF3 instructions (parallel) 

10-190 to 10-191 
STF instruction 10-1 74 
STFl instruction 10-1 75 
ST1 and ABSl instructions (parallel) 

10-27 to 10-28 
ST1 and ADD13 instructions (parallel) 

1 0-40 to 1 0-41 
ST1 and AND3 instructions (parallel) 

10-45 to 10-46 
ST1 and ASH3 instructions (parallel) 

10-54 to 10-55 
ST1 and FIX instructions (parallel) 

10-77 to 10-78 
ST1 and LDI instructions (parallel) 

10-102 to 10-103 
ST1 and LSH3 instructions (parallel) 

10-112 to 10-114 
ST1 and MPY13 instructions (parallel) 

10-1 33 to 10-1 34 
ST1 and NEGl instructions (parallel) 

10-143 to 10-144 
ST1 and NOT instructions (parallel) 

10-1 49 to 10-1 50 
ST1 and OR3 instructions (parallel) 

10-154 to 10-155 
ST1 and ST1 instructions (parallel) 

10-1 80 to 10-1 81 
ST1 and SUB13 instructions (parallel) 

10-1 95 to 10-1 96 
ST1 and XOR3 instructions (parallel) 

10-209 to 10-21 0 
ST1 instruction 10-1 78 
STll instruction 10-1 79 
store floating-point 10-1 74 
store floating-point, interlocked 10-1 75 
store integer 10-1 78 
store integer, interlocked 10-1 79 
SUBB instruction 10-1 82 
SUBB3 instruction 10-1 83 to 10-1 84 
SUBC instruction 10-1 85 to 10-1 86 

integer division 11 -27 to 11 -30 
SUBF instruction 10-1 87 
SUBF3 and MPYF3 instructions (parallel) 

10-1 24 to 10-1 26 
SUBF3 and STF instructions (parallel) 

10-190 to 10-191 
SUBF3 instruction 10-1 88 to 10-1 89 
SUB1 instruction 10-1 92 

assembly language instructions (continued) 
SUB13 and MPY13 instructions (parallel) 

10-135 to 10-137 
SUB13 and ST1 instructions (parallel) 

10-195 to 10-196 
SUB13 instruction 10-193 to 10-194 
SUBRB instruction 10-1 97 
SUBRF instruction 10-198 
SUBRl instruction 10-1 99 
subtract floating-point 10-1 87 

3-operand instruction 10- 188 to 10- 189 
subtract integer 10-1 92 

3-operand instruction 10- 193 to 10- 194 
subtract integer conditionally 10-1 85 to 10-1 86 
subtract integer with borrow 10-1 82 

3-operand instruction 10- 183 to 10- 184 
subtract reverse floating-point 10-1 98 
subtract reverse integer 10-1 99 
subtract reverse integer with borrow 10-1 97 
SWI instruction 10-200 
symbols used to define 10-1 5 to 10-18 
syntax options 10-1 6 to 10-1 8 
test bit fields 10-203 

3-operand instruction 10-204 to 10-205 
trap conditionally 10-201 to 10-202 
TRAPcond instruction 10-201 to 10-202 
TSTB instruction 10-203 
TSTB3 instruction 10-204 to 10-205 
XOR instruction 10-206 
XOR3 and ST1 instructions (parallel) 

10-209 to 10-21 0 
XOR3 instruction 10-207 to 10-208 

auxiliary (ARO-AR7) registers 3-3 
auxiliary register ALUs 2-6 
auxiliary register arithmetic units (ARAUs) 5-5 

bank switching 
external bus 12-13 to 12-18 
programmable 7-30 to 7-32 

bank switching techniques 12-1 3 to 12-1 9 
Bcond instruction 10-56 to 10-57 
BcondD instruction 1 0-58 to 10-59 
biquad 11-60 
bit manipulation 11 -23 to 11 -24 
bit-reversed addressing 5-29 to 5-30, 11 -25 

FFT algorithms 5-29 to 5-30 
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bitwise exclusive-OR instruction 10-206 
3-operand instruction 10-207 

bitwise logical-complement instruction 10-1 48 
bitwise logical-AND instruction 10-42 

3-operand instruction 10-43 
b i i i se  logical-ANDN instruction 10-47 

3-operand instruction 10-48 
bi i ise logical-OR instruction 10-1 51 

3-operand instruction 10- 152 
block 

moves 11-25 
repeat 11 -1 8 
repeat modes 6-2 to 6-7 

control bits 6-3 
nested block repeats 6-7 
operation 6-3 to 6-4 
RC register value 6-6 to 6-7 
restrictions 6-6 
RPTB instruction 6-4 to 6-5 
RPTS instruction 6-5 

repeat registers (RC, RE, RS) 3-1 1, 6-2 
size (BK) register 3-4 

block diagram 
architectural 2-3 
functional 1-5 

boot loader 3-26 
external memory loading 3-30 
interrupt and trap vector mapping 3-33 
invoking 3-26 
mode selection 3-29 
operations 3-26 
precautions 3-35 
serial-port loading 3-33 

boot loader source code G-1 to G-6 
BR instruction 10-60 
branch conflicts 9-4 to 9-6 
branch unconditionally (delayed) instruction 

10-58, 10-61 
branch unconditionally (standard) instruction 

10-56, 10-60 
branches 6-8 

delayed 6-8 to 6-9, 11 -1 7 
BRD instruction 10-61 
breakdown of numbers B-9 to 8-10 
buffered signals 12-43 

MPSD 12-42 
buffering 12-41 

bulletin board service (BBS) B-5 to B-6 
bus operation 7-1 to 7-32 

external 2-26 
internal 2-22 

buses 
DMA 2-22 
program 2-22 

busy-waiting example 6-1 4 
byte-wide configured memory 3-31 

C (HLL) routines 11 -131 to 11-134 
C compiler 8-2 
'C30, memory maps 2-14 
'C30 power dissipation D-1 to D-32 

FFT assembly code D-30 to D-32 
photo of lDD for FFT D-29 
summary D-28 

'C3 1 
memory maps 2-1 5 
interrupt and trap memory maps 3-34 
reserved memory locations 2-31 

' C ~ X  DSPS 1-2 
cache 

architecture 3-21 to 3-23 
control bits 3-24 

cache clear bit (CC) 3-24 
cache enable bit (CE) 3-24 
cache freeze bit (C9 3-25 

hit 3-23 
instruction 2-12 
memory 2-1 I, 3-21 

algorithm 3-23 to 3-24 
architecture 3-2 1 
instruction 3-21 

miss 3-23 
segment 3-24 
word 3-23 

CALL instruction 6-1 0, 10-62 
call subroutine conditionally instruction 10-63 
call subroutine instruction 10-62 
CAUcond instruction 6-1 0, 10-63 to 10-64 
calls 6-1 0 to 6-1 1 
carry flag 1 0-1 2 
cautions x 
C-callable routines 11 -1 31 



central processing unit 2-4 
block diagram 2-5 
registers 2-8 

circular addressing 5-24 to 5-28 
algorithm 5-26 
circular buffer 5-24 
FIR filters 5-28, 11 -58 
operation 5-27 

clkout 8-21, 8-22 

CLKR pins 8-20 

CLKXpins 8-19 

clock mode 
timer interrupt 8-1 1 
timer pulse generator 8-8 to 8-9 

clock oscillator circuitry 12-27 to 12-29 
clocking of memory accesses 9-23 to 9-30 

data loads and stores 9-24 to 9-30 
program fetches 9-23 

CMPF instruction 10-65 
CMPF3 instruction 10-66 to 10-67 

CMPl instruction 10-68 
CMP13 instruction 10-69 to 10-70 

COMBO F-6 

companding 11 -53 to 11 -57 
compare floating-point instruction 10-65 

3-operand instruction 10-66 

compare integer instruction 10-68 
3-operand instruction 10-69 

compiler 8-2 

compression 
A-law 11-56 
U-law 11 -54 

computed GOT0 11 -22 

condition codes and flags 10-1 0 to 10-1 3 
condition flags 10-1 0 to 10-1 3 

floating-point underflow 10-1 1 
latched floating-point underflow 10-1 1 
latched overflow 10-1 1 
negative 10-1 1 
overflow 10-1 2 
zero 10-11 

conditional-branch addressing modes 2-16, 5-23 

conditional delayed branches 6-8 
compare instructions 6-8 
extended-precision registers 6-8 

connector 
dimensions, mechanical 12-43 to 12-45 
12-pin header 12-39 

consumer electronics F-20 to F-24 

context switching 11 -1 1 to 11 -1 5 
context restore for 'C3x 11 -1 4 to 11 -1 6 
context save for 'C3x 11 -1 2 to 1 1 -1 3 

control registers, external interface 7-2 to 7-5 
expansion bus 7-5 to 7-6 
primary bus 7-3 to 7-4 

conversion 
floating-point to integer 4-22 to 4-23 
integer to floating-point 4-24 
time to frequency domain (FFTs) 

11-73 to 11-125 

counter 
example 6-14 
register (timer) 8-3, 8-8 

CPU 2-4 to 2-10 
block diagram 2-5 
general 2-4 
interrupt 

DMA interaction 6-30 
latency 6-30 
processing cycle 6-29 

interrupt flag register (If) 3-9 
register file 2-7, 3-2 to 3-12 
registers 2-7 to 2-1 0, 3-2 to 3-1 2 

auxiliary (ARO-AR7) 2-8, 3-3 
block repeat (RS, RE) 3- 11 
block size (BK) 2-9, 3-4 
CPU/DMA interrupt enable (IE) 3-7 
data-page pointer (DP) 2-9, 3-4 
extended precision (RO-R7) 2-8, 3-3 
I/O flag (109 2-9,3-10 
index (IR 1, IRO) 2-9,3-4 
interrupt enable (IE) 2-9, 3-7 
interrupt flag (If) 2-9, 3-9 
list of 3-2 
program counter (PC) 2- 10, 2-22, 3- 11 
repeat count (RC) 2- 10,3- 11, 6-2 
repeat end address (RE) 2- 10, 3- 11, 6-2 
repeat start address (RS) 2- 10, 3- 11, 6-2 
reserved bits 3- 12 
status register (ST) 2-9, 3-4, 10- 11 
system stack pointer (SP) 2-9, 3-4 

transfer, with serial-port transmit polling 
8-38 to 8-39 



current calculations D-26 to D-27 
average 0-27 
data output D-26 to D-27 
processing D-26 

DIA converter interface 12-23 to 12-26 
DIA inputloutput system 12-32 to 12-35 
DAC F-23 
data 

converters F- 1 7 
loads and stores 9-24 to 9-29 

operations with parallel stores 9-27 to 9-29 
parallel multiplies and adds 9-29 
three-operand instructions 9-24 to 9-27 
two-operand instructions 9-24 

data formats 4-1 to 4-24 
floating-point formats 4-4 to 4-9 

conversion between formats 4-8 to 4-9 
extended-precision 4-6 to 4-7 
short 4-4 to 4-5 
single-precision 4-6 

floating-point to integer conversion 4-22 to 4-23 
floating-point addition and subtraction 

4-14t04-17 
floating-point multiplication 4-10 to 4-13 
integer formats 4-2 

short 4-2 
single-precision 4-2 to 4-3 

integer to floating-point conversion 4-24 
normalization using NORM 4-18 to 4-19 
rounding with RND 4-20 to 4-21 
unsigned-integer formats 4-3 

short 4-3 
single-precision 4-3 to 4-4 

data-page pointer (DP) register 2-9, 3-4 
data-rate timing operation 

fixed 8-30 
burst mode 8-30 
continuous mode 8-30 

variable 8-34 
burst mode 8-34 
continuous mode 8-35 

data-receive register 8-24 
data-transmit register 8-23, 8-27, 8-30, 8-32 
DBcond instruction 10-71 to 10-72 
DBcondD instruction 10-73 to 10-74 

debugger B-3 
decode unit 9-2 
decrement and branch conditionally (delayed) 

instruction 10-73 
decrement and branch conditionally (standard) 

instruction 10-71 
delayed branches 6-8 to 6-9, 11 -1 7 

advantages 1 1 -1 32 
conditional 6-8 
incorrectly placed 6-6 

dependencies D-2 to 0-3 
dequeue (stacks) 5-31,5-33 
development support B-1 to B-1 0 

tools B-2 to B-6 
bulletin board service B-5 to B-6 
code generation tools 6-2 

assemblerllinker 8-2 
C compiler 8-2 
compiler 8-2 
linker 8-2 

digital filter design package 8-2 
documentation B-5 
hotline B-5 
literature B-5 
seminars B-6 
system integration and debug 

tools B-3 to B-4 
debugger 8-3 
emulation porting kit (EPK) 8-4 to B-5 
emulator 8-3 
evaluation module (EVM) 8-3 
simulator 8-3 
XDS510 emulator 8-3 

technical training organization (7TO) work- 
shop B-6 

third patties 8-4 
workshops B-6 

device sufFixes 8-9 to 8-1 0 
diagnostic applications f 2-45 to 12-46 
digital audio F-21 
digital electronics F-20 to F-24 
digital filter design package 8-2 
dimensions, 12-pin emulator connector 

12-43 to 12-45 
direct 

addressing 5-4 
memory access 2-29 

disabled interrupts by branch 6-8 
displacements 5-5 
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dissipation, power D-1 to D-32 
algoriihm partitioning D-4 
dependencies D-2 to D-3 
FFT assembly code D-30 to D-32 
photo of IDD for FFT D-29 
power requirements D-2 
power supply current requirements D-2 
test setup description D-4 to D-5 

divide clock by 16 instruction 10-1 06 

division 11 -26 to 11 -33 
floating-point 11 -31 to 11 -33 

DMA 
architecture 2-29 
block moves 8-43, 11 -25 
buses 2-22 
channel 9-2 
channel synchronization 8-54 to 8-56 
controller 2-22, 8-43 to 8-64 

block diagram 2-29 
destination register 8-49 to 8-53 
destination/source address register 8-47 
general 2-29 
initialization reconfiguration 8-57 
interrupt 8-56 

CPU interaction 6-30 
processing cycle 6-29 

interrupt-enable register 8-47 to 8-49 
maximum transfer rates 8-53 
memory transfer 8-49 to 8-53 
memory-mapped registers 8-43 
programming hints 8-57 to 8-58 
setup and use examples 8-58 to 8-64 
source register 8-49 to 8-53 
synchronization of channels 8-54 to 8-56 
timing 

expansion bus destination 8-52 
on-chip destination 8-50 
primary bus destination 8-51 

transfer-counter register 8-47 

documentation v, vii, 8-5 

DR pins 8-20 

dry pack C-7 

dummy fetch 9-4 

DX pins 8-19 

electrical 
characteristics 

pinout and pin assignments 13-2 to 13-15 
signal descriptions 13- 16 to 13-24 
signal transition levels 13-29 
summary 0-28 

specifications 1 3-25 to 13-28 

emulation porting kit (EPK) 8-4 to 8-5 

emulator 8-3 
connection to target system 12-41 to 12-43 

MPSD mechanical dimensions 
12-43 to 12-45 

connector, mechanical dimensions 
12-43 to 12-45 

MPSD connector, 12-pin header 
12-39 to 12-40 

pod interface 12-40 
signal buffering 12-41 

emulator cable, signal timing, MPSD 
1 2-40 to 1 2-41 

emulator pod 
MPSD timings 12-41 
parameters 12-41 

evaluation module (EVM) 8-3 

event counters 8-2 

example circuit 12-1 3 to 12-46 

example instruction 10-1 9 to 10-21 

execute unit 9-2 

expansion 
A-law 11 -57 
bus. See expansion buses and external buses 
U-law 11-55 

expansion buses 7-2 
functional timing of operations 7-6 
I10 cycles 7-1 1 to 7-32 
programmable wait states 7-28 to 7-29 

expansion bus control register 7-5 to 7-6 

expansion bus interface 12-1 9 to 12-26 
AID converter 12-1 9 
DIA converter 12-23 
ready generation 12-9 to 12-1 3 

functions 12- 11 





floating point (continued) 
subtraction 4-14 to 4-1 7 

examples 4- 16 to 4- 18 
TMS320 to IEEE 11 -42 10 11 -52 
underflow 4-1 5 

floating-point-to-integer conversion instruction 
10-75 

floating-point underflow condition flag 10-1 1 
frame sync 8-32,8-33 
FSR pins 8-20 
FSX pins 8-19 
functional block diagram 1-5 

general addressing modes 2-1 6, 5-1 9 to 5-20 
general-purpose applications 1-4 
generation, TMS320C3x DSPs 1-2 
global memory 6-12, 6-15 
global-control register 8-2 

DMA 8-47 
register bits 8-45 to 8-47 

serial port 8-1 3,8-15 to 8-1 8 
bits summary 8- 15 to 8- 18 

timer 8-3 to 8-8 
register bits summary 8-4 to 8-6 

GOT0 11-22 

hardware applications 12-1 to 12-46 
expansion bus interface 12-1 9 to 12-26 

AlD converter 12- 19 to 12-22 
D/A converter 12-23 to 12-27 

low-power mode interrupt interface 
12-36 to 1 2-38 

primary bus interface 12-4 to 12-1 8 
bank switching techniques 12- 13 to 12- 19 
ready generation 12-9 to 12- 13 
zero-wait-state to static-RAMS 12-4 to 12-8 

serial-port interface 12-32 to 12-35 
system configuration options 12-2 to 12-3 

categories of interfaces 12-2 
typical block diagram 12-3 to 12-4 

system control functions 12-27 to 12-31 
clock oscillator circuitry 12-27 to 12-29 
reset signal generation 12-29 to 12-39 

hardware applications (continued) 
XDS target design 

considerations 12-39 to 12-46 
connections between emulator and target 

system 12-4 1 to 12-43 
diagnostic applications 12-45 to 1246 
mechanical dimensions for emulator 

connector 12-43 to 12-45 
MPSD emulator cable signal timing 

12-40 to 12-4 1 
MPSD emulator connector 12-39 to 12-40 

hardware control 6-1 
hardware reset 11 -2 
HDTV F-20 
header 

12-pin 12-39 
dimensions 

mechanical 12-43 to 12-45 
12-pin header 12-39 

signal descriptions, 12-pin header 12-39 
straight, unshrouded 12-39 

hints for assembly coding 11 -1 31 to 11 -1 32 
hotline 8-5 

I10 flags register ( l o g  3-10 
IACK instruction 6-29, 10-82 
IDLE instruction 10-83 
IDLE2 power management mode 6-36 to 6-37 
IDLE2 instruction 10-84 to 10-85, 12-36 to 12-38 
IE register bits summary, CPU register file 3-8 
IF register bits summary, CPU register file 3-9 
I10 flag register (IOF), CPU register file 3-10 
llR filters 11 -60 to 11 -66 
illegal instructions 10-9 
index (IR0,IRl) register 3-4 
indirect addressing 5-5 to 5-1 6 

ARAUS 5-5 
auxiliary register 5-5 
parallel addressing mode 5-22 
three-operand addressing mode 5-21 
with postdisplacement 5-1 0 
with postindex 5-1 4 to 5-17 
with predisplacement 5-8 to 5-1 0 
with preindex 5-12 to 5-14 
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individual instructions 10-1 4 to 10-21 0 
example 10-1 9 to 10-21 
symbols and abbreviations 10-1 4 to 10-1 5 

initialization 
DMA 8-57 
processor 1 1 -2 to 11 -5 

input clock 12-27 

instruction 
cache 3-21 
memory 

three-operand reads 9-24 to 9-27 
two-operand accesses 9-24 

opcodes A-1 to A 6  
register (IR) 2-22 

instruction cache 2-12 

instruction set 10-22 to 10-21 0 
categories 10-2 
example instruction 10-1 9 to 10-21 
summary 

alphabetical 2- 1 7 to 2-2 1 
function listing 10-2 to 10-9 
table 2- 1 7 to 2-2 1 

instructions 
assembly language 10-1 to 10-1 8 
illegal 10-9 
interlocked operations 10-6 
load-and-store 10-2 
low-power control operations 10-5 
parallel operations 10-7 to 10-8 
program control 10-5 
three-operand 10-4 
two-operand 10-3 

INTO-INT3 signals 3-1 8, 3-1 9,6-24 

integer 
division 11 -26, 11 -27 to 11 -30 
format 4-2 

short integer 4-2 
signed 4-2 
single-precision integer 4-2 
unsigned 4-3 

integer-to-floating-point conversion 4-24 
instruction 10-79 

interfaces 
expansion bus 2-26, 12-1 9 to 12-26 

A/D converter interface 12- 19 to 12-22 
D/A converter 12-23 to 12-26 

low-power-mode interrupt 12-36 to 12-38 

interfaces (continued) 
primary bus 2-26, 12-4 to 12-1 8 

See also primary bus interface 
bank switching techniques 12- 13 to 12- 19 
ready generation 12-9 to 12- 13 
zero-wait-state to static RAMS 124 to 12-8 

serial port 12-32 to 12-35 
system control, clock circuitry 12-27 to 12-29 
types 12-2 

interlocked operations 6-12 to 6-17 
busy-waiting loop 6-1 4 
external flag pins (XFO, XF1) 6-12 
instructions 6-1 3 
loads and stores 6-1 2 
multiprocessor counter 6-1 4 

interlocked operations instructions 10-6 

internal 
bus operation 2-22 
clock 8-10 

internal circuitry current requirement D-5 to D-8 
internal bus operations 0-6 to D-9 
internal operations D-5 
quiescent D-5 

internal interrupts 6-23 

interrupt 6-23 to 6-35 
acknowledge instruction 10-82 
enable (IE) register 3-7 

bits summary 3-8 
flag (IF) register 3-9 

bits summary 3-9 

interrupts 2-26 
considerations ('C3x) 6-31 to 6-34 
context switching 11-11 to 11-15 

context restore for 'C3x 1 1 - 14 to 11 - 16 
contextsavefor9C3x 11-12to11-13 

control bits 6-26 to 6-27 
global control register 6-27 
interrupt enable register (IE) 6-26 
interrupt flag register (IF) 6-26 
status register (ST) 6-26 

CPUIDMA interaction 6-30 
DMA 8-56 
flag register behavior 6-27 
latency (CPU) 6-29 to 6-30 
prioritization and control 

6-25 to 6-26,6-34 to 6-35, 11 -1 6 
processing 6-27 to 6-30 



interrupts (continued) 
serial port 8-29 

receive timer 8-29 
receiver 8-29 
transmit timer 8-29 
transmitter 8-29 

service routines 11 -9 
example 11 - 16 

timer 8-2, 8-11 
vectors 3-1 8, 3-1 9, 6-35 

table 6-23 to 6-25 
inverse 11 -31 to 11 -33 
inverse lattice filter 11 -1 26 
IOF register bits summary, CPU register file 3-11 
IOSTRB signal 7-2, 7-6 

key features 
'C30 1-6 
'C31 1-8 

latched floating-point overflow and underflow 
condition flags 10-1 1 

lattice filters 11 -1 25 to 11 -1 30 
LDE instruction 10-86 
LDF and LDF instructions (parallel) 10-91 to 10-92 
LDF and STF instructions (parallel) 10-93 to 10-94 
LDF instruction 10-87 
LDFcond instruction 10-88 to 10-89 
LDFl instruction 10-90 
LDI and LDI instructions (parallel) 

10-100 to 10-101 
LDI and ST1 instructions (parallel) 

10-102 to 10-103 
LDI instruction 10-95 to 10-96 
LDlcond instruction 10-97 to 10-98 
LDll instruction 10-99 
LDM instruction 10-1 04 
LDP instruction 10-1 05 
linker 8-2 
literature v to viii 8-5 
LMS algorithm filters 11 -67 
load data page pointer instruction 10-1 05 

load floating-point conditional instruction 10-88 
load floating-point exponent instruction 10-86 
load floating-point mantissa instruction 10-1 04 
load floating-point interlocked instruction 10-87 
load integer conditionally instruction 10-97 
load integer instruction 10-95 
load integer, interlocked instruction 10-99 
load-and-store instructions 10-2 
loader mode selection 3-30 
logical operations 11 -23 to 11 -34 

bit manipulation 11 -23 to 11 -24 
bit-reversed addressing 1 1 -25 to 11 -26 
block moves 11 -25 
extended-precision arithmetic 11 -38 to 11 -41 
floating-point format conversion 11 -42 to 11 -52 
integer and floating-point division 

11-26 to 11-33 
square root 11 -34 

logical shift instruction 10-1 07 
3-operand instruction 10-1 09 

long-immediate addressing 2-1 6, 5-1 7 
looping 11 -1 8 to 11 -21 

block repeat 11 -1 8 to 11 -20 
single-instruction repeat 11 -20 to 11 -26 

LOPOWER instruction 10-1 06 
LOPOWER mode 6-38 
low-power control instructions 10-5 
low-power idle instruction 10-84 
low-power-mode interrupt interface 12-36 to 12-38 
low-power-mode wakeup example 

11-133 to 11-134 
LRU cache update 3-21 
LSH instruction 10-1 07 to 10-1 08 
LSH3 and ST1 instructions (parallel) 

10-112 to 10-114 
LSH3 instruction 10-1 09 to 10-1 11 

matrix-vector multiplication 11 -70 
MAXSPEED instruction 10-1 1 5 
memory 2-11,3-13, 3-21 

accesses (pipeline) clocking 9-23 to 9-29 
addressing modes 2-16 
cache 2-1 1,3-21, 11 -1 32 
See also cache 

DMA memory transfer 8-49 to 8-53 



memory (continued) 
general organization 2-1 1 
global 6-12, 6-15 
maps 2-13,3-13,3-17 

'C30 2-1 4,3- 15 
'C31 2-15,3-16 

microcomputer mode 3-1 3 
microprocessor mode 3-1 3 
pipeline conflicts 9-1 0 to 9-1 7 

execute only 9- 13 to 9- 15 
hold everything 9- 15 to 9- 1 7 
program fetch incomplete 9- 12 
program wait 9- 10 to 9- 13 
resolving 9-21 to 9-22 

quick access 11 -1 32 
memory addressing 

modes 2-16 
parallel multiplies and adds 9-29 
three-operand instructions 9-24 
two-operand instructions 9-24 

memory maps 
'C30 2-14, 3-15 
'C31 2-15,3-16 

memory organization, block diagram 2-1 2 
microcomputer mode 2-1 3,3-14,3-17 
microcomputer/boot loader mode 3-1 7 
microprocessor mode 2-13,3-13,3-17 
modem applications F-17 to F-19 
MPSD emulator 

buffered transmission signals 12-42 
cable signal timing 12-40 to 12-41 
connector 12-39 to 1 2-40 
no signal buffering 12-41 

MPYF instruction 9-4, 10-1 16 
MPYF3 and ADDF3 instructions (parallel) 

10-119t0 10-121 
MPYF3 and STF instructions (parallel) 

10-122 to 10-123 
MPYF3 and SUBF3 Instructions (parallel) 

10-124 to 10-126 
MPYF3 instruction 10-1 17 to 10-1 18 
MPYl instruction 10-127 
MPY13 and ADD13 instructions (parallel) 

10-130 to 10-132 
MPY13 and ST1 instructions (parallel) 

10-133 to 10-134 
MPY13 and SUB13 instructions (parallel) 

10-1 35 to 10-1 37 

MPYl3 instruction 10-1 28 to 10-1 29 
MSTRB signal 7-2,7-6 
multimedia applications F-2 to F-4 

multimedia-related devices F-4 
system design considerations F-2 to F-3 

multiple processors 6-1 2 
multiplication 

floating-point 4-1 0 
examples 4- 12 to 4- 14 
flowchart 4-11 

matrix-vector 11 -70 to 11 -73 
multiplier 2-6 
multiply floating-point instruction 10-1 16 

3-operand instruction 10-1 17 
multiply integer instruction 1 0-1 27 

3-operand instruction 10-1 28 
multiprocessor support 6-1 2 

negative condition flag 10-11 
negative floating-point instruction 10-1 39 
negative integer instruction 10-142 
negative integer with borrow instruction 10-1 38 
NEGB instruction 10-1 38 
NEGF and STF instructions (parallel) 

10-140 to 10-141 
NEGF instruction 10-1 39 
NEGl and STI instructions (parallel) 

10-143 to 10-144 
NEGl instruction 10-142 
nested block repeats 6-7 
no operation instruction 10-1 45 
NOP instruction 10-1 45 
NORM instruction 4-1 8 to 4-1 9,10-146 to 10-1 47 
normalization, floating-point value 4-1 4, 

4-1 8 to 4-1 9 
normalize instruction 10-1 46 
NOT and STI instructions (parallel) 

10-149 to 10-150 
NOT instruction 10-1 48 

operations with parallel stores 9-27 to 9-29 
optional assembler syntax 10-1 6 to 10-1 8 
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options overview (system configuration) 12-2 
OR instruction 10-1 51 
OR3 and ST1 instructions (parallel) 

10-1 54 to 10-1 55 
OR3 instruction 10-1 52 to 10-1 53 
ordering information B-7 to B-10 
ORing of the ready signals 12-9 to 12-1 0 
output driver circuitry current 

requirement D-9 to D-17 
capacitive load dependence D-16 to D-18 
data dependency D-14 to D-16 
expansion bus D-13 to D-14 
primary bus D-10 to D-12 

output value formats 10-1 0 
overflow 4-1 5, 4-22 
overflow condition flag 10-1 2 

parallel ABSF and STF instructions 10-23 to 10-24 
parallel ABSl and ST1 instructions 10-27 to 10-28 
parallel ADDF3 and MPYF3 instructions 

10-119 to 10-121 
parallel ADDF3 and STF instructions 

10-35 to 10-36 
parallel ADD13 and MPY13 instructions 

10-1 30 to 10-1 32 
parallel ADD13 and ST1 instructions 10-40 to 10-41 
parallel addressing modes 2-16, 5-21 to 5-22 
parallel AND3 and ST1 instructions 10-45 to 10-46 
parallel ASH3 and ST1 instructions 10-54 to 10-55 
parallel bus 12-1 9 

See also expansion bus interface 

parallel FIX and ST1 instructions 10-77 to 10-78 
parallel FLOAT and STF instructions 

10-80 to 10-81 
parallel instruction set summary 2-23 to 2-24 
parallel instructions advantages 11 -1 32 
parallel LDF and LDF instructions 10-91 to 10-92 
parallel LDF and STF instructions 10-93 to 10-94 
parallel LDI and LDI instructions 10-1 00 to 10-1 01 
parallel LDI and ST1 instructions 10-1 02 to 10-1 03 
parallel LSH3 and ST1 instructions 

10-112 to 10-114 

parallel MPYF3 and ADDF3 instructions 
10-119 to 10-121 

parallel MPYF3 and STF instructions 
10-1 22 to 10-1 23 

parallel MPYF3 and SUBF3 instructions 
10-124 to 10-126 

parallel MPY13 and ADD13 instructions 
10-130t0 10-132 

parallel MPY13 and ST1 instructions 
10-1 33 to 10-1 34 

parallel MPY13 and SUB13 instructions 
10-1 35 to 10-1 37 

parallel multiplies and adds 9-29 
parallel NEGF and STF instructions 

10-1 40 to 10-1 41 
parallel NEGl and ST1 instructions 

10-1 43 to 10-1 44 
parallel NOT and ST1 instructions 

10-1 49 to 10-1 50 
parallel operations instructions 10-7 to 10-8 
parallel OR3 and ST1 instructions 

10-1 54 to 10-1 55 
parallel STF and ABSF instructions 10-23 to 10-24 
parallel STF and ADDF3 instructions 

10-35 to 10-36 
parallel STF and FLOAT instructions 

10-80 to 10-81 
parallel STF and LDF instructions 10-93 to 10-94 
parallel STF and MPYF3 instructions 

10-1 22 to 10-123 
parallel STF and NEGF instructions 

10-140 to 10-141 
parallel STF and STF instructions 

10-1 76 to 10-1 77 
parallel STF and SUBF3 instructions 

10-1 90 to 10-1 91 
parallel ST1 and ABSl instructions 10-27 to 10-28 
parallel ST1 and ADD13 instructions 10-40 to 10-41 
parallel ST1 and AND3 instructions 10-45 to 10-46 
parallel ST1 and ASH3 instructions 10-54 to 10-55 
parallel ST1 and FIX instructions 10-77 to 10-78 
parallel ST1 and LDl instructions 10-1 02 to 10-1 03 
parallel ST1 and LSH3 instructions 

10-112 to 10-114 
parallel ST1 and MPY13 instructions 

10-1 33 to 10-1 34 
parallel ST1 and NEGl instructions 

10-1 43 to 10-1 44 



parallel ST1 and NOT instructions 
10-1 49 to 10-1 50 

parallel ST1 and OR3 instructions 
10-1 54 to 10-1 55 

parallel ST1 and ST1 instructions 10-1 80 to 10-1 81 
parallel ST1 and SUB13 instructions 

10-195 to 10-196 
parallel ST1 and XOR3 instructions 

10-209 to 10-21 0 
parallel SUBF3 and MPYF3 instructions 

10-1 24 to 10-1 26 
parallel SUBF3 and STF instructions 

10-190 to 10-191 
parallel SUB13 and MPY13 instructions 

10-1 35 to 10-1 37 
parallel SUB13 and ST1 instructions 

10-195 to 10-196 
parallel XOR3 and ST1 instructions 

10-209 to 10-21 0 
part numbers B-7 to B-10 

breakdown of numbers B-9 to B-10 
device suffixes B-9 to B-1 0 
prefix designators B-8 to B-9 

part ordering B-1 to B-1 0 
PC-relative addressing 5-1 7 to 5-1 8 
period register (timer) 8-2, 8-8 
peripheral bus 2-27 

general architecture 2-27 
map 3-20 
peripherals on 

DMA controller 8-43 to 8-64 
serial port 2-28, 8- 13 to 8-42 
timers 2-28, 8-2 

register diagram 2-27 
peripheral modules, block diagram 2-27 
peripherals 2-27, 8-1 to 8-64 

DMA controller 8-43 to 8-64 
CPU/DMA interrupt enable register 

8-47 to 8-49 
destination- and source-address registers 

8-4 7 
global-control register 8-47 
hints for programming 8-57 to 8-58 
initialization/reconfiguration 8-57 
interrupts 8-56 
memory transfer operation 8-49 to 8-53 
programming examples 8-58 to 8-64 

peripherals, DMA controller (continued) 
synchronization of DMA channels 

8-54 to 8-56 
transfer-counter register 8-4 7 

serial ports 8-1 3 to 8-42 
data-transmit register 8-23 
data-receive register 8-24 
FSWDR/CLKR port control register 8-20 
FSWDWCLKX port control register 

8-18 to 8-19 
functional operation 8-30 to 8-36 
global-control register 8- 15 to 8- 18 
initialization/reconfiguration 8-36 
interrupt sources 8-29 
operation configurations 8-24 to 8-26 
receive/transmit timer control register 

8-21 to 8-22 
receivebransmit timer counter register 8-22 
receive/transmit timer period register 8-23 
timing 8-26 to 8-29 
TMS32OC3x interface examples 

8-36 to 8-46 
timers 8-2 to 8-1 2 

global-control register 8-3 to 8-8 
initialization/reconfiguration 8- 12 to 8- 15 
interrupts 8- 11 
operation modes 8- 10 to 8- 11 
period and counter registers 8-8 
pulse generation 8-8 to 8-9 

pin 
assignments 13-6, 13-7 
states at reset 6-1 9 

pinout and pin assignments 13-2 to 13-1 5 
PGA 13-2 to 1 3-7 
PQFP 

'C30 13-8 to 13- 11 
'C31 13-12 to 13-15 

pipeline 
conflicts 9-4 to 9-1 7 

avoiding 11 - 132 
delayed branches 9-6 
registers 9-7 to 9-9 
standard branches 9-4 to 9-6 

memory accesses clocking 9-23 to 9-30 
memory conflicts 9-1 0 to 9-1 7 

execute only 9- 13 to 9- 15 
hold everything 9- 15 to 9- 1 7 
program fetch incomplete 9- 12 
program wait 9- 10 to 9- 13 
resolving 9-21 to 9-22 



pipeline (continued) 
operation 9-1 to 9-30 

clocking of memory accesses 9-23 to 9-30 
data loads and stores 9-24 to 9-30 
program fetches 9-23 
branch conflicts 9-4 to 9-6 
memory conflicts 9-1 0 to 9-23 
register conflicts 9-7 to 9-9 

resolving memory conflicts 9-21 to 9-22 
resolving register conflicts 9-1 8 to 9-20 
structure 9-2 to 9-3 

pod interface, emulator 12-40 

POP floating-point instruction 10-1 57 

POP integer instruction 10-1 56 

POPF instruction 10-1 57 

power dissipation D-1 to D-32 
algorithm partitioning 0-4 
characteristics D-2 to D-4 
dependencies DQ to D-3 
FFT assembly code D-30 to D-32 
photo of IDD for FFT D-29 
power requirements D-2 
power supply current requirements D-2 
summary D-28 
test setup description D-4 to D-5 

power supply current requirements D-2 

PQFP reflow soldering precautions C-7 to C-8 

prefix designators B-8 to B-9 

primary bus 7-2 
See also external buses 
bus cycles 7-6 to 7-1 0 
control register 7-3 to 7-4 
functional timing of operations 7-6 
programmable bank switching 7-31 
programmable wait states 7-28 to 7-29 
ready generation, segmentation of address 

space 12-11 

primary bus interface 2-26, 12-4 to 12-1 8 
bank switching techniques 12-13 to 12-19 
ready generation 12-9 to 12-1 3 

ANDing of the ready signals 12- 10 
example circuit 12- 13 to 12-46 
external ready generation 12- 10 to 12- 11 
ORing of the ready signals 12-9 to 12- 10 
ready control logic 12- 11 to 12- 12 

zero-wait-state to static-RAMS 12-4 to 12-8 

processor initialization 11 -2 to 11 -5 

program 
buses 2-22 
counter (PC) 2-22,3-11 
fetches 9-23 
flow 6-1 

program control 11 -6 
computed GOTOs 11 -22 to 11 -23 
delayed branches 11 -1 7 
instructions 10-5 
interrupt service routines 11 -9 to 11 -1 6 

contextswitching 11-11 to 17-16 
example 1 1 - 16 
priority 11 - 16 

repeat modes 11 -1 8 to 11 -21 
block repeat 11 - 18 to 1 7-20 
single-instruction repeat 11 -20 to 11 -26 

software stack 11 -8 to 11 -9 
subroutines 11 -6 to 11 -8 

program fetch incomplete 9-1 2 

program flow control 6-1 to 6-38 
calls, traps, and returns 6-1 0 to 6-1 1 
delayed branches 6-8 to 6-9 
interlocked operations 6-1 2 to 6-1 7 
interrupts 6-23 to 6-35 

control bits 6-26 to 6-27 
CPU interrupt latency 6-30 
CPU/DMA interaction 6-30 
prioritization 6-25 to 6-26 
prioritization and control 6-34 to 6-36 
processing 6-27 to 6-30 
TMS320C30 considerations 6-32 to 6-34 
TMS320C3x considerations 6-3 1 to 6-32 
vector table 6-23 to 6-25 

repeat modes 6-2 to 6-7 
nested block repeats 6-7 to 6-23 
RC register value after repeat mode 

6-6 to 6-7 
repeat-mode control bits 6-3 
repeat-mode operation 6-3 to 6-4 
restrictions 6-6 
RPTB instruction 6-4 to 6-5 
RPTS instruction 6-5 

reset operation 6-1 8 to 6-22 
TMS320LC31 power management 

mode 6-36 to 6-38 
IDLE2 6-36 to 6-37 
LOPOWER 6-38 

program wait 9-1 0 to 9-1 3 



Index 

programmable 
bank switching 7-30 to 7-32 
wait states 7-28 to 7-29 

programming tips 11-131 to 11 -134 
C-callable routines 11 -1 31 
hints for assembly coding 11 -1 31 to 11 -1 32 
low-power mode wakeup example 

11-133 to 11-134 
pulse mode 

timer interrupt 8-1 1 
timer pulse generator 8-8 to 8-9 

PUSH floating-point instruction 10-1 59 
PUSH integer instruction 10-1 58 
PUSHF instruction 10-1 59 

quality C-1 to C-8 
queue (stacks) 5-31, 5-33 

RAM. See memory 
RC register value 6-6 to 6-7 
read unit 9-2 
ready control logic 12-1 1 to 12-1 2 
ready generation 12-9 to 1 2-1 3 

ANDing of the ready signals 12-1 0 
example circuit 12-1 3 to 12-46 
external ready generation 12-1 0 to 12-1 1 
functions 12-1 1 
ORing of the ready signals 12-9 to 12-1 0 
ready control logic 12-1 1 to 1 2-1 2 

receive shift register (RSR) 8-24 
receiveltransmit timer 

control register (serial port) 8-21 to 8-22 
counter register (serial port) 8-22 
period register (serial port) 8-23 

reflow soldering precautions C-7 to C-8 
register addressing 5-3 
register conflicts 9-7 to 9-9 
register file, CPU 2-7 
registers 

auxiliary (AR7-ARO) 3-3 
block size (BK) 2-9,3-4, 5-24 
buses 2-22 

registers (continued) 
conflicts (resolving) 9-1 8 to 9-20 
counter (timer) 8-8 
CPU interrupt flag (IF) 3-9 
CPUIDMA interrupt-enable (IE) 3-7, 

8-47 to 8-49 
data-page pointer (DP) 3-4 
destination, extended-precision registers 

(RO-R7) 6-8 
destination register (R7-RO) 

condition flags 10-20 
DMA 

destination and source address 8-47 
global-control register 8-47 
transfer-counter register 8-47 

extended precision ( R M 7 )  2-8,3-3 
FSFUDFUCLKR serial port control 8-20 
FSX/DX/CLKX serial port control 8-1 8 
functional groups 9-7 
I10 flag (IOF) 2-9,3-10 
index (IRO, IR1) 2-9,3-4 
interrupt enable (IE) 2-9 
interrupt flag (IF) 2-9,6-33 
maximum use 11 -1 32 
memory-mapped peripheral 3-20 
period (timer) 8-8 
program counter (PC) 2-10,2-22, 3-11 
receiveltransmit timer control 8-21 
repeat 

count (RC) 2- 10 
count address (RC) 6-2 
end address (RE) 2- 10, 6-2 
start address (RS) 2- 10, 6-2 

repeat mode operation 6-3 to 6-4 
reserved bits 3-1 2 
serial port 8-1 3 to 8-42 
serial port global-control 8-1 5 to 8-18 

bits summary 8- 15 to 8- 18 
status (ST) 3-4 
status register (ST) 2-9, 10-11 
system stack pointer (SP) 2-9, 3-4, 5-31 
timer global-control 8-3 

reliability C-1 to C-8 
stress testing CQ to C-6 

repeat 
count register (RC) 3-1 1, 6-2 
end address register (RE) 3-11, 6-2 
mode 6-2 to 6-7, 11 -1 8 to 11 -21 

block repeat 11 - 18 to 11 -20 



repeat, mode (continued) 
control bits 6-3 
maximum number of repeats 6-3 
nested block repeats 6-7 
operation 6-3 to 6-4 
RC register value 6-6 to 6-7 
restrictions 6-6 
RPTB instruction 6-4 to 6-5 
RPTS instruction 6-5 
single-instruction repeat 11 -20 to 11 -26 

start address register (RS) 3-11, 6-2 
repeat block instruction 10-1 70 
reserved area, unpredictable results 2-13 
reserved memory locations 

TMS320C3lI2-31 
reset 3-1 7 

operation 6-1 8 to 6-22 
pin states 6-1 9 
vectors 3-1 8, 3-1 9, 6-35 

RESET signal, generation 12-29 to 12-31 
resolving register conflicts 9-1 8 to 9-20 
restore clock to regular speed instruction 10-1 15 
RETlcond instruction 6-1 0, 10-1 60 to 10-1 61 
RETScond instruction 6-1 0, 10-1 62 
return from interrupt conditionally instruction 

10-1 60 
return from subroutine 6-1 0 
return from subroutine conditionally instruction 

10-1 62 
returns 6-1 0 to 6-11 

RINTO, RlNTl signals 3-1 8,3-19, 6-24 
RND instruction 10-163 to 10-164 
ROL instruction 10-1 65 
ROLC instruction 10-1 66 to 10-1 67 
ROM. See memory 
ROR instruction 10-1 68 
RORC instruction 10-1 69 
rotate left instruction 10-1 65 

rotate left through carry instruction 10-1 66 
rotate right instruction 10-1 68 

rotate right through carry instruction 10-169 
round floating-point instruction 10-1 63 
rounding of floating-point value 4-20 to 4-21 
RPTB instruction 6-4 to 6-5, 10-1 70 
RPTS instruction 6-5, 10-1 71 to 10-1 72 

scan paths, TBC emulation connections for 'C3x 
12-46 

segment start address (SSA) 3-21 
segmentation of address space 12-11 
semaphores 6-1 5 
seminars 8-6 

serial port 8-1 3 to 8-42 
clock 8-1 3, 8-27 

timer 8-37 
timing 8-26 to 8-29 

clock configurations 8-24 to 8-26 
continuous transmit and receive mode 8-28 
CPU transfer with transmit polling 8-38 to 8-39 
data-receive register 8-24 
data-transmit register 8-23 
fixed date-rate timing 8-30 

burst mode 8-30 
continuous mode 8-30 

frame sync 8-32, 8-33 
functional operation 8-30 to 8-36 
global-control register 8-1 3, 8-1 5 to 8-1 8 

bits summary 8- 15 to 8- 18 
handshake mode 8-1 6, 8-28 to 8-30, 8-37,8-38 

direct connect 8-29 
initialization reconfiguration 8-36 to 8-42 
interface 12-32 to 12-35 

handshake mode example 8-37 to 8-38 
serial N C  interface example 8-40 
serial N D  and DIA interface example 

8 4 0  to 8-46 
interrupt sources 8-29 

receive timer 8-29 
receiver 8-29 
transmit timer 8-29 
transmitter 8-29 

operation configurations 8-24 to 8-26 
port control register 

FSWDWCLKR 8-20 
FSWDFUCLKR bits summary 8-20 
FSX/DX/CLKX 8- 18 to 8- 19 
FSX/DX/CLKX bits summary 8- 19 

receivehransmit timer 
control register 8-2 1 to 8-22 
counter register 8-22 
period register 8-23 

registers 8-1 3, 8-42 
timing 8-26 to 8-29 



Index 

serial-port loading 3-33 
servo controlldisk drive applications F-14 to F-16 
servo control-related devices F-16 
short-immediate addressing 5-1 6 to 5-1 7 
SlGl instruction 10-1 73 
signal 

descriptions 13-1 6 to 13-24 
'C30 13-16t0 13-21 
'C3 1 13-22 to 13-29 

transition levels 13-29 
TTL-level inputs 13-29 to 13-30 
TTL-level outputs 13-29 

signal buffering for emulator connections 12-41 
signal descriptions 13-1 , 13-1 6 to 13-24 

pinout and pin assignments 13-2 to 13-1 5 
signal, interlocked instruction 10-1 73 

software applications, logical and arithmetic 
operations (continued) 

integer and floating-point division 
11-26t0 11-33 

square root 11 -34 
processor initialization 11 -2 
program control 11 -6 to 11 -22 

computed GOTOs 11 -22 to 11 -23 
delayed branches 11 - 1 7 
interrupt service routines 11 -9 to 11 - 16 
repeatmodes 11-l8to 11-27 
software stack 1 1-8 to 1 1-9 
subroutines 11 -6 to 11 -8 

programming tips 11 -1 31 to 11 -1 34 
C-callable routines 11 - 13 1 
hints for assembly coding 11 - 13 1 to 1 1 - 132 
low-power-mode wakeup example 

11-133 to 11-134 
signals 

12-pin header 12-39 
buffered 12-39, 12-43 
buffering for emulator connections 

12-41 to 12-43 
no buffering 12-41 
timing 12-40 to 12-41 

signed-precision, unsigned integer format 4-3 
simulator B-3 

single-instruction repeat 11 -20 to 11 -21 
single-precision 

floating-point format 4-6 
integer format 4-2 

1 6-bit-wide configured memory 3-32 
software applications 11 -1 to 11 -34 

application-oriented operations 11 -53 to 11 -67 
adaptive filters 1 1-67 
companding 11 -53 to 11 -57 
fast Fourier transforms (FFT) 

11-73 to 11-125 
FIR filters 11 -58 to 11 -60 
llR filters 1 7-60 to 11 -66 
lattice filters 11 - 125 to 1 1 - 13 1 
matrix-vector multiplication 17-70 to 11 -73 

logical and arithmetic operations 11 -23 to 11 -34 
bit manipulation 11 -23 to 11 -24 
bit-reversed addressing 11 -25 to 11-26 
block moves 11 -25 
extended-precision arithmetic 1 7-38 to 11 -4 1 
floating-point format conversion 

11-42 to 11-53 

software control 6-1 

software development tools B-2 to 8-6 
bulletin board service (BBS) 8-5 to B-6 
code generation tools 8-2 

assembler~linker 8-2 
C compiler 8-2 
compiler 8-2 
linker 8-2 

digital filter design package 8-2 
documentation 8-5 
hotline 8-5 
literature 8-5 
seminars B-6 
system integration and debug tools 8-3 to 8-4 

debugger 8-3 
emulation porting kit (EPW 8-4 to 8 -5  
emulator 8-3 
evaluation module (EVM) 8-3 
simulator 8-3 
XDS5 10 emulator 8-3 

technical training organization (TO) work- 
shop B-6 

third parties 8-4 
workshops B-6 

software interrupt instruction 10-200 

software stack 11 -8 to 11 -9 

soldering precautions C-7 to C-8 

speech 
encoding F-3 
memories F-12 
synthesis applications F-1 1 to F-13 



Index 

square root 11 -34 
stack, software 11 -8 to 11 -9 

pointer (SP) register 3-4, 5-31, 11 -8 to 11 -9 

stack management 5-31 to 5-34 
stack queues 5-33 
stacks 5-32 to 5-33 

growth 5-32 
implementation of high-to-low 5-32 
implementation of low-to-high 5-33 

standard branches 6-8 
status register (ST) 3-4, 10-1 1 

bits summary 3-6 
CPU register file 3-5 
global interrupt enable (GIE) bit 

'C30 interrupt considerations 6-32 
'C3x interrupt considerations 6-3 1 

STF and ABSF instructions (parallel) 
10-23 to 10-24 

STF and ADDF3 instructions (parallel) 
10-35 to 10-36 

STF and FLOAT instructions (parallel) 
10-80 to 10-81 

STF and LDF instructions (parallel) 10-93 to 10-94 
STF and MPYF3 instructions (parallel) 

1 0-1 22 to 1 0-1 23 
STF and NEGF instructions (parallel) 

10-1 40 to 10-1 41 
STF and STF instructions (parallel) 

10-176 to 10-177 
STF and SUBF3 instructions (parallel) 

10-1 90 to 10-1 91 
STF instruction 10-1 74 

STFl instruction 10-1 75 
ST1 and ABSl instructions (parallel) 10-27 to 10-28 
ST1 and ADD13 instructions (parallel) 

1 0-40 to 1 0-41 
ST1 and AND3 instructions (parallel) 

10-45 to 10-46 
ST1 and ASH3 instructions (parallel) 

10-54 to 10-55 
ST1 and FIX instructions (parallel) 10-77 to 10-78 
ST1 and LDI instructions (parallel) 

10-102 to 10-103 

ST1 and MPY13 instructions (parallel) 
10-133 to 10-134 

ST1 and NEGl instructions (parallel) 
10-143 to 10-144 

ST1 and NOT instructions (parallel) 
10-149 to 10-150 

ST1 and OR3 instructions (parallel) 
10-1 54 to 10-1 55 

ST1 and ST1 instructions (parallel) 
10-180 to 10-181 

ST1 and SUB13 instructions (parallel) 
10-1 95 to 10-1 96 

ST1 and XOR3 instructions (parallel) 
10-209 to 10-21 0 

ST1 instruction 10-1 78 
STll instruction 10-1 79 
store floating-point instruction 10-1 74 
store floating-point, interlocked instruction 10-1 75 
store integer instruction 10-1 78 
store integer, interlocked instruction 10-1 79 
STRB signal 7-2, 7-6 
stress testing C-2 to C-6 
style (manual) viii 
SUBB instruction 10-1 82 
SUBB3 instruction 10-1 83 to 10-1 84 
SUBC instruction 10-1 85 to 10-1 86 
SUBF instruction 10-1 87 
SUBF3 and MPYF3 instructions (parallel) 

10-1 24 to 10-1 26 
SUBF3 and STF instructions (parallel) 

10-1 90 to 10-1 91 
SUBF3 instruction 10-1 88 to 10-1 89 
SUB1 instruction 10-1 92 
SUB13 and MPY13 instructions (parallel) 

10-1 35 to 10-1 37 
SUB13 and ST1 instructions (parallel) 

10-195 to 10-196 
SUB13 instruction 10-1 93 to 10-1 94 
SUBRB instruction 10-1 97 
SUBRF instruction 10-1 98 
SUBRl instruction 10-199 
subroutines 

computed GOT0 11 -22 
context switching 11-11 to 11 -1 5 

ST1 and LSH3 instructions (parallel) 
10-112 to 10-114 

context restore for 'C3x 11 - 14 to 11 - 16 
context save for 'C3x 11 - 12 to 11 - 13 



subroutines (continued) 
interrupt priority 11 -1 6 to 11 -1 8 
program control 11 -6 to 11 -8 
runtime select 11 -20 to 11 -21 

subtract example 11 -39 
subtract floating-point instruction 10-1 87 

3-operand instruction 10-1 88 

subtract integer conditionally instruction 10-1 85 
subtract integer instruction 10-1 92 

3-operand instruction 10- 1 93 
subtract integer with borrow instruction 10-1 82 

Soperand instruction 10-1 83 
subtract reverse floating-point instruction 10-1 98 
subtract reverse integer instruction 10-1 99 
subtract reverse integer with borrow instruction 

10-1 97 
supply current calculations 0-26 to D-27 

average D-27 
data output D-26 to D-27 
experimental results D-27 
processing D-26 

SWI instruction 10-200 
symbols (used in manual) viii 
symbols and abbreviations 10-1 4 to 10-1 5 
synchronize two processors example 6-17 
syntaxes, assembler 10-1 6 to 10-1 8 
system 

control functions 12-27 to 12-31 
clock oscillator circuitry 12-27 to 12-29 
reset signal generation 12-29 to 12-3 1 

integration 2-32 
system configuration 

categories of interfaces 12-2 
options overview 12-2 to 12-3 
typical system block diagram 12-3 to 12-4 

system management 5-31 to 5-34 
system stack pointer 5-31 

target, system, connection 12-39 to 12-46 
target cable 12-39, 12-43 
target system, connection to emulator 

12-41 to 12-43 
technical assistance x 

technical training organization (TTO) workshop 
B-6 

telecommunications applications F-5 to F-10 
telecommunications-related devices F-7 
test bit fields instruction 10-203 

3-operand instruction 10-204 
test bus controller 12-45 
test load circuit 13-28 
test setup description D-4 to D-5 
third parties 8-4 
32-bit-wide configured memory 3-32 
three-operand addressing modes 2-16, 

5-20 to 5-21 
three-operand instructions 10-4 
timer 2-28 

control register 8-1 1 
receivebransmit 8-21 to 8-22 

counter register 8-8 
receivebransmit 8-22 

global-control register 8-3 to 8-8 
bits summary 8 4  to 8-6 

110 port configurations 8-1 0 
initialization/reconfiguration 8-1 2 to 8-1 5 
interrupts 8-1 1 
operation modes 8-1 0 to 8-11 
output generation examples 8-9 
period register 8-2, 8-8 

receivebransmit 8-23 
pulse generation 8-8 to 8-9 
registers 8-42 
timing figure 8-7 

timers 8-2 to 8-1 2 
counter 8-2 

timing 
external interface 7-6 to 7-27 

expansion bus l/O cycles 7- 1 1 to 7-32 
primary bus cycles 7-6 to 7- 10 

parameters 13-30 to 1 3-67 
changing the XF pin from an input to an 

output 13-44 
changing the XF pin from an output to an 

input 13-43 
data rate timing modes 13-55 to 13-60 
general-purpose l/O timing 13-63 to 13-65 

peripheral pin I10 modes 13-63 to 13-65 
peripheral pin I10 timing 1363 

interrupt acknowledge timing 13-54 
interrupt response timing 13-52 to 13-53 



timing, parameters (continued) 
loading when the XF pin is configured as an 

output 13-42 
memory readwrite timing 13-32 to 13-37 
reset timing 13-45 to 13-50 - 
SHZ pin timing 13-5 1 
timer pin timing 13-66 to 13-67 
XZICLKIN, H 1, and H3 13-30 to 13-3 1 
XFO and XF1 timing when executing LDFl or 

LDll 13-38 to 13-39 
XFO and XF1 timing when executing SlGl 

13-4 1 
XFO and XF1 timing when executing STFl or 

ST11 13-40 

TINTO, TINT1 signals 3-18, 3-19, 6-24 

TMS320 
DSP evolution 1-3 
family, general description 1-2 

TMS320C30 
FFT assembly code D-30 to D-32 
memory maps 2-1 4 
photo of IDD for FFT D-29 
power dissipation D-1 to D-32 
summary D-28 

TMS320C30 and TMS320C31 differences 2-30 
datalprogram bus differences 2-30 
development considerations 2-31 
effects on the IF and IE interrupt registers 2-31 
reserved memory locations 2-30 
serial-port differences 2-30 
user programldata ROM 2-31 

TMS320C31 
interrupt and trap memory maps 3-34 
memory maps 2-1 5 
reserved memory locations 2-31 

TMS320C3x block diagram 
architectural 2-3 
functional 1-5 

TMS320C3x family, general description 1-2 

TMS320C3x interfaces 12-1 

TMS320C3x 
serial-port interface examples 8-36 to 8-42 

TMS320LC31 power management 
modes 6-36 to 6-38 
IDLE2 6-36 to 6-37 
LOPOWER 6-38 

total supply current calculation D-18 to D-25 
average current D-22 
average current versus peak current D-22 
combining D-18 to D-19 
dependencies D-19 to D-20 
design equation D-21 to D-22 
peak current D-22 
thermal management considerations 

D-23 to D-25 
trap conditionally instruction 10-201 
trap vectors 3-1 8,3-19 
TRAPcond instruction 6-1 0, 10-201 to 10-202 
traps 3-17, 6-1 0 to 6-11 

interrupt considerations 
'C30 6-32 to 6-34 
' C ~ X  6-31 

TSTB instruction 10-203 
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