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Preface

Read This First

About This Manual

This user's guide serves as a reference book for the TMS320C3x generation
of digitalsignal processors, whichincludes the TMS320C30, TMS320C30-27,
TMS320C30-40, TMS320C31, TMS320C31-27, TMS320C31-40,
TMS320C31-50, TMS320LC31, and TMS320C31PQA. Throughoutthe book,
allreferencesto 'C3xrefer collectivelyto 'C30 and'C31, and the TMS320C30
and TMS320C31 refer to all speed variations unless an exceptionis noted.
This document provides information to assist managers and
hardware/software engineers in applicationdevelopment.

How to Use This Book

This revision of the TMS320C3x User's Guide incorporates the following
changes:

Updated reference list of publications

Improved description of repeat modes and interruptsin Chapter 6
Description of power management modes in Chapter 6

Improved description of serial ports and DMA coprocessor in Chapter 8
Description of power management instructionsin Chapter 10

Description of low-power-mode interruptinterface in Chapter 12

L0000 o0ooo

More detailed information on MPSD emulator interface, signal timings,
and connections between emulator and target system

O

Current timing specification in Chapter 13

TMS320C30PPM pinout, mechanical drawing, and timings in Chapter 13

O

[ Development support description and device/tool part numbers in
Appendix B

O Data sheet for current military versions of the *C3x in Appendix E
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Notational Conventions

Notational Conventions

This document uses the following conventions:

O Programlistings, program examples, interactive displays, filenames, and
symbol names are shown in a special font. Examples use a bold version
of the special font for emphasis. Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 field 6, 3
0014 0006 «even

O Insyntax descriptions, the instruction, command, or directive isin abold
face font and parameters are in italics. Portions of a syntax that are in
bold face should be entered as shown; portions of a syntax that are in
italics describe the type of information that should be entered. Here is an
example of a directive syntax:

.asect "sectionname", address

.asect is the directive. This directive has two parameters, indicated by
sectionnameand address. When you use .asect, the first parameter must
be an actual section name, enclosed in double quotes; the second
parameter must be an address.

(O Square brackets ( [ and ]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don't enter the bracketsthemselves. Here's an example of an instruction
that has an optional parameter:

LALK 16-bit constant, shiff]

The LALK instruction has two parameters. The first parameter, 16-bit
constant, is required. The second parameter, shift, is optional. As this
syntax shows, if you use the optional second parameter, you must
precede it with a comma.

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the
pathname (they are not optional).

O Braces( {and) )indicatealist. The symbol| (readas o) separatesitems
withinthe list. Here's an example of a list:

{*]*+]*}
This provides three choices: *, *+, or *-.

Unless the list is enclosed in square brackets, you must choose one item
from the list.
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[ Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this
directive is

.byte valuey [, ..., value,]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters separated
by commas.

Information About Cautions

This book may contain cautions and warnings.

A caution describes a situationthat could potentially cause your system
to behave unexpectedly.

Theinformationin a cautionis providedfor yourinformation. Please read each
caution carefully.

Related Documentation From Texas Instruments

The following books describe the TMS320 floating-pointdevices and related
support tools. To obtain a copy of any of these TI documents, call the Texas
Instruments Literature Response Center at (800) 477-8924. When ordering,
please identify the book by its title and literature number.

TMS320 Floating-Point DSP Assembly Language Tools User's Guide
(literature number SPRUQ35) describes the assembly language tools
(assembiler, linker, and other tools used to develop assembly language
code), assembler directives, macros, common object file format, and
symbolic debugging directives for the 'C3x and 'C4x generations of
devices.

TMS320 Floating-Point DSP Optimizing C Compiler User's Gulde
(literature number SPRU034) describes the TMS320 floating-point C
compiler. This C compiler accepts ANSI standard C source code and
produces TMS320 assembly language source code for the 'C3x and
'C4x generations of devices.
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References

TMS320C3x C Source Debugger (literature number SPRU053) describes
the *’C3x debugger for the emulator, evaluation module, and simulator.
Thisbook discusses various aspects of the debugger interface, including
window management, command entry, code execution, data
management, and breakpoints. It also includes a tutorial that introduces
basic debugger functionality.

TMS320Family Development SupportReferenceGuide (literature number
SPRUO011) describesthe '320 family of digital signal processors and the
various products that support it. This includes code-generation tools
(compilers, assemblers, linkers, etc.) and systemintegration and debug
tools (simulators, emulators, evaluation modules, etc.). This book also
lists related documentation, outlines seminars and the university
program, and provides factory repair and exchange information.

TMS320 Third-Party Support Reference Guide (literature number
SPRUO052) alphabetically lists over 100 third parties who supply various
products that serve the family of '320 digital signal processors, including
software and hardware development tools, speech recognition, image
processing, noise cancellation, modems, etc.

The publications in the following reference list contain useful information
regarding functions, operations, and applications of digital signal processing
(DSP). These books also provide other references to many useful technical
papers. The referencelistis organizedinto categories of general DSP, speech,
image processing, and digital control theory and is alphabetized by author.

[ General Dlgital Signal Processing:

Antoniou, Andreas, Digital Filters: Analysis and Design. New York, NY:
McGraw-HillCompany, Inc., 1979.

Bateman, A, and Yates, W,, Digital Signal ProcessingDesign. Salt Lake
City, Utah: W. H. Freeman and Company, 1990.

Brigham, E. Oran, The Fast Fourier Transform. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1974.

Burrus, C.S., and Parks, TW., DFT/FFT and ConvolutionAlgorithms. New
York, NY: John Wiley and Sons, Inc., 1984.

Chassaing, R., and Horning, D., Digital Signal Processing with the
TMS320C25. New York, NY: John Wiley and Sons, Inc., 1990.

Digital Signal Processing Applications with the TMS320 Family, Vol. L.
Texas Instruments, 1986; Prentice-Hall, Inc., 1987.
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Chapter 1

Introduction

The TMS320C3x generation of digital signal processors (DSPs) are high-per-
formance CMOS 32-bit floating-point devices in the TMS320 family of
single-chip digital signal processors. Since 1982, whenthe TMS32010 wasin-
troduced, the TMS320 family, with its powerful instruction sets, high-speed
number-crunchingcapabilities, and innovative architectures, has established
itself as the industry standard. It is ideal for DSP applications.

The 40-ns cycle time of the TMS320C31-50 allows it to execute operations at
a performance rate of up to 60 million floating-pointinstructions per second
(MFLOPS) and 30 million instructions per second (MIPS). This performance
was previously available only on a supercomputer. The generation's perform-
anceis furtherenhancedthroughits large on-chipmemories, concurrent direct
memory access (DMA) controller, and two external interface ports

This chapter presents the following major topics:
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General Description

1.1 General Description

The TMS320 family consists of five generations: TMS320C1x, TMS320C2x,
TMS320C3x, TMS320C4x, and TMS320C5x (see Figure 1-1). The expan-
sion includes enhancements of earlier generations and more powerful new
generations of DSPs.

The TMS320’s internalbusing and special DSP instructionset have the speed
and flexibility to execute at up to 50 MFLOPS. The TMS320 family optimizes
speed by implementing functions in hardware that other processors imple-
ment through software or microcode. This hardware-intensive approach pro-
vides power previously unavailable on a single chip.

The emphasis on total system cost has resultedin a less expensive processor
that can be designed into systems currently using costly bit-slice processors.
Also, cost/performance selection is provided by the different processorsin the
TMS320C3x generation:

3 TMS320C30: 60-ns, single-cycle execution-time

O TMS320C30-27:  Lower cost; 74-ns, single-cycle execution time

O TMS320C30-40: Higher speed; 50-ns, single-cycle execution time

O TMS8320C30-50: Highest speed; 40-ns, single-cycle execution time

O TMS320C31: Low cost; 60-ns, single-cycleexecution time

O TMS320C31-27:  Lower cost; 74-ns, single-cycle execution time

O TMS320C31-40: Low cost; 50-ns, single-cycle execution time

O TMS320C31PQA: Low cost; extended temperature; 60-ns, single-cycle
execution time

O TMS320C31-50: Highest speed; 40-ns, single-cycle execution time

O TMS320LC31: Low power; 60-ns, single-cycle execution time,

3.3-volt operation

All of these processors are described in this user's guide. Essentially, their
functionalityis the same. However, electrical and timing characteristics vary
(as described in Chapter 13); part numbering information is found in Section
B.2 on page B-7. Throughout this book, TMS320C3x is used to refer to the
TMS320C30 and TMS320C31 and all speed variations. TMS320C30 and
TMS8320C31 are usedto refer to all speed variants of those processorswhere
appropriate. Special references, such as TMS320C30-40, are used to note
specific exceptions.



General Description

Figure 1-1. TMS320 Device Evolution
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General Description

The TMS320C30 and TMS320C31 can perform parallel multiply and arithme-
tic logic unit (ALU) operationsoninteger or floating-point datain a single cycle.
The processor also possesses a general-purpose register file, a program
cache, dedicated auxiliary register arithmetic units (ARAU), internal dual-ac-
cess memories, one DMA channel supporting concurrent |/O, and a short ma-
chine-cycle time. High performanceand ease of use are products of those fea-
tures.

General-purpose applications are greatly enhanced by the large address
space, multiprocessor interface, internally and externally generated wait
states, two external interface ports (one on the TMS320C31), two timers, two
serial ports (one on the TMS320C31), and multiple interrupt structure. The
TMS320C3x supports a wide variety of system applicationsfrom host proces-
sor to dedicated coprocessor.

High-level languageis more easily implemented through a register-based ar-
chitecture, large address space, powerful addressingmodes, flexible instruc-
tion set, and well-supported floating-point arithmetic.



General Description

Figure 1-2 is a functional block diagram that shows the interrelationshipsbe-
tween the various TMS8320C3x key components.

Figure 1-2. TMS320C3x Block Diagram
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CPU DMA
RESET —¥ Integer/ integer/ Address Generat Bont
ress Generators
INT3-0 ——» Floating-Point | Floating-Point
IACK +—— Muttiplier ALU Control Registers
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TMS320C30 Key Features

1.2 TMS320C30 Key Features
Some key features of the TMS320C30 are listed below.

(.

O

O 00000 d

U0 0O D0 O

Performance
B TMS320C30 (33 MH2)

m  60-ns, single-cycleinstruction execution time
®  33.3 MFLOPS
®  16.7 MIPS

B TMS320C30-27

m  74-ns, single-cycle instruction execution time
O 27 MFLOPS
x 135MIPS

W TMS320C30-40

m  50-ns, single-cycleinstruction execution time
® 40 MFLOPS
= 20 MIPS

One 4K x 32-bit, single-cycle, dual-access, on-chip, read-only memory
(ROM) block

Two 1K x 32-hit, single-cycle, dual-access, on-chip, random access
memory (RAM) blocks

64- x 32-bit instruction cache

32-bit instruction and data words

24-bit addresses

40-132-bit floating-point/integer multiplier and ALU
32-bit barrel shifter

Eight extended-precision registers (accumulators)

Two address generators with eight auxiliary registers and two auxiliary
register arithmetic units

On-chip DMA controller for concurrent IO and CPU operation

Integer, floating-point, and logical operations

Two- and three-operand instructions

Parallel ALU and multiplier instructions in a single cycle



TMS320C30 Key Features

00000000 O

Block repeat capability

Zero-overheadloops with single-cycle branches
Conditional calls and returns

Interlocked instructions for multiprocessing support

Two 32-bit data buses (24- and 13-bit address)

Two serial ports to support 8/16124132-bittransfers

Two 32-bit timers

Two general-purpose external flags; four external interrupts

181-pin grid array (PGA) package; 1-um CMOS
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TMS320C31 Key Features

1.3 TMS320C31 Key Features

The TMS320C31 is a low-cost 32-bit DSP that offers the advantages of afloa-
ting-point processor and ease of use. The TMS320C31 devices are object-
code compatible with the TMS320C30. Aside from lacking a ROM block and
having a single serial port, the TMS320C31 is functionally equivalent to the
TMS320C30 but differs in its respective electrical and timing characteristics.
Chapter 13 describes these differences in detail.

Q

The TMS320C31 (33 MHz) features are identical to those of the
TMS320C30 device, except that the TMS320C31 uses a subset of the
TMS320C30’s standard peripheral and memory interfaces. This main-
tains the 33-MFLOPS performance of the TMS320C30's core CPU while
providing the cost advantages associated with 132-pin plastic quad flat
pack (PQFP) packaging.

The TMS320C31-27 is the slower speed version of the TMS320C31. The
TMS320C31-27 delivers 27 MFLOPS and runs at 27 MHz. The reduced
speed allows you to realize an immediate system cost reduction by using
slower off-chip memories and a lower-cost processor.

The TMS320C31-40 is a high-speed version of the TMS320C31. The
40-MHz TMS320C31-40 runs with 50-ns cycle time and offers up to 40
MFLOPS in performance.

The TMS320C31-50is the highest-speedversion of the TMS320C31. The
50-MHz TMS320C31-50 runs with 40-ns cycle time and offers up to 50
MFLOPS in performance.

The TMS320C31PQA (33 MHz) offers extended-temperature capabilities
to TMS320C31 performance. The TMS320C31PQA will operate at case
temperatures ranging from—40° C to +85° C, makingit a lower-costfloa-
ting-point solution for industrial and extended-temperature commercial
applications.

The TMS320LC31 is the low-power version of the TMS320C31. The
TMS320LC31 runs with 60-ns cycle time and offers up to 33 MFLOPS in
performance at 3.3-volt operation.

Some key features of the TMS320C31, including those which differentiate it
from the TMS320C30, are summarized as follows:

(.

Performance
TMS320C31 (PQVPQA)
60-ns, single-cycle instruction execution time

33.3 MFLOPS
16.7 MIPS (million instructions per second)



TMS320C31 Key Features

TMS320C31-27

74-ns, single-cycleinstruction executiontime
27 MFLOPS
13.5 MIPS

TMS320C31-40

50-ns, single-cycle instruction execution time
40 MFLOPS
20 MIPS

TMS320C31-50

40-ns, single-cycleinstruction executiontime
50 MFLOPS
25 MIPS

TMS320LC31

60-ns, single-cycleinstruction executiontime

33.3 MFLOPS

16.7 MIPS

Low-power, 3.3 volt operation

Two power-down nodes; 2-MHz operation and idle

O Flexible boot program loader
@ One serial port to support 8116-124-132-hit transfers

@ 132-pin PQFP package, .8 um CMOS
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1.4 Typical Applications

The TMS320 family's versatility, real-time performance, and multiple functions
offer flexible design approachesin a variety of applications, which are shown
in Table 1-1.

Table 1—-1.Typical Applications of the TMS320 Family

General-Purpose DSP

Graphics/Imaging

Inrtrumentatlon

Digital Filtering
Convolution

Correlation

Hilbert Transforms

Fast Fourier Transforms
Adaptive Filtering
Windowing

Waveform Generation

3-D Transformations Rendering
Robot Vision

Image Transmission/Compression
Pattern Recognition

Image Enhancement
Homomorphic Processing
Workstations

Animation/Digital Map

Spectrum Analysis
Function Generation
Pattern Matching
Seismic Processing
Transient Analysis
Digital Filtering
Phase-Locked Loops

Voice/Speech Control Mititary

Voice Mall Disk Control Secure Communications
Speech Vocoding Servo Control Radar Processing
Speech Recognition Robot Control Sonar Processing
Speaker Verification Laser Printer Control Image Processing
Speech Enhancement Engine Control Navigation

Speech Synthesis Motor Control Missile Guidance
Text-to-Speech Kalman Filtering Radio Frequency Modems
Neural Networks Sensor Fusion
Telecommunications Automotive

Echo Cancellation FAX Engine Control
ADPCM Transcoders Cellular Telephones Vibration Analysis
Digital PBXs Speaker Phones Antiskid Brakes

Line Repeaters Digital Speech Adaptive Ride Control
Channel Multiplexing Interpolation (DSI) Global Positioning
1200- to 19200-bps Modems X.25 Packet Switching Navigation

Adaptive Equalizers Video Conferencing Voice Commands
DTMF Encoding/Decoding Spread Spectrum Digital Radio

Data Encryption Communications Cellular Telephones
Consumer Industrial Medical

Radar Detectors Robotics Hearing Aids

Power Tools Numeric Control Patient Monitoring
Digital Audio/TV Security Access Ultrasound Equipment
Music Synthesizer Power Line Monitors Diagnostic Tools

Toys and Games Visual Inspection Prosthetics

Solid-state Answering
Machines

Lathe Control
CAM

Fetal Monitors
MR Imaging



Chapter 2

TMS320C3x Architecture

This chapter gives an architectural overview of the TMS320C3x processor.
Major areas of discussion are listed below.

Topic Page

21 Archtacural Ovariow
2.2 Central Processing Un




Architectural Overview

2.1 Architectural Overview

The TMS320C3x architecture responds to system demands that are based on
sophisticated arithmetic algorithms and that emphasize both hardware and
software solutions. High performanceis achieved through the precision and
wide dynamic range of the floating-point units, large on-chip memory, a high
degree of parallelism, and the direct memory access (DMA) controller.

Figure 2-1 is a block diagram of the TM8320C3x architecture.



Central Processing Unit (CPU)

Figure 2-2. Central Processing Unit (CPU)
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Central Processing Unit (CPU)

2.2.1  Muitlpller

The multiplier performs single-cycle multiplications on 24-bitintegerand 32-bit
floating-pointvalues. The TMS320C3x implementation of floating-point arith-
metic allows for floating-pointoperations at fixed-point speeds via a 50-ns in-
struction cycle and a high degree of parallelism. To gain even higher through-
put, you can use parallelinstructions to perform a multiply and ALU operation
in a single cycle.

When the multiplier performs floating-point multiplication, the inputs are 32-bit
floating-pointnumbers, and the result is a 40-bit floating-point number. When
the multiplier performsinteger multiplication, the input datais 24 bits and yields
a 32-bit result. Refer to Chapter 4 for detailed information on data formats and
floating-point operation.

2.2.2 Arithmetic Logic Unit (ALU)

The ALU performs single-cycle operations on 32-bit integer, 32-bitlogical, and
40-bitfloating-pointdata, including single-cycleinteger and floating-point con-
versions. Results of the ALU are always maintainedin 32-bit integer or 40-bit
floating-pointformats. The barrelshifter is used to shift upto 32 bits left or right
in a single cycle. Refer to Chapter 4 for detailed information on data formats
and floating-point operation.

Internal buses, CPU1/CPU2 and REG1/REG2, carry two operands from
memory and two operands from the register file, thus allowing parallel multi-
plies and adds/subtracts on four integer or floating-point operands in a single
cycle.

2.2.3 Auxiliary Register Arithmetic Units (ARAUS)

Two auxiliary register arithmetic units (ARAUO and ARAU1) can generate two
addresses in a single cycle. The ARAUs operate in parallel with the multiplier
and ALU. They support addressing with displacements, index registers (RO
and IR1), and circular and bit-reversed addressing. Refer to Chapter 5 for a
description of addressing modes.



Central Processing Unit (CPU)

2.2.4 CPU Register File

The TMS320C3x provides 28 registers in a multiport register file that is tightly
coupledto the CPU. All of these registers can be operated upon by the multipli-
er and ALU and can be usedas general-purposeregisters. However, theregis-
ters also have some special functions. For example, the eight extended-preci-
sion registers are especially suited for maintaining extended-precision float-
ing-pointresults. The eight auxiliary registers support a variety of indirect ad-
dressingmodes and canbe usedas general-purpose32-bitinteger andlogical
registers. The remaining registers provide such system functions as address-
ing, stack management, processor status, interrupts, and block repeat. Refer
to Chapter 6 for detailed information and examples of stack managementand
register usage.

The register names and assigned functions are listed in Table 2-1. Following
the table, the function of each register or group of registersis briefly described.
Refer to Chapter 3 for detailed information on each of the CPU registers.

TMS320C3x Architecture 2-7



Central Processing Unit (CPU)

Table 2-1.CPU Regigers

Register
Name Assigned Function

RO Extended-precisionregister 0
R1 Extended-precisionregister 1
R2 Extended-precisionregister 2
R3 Extended-precisionregister 3
R4 Extended-precisionregister 4
R5 Extended-precisionregister 5
R6 Extended-precisionregister 6
R7 Extended-precisionregister 7

ARO Auxiliary register 0

AR1 Auxiliary register 1

AR2 Auxiliary register 2

AR3 Auxiliary register 3

AR4 Auxiliary register 4

AR5 Auxiliary register 5

ARG Auxiliary register 6

AR7 Auxiliary register 7

DP Data-page pointer

IRO Index register 0

IR1 Index register 1

BK Block size

SP System stack pointer

ST Status register
IE CPU/DMA interrupt enable
IF CPU interrupt flags

IOF /O flags

RS Repeat start address

RE Repeat end address

RC Repeat counter

The extended-precisionregisters (R7-R0) are capable of storing and sup-
porting operations on 32-bitinteger and 40-bit floating-point numbers. Any in-
struction that assumes the operands are floating-point numbers uses bits
39-0. If the operands are either signed or unsigned integers, only bits 31-0
are used; bits 39-32 remain unchanged. This is true for all shift operations.
Refer to Chapter 4 for extended-precision register formats for floating-point
and integer numbers.

The 32-bit auxiliary registers (AR7-ARO) can be accessed by the CPU and
modified by the two ARAUs. The primary function of the auxiliary registers is
the generation of 24-bit addresses. They can also be used as loop counters
or as 32-bit general-purpose registers that can be modified by the multiplier
and ALU. Refer to Chapter 5 for detailed information and examples of the use
of auxiliary registers in addressing.



Central Processing Unit (CPU)

The data page pointer (DP) is a 32-bit register. The eight LSBs of the data
page pointer are used by the direct addressingmode as a pointer to the page
of data being addressed. Data pages are 64K words long, with a total of 256
pages.

The 32-bitindex registers (RO, IR1) contain the value used by the ARAU to
compute an indexed address. Refer to Chapter 5 for examples of the use of
index registers in addressing.

The ARAU uses the 32-bit block size register (BK) in circular addressing to
specify the data block size.

The system stack pointer (SP) is a 32-bit register that contains the address
of the top of the system stack. The SP always points to the last elementpushed
onto the stack. A push performs a preincrement of the system stack pointer;
a pop performs a postdecrement. The SP is manipulated by interrupts, traps,
calls, returns, and the PUSH and POP instructions. Refer to Section 5.5 for in-
formation about system stack management.

The status register (ST) containsglobalinformationrelatingto the state of the
CPU. Operations usually set the condition flags of the status register accord-
ing to whether the result is 0, negative, etc. This includes register load and
store operations as well as arithmetic and logical functions. When the status
registerisloaded, however, abit-for-bitreplacementis performedwiththe con-
tents of the source operand, regardless of the state of any bits in the source
operand. Therefore, following a load, the contents of the status register are
identical to the contents of the source operand. This allows the status register
to be easily saved and restored. See Table 3-2 for alist and definitions of the
status register bits.

The CPU/DMA interrupt enable register (IE) is a 32-bit register. The CPU
interrupt enable bits are in locations 10-0. The DMA interruptenable bits are
inlocations 26-16. A 1 ina CPU/DMA interrupt enableregister bitenablesthe
corresponding interrupt. A 0 disables the corresponding interrupt. Refer to
subsection 3.1.8 for bit definitions.

The CPU interrupt flag register (IF) is also a 32-bit register (see subsection
3.1.9). Alina CPU interrupt flag register bit indicates that the corresponding
interrupt is set. A 0 indicates that the corresponding interrupt is not set.

The /O flags register (JOF) controls the function of the dedicated external
pins, XFO and XF1. These pins may be configuredfor input or outputand may
also be read from and written to. See subsection 3.1.10 for detailed informa-
tion.

TMS320C3x Architecture 2-9



Central Processing Unit (CPU)

The repeat counter (RC) is a 32-bit register used to specify the number of
times a block of code is to be repeated when performinga block repeat. When
the processor is operatinginthe repeat mode, the 32-bitrepeat start address
register (RS) contains the starting address of the block of program memory
to be repeated, andthe 32-bitrepeat end address register (RE) contains the
ending address of the block to be repeated.

The program counter (PC) is a 32-bit register containing the address of the
next instruction to be fetched. Althoughthe PC is not part of the CPU register
file, itis aregister that can be modified by instructions that modify the program
flow.



Memory Organization

2.3 Memory Organization

The totalmemory space of the TMS320C3x is 16M (million) 32-bit words. Pro-
gram, data, and I/O space are contained within this 16M-word address space,
thus allowingtables, coefficients, program code, or datato be storedin either
RAM or ROM. In this way, memory usage is maximized and memory space
allocated as desired.

231 RAM, ROM, and Cache

Figure 2-3 shows how the memory is organized on the TMS320C3x. RAM
blocks 0 and 1 are each 1K x 32 bits. The ROM block, available only on the
TMS320C30, is 4K x 32 bits. Each RAM and ROM block is capable of support-
ing two CPU accesses in a single cycle. The separate program buses, data
buses, and DMA buses allow for parallel program fetches, data reads and
writes, and DMA operations. For example: the CPU can access two data val-
ues in one RAM block and perform an external program fetch in parallel with
the DMA loading another RAM block, all within a single cycle.

TMS320C3x Architecture 2-11
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Figure 2-3. Memory Organization
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A 64 x 32-bitinstructioncache is providedto store often-repeated sections of
code, thus greatly reducing the number of off-chip accesses necessary. This
allowsfor codeto be stored off-chipin slower, lower-costmemories. The exter-
nalbuses are alsofreedfor use by the DMA, external memoryfetches, or other
devices in the system.

Refer to Chapter 3 for detailed informationabout the memory and instruction
cache.
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232 Memory Maps

The memory map depends on whether the processor is running in micropro-
cessor mode (MC/MP or MCBL/MP = 0) or microcomputer mode (MC/MP or
MCBUMP = 1). The memory maps for these modes are similar (see
Figure 2-4 and Figure 2-5). Locations 800000h—801FFFh are mappedto the
expansion bus. When this region, available only on the TMS320C30, is ac-
cessed, MSTRB is active. Locations 802000h—803FFFh are reserved. Loca-
tions 804000h—805FFFh are mappedto the expansionbus. Whenthis region,
available only on the TMS320C30, is accessed, IOSTRB is active. Locations
806000h—807FFFh are reserved. All of the memory-mapped peripheral bus
registers are in lecations 808000h—8097FFh. In both modes, RAM block 0 is
located at addresses 809800h—809BFFh, and RAM block 1 is located at ad-
dresses 809C00h—809FFFh. Locations 80A000h—OFFFFFFh are accessed
over the external memory port (STRB active).

In microprocessor mode, the 4K on-chip ROM (TMS320C30) or boot loader
(TMS320C31) is not mapped into the TMS320C3x memory map. Locations
Oh—0BFh consist of interrupt vector, trap vector, and reserved locations, all of
which are accessed over the external memory port (STRB active). Locations
0COh—7FFFFFh are also accessed over the external memory port.

In microcomputer mode, the 4K on-chip ROM (TMS320C30) or boot loader
(TMS320C31) is mapped into locations Oh—OFFFh. There are 192 locations
(Oh—0BFh) within this block for interruptvectors, trap vectors, and a reserved
space (TMS320C30). Locations 1000h—7FFFFFh are accessed over the ex-
ternal memory port (STRB active).

Section 3.2 on page 3-13 describes the memory maps in greater detail and
providesthe peripheral bus map and vector locations for reset, interrupts, and
traps.
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Figure 2-4. TMS8320C30 Memory Maps
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Figure 2-5. TMS320C31 Memory Maps
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2.3.3 Memory Addressing Modes

The TMS320C3x supports a base set of general-purpose instructionsas well
as arithmetic-intensiveinstructionsthat are particularly suited for digital signal
processing and other numeric-intensive applications. Refer to Chapter 5 for
detailed information on addressing.

Five groups of addressingmodes are provided on the TMS320C3x. Six types
of addressing can be used within the groups, as shown in the following list:

O General addressing modes:

Register. The operandis a CPU register.
Shortimmediate. The operand is a 16-bit immediate value.
Direct. The operandis the contents of a 24-bit address.
B Indirect. An auxiliary register indicates the address of the operand.

O Three-operand addressing modes:

Register. Same as for general addressing mode.
Indirect. Same as for general addressing mode.

O Parallel addressing modes:

Register. The operand is an extended-precision register.
B Indirect. Same as for general addressing maode.

O Long-immediate addressing mode.
The Long-immediate operand is a 24-bit immediate value.

O Conditional branch addressing modes:

Register. Same as for general addressing mode.
PC-relative. A signed 16-bit displacement is added to the PC.
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Instruction Set Summary

Table 2-2 lists the TMS320C3x instruction set in alphabetical order. Each
table entry shows the instructionmnemonic, description, and operation. Refer
to Chapter 10 for a functional listing of the instructions and individual instruc-

tion descriptions.

Table 2-2. Instruction Set Summary

Mnemonic Deacrlptlon Operation
ABSF Absolute value of a floating-point number  |srel = Rn
ABSI Absolute value of an integer |sre} — Dreg
ADDC Add integers with carry src + Dreg + C — Dreg
ADDC3 Add integers with carry (3 operand) srcl + sre2 + C — Dreg
ADDF Add floating-point values src+ Rn— Rn
ADDF3 Add floating-point values (3 operand) srcl + sre2 = Rn
ADDI Add integers src + Dreg — Dreg
ADD13 Add integers (3 operand) srcl + sre2 + = Dreg
AND Bitwise logical AND Dreg AND src — Dreg
AND3 Bitwise logical AND (3 operand) srcl AND sre2 — Dreg
ANDN Bitwise logical AND with complement Dreg AND src — Dreg
ANDN3 Bitwise logical ANDN (3 operand) src1 AND sr¢é2 — Dreg
ASH Arithmetic shift If counta O:
I(Shifted Dreg left by count) — Dreg
Else:
(Shifted Dreg right by |count]) —» Dreg
ASH3 Arithmetic shift (3 operand) If count a O:
(Shifted sre left by count) — Dreg
Else:
(Shifted sre right by Jcount]) — Dreg
Bcond Branch conditionally (standard) If cond= true:
If Csrcis aregister, Csrc — PC
If Csrcis a value, Csrc + PC — PC
Else, PC+1— PC
BeondD Branch conditionally (delayed) If cond= true:
If Csrcis aregister, Csrc = PC
If Csrcis avalue, Csrc+ PC +3 — PC
Else, PC + 1~ PC
BR Branch unconditionally (standard) Value — PC
BRD Branch unconditionally (delayed) Value — PC
CALL Call subroutine PC+1—TOS
Value — PC
Legend: C carry bit Cstc  conditional-branch addressing modes
cond  condition code count  shift value (general addressingmodes)
Dreg  register address (any register) PC program counter
Rn register address (R7-RO) sre general addressing modes
srcl three-operandaddressing modes sre2 three-operand addressing modes
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Table 2-2. Instruction Set Summary (Continued)

Mnemonic Description Operation
CALLcond Call subroutine conditionally If cond = true:
PC +1— TOS
If Csrcis a register, Csrc = PC
If Csrcis a value, Csrc + PC — PC
Else, PC+ 1~ PC
CMPF Compare floating-point values Set flags on Rn - sre
CMPF3 Compare floating-point values Set flags on srcl - sre2
(3 operand)
CMPI Compare integers Set flags on Dreg - sre
CMPI3 Compare integers (3 operand) Set flags on srcl = src2
DBcond Decrement and branch conditionally ARn-1— ARn
(standard) If cond=true and ARn = 0O:
If Csrcis aregister, Csrc = PC
If Csrcis avalue, Csrc+ PC+1 — PC
Else, PC+1 — PC
DBcondD Decrement and branch conditionally ARn-1 - ARn
(delayed) If cond=true and ARn = 0:
If Csrcis aregister, Csrc — PC
If Csrcis a value, Csrc+ PC + 3 — PC
Else, PC+ 1 —PC
FIX Convert floating-point value to integer Fix (src) — Dreg
FLOAT Convert integer to floating-point value Float{src) = Rn
IACK Interrupt acknowledge Dummy read of src _
IACK toggled low, then high
IDLE Idie until interrupt PC+1—PC
idle until next interrupt
LDE Load floating-point exponent src{exponent) — Rn(exponent)
LDF Load floating-point value src — Rn
LDFecond Load floating-point value conditionally If cond = true, sr¢ = Rn
Else, Rnis not changed
LDFI Load floating-point value, interlocked Signalinterlocked operation sr¢ = Rn
LDI Load integer src — Dreg
LDicond Load integer conditionally If cond = true, sre — Dreg
Else, Dreg is not changed
Legend: ARn auxiliary register n (AR7-ARO Rn register address (R7 — RO)
Csre conditional-branch addressing modes sre general addressing modes
cond condition code srel three-operand addressing modes
Dreg register address (any register) src2 three-operand addressing modes
PC program counter TOS top of stack
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Table 2-2. Instruction Set Summary (Continued)

Mnemonic Description Operetion
L.DII Load integer, interlocked Signal interlocked operation src = Dreg
LDM Load floating-point mantissa src (mantissa) — Rn (mantissa)
LSH Logical shift If count = O:
(Dreg left-shifted by count) — Dreg
Else:
(Dreg right-shifted by |count]) — Dreg
LSH3 Logical shift (3-operand) If count z 0:
(src left-shifted by count) — Dreg
Else:
(srcright-shifted by jcount|) — Dreg
MPYF Multiply floating-point values src x Rn — Rn
MPYF3 Multiply floating-point value (3 operand) srcl x sre2 — Rn
MPY!I Multiply integers src x Dreg — Dreg
MPYI3 Multiply integers (3 operand) srcl x sre2 — Dreg
NEGB Negate integer with borrow 0-src-C— Dreg
NEGF Negate floating-point value 0-src— Rn
NEGI Negate integer Q- src— Dreg
NOP No operation Modify ARn if specified
NORM Normalize floating-point value Normalize (src) — Rn
NOT Bitwise logical complement src — Dreg
OR Bitwise logical OR Dreg OR src - Dreg
OR3 Bitwise logical OR (3 operand) srcl OR src2 — Dreg
POP Pop integer from stack *SP-- — Dreg
POPF Pop floating-point value from stack *$P—— — Rn
PUSH Push integer on stack Sreg — *++ SP
PUSHF Push floating-point value on stack Rn— *++sp
Legend: ARn auxiliary register n (AR7—-ARO) SP stack pointer
C carry bit Sreg register address (any register)
Dreg register address (any register) src general addressing modes
PC program counter srcl 3-operand addressing nodes
Rn register address (R7-RO) sre2 3-operand addressing modes
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Table 2-2.instruction Set Summary (Continued)

Mnemonic Description Operation
RETIcond Return from interrupt conditionally If cond = true or missing:
*S$P—— — PC
1— ST (GIE)
Else, continue
RETScond Return from subroutine conditionally If cond= true or missing:
*$P-— — PC
Else, continue
RND Round floating-point value Round (src) = Rn
ROL Rotate left Dreg rotated left 1 bit — Dreg
ROLC Rotate left through carry Dreg rotated left 1 bit through carry — Dreg
ROR Rotate right Dreg rotated right 1 bit — Dreg
RORC Rotate right through carry Dreg rotated right 1 bit through carry — Dreg
RPTB Repeat block of instructions src = RE
1— ST (RM)
Next PC =+ RS
RPTS Repeat single instruction src —~ RC
1 — ST (RM)
Next PC — RS
Next PC — RE
siaGl Signal, interlocked Signal interlocked operation
Wait for interlock acknowledge
Clear interlock
STF Store floating-point value Rn — Daddr
STFI Store floating-pointvalue, interlocked Rn — Daddr
Signal end of interlocked operation
STI Store integer Sreg — Daddr
STl Store integer, interlocked Sreg — Daddr
Signal end of interlocked operation
SUBB Subtract integers with borrow Dreg - src— C — Dreg
Legend: C carry bit RM repeat mode bit
cond condition code RS repeat start register
Daddr  destination memory address Rn register address (R7—-R0)
Dreg register address (any register) SP stack pointer
GIE global interrupt enable register ST status register
PC program counter Sreg register address (any register)
RC repeat counter register src general addressing modes
RE repeat interruptregister
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Table 2-2. Instruction Set Summary (Concluded)

Mnemonic  Description Operation
SuUBB3 Subtract integers with borrow (3 operand) src1 - src2 - C — Dreg
SUBC Subtract integers conditionally If Dreg— src = 0:
[(Dreg— sre) << 1}OR 1 — Dreg
Else, Dreg << 1 = Dreg
SUBF Subtract floating-point values Rn = src =+ Rn
SUBF3 Subtract floating-point values (3 operand) srcl = src2 - Rn
SuBI Subtract integers Dreg = src — Dreg
SUB13 Subtract integers (3 operand) srcl = src2 — Dreg
SUBRB Subtract reverse integer with borrow src = Dreg - C — Dreg
SUBRF Subtract reverse floating-point value src—=Rn -+ Rn
SUBRI Subtract reverse integer src— Dreg — Dreg
Swi Software interrupt Perform emulator interrupt sequence
TRAPcond  Trap conditionally If cond= true @ missing:
Next PC — * ++ SP
Trap vector N — PC
0 — ST (GIE)
Else, continue
TSTB Test bit fields Dreg AND src
TSTB3 Test bt fields (3 operand) src1 AND src2
XOR Biiise exclusive OR Dreg XOR sre — Dreg
XOR3 Biis e exclusive OR (3 operand) srcl XOR sre2 — Dreg
Legend: c carry bit R register address (R7-R0)
cond  condiioncode SP stack pointer
Dreg register address (any register) sr¢ general addressingmodes
GIE ddod interrupt enable register srel 3-operand addressing nodes
N any trap vector 0-27 src2 3-operand addressing modes
PC program counter ST status register
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2.5 Internal Bus Operation

Much of the TMS320C3x's high performanceis due to internalbusing and par-
allelism. The separate program buses (PADDR and PDATA), data buses
(DADDR1, DADDR2, and DDATA), and DMA buses (DMAADDR and
DMADATA) allow for parallel program fetches, data accesses, and DMA ac-
cesses. These buses connect all of the physical spaces (on-chip memory,
off-chip memory, and on-chip peripherals) supported by the TMS320C30.
Figure 2-3 showsthese internalbuses andtheir connectionto on-chipand off-
chip memory blocks.

The PCis connectedtothe 24-bitprogramaddress bus (PADDR). Theinstruc-
tionregister (IR) is connectedto the 32-bit program data bus (PDATA). These
buses can fetch a single instruction word every machine cycle.

The 24-bit data address buses (DADDR1 and DADDR2) and the 32-bit data
data bus (DDATA) support two data memory accesses every machine cycle.
The DDATA bus carries datato the CPU over the CPU1 and CPU2 buses. The
CPU1 and CPU2 buses can carry two data memory operands to the multiplier,
ALU, andregister file every machine cycle. Alsointernalto the CPU are regis-
ter buses REG1 and REG2, which can carry two data values fromthe register
fileto the multiplierand ALU every machine cycle. Figure 2-2 showsthe buses
internal to the CPU section of the processor.

The DMA controller is supported with a 24-bit address bus (DMAADDR) and
a32-bitdatabus (DMADATA). These buses allow the DMA to perform memory
accesses in parallel with the memory accesses occurring from the data and
program buses.
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2.6 Parallel Instruction Set Summary

Table 23 lists the 'C3x instruction set in alphabetical order. Each table entry
shows the instructionmnemonic, description, and operation. Refer to Section
10.3 on page 10-14 for a functional listing of the instructions and individual
instruction descriptions.
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Table 2-3. Parallel Instruction Set Summary

Mnemonic Description Operation
Parallei Arithmetic With Store Instruction8
ABSF Absolute value of a floating point src2| — dsti
| STF | src3 — dse2
ABSI Absolute value of an integer src2| — dst1
|| STI | src3 — dst2
ADDF3 Add floating point srcl + src2 — dsti
|| STF || sre@ — ds2
ADDI3 Add integer srcl + sre2 — dstl
I STI || sre3 — dst2
AND3 Bitwise logical AND srcl AND sre2 — dstl
| STI || sre3 — dst2
ASH3 Arithmetic shift If count z 0:
|| STI src2 << count = dstl
|| sre3 — dsi2
Else:
sre2 >> |count| — dstl
|| sre3 — dst2
FIX Convert floating point to integer Fix(src2) — dstl
I STI || sre3 — ost2
FLOAT Convert integer to floating point Float(src2) — dstl
| STF || sre@ — dst2
LDF Load floating point sre2 — dstl
|| STF || src3 — dsi2
LDI Load integer src2 — dstl
|| STI || sre3 — dst2
LSH3 Logical shift If count z 0:
I sTI src2 << count —» dstl
|| sre3 — dst2
Else:
src2 >> |count] — dstl
|| src3 — dst2
MPYF3 Multiply floating point srcl x sre2 — dstl
|| STF || src3 — dst2
MPYI3 Multiply integer srcl x src2 — dstl
I8l || src3 — ds2
Legend: count register addr (R7—R0) srct register addr (R7-R0)
dsti register addr (R7-R0) sre2 indirect addr (disp = 0, 1, IR0, IR1)
dst2 indirect addr (disp = 0, 1, IR0, IR1) sred register addr (R7-RO)
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Table 2-3. Parallel Instruction Set Summary (Continued)

Mnemonlc Descrlptlon Operation
Parallel Arithmetic With Store Instructlons (Concluded)
NEGF Negate floating point 0-srd — dstl
I STF || src3 — dst2
NEGI Negate integer 0 - src2 — dstl
I sTi || sre3 — dst2
NOT Complement Srcl — dsfl
II'sTi || sre8 — ds2
OR3 Bitwise logical OR srcl OR src2 — dstl
I sTI || sre3 — dst2
STF Store floating point srcl — dstl
I STF || sre3 — dst2
STI Store integer srcl — dstl
I ST || sre3 — dst2
SUBF3 Subtract floating point srcl - sre2 — dstl
|| STF || sre8 — dst2
SUB13 Subtractinteger srcl — sre2 — dstl
[ISTI || sre3 — ds2
XOR3 Bitwise exclusive OR src1 XOR srd — dsfl
I STI || src8 — dst2
Parallel Load Instructlons

LDF Load floating point src2 — dstl
|l LDF || sro4 — dst2
LDI Load integer src2 — dsfl
I LDI || src4 — dst2

Parallel Multiply And Add/Subtract Instructions
MPYF3 Multiply and add floating point opl x op2 — op3
|| ADDF3 || op4 + op5 — op6
MPYF3 Multiply and subtract floating point op1 x op2 — op3
|| SUBF3 || op4 — op5 — op6
MPYI3 Multiply and add integer opl x op2 — op3
|| ADD13 || op4 + op5 — op6
MPYI3 Multiply and subtract integer opl x op2 — op3
|| suBI3 || op4 - op5 — op6

Legend: dstt register addr (R7—R0) op3 register addr (RO or R1)

dst2 indirect addr (disp=0, 1, IRO, IR1)

opl, op2, op4, and op5 Any two of these
operands must be specified using
register addr; the remaining two
must be specified using indirect.

op6 register addr (R2 or R3)

sret register addr (R7-RO)

sre2 indirect addr (disp = 0, 1, RO, IR1)
sred register addr (R7-RO)
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2.7 External Bus Operation

The TMS320C30 providestwo externalinterfaces: the primarybus and the ex-
pansion bus. The TM8320C31 provides one external interface: the primary
bus. Both primary and expansion buses consist of a 32-bit data bus and a set
of control signals. The primary bus has a 24-bit address bus, whereas the ex-
pansionbus has a 13-bitaddress bus. Both buses can be usedto address ex-
ternal program/data memory or 1/O space. The buses also have an external
RDY signal for wait-state generation. You can insert additional wait states un-
der software control. Refer to Chapter 7 for detailed information on external
bus operation.

2.7.1 External Interrupts

The TMS320C3x supports four external interrupts (INT3-INTO), a number of
internal interrupts, and a nonmaskable external RESET signal. These can be
used to interrupt either the DMA or the CPU. Whenthe CPU responds to the
interrupt, the TACK pin can be used to signal an external interrupt acknowl-
edge. Section 6.5 (beginning on page 6-18) covers RESET and interrupt pro-
cessing.

2.7.2 Interlocked-Instruction Signaling

Two external I/O flags, XFO and XF1, can be configured as input or output pins
under software control. These pins are also used by the interlocked operations
of the TMS320C3x. The interlocked-operations instruction group supports
multiprocessorcommunication (see Section 6.4 on page 6-12 for examples of
the use of interlocked instructions).
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2.8 Peripherals

All TMS320C3x peripherals are controlled through memory-mappedregisters
onadedicatedperipheralbus. This peripheralbusis composedof a32-bitdata
bus and a 24-bit address bus. This peripheral bus permits straightforward
communicationto the peripherals. The TMS320C3x peripheralsinclude two
timers and two serial ports (only one serial port is available on the
TMS320C31). Figure 2-6 shows the peripherals with associated buses and
signals. Refer to Chapter 8 for detailed information on the peripherals.

Figure 2-6. Peripheral Modules
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281 Timers

2.8.2 Serial Ports

The two timer modules are general-purpose 32-bit timer/event counters with
two signaling modes and internal or external docking. Each timer has an I/O
pinthat can be used as aninput clock to the timer or as an output signal driven
by the timer. The pin can also be configured as a general-purpose /O pin.

The two bidirectional serial ports are totally independent. They are identical to
a complementary set of control registers that control each port. Each serial
port can be configuredto transfer 8, 16, 24, or 32 bits of data per word. The
clock for each serial port can originate either internally or externally. An inter-
nally generated divide-down clock is provided. The serial port pins are confi-
gurable as general-purposel/O pins. The serial ports can also be configured
as timers. A special handshake mode allows TMS320C3xs to communicate
over their serial ports with guaranteed synchronization.
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2.9 Direct Memory Access (DMA)

The on-chip DMA controller can read from or write to any location in the
memory map without interferingwith the operation of the CPU. Therefore, the
TMS320C3x caninterface to slow external memories and peripherals without
reducing throughputto the CPU. The DMA controller contains its own address
generators, source and destination registers, and transfer counter. Dedicated
DMA address and data buses minimize conflicts between the CPU and the
DMA controller. A DMA operation consists of a block or single-word transfer
to or from memory. Refer to Section 8.3 on page 8-43 for detailedinformation
on the DMA controller. Figure 2-7 shows the DMA controller with associated
buses.

Figure 2- 7. DMA Controller
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2.10 TMS320C30 and TMS320C31 Differences

This section addresses the major memory access differences between the
TMS320C31 and the TMS320C30 devices. Observance of these consider-
ations is critical for achieving design goal success.

Table 2-4 showsthesedifferences, whichare detailedin the following subsec-
tions.

Table 2. Feature Set Comparison

Feature TMS320C31 TMS320C30

Data/program bus Primary bus: one bus composed of Two buses:
a 32-bit data and a 24-bit address ®  Primary bus: a 32-bit data and a
bus 24-bit address

e Expansionbus: a 32-bit data and
a 13-bit address

Serial I/O ports 1 serial port (SPO) 2 serial ports (SPO, SP1)
User program/data ROM Not available 4K words/16K bytes
Program boot loader User selectable Not available

2.10.1 Data/Program Bus Differences

The TMS320C31 uses only the primary bus and reserves the memory space
that was previously used for expansion bus operations.

2.10.2 Serial-Port Differences

Serial port 1 references in Section 8.2 are not applicable to the TMS320C31.
The memory locationsidentified for the associated control registers and buff-
ers are reserved.

2.10.3 Reserved Memory Locations

Table 2-5 identifies TMS320C31 reserved memory locations in addition to
those shownin Figure 38 on page 3-16.
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Table 2-5. TMS320C31 Reserved Memory Locations

Feature TMS320C31 TMS320C30
0x000000-0x000FFF Reservedt  Microcomputer program/data ROM modet

0x800000-0x801FFF Reserved Expansion bus MSTRB space
0x804000-0x805FFF Resewed Expansion bus IOSTRB space

Ox808050 Resewed SP1 global-control register
0x808052-0x808056 Reserved SP1 local-control registers
0x808058 Reserved SP1 data-transmit buffer
0x80805C Resewed SP1 receive-transmit buffer
0x808060 Reserved Expansion bus control register

T Applies to the MCBL and MC modes only.

2.10.4 Effectson the IF and IE Interrupt Registers

The bits associated with serial port 1 in the |E (interrupt enable) register and
the IF (interrupt flag) register for the TMS320C30 are not applicable to the
TMS320C31. Write only logic 0 datato IE register bits 6, 7, 22, and 23 and to
IF register bits 6 and 7. Writing logic 1s to these bits produces unpredictable
results.

2.10.5 User Program/Data ROM

The user program/data ROM that is availablefor the TMS320C30 device does
not exist for the TMS320C31. Rather, the memory locations that were allo-
cated to support user program/data ROM operations have been reserved on
the TMS320C31 to support microcomputer/boot loader accessing. See
Chapter 3 for more informationon using the microcomputer/boot loader func-
tion.

2.10.6 Development Considerations

If you are developing application code using a TMS320C3x simulator, XDS,
or ASM/LNK, Tl recommends that you modify the .cfm and .cmd files by re-
moving these memory spaces from the tool's configured memory. This
ensures that your developed application performs as expected when the
TMS320C31 device is used.
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2.11 System Integration

In summary, the TMS320C3x is a powerful DSP system that integrates anin-
novative, high-performance CPU, two external interface ports, large memo-
ries, and efficient buses to support its speed. A single chip contains this sys-
tem, along with peripherals such as a DMA controller, two serial ports, and two
timers. The TMS320C3x system is truly an affordable single-chip solution.



Chapter 3

CPU Registers, Memory, and Cache

The central processing unit (CPU) register file contains 28 registers that can
be operatedon by the multiplier and arithmeticlogic unit (ALU). Includedinthe
register file are the auxiliary registers, extended-precisionregisters, andindex
registers. The registers in the CPU register file support addressing, float-
ing-point/integer operations, stack management, processor status, block re-
peats, and interrupts.

The TMS320C3x provides a total memory space of 16M (million) 32-bit words
containing program, data, and I/O space. Two RAM blocks of 1K x 32 bits each
and a ROM block of 4K x 32 bits (available only on the TMS320C30) permit
two CPU accessesinasingle cycle. The memory maps for the microcomputer
and microprocessor modes are similar, except that the on-chip ROM is not
used in the microprocessor mode.

A 64- x 32-bit instruction cache stores often-repeated sections of code. This
greatly reduces the number of off-chip accesses and allows code to be stored
off-chipin slower, lower-costmemories. Three bits in the CPU status register
control the clear, enable, or freeze of the cache.

This chapter describesin detail each of the CPU registers, the memory maps,
and the instruction cache. Major topics are as follows:

Topic Page
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3.1 CPU Register File

The TMS320C3x provides 28 registers in a multiport registerfile that is tightly
coupledto the CPU. The program counter (PC) is not included inthe 28 regis-
ters. All of these registers can be operated on by the multiplier and the ALU
and can be used as general-purpose 32-bit registers. However, the registers
also have some special functions for which they are particularly appropriate.
For example, the eight extended-precisionregisters are especially suited for
maintaining extended-precisionfloating-point results. The eight auxiliary reg-
isters support a variety of indirect addressingmodes and can be used as gen-
eral-purpose 32-bit integer and logical registers. The remaining registers pro-
vide system functions, such as addressing, stack management, processor
status, interrupts, and block repeat. Refer to Chapter 5 for detailedinformation
and examples of the use of CPU registers in addressing.

Table 3-1 lists the registers names and assigned functions.

Table 3-1.CPU Registers

Register Asslgned Function Name
RO Extended-precisionregister 0
R1 Extended-precisionregister 1
R2 Extended-precisionregister 2
R3 Extended-precisionregister 3
R4 Extended-precisionregister 4
R5 Extended-precisionregister 5
R6 Extended-precisionregister 6
R7 Extended-precisionregister 7

ARO Auxiliary register 0
AR1 Auxiliary register 1
AR2 Auxiliary register 2
AR3 Auxiliary register 3
AR4 Auxiliary register 4
ARS Auxiliary register 5
ARG Auxiliary register 6
AR7 Auxiliary register 7
DP Data-page pointer
IRO Index register 0
IR1 Index register 1
BK Block-size register
SP System stack pointer
ST Status register
IE CPU/DMA interrupt enable
IF CPU interrupt Rags
IOF 1/O flags
RS Repeat start address
RE Repeat end address

RC Repeat counter
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3.1.1 Extended-Precision Registers (R7-R0)

The eight extended-precision registers (R7-RO) are capable of storing and
supporting operations on 32-bit integer and 40-bit floating-point numbers.
These registers consist of two separate and distinct regions:

O bits 39-32: dedicated to storage of the exponent (€) of the floating-point
number.

 bits 31-0: store the mantissa of the floating-point number:

bit 31: sign bit (s)
bits 30-0: the fraction (9
Any instruction that assumes the operands are floating-point numbers uses

bits 39-0. Figure 3-1 illustrates the storage of 40-bit floating-pointnumbers
in the extended-precisionregisters.

Figure 3-1. Extended-Precision Register Floating-Point Format
39 32 31 30

) s fraction (f)

L mantissa >

For integer operations, bits 31-0 of the extended-precision registers contain
the integer (signed or unsigned). Any instructionthat assumes the operands
are either signed or unsignedintegers uses only bits 31-0. Bits 39-32 remain
unchanged. This is true for all shift operations. The storage of 32-bit integers
in the extended-precisionregisters is shown in Figure 3-2.

Figure 3-2. Extended-Precision Register Integer Format

39 32.31

b ——

I unchanged I signed or unsigned integer

3.1.2 Auxiliary Registers (AR7-AR0)

The eight 32-bit auxiliary registers (AR7-ARO0) can be accessed by the CPU
and modified by the two Auxiliary Register Arithmetic Units (ARAUS). The pri-
mary function of the auxiliary registers is the generation of 24-bit addresses.
However, they can also be used as loop countersin indirect addressing or as
32-bit general-purpose registers that can be modified by the multiplier and
ALU. Refer to Chapter 5 for detailed information and examples of the use of
auxiliary registers in addressing.
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3.1.3 Data-Page Pointer (DP)

The data-page pointer (DP) is a 32-bit register that is loaded using the LDP
instruction. The eight LSBs of the data-page pointer are used by the direct ad-
dressingmode as a pointer to the page of data being addressed. Data pages
are 64K words long, with a total of 256 pages. Bits 31-8 are reserved; you
should always keep these set to 0 (cleared).

3.1.4 Index Registers (IR0, IR1)

The 32-bit index registers (IRO and IR1) are used by the ARAU for indexing
the address. Refer to Chapter 5 for detailed information and examples of the
use of index registers in addressing.

3.1.5 Bilock Size Register (BK)

The 32-bitblock size register (BK) is used by the ARAU in circular addressing
to specify the data block size (see Section 5.3 on page 5-24).

3.1.6 System Stack Pointer (SP)

The system stack pointer (SP) is a 32-bit register that contains the address of
the top of the system stack. The SP always points to the last element pushed
onto the stack. The SP is manipulated by interrupts, traps, calls, returns, and
the PUSH, PUSHF, POP, and POPF instructions. Pushes and pops of the
stack perform preincrementand postdecrement, respectively, on all 32 bits of
the stack pointer. However, only the 24 LSBs are used as an address. Refer
to Section 5.5 on page 5-31 for information about system stack management.

3.1.7 Status Register (ST)

The statusregister (ST) contains global information relating to the state of the
CPU. Operations usually set the condition flags of the status register accord-
ing to whether the result is 0, negative, etc. This includes register load and
store operations as well as arithmetic and logical functions. When the status
register is loaded, however, the contents of the source operand replace the
current contents bit-for-bit, regardless of the state of any bits in the source op-
erand. Therefore, following a load, the contents of the statusregister are iden-
tically equalto the contentsof the source operand. This allows the status regis-
ter to be saved easily and restored. At systemreset, 0 is writtento this register.
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Figure 3—3 shows the format of the status register. Table 3-2 defines the sta-
tus register bits, their names, and their functions.

Figure 3-3. Status Register

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| ] x |aie]cc]ce] cF] x [amlovm]ur] w]lur[n ]z | v ] c ]
RW RW RW RW RW RW RW RW RW RW RW RW RW

Notes: 1) >x = reserved hit, read as 0
2) R=read, W = write
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Table 3-2. Status Register Bits Summary

Bit Name Reset Value Function

of C 0 Carry flag

1t \Y 0 Overflow flag

2f z 0 Zero flag

3t N 0 Negative flag

4t UF 0 Floating-point underflow flag

st LV 0 Latched overflow flag

6t LUF 0 Latched floating-point underflow flag

7 OovM 0 Overflowmodeflag. This flag affects only the integer operations.|If OVM
= 0, the overflow mode is turned off; integer results that overflow are
treated in no special way. If OVM = 1,

a) integer results overflowingin the positive direction are set to the

most positive 32-bit twos-complementnumber (7ZFFFFFFFh), and

b) integer results overflowingin the negative direction are set to the
most negative 32-bit twos-complement number (80000000h).

Note that the function of VV and LV is independent of the setting of OVM.

8 RM 0 Repeat mode flag. If RM = 1, the PC is being modifiedin either the
repeat-block or repeat-single mode.

9 Reserved 0 Read as 0

10 CF 0 Cachefreeze. When CF = 1, the cache s frozen. If the cacheis enabled
(CE =1), fetches from the cache are allowed, but no modificationof the
state of the cache is performed. This function can be used to save fre-
guently used code residentin the cache. At reset, 0 is writtento this bit.
Cache clearing (CC = 1) is allowed when CF = 0.

11 CE 0 Cacheenable. CE = 1 enables the cache, allowing the cache to be used
according to the least recently used (LRU) cache algorithm. CE = 0 dis-
ables the cache; no update or modification of the cache can be per-
formed. No fetches are made from the cache. This function is useful for
system debugging. At system reset, 0 is writtento this bit. Cache clear-
ing (CC = 1) is allowed when CE = 0.

12 cC 0 Cacheclear. CC = linvalidatesall entriesinthe cache. This bitis always
cleared after it is writtento and thus always read as 0. At reset, 0 is writ-
tento this bit.

13 GIE 0 Global interrupt enable. If GIE = 1, the CPU responds to an enabled in-
terrupt. If GIE = 0, the CPU does not respond to an enabled interrupt.

15-14 Reserved 0 Readas 0
31-16 Reserved 0-0 Value undefined

t The seven condition flags (ST bits 6-0) are defined in Section 10.2 on page 10-10.
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3.1.8 CPU/DMA interrupt Enable Register (IE)

The CPU/DMA interrupt enable register (IE) is a 32-bit register (see
Figure 3—4). The CPU interrupt enable bits are in locations 1 04 . The direct
memory access (DMA) interrupt enable bits are in locations 26-16. Alina
CPU/DMA |E register bit enablesthe correspondinginterrupt. A0 disables the
corresponding interrupt. Atreset, 0is written to thisregister. Table 33 defines
the register bits, the bit names, and the bit functions.

Figure 3-4. CPU/DMA Interrupt Enable Register (IE)

16

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17
soc| o] o] sox | soc] EDINT [ ETINT | ETINTO | ERINTY | EXINT1 | ERINTO| EXINTO] EINT3 | EINT2 ] EINT1 | EINTO
omva) | oma) | ova) | oma) | ©vA) | ©MA) | ©MA) | (DMA) | (DMA) | (DMA) | (DMA)

RW RW RW RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 ] -] 4 3 2 i
xoxochxoxd socd xox] EDINT | ETINT1 | ETINTO | ERINT1 JEXINT1 ] ERINTOJEXINTO | EINT3 | EINT2 |EINT1 | EINTO
cPu) | crPu) | cpy) |cPy) Jcpu) JcPy) licPu) |cPu) |(crPu) |(cPu) |(cPu)
RW RW RW RW RW RW AW RW RW RW RW
Notes: 1) xx =reserved bit, reed as 0
2) R=read, W = write
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Table 3-3. IE Register Bits Summary

Bit Name Reset Value  Function
0 EINTO 0 Enable external interrupt 0 (CPU)
1 EINT1 0 Enable external interrupt 1 (CPU)
2 EINT2 0 Enable external interrupt 2 (CPU)
3 EINT3 0 Enable external interrupt 3 (CPU)
4 EXINTO 0 Enable serial-port 0 transmit interrupt (CPU)
5 ERINTO 0 Enable serial-port 0 receive interrupt (CPU)
6 EXINTA1 0 Enable serial-port 1 transmit interrupt (CPU)
7 ERINT1 0 Enable serial-port 1 receive interrupt (CPU)
8 ETINTO 0 Enable timer 0 interrupt (CPU)
9 ETINT1 0 Enable timer 1 interrupt (CPU)
10 EDINT 0 Enable DMA controller interrupt (CPU)
15-11 Resewed 0 Value undefined
16 EINTO 0 Enable externalinterrupt 0 (DMA)
17 EINTH 0 Enable externalinterrupt 1 (DMA)
18 EINT2 0 Enable externalinterrupt 2 (DMA)
19 EINT3 0 Enable externalinterrupt 3 (DMA)
20 EXINTO 0 Enable serial-port 0 transmit interrupt (DMA)
21 ERINTO 0 Enable serial-port 0 receive interrupt (DMA)
22 EXINT1 0 Enable serial-port 1 transmit interrupt (DMA)
23 ERINT1 0 Enable serial-port 1 receive interrupt (DMA)
24 ETINTO 0 Enable timer 0 interrupt (DMA)
25 ETINT1 0 Enable timer 1 interrupt (DMA)
26 EDINT 0 Enable DMA controller interrupt (DMA)
31-27 Resewed 0-0 Value undefined
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3.1.9 CPU Interrupt Flag Register (IF)

Figure 3-5 shows the 32-bit CPU interrupt flag register (IF). A 1ina CPU IF
register bitindicates that the correspondinginterruptis set. The IF bits are set
to 1 when an interrupt occurs. They may also be set to 1 through software to
cause an interrupt. A 0 indicates that the correspondinginterrupt is not set. If
a0iswrittento anIF register bit, the correspondinginterruptis cleared. Atre-
set, 0is writtento thisregister. Table 3-4 lists the bit fields, bit-field names, and
bit-field functions of the CPU IF register.

Figure 3-b. CPU Interrupt-Flag Register (IF)
3120 27 26 25 24 23 22 21

20
< K-SR S L S
XX

podrodrodrodrod o | o | o | oo | oo |
30 28

1§ 13 11 10 9 8 7 8 5 4 3 2 1 0
rodrodrodrodrod DINT] TINTT] TINTOJRINT 1 JXINT1 JRINTO] XINTO INT3 INTZ INT1[ INTQ

14 12 RW RW RW RW RW RW RW RW RW RW RW

Notes: 1) xx = reserved hit, read as 0
2) R =read, W = write

Table 3—4. /F Register Bits Summary

Bit Name Reset Value Function

0 INTO 0 External interrupt 0 flag

1 INTH 0 External interrupt 1 flag

2 INT2 0 External interrupt 2 flag

3 INT3 0 Externalinterrupt 3 flag

4 XINTO 0 Serial-port O transmit interrupt flag
5 RINTO 0 Serial-port 0 receive interrupt flag
6 XINT11 0 Serial-port 1 transmit interrupt flag
7 RINT1t 0 Serial-port 1 receive interrupt flag
8 TINTO 0 Timer 0 interrupt flag

9 TINT1 0 Timer 1 interrupt flag

10 DINT 0 DMA channelinterrupt flag

3111 Reserved 0-0 Value undefined

T Reserved on TMS320C31
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3.1.10 1/O Flags Register (IOF)

The /O flags register (IOF) is shown in Figure 36 and controls the function
of the dedicated external pins, XFO and XF1. These pins can be configuredfor
input or output. The pins can also be read from and written to. At reset, 0 is
written to this register. Table 3-6 shows the bit fields, bit-field names, and bit-
field functions.

Figure 3-6. I/O-Flag Register (IOF)

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 18
Dododrododrodrodoodod o T o | ox  Dod o | o | Jxd

1514131211 109 8 7 5 4 3 2 1 0
mmmmmmmm JOXF1 o INXFO I/OXFO ]>x]
R n/w RW R n/w RW

Notes: 1) xx = reserved bit, read as 0
2) R=read, W =write
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Table 3-5. IOF Register Bits Summary

Blt Name Reset Value Function

0 Resewed 0 Read as 0

1 I/OXFO 0 If IJOXFO = 0, XFO is configured as a general-purpose input pin.
If I/OXFOQ = 1, XFO is configured as a general-purpose output pin.

2 OUTXFO 0 Data output on XFO

3 INXFO 0 Data input on XFO. A wriie has no effect.

4 Reserved 0 Read as 0

5 1/OXF1 0 If /OXF1 = 0, XF1 is configured as a general-purposeinput pin.
If I/OXF1 = 1, XF1 is configured as a general-purpose output pin.

6 OUTXF1 0 Data output on XF1

7 INXF1 0 Data input on XF1. A write has no effect.

31-8 Reserved 0-0 Read as 0

3.1.11 Repeat-Count (RC) and Block-Repeat Registers (RS, RE)

The 32-bit repeat start address register (RS) contains the starting address of
the block of program memoryto be repeated when the CPU is operatingin the
repeat mode.

The 32-bit repeat end address register (RE) contains the ending address of
the block of program memory to be repeated when the CPU is operatingin the
repeat mode.

Note: RE< RS

If RE < RS, the block of program memory will not be repeated, and t he code
will not loop backwards. However, the ST(RM) bit remains set to 1.

The repeat-countregister (RC) is a 32-bit register used to specify the number
of times a block of code is to be repeated when a block repeat is performed.
If RC contains the number n, the loop is executed n + 1 times.

3.1.12 Program Counter (PC)

The PC is a 32-bit register containing the address of the nextinstructionto be
fetched. While the program counter register is not part of the CPU register file,
it can be modified by instructions that modify the program flow.

CPU Registers, Memory, and Cache 3-11
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3.1.13 Resewed Bits and Compatibility

To retain compatibility with future members of the TMS320C3x family of micro-
processors, reserved bits that are read as 0 must be written as 0. A reserved
bit that has an undefined value must not have its current value modified. In oth-
er cases, you should maintainthe reserved bits as specified.
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32 Memory

The TMS320C3x's total memory space of 16M (million) 32-bit words contains
program, data, and 1/O space, allowing tables, coefficients, program code, or
datato be storedin either RAM or ROM. In this way, you can maximize memory
usage and allocate memory space as desired.

RAM blocks 0 and 1 are each 1K x 32 bits. The ROM block is 4K x 32 bits. Each
on-chip RAM and ROM block is capable of supporting two CPU accesses in
asingle cycle. The separate program buses, data buses, and DMA buses al-
low for parallel program fetches, data reads/writes, and DMA operations.
Chapter 9 covers this in detalil.

321 TMS320C3x Memory Maps

The memory map depends on whether the processor is running in micropro-
cessor mode (MC/MP or MCBL/MP = 0) or microcomputer mode (MC/MP or
MCBLMP = 1). The memory maps for these modes are similar (see
Figure 3-7). Locations 800000h through 801FFFh are mapped to the expan-
sion bus. When this region, available only on the TMS320C30, is accessed,
MSTRB is active. Locations 802000h through 803FFFh are reserved. Loca-
tions 804000h through 805FFFh are mappedto the expansionbus. Whenthis
region, available only onthe TMS320C30, is accessed, IOSTRB is active. Lo-
cations 806000h through 807FFFh are reserved. All of the memory-mapped
peripheral registers &€ in locations 808000h through 8097FFh. In both
modes, RAM block 0 is located at addresses 809800h through 809BFFh, and
RAM block 1 is located at addresses 809C00h through 808FFFh. Memory lo-
cations 80A000h through OFFFFFFh are accessed over the primary external
memory port (STR8 active).

Inmicroprocessor mode, the 4K on-chip ROM (TMS320C30) or boot loader
(TMS320C31) is not mapped into the TMS320C3x memory map. As shown
in Figure 37, locations Ch through 03Fh consist of interrupt vector, trap vec-
tor, and reservedlocations, all of which are accessed over the primary external
memory port (STRB active). Interrupt and trap vector locations are shown in
Figure 3-9. Locations 040h—7FFFFFh and 80A000L-FFFFFFh are also ac-
cessed over the primary external memory port.
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In microcomputer mode, the 4K on-chip ROM (TMS320C30) or boot loader
(TMS320C31) is mapped into locations Ch through OFFFh. There are 192 lo-
cations (Ch through BFh) within this block for interrupt vectors, trap vectors,
and areserved space. Locations 1000h—7FFFFFh are accessed over the pri-
mary external memory port (STRB active).
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Figure 3-7. TMS320C30 Memory Maps

Oh

03Fh
040h
7FFFFFh
800000h
801FFFh
802000h
803FFFh
804000h
8OSFFFh
806000h
807FFFh
808000h
8097FFh
809800h
809BFFh
809C00h
B0SFFFh

80A000h

OFFFFFFh

Reset, Interrupt, Trap Vector,
and Reserved Locations (64)

External STRB Active

External
STRB Active

Expansion Bus
MSTRB Active
(8K Words)

Reserved
(8K Words)

Expansion Bus
IOSTRB Active

(8K Words)

Reserved
(8K Words)

Peripheral Bus
Memory-Mapped
Registers
(6K Words Internal)

RAM Block 0
(1K Word Internal)

RAM Block 1
(1K Word Internal)

External
STRB Active

(@) Microprocessor Mode

0BFh
0COh

OFFFh
1000h

7FFFFFh
800000h

801FFFh
802000h

803FFFh
804000h
805FFFh
806000h

807FFFh
808000h

8097FFh
809800h

809BFFh
809C00h

809FFFh
80A000h

OFFFFFFh

(IFREMAI)
(Internal)

Reset, Interrupt, Trap Vector,
and Reserved Locations (192)

External
STRB Active

Expansion Bus
Vg% Active
(8K Words)

Reserved
(8K Words)

Expansion Bus
I5§TRB Active
(8K Words)

Reserved
(8K Words)

PeripheralBus
Memory-Mapped
Registers
(6K Words Internal)

RAM Block 0
(1K Word Internal)

- RAMBlock 1
(1K Word Internal)

External
STRB Active

(b) Microcomputer Mode
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Figure 3-8. TMS320C31 Memory Maps

oh Reset, Interrupt, Trap Vector, Oh
and Reserved Locations (64)
03Fh (External STRB Active) Reserved for Boot
040h Loader Operations
(See Section 3.4.)
1FFFh
External
STRB Active
400000h §
7FFFFFh 7FFFFFh
800000h 800000h
Reserved Reserved
(32K Words) (32K Words)
807FFFh 807FFFh
808000h 808000h
Peripheral Bus Peripheral Bus
Memory-Mapped Memory-Mapped
Registers Registlers :
8097FFh (6K Words Internal) 8097FFh (6K Words Internal)
809800h 809800h
RAM Block 0 RAM Block 0
(1K Word Internal) (1K Word Internal)
809BFFh 809BFFh
809C00h 809C00h
RAM Block 1
(1K Word—63 Internal)
809FCOh
RAM Block 1 809FC1h
(1K Word Internal) User Program Interrupt
and Trap Branches
(63 Words Internal)
80A000 80A000N
External FEFO00Oh E Es&:'an—a-a'
STRB Active Active
FFFFFFh FFFFFFh

(a) Microprocessor Mode

(b) Microcomputer/Boot Loader Mode

Boot 1-3 locations are used by the boot-loader function. See Section 3.4 for
a complete description. All reserved memory locations are described in
Table 2-5 on page 2-31.
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322 TMS320C31 Memory Maps

Setting the TMS320C31 MCBL/MP pin determines the mode in which the
TMS320C31 can function:

QO Microprocessor mode (MCBL/MP = 0), or__
O Microcomputer/boot loader mode (MCBL/MP = 1)

The major difference between these two modes is their memory maps (see
Figure 3-8). The programbootloadfeature is enabledwhenthe MCBL/MP pin
is driven high during reset.

Figure 3-8 shows the memory locations (internal and external) used by the
boot loader to load the source program.

3.2.3 Reset/Interrupt/Trap \VVector Map

The addressesfor the reset, interrupt, and trap vectorsare 00h—3Fh, as shown
in Figure 3-9. The reset vector contains the address of the reset routine.

Microprocessor and Microcomputer Modes

In the microprocessor mode of the TMS320C30 and TMS320C31 and the
microcomputer mode of the TM8320C30, the interruptandtrap vectors stored
in locations Oh—3Fh are the addresses of the starts of the respective interrupt
and trap routines. For example, at reset, the content of memory location 00h
(reset vector) is loaded into the PC, and execution begins from that address.
See Figure 3-9.

Microcomputer/Boot Loader Mode

In the microcomputer/boot loader mode of the TMS320C31, the interruptand
trap vectors storedin locations 809FC1h—-809FFFh are branch instructionsto
the start of the respective interrupt and trap routines. See Figure 3-10.

CPU Registers, Memory, and Cache 3-17



Memory

Figure 3-9. Reset, Interrupt, and Trap-Vector Locations for the TMS320C30/TMS320C31
Microprocessor Mode

00h RESET

01h INTO

02h INT1

03h INT2

04h iNT3

05h XINTO

06h RINTO

07h XINT11

08h RINT1T

09h TINTO

0Ah TINT

0Bh DINT

?LIC:: RESERVED
20h TRAP 0

3Bh TRAP 27

3Ch T_F;W 28 (Reserved)
3Dh TRAP 29 (Reserved)
3Eh | TRAP 30 (Reserved)
3Fh TRAP 31 (Reserved)

t Reserved on TMS320C31

Note: Traps 28-31
Traps 28-31 are reserved; do not use them.
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Figure 3-10. Interruptand Trap Branch Instructions for the TMS320C31 Microcomputer
Mode

809FC1h NTO
809FC2h INTT
809FC3h NT2
809FC4h INT3
809FCsh XINTO
809FC6h RINTO
809FC7h XINTH
809FC8h RINT1
809FCoh TINTO
809FCAh TINT1
809FCBh DINT
88%%',::%%; RESERVED
809FEOh TRAPO
809FE1h TRAPT

.

.
809FFBh TRAPZ?
809FFCh | TRAP28 (Reserved)
809FFDh |  TRAP29 (Reserved)
809FFEh | TRAP30 (Reserved)
809FFFh TRAP31 (Reserved)

Note: Traps 28-31
Traps 28-31 are reserved; do not use them.
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3.2.4 Peripheral Bus Map

The memory-mapped peripheral registers are located starting at address
808000h. The peripheralbus memory map is shown in Figure 3-1 1. Each pe-
ripheral occupies a | 6-word region of the memory map. Locations 808010h
through 80801Fh and locations 808070h through 8097FFh are reserved.

Figure 3-11. Peripheral Bus Memory Map

808000h DMA Controller Registers
808 Resewed
80801Fh (16)
808020h Timer 0 Registers
80802Fh (16)
808030h . ;

Timer 1 Registers
80803Fh (16)
80 h Serial-Port 0 Registers
80804Fh (16)
808050h Serial-Port 1 Registerst
80805F (18)

Primary and Expansion Port
80806Fh Registers (16)
808070h
Resewed

8097FFh

t Resewed on TMS320C31
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3.3 Instruction Cache

A 64 x 32-bit instruction cache facilitates maximum system performance by
storing sections of code that can be fetched when the device repeatedly ac-
cesses time-critical code. This reducesthe number of off-chip accesses nec-
essary and allows code to be stored off-chip in slower, lower-cost memories.
The cache also frees external buses from program fetches so that they can be
used by the DMA or other system elements.

The cache can operate automatically, with no user intervention. Subsection
3.3.2 describes a form of the least recently used (LRU) cache update algo-
rithm.

3.3.1 Cache Architecture

The instruction cache (see Figure 3-12) contains 64 32-bit words of RAM,; it
is divided into two 32-word segments. Associated with each segment is a
19-bit segmentstartaddress (SSA) register. For each wordinthe cache, there
is a corresponding single bit: present (P) flag.
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Figure 3-72. Instruction Cache Architecture

Segment Start P
Address Registers Flags Segment Words LRU
A\ A Stack
/ \ / \ Most Recently Used
r SSA Register 0 I 0 Segment Word 0 - Segment Number
l‘-———— 18 —_’I 1 Segment Word 1 | Least Recently Used
. Segment Number
. Segment 0
30 Segment Word 30
31 Segment Word 31
—
—— 22—
A N
r SSA Register 1 I 0 Segment Word 0
Segment Word 1
: : > Segment 1
30 Segment Word 30
31 Segment Word 31 J

Whenthe CPU requests an instructionword from external memory, the cache
algorithm checks to determine whether the word is already contained in the
instructioncache. Figure 3—13 shows the partitioning of aninstruction address
as used by the cache controlalgorithm. The algorithm uses the 19 most signifi-
cant bits (MSBs) of the instructionaddressto select the segment; the five least
significantbits (LSBs) definethe address of the instructionword withinthe per-
tinent segment. The algorithm compares the 19 MSBs of the instruction ad-
dress with the two SSA registers. If there is a match, the algorithm checksthe
relevantP flag. The P flagindicates whether a word withina particular segment
is already present in cache memory.

Figure 3-13. Address Partitioning for Cache Control Algorithm

23 54 0

segment start address instruction word
(SSA) address within segment

If there is no match, one of the segments must be replaced by the new data.
The segment replaced in this circumstance is determined by the LRU algo-
rithm. The LRU stack (see Figure 3-12) is maintained for this purpose.
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The LRU stack determines which of the two segments qualifies as the least
recently used after each accessto the cache; therefore, the stack contains ei-
ther 0,1 or 1,0. Eachtime a segmentis accessed, its segment number is re-
moved from the LRU stack and pushed onto the top of the LRU stack. There-
fore, the number at the top of the stackis the most recently used segmentnum-
ber, and the number at the bottom of the stack is the least recently used seg-
ment number.

At system reset, the LRU stack is initialized with 0 at the top and 1 at the bot-
tom. All P flags in the instruction cache are cleared.

When areplacementis necessary, the least recently used segmentis selected
for replacement. Also, the 32 P flags for the segment to be replaced are set
to 0, and the segment's SSA register is replaced with the 19 MSBs of the in-
struction address.

332 Cache Algorithm

When the TMS320C3x requests an instruction word from external memory,
one of two possible actions occurs: a cache hit or a cache miss.

O CacheHit. The cache contains the requestedinstruction, and the follow-
ing actions occur:

1) The instruction word is read from the cache.

2) The number of the segment containing the word is removed from the
LRU stack and pushed to the top of the LRU stack, thus moving the
other segment number to the bottom of the stack.

[ Cache Miss. The cache does not contain the instruction. Following are
the types of cache miss:

B Word miss. The segmentaddress register matches the instructionad-
dress, but the relevant P flag is not set. The followingactions occurin
parallel:

m  The instruction word is read from memory and copied into the
cache.

®  The number of the segment containing the word is removed from
the LRU stack and pushedto the top of the LRU stack, thus mov-
ing the other segment number to the bottom of the stack.

m  Therelevant P flag is set.
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B Segment miss. Neither of the segment addresses matches the in-
struction address. The following actions occur in parallel:

The leastrecently used segmentis selected for replacement. The
P flags for all 32 words are cleared.

m The SSA register for the selected segment is loaded with the 19
MSBs of the address of the requested instruction word.

m  Theinstructionwordis fetchedand copiedinto the cache. It goes
into the appropriate word of the least recently used segment. The
P flag for that word is set to 1.

m  The number of the segment containing the instruction word is re-
moved from the LRU stack and pushed to the top of the LRU
stack, thus movingthe other segment number to the bottom of the
stack.

Onlyinstructionsmay be fetchedfromthe program cache. Allreads and writes
of data in memory bypass the cache. Program fetches from internal memory
do not modify the cache and do not generate cache hits or misses. The pro-
gram cache is a single-access memory block. Dummy program fetches (i.e.,
following a branch) are treated by the cache as valid program fetches and can
generate cache misses and cache updates.

Take care when using self-modifying code. If an instructionresides in cache
and the corresponding locationin primary memory is modified, the copy of the
instructionin cache is not modified.

You can use the cache more efficiently by aligning program code on 32-word
address boundaries. Do this with the ALIGN directive when coding assembly
language.

3.3.3 Cache Control Bits

Three cache control bits are located in the CPU status register:

(4 Cache Clear Bit (CC). Writing a 1 to the cache clear bit (CC) invalidates
all entries in the cache. All P flags in the cache are cleared. The CC bitis
always cleared after the cache is cleared. It is therefore always read as a
0. At reset, the cache is cleared and 0 is written to this bit.

[ Cache Enable Bit (CE). Writing a 1 to this bit enables the cache. When
enabled, the cache is used according to the previously described cache
algorithm. Writing a O to the cache enable bit disables the cache; no up-
dates or modification of the cache can be performed. Specifically,no SSA
register updates are performed, no P flags are modified (unless CC = 1},
and the LRU stack is not modified. Writing a 1 to CC when the cache is
disabled clears the cache, and, thus, the P flags. No fetches are made
fromthe cache whenthe cacheis disabled. At reset, 0 is written to this bit.
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@ Cache Freeze Bit (CF). When CF = 1, the cache s frozen. If, in addition,
the cacheis enabled, fetchesfromthe cache are allowed, but no modifica-
tion of the state of the cache is performed. Specifically, no SSA register
updates are performed, no P flags are modified (unless CC = 1), and the
LRU stack is hot modified. You can use this function to keep frequently
used code resident in the cache. Writing a 1 to CC whenthe cache is fro-
zenclearsthe cache, and, thus, the P flags. At reset, 0 is written to this bit.

Table 36 defines the effect of the CE and CF bits used in combination.

Table 3—6. Combined Effect of the CE and CF Bits

CE CF  Effect
0 Cache not enabled

0

0 1 Cache not enabled

1 0 Cache enabled and not frozen
1

1 Cache enabled and frozen
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3.4 Using the TMS320C31 Bodt Loader

This section describeshow to use the TMS320C31 microcomputer/boot load-
er (MCBL/MP)function. This feature is unique to the TMS320C31 and is not
available on the TMS8320C30 devices. The source code for the boot loader is
suppliedin Appendix G.

3.4.1 Boot-Loader Operations

The boot loader lets you load and execute programsthat are received from a
host processor, inexpensive EPROMS, or other standard memory devices.
The programs to be loaded either residein one of threememorymappedareas
identifiedas Boot 1, Boot 2, and Boot 3 (seethe shaded areas of Figure 3-8),
or they are received by means of the serial port.

User-definable byte, half-word, and word-data formats, as well as 32-bit fixed
burst loads from the TMS320C31 serial port, are supported. See Section 8.2
on page 8-13 for a detailed description of the serial-port operation.

3.4.2 Invoking the Boot Loader

The boot-loader function is selected by resetting the processor while driving
the MCBL/MP pin high. Use interrupt pins INT3 - INTO to set the mode of the
boot load operation. Figure 3-1 4 shows the flow of this operation, which de-
pends on the mode selected (external memory or serial boot). Figure 3-15
shows memory load operations; Figure 3-1 6 shows serlal port load opera-
tions.
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Figure 3-14. Boot-Loader-Mode Selection Flowchart
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Figure 3—-15. Boot-Loader Memory-Load Flowchart
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Figure 3-16. Boot-Loader Serial-Port Load-Mode Flowchart
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3.4.3 Made Selection

After reset, the loader mode is determined by polling the status of the
INT3-INTO bits of the IF register. The bits are polled in the order describedin
the flowchart in Figure 3-14 on page 3-27. Table 3-7 lists the mode options
and the interruptthat you can use to set the particularmode. The interruptcan
be driven any time after the RESET pin has been deasserted. Unless only one
interrupt flag bit is set (INTO, INT1, INT2, or INT3), the boot mode cannot be
guaranteed.
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Table 3-7.Loader Mode Selection

Active Interrupt Loader Mode Memory Addresses
INTO External memory Boot 1 address 0x001000
INT1 External memory Boot 2 address 0x400000
INT2 External memory Boot 3 address OxFFF000
INT3 32-bit serial Serial port 0

3.4.4 External Memory Loading

Table 3-8 shows and describesthe information that you must specify to define
boot memory organization (8, 16, or 32 bits), the code block size, the load des-
tination address, and memory access timing control for the boot memory. You
must specify this information before a source program can be externally
loaded.

This information must be specified inthe first four locations of the Boot 1, Boot
2, or Boot 3 areas. The header is followed by the data or program code that
is the block size in length.

Table 3-8. External Memory Loader Header

Location Description Valid Data Entries
0 Boot memory type (8, 16, or 32) 0x8, 0x10, or 0x20 specified as a 32-bit number
1 Boot memory configuration See Chapter 7 for valid bus-control register entries.
(defined # of wait states, etc.)
2 Program block size (blk) Any value 0 < blk < 22+
3 Destination address Any valid TMS320C31 24-bit address
4 Program code starts here Any 32-bit data value or valid TM8320C3x instruction

The loader fetches 32 bits of data for each specified location, regardless of
what memory configuration width is specified. The data values must reside
within or be written to memory, beginning with the value of least significance
for each 32 bits of information.

345 Examples of External Memory Loads

Example 3—-1, Example 3-2, and Example 3-3 show memory images for
byte-wide, 16-bit-wide, and 32-bit-wide configured memory.
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These examples assume the following:

O AnNINTO signal was detected after reset was deasserted (signifying an ex-
ternal memory load from Boot 1).

[ Theloader header resides at memory location 0x1000 and definesthe fol-
lowing:

Boot memory type EPROMs that require two wait states and SWW =11,

Aloader destinationaddressat the beginning of the TMS320C31’s in-
ternal RAM Block 1, and

A single block of memory that is O0x1FF in length.

Example 3-1.Byte-Wide Configured Memory

Address Value Comments

0x1000 0x08 Memory width = 8 bits

0x1001 0x00

0x1002 0x00

0x1003 0x00

0x1004 0x58 Memory type = SWW = 11, WCNT =2
0x1005 0x10

0x1006 0x00

0x1007 0x00

0x1008 OxFF Program code size = Ox1FF

0x1009 0x01

Ox10A 0x00

0x100B 0x00

0x100C 0x00 Program load starting address = 0x809C00
0x100D 0x9C

0x100E 0x80

0x100F 0x00
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Example 3-2.16-Bit-Wide Configured Memory

Address Value Comments

0x1000 0x10 Memory width = 16

0x1001 Ox0000

0x1002 0x1058 Memory type = SWW = 11, WCNT = 2
0x1003 Ox0000

0x1004 Ox1FF Program code size = Ox1FF

0x1005 0x0000

0x1006 0x9C00  Program load starting address = 0x809C00
0x1007 0x0080

Example 3-3.32-Bit-Wide Configured Memory

Address Value Comments

0x1000 0Ox00000020 Memory width = 32

Ox1001 0x00001058  Memory type = SWW = 11, WCNT = 2
Ox1002 0x000001FF Program code size = Ox1FF

0x1003 0x00809C00 Program load starting address = 0x809C00

After reading the header, the loader transfers blk, 32-bit words beginning at a
specified destination address. Code blocks require the same byte and half-
word ordering conventions. The loader can also load multiple code blocks at
different address destinations.

After loading all code blocks, the boot loader branches to the destination ad-
dress of the first block loaded and begins program execution. Consequently,
the first code block loaded should be a start-up routine to access the other

loaded programs.

Each code block has the following header:

BLK size

Destinati on address

Endtheloader functionand begin execution of the first code block by append-

1st | ocation

2nd | ocation

ing the value of 0x00000000 to the last block.
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3.4.6 Serial-Port Loading

Boot loads, by way of the TMS320C31 serial port, are selected by driving the
INT3 pin active (low) following reset. The loader automatically configures the
serial port for 32-bit fixed-burst-modereads. Itis interrupt-drivenby the frame
synchronizationreceive (FSR) signal. You cannot change this mode for boot
loads. Your hardware must externally generate the serial-portclock and FSR.

Asinparallelloading, aheader must precede the actual programto be loaded.
However, you need only apply the block size and destination addressbecause
the loader and your hardware have predefined serial-port speed and datafor-
mat (i.e., skip data words 0 and 1 from Table 3-8).

The transferred data-bitorder must begin with the MSB and end withthe LSB.

3.4.7 interrupt and Trap-Vector Mapping

Unlike the microprocessor mode, the microcomputer/boot-loader (MCBL)
mode uses a dual-vectoring scheme to service interrupt and trap requests.
Dual vectoring was implementedto ensure code compatibility with future ver-
sions of TMS320C3x devices.

In a dual-vectoring scheme, branch instructions to an address, rather than di-
rect-interrupt vectoring, are used. The normal interrupt and trap vectors are
definedto vector to the last 63 locationsin the on-chip RAM, startingat address
809FC1h. Whenthe loader is invoked, the last 63 locations in RAM Block 1 of
the TMS320C31 are assumed to contain branch instructionsto the interrupt
source routines.
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Table 3-9 shows the MCBL/MP mode interrupt and trap instruction memory
maps.

Table 3-9. TMS320C31 Interrupt and Trap Memory Maps

Address Description
809FC1 INTO
809FC2 INTT
809FC3 INT2
809FC4 INT3
809FCS XINTO
809FC6 RINTO
809FC7 Reserved
809FC8 Reserved
809FC9 TINTO
809FCA TINT1
809FCB DINTO
809FCC—-809FDF Reserved
809FEO TRAPO
809FE1 RAP1
809FFB TRAP27
809FFC—809FFF Reserved
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3.4.8 Precautions

The boot loader builds a one-word-deep stack, starting at location 809801h.

The interrupt flags are not reset by the boot-loader function. If pending inter-
rupts are to be avoided when interrupts are enabled, clear the IF register be-
fore enabling interrupts.

The MCBUMP pinshouldremain high during the entire boot-loader execution,
but it can be changed subsequently at any time. The TMS320C31 does not
need to be reset after the MCBL/MP pin is changed. During the change, the
TMS320C31 should not access addresses Oh—FFFh.
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Chapter 4

Data Formats and Floating-Point Operation

In the TMS320C3x architecture, data is organized into three fundamental
types: integer, unsigned-integer, and floating-point. The terms integer and
signed-integer are considered to be equivalent. The TMS320C3x supports
short and single-precision formats for signed and unsigned integers. It also
supports short, single-precision, and extended-precision formats for float-
ing-point data.

Floating-point operations make fast, trouble-free, accurate, and precise com-
putations. Specifically, the TMS320C3x implementationof floating-point arith-
metic facilitates floating-point operations at integer speeds while preventing
problems with overflow, operand alignment, and other burdensome tasks
common in integer operations.

This chapter discusses in detail the data formats and floating-point operations
supported in the TMS320C3x. Major topics in this section are as follows:

Topic Page

In' ':ger Formats

a2 Unslgned Integer Formats_ L

. "':;;fFloatlng-Polnt Formats . o

.4 Floating Point Multlpllcation - -“-.-”-
FIoatlng-PoInt Addltlon and SUbtractio
Normallzatlon Uslng the NORM lnstructlon

{ Rouhdlng The RND Instructlon '
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4.1 Integer Formats

The TMS320C3x supports two integer formats: a 16-bit short integer format
and a 32-bit single-precisioninteger format. When extended-precisionregis-
tersare used as integer operands, only bits 31-0 are used; bits 39-32 remain
unchangedandunused.

4.11 Short-Integer Format

The shortinteger formatis a 16-bit two's complementinteger format forimme-
diate integer operands. For those instructions that assume integer operands,
this format is sign-extended to 32 bits (see Figure 4—1). The range of an
integer si, represented in the short integer format, is -215 < si<215-1.In
Figure 44, s =signed bit.

Figure 4-1. Short Integer Format and Sign Extension of Short Integers

15 0

(@) Short Integer Format

31 16 15 0

§$ 85S5S 5855558588885 8s8S

(b) Sign Extension of a Short Integer

4.1.2 Single-PrecisionInteger Format

In the single-precisioninteger format, the integer is represented in two's com-
plement notation. The range of an integer sp, representedin the single-preci-
sion integer format, is—231 < sp < 231 — 1. Figure 4-2 shows the single-preci-
sion integer format.

Figure 4-2. Single-Precision Integer Format

31 0

S
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4.2 Unsigned-Integer Formats

The TMS320C3x supports two unsigned-integerformats: a 16-bit short format
and a 32-bit single-precision format. In extended-precisionregisters, the un-
signed-integer operands use only bits 31-0; bits 39-32 remain unchanged.

4.2.1 Short Unsigned-Integer Format

Figure 4-3 shows the16-bit, short, unsigned-integerformat forimmediate un-
signed-integer operands. For those instructions that assume
unsigned-integer operands, this format is zero-filled to 32 bits. In Figure 4-3,
X = most significant bit (MSB) (1 or 0).

Figure 4-3. Short Unsigned-Integer Format and Zero Fill

15 0

(a) Short Unsigned-Integer Format

31 16 15 0
0000000000000000Q x

(b) Zero Fill of a Short Unsigned Integer

4.2.2 Single-Precision Unsigned-Integer Format

In the single-precision unsigned-integerformat, the number is represented as
a 32-hit value, as shown in Figure 4—4.

Figure 4-4. Single-Precision Unsigned-Integer Format

31 0
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4.3 Floating-Point Formats

Al TMS320C3x floating-pointformats consist of three fields: an exponent field
(e), asingle-bitsignfield (s), and afractionfield (f). These are storedas shown
in Figure 4-5. The exponentfield is a two’s complement number. The signfield
and fraction field may be considered one unit and referred to as the mantissa
field (man). The two's complement fraction is combined with the sign bit and
the implied most significant bit to create the mantissa. The mantissa repre-
sents a hormalized two's complement number. A normalized representation
implies a most significant nonsign bit, thus providing additional precision. The
value of a floating-point number x as a function of the fields e, s, and f is given as

X =01.fx2€ if s = 0, or if the leading 0 is the sign bit and the
1 is the implied most significant nonsign bit

10.f x 28 if s =1, orif the leading 1 is the sign bit and the
0 is the implied most significant nonsign bit

0 if @ = most negative two's complement
value of the specified exponent field width

Figure 4-5. Generic Floating-Point Format

e s f
In-——— man (mantissa) ——-i'
Note: e = exponent field
S = single-bit sign field
f = fractionfield

Three floating-point formats are supported on the TMS320C3x. The firstis a
short floating-pointformat for immediate floating-pointoperands, consisting of
a 4-bitexponent, asignbit, and an 11-bit fraction. The secondis a single-preci-
sionformat consisting of an 8-bit exponent, asign bit, and a 23-bitfraction. The
third is an extended-precision format consisting of an 8-bit exponent, a sign
bit, and a 31-bit fraction.

4.3.1 Short Floating-Point Format

In the short floating-point format, floating-point numbers are represented by
a two's complement 4-bit exponent field () and a two's complement 12-bit
mantissa field (man) with an implied most significant nonsign bit. See
Figure 4-6.
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Figure 4-6. Short Floating-Point Format

15 12 11] 10 0

] 8 f

Ig——— mantlsaa——-—-il

Operationsare performedwith animplied binary point betweenbits 11 and 10.
When the implied most significant nonsign bit is made explicit, it is located to
the immediate left of the binary point. The floating-point two's complement
number x in the short floating-point format is given by the following:

x=01.fx 2@ ifs=0
10.f x 28 ifs=1
0 ife=-8

You must use the following reserved values to represent 0 in the short float-
ing-point format:

e=-8

s=0

f=0

The following examples illustrate the range and precision of the short float-
ing-point format:

Most Positive: X =(2-2-11) x 27 = 2.5594 x 102
Least Positive: x=1x2"7=78125x10-3

Least Negative: x=(-1-2-1) x 2-7=_-7.8163 x 10-3
Most Negative: X = =2 x 27 = -2,5600 x 102
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4.3.2 Single-Precision Floating-Point Format

In the single-precisionformat, the floating-pointnumber is represented by an
8-bit exponentfield (e) and a two's complement 24-bit mantissa field (man)
with an implied most significant nonsign bit. See Figure 4-7.

Figure 4-7. Single-Precision Floating-Point Format

st 24|28|22 0

e s f

Ig— mantissa —ol

Operationsare performedwith animplied binary point betweenbits 23 and 22.
When the implied most significant nonsign bit is made explicit, it is located to
the immediate left of the binary point. The floating-pointnumber xis given by

the following:
x=01.fx2e ifs=0
10.f x 26 ifs=1
0 ife=-8

You must use the following reserved values to represent 0 in the single-preci-
sion floating-point format:

=—128
s=0
f=0

The following examples illustrate the range and precision of the single-preci-
sion floating-point format.

Most Positive: X = (2-2-23) x 2127 = 3.4028234 x 1038
Least Positive: x =1 x 2-127 = 58774717 x 10-39

Least Negative: X = (-1-2-23) x 2-127 = - 58774724 x 1039
Most Negative: x = -2 x 2127 = -3.4028236 x 1038

4.3.3 Extended-PrecisionFloating-Point Format

In the extended-precision format, the floating-pointnumber is represented by
an 8-bit exponent field (e) and a 32-bit mantissafield (man) with an implied
most significant nonsign bit. See Figure 4-8.



Floatinp-Point Formats

Figure 4-8. Extended-Precision Floating-Point Format

39 32 31'30 0

e 8 f

f manisa —

Operationsare performedwith animplied binary point betweenbits 31 and 30.
When the implied most significant nonsign bit is made explicit, it is located to
the immediate left of the binary point. The floating-pointnumber x is given by

the following:

x = 01.fx 2@ ifs=0
10.f x 20 ifs=1
0 ife=-128

You mustusethe followingreservedvaluesto represent0 inthe extended-pre-
cision floating-point format:

e=-128
s=0
f=0

The following examplesillustrate the range and precision of the extended-pre-
cision floating-point format:

Most Positive: X = (2= 2-23) x 2127 = 3.4028234 x 1038

Least Positive: X =1x2-127 =58774717541 x 1038

Least Negative: X = (=1-2-31) x 2-127 = - 58774717569 x 10-39
Most Negative: X =-2 x 2127 = _3.4028236691 x 1038
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4.3.4 Conversion Between Floating-Point Formats

Floating-point operations assume several different formats for inputs and out-
puts. These formats often require conversionfrom one floating-point format to
another (e.g., short floating-point format to extended-precision floating-point
format). Format conversions occur automatically in hardware, with no over-
head, as a part of the floating-pointoperations. Examples of the four conver-
sions are shown in Figure 4-9, Figure 4-10, Figure 4-11, and Figure 4-12.
When a floating-point format 0 is converted to a greater-precision format, it is
always converted to a valid representation of 0 in that format. In Figure 4-9,
Figure 4-1 0, Figure 4-11, and Figure 4-12, s = sign bit of the exponent,

Figure 4-9. Converting From Short Floating-Point Format to Single-Precision

Floating-Point Format

15 12 11 10
s x x x|vyly
(a) Short Floating-Point Format
31 27 24 23 22 12 11
$S88SXXXX yly yloO

Inthis format, the exponentfieldis sign-extended, and the fraction fieldis filled

with 0s.

Figure 4-10. Converting From Short Floating-Point Format to Extended-Precision

Floating-Point Format

(b) Single-PrecisionFloating-Point Format

15 12 11 10
$ X X X yly
(a) Short Floating-Point Format
39 35 32 31 30 20 19
ssssxxxx|y |y y|o

The exponentfieldin this format is sign-extended, and the fraction field s filled

with Os.

(b) Extended-PrecisionFloating-PointFormat
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Figure 4~11. Converting From Single-Precision Floating-Point Format to
Extended-Precision Floating-Point Format

31 24 23 22 0

X xXpyly y

(a) Single-Precision Floating-Point Format

39 32 31 30 8 7 0

X x|{yly ylo 0

(b) Extended-Precision Floating-Point Format

The fraction field is filled with Os.

Figure 4-12. Converting From Extended-Precision Floating-Point Format to
Single-Precision Floating-Point Format

39 32 31 30 8 7 0

X xXtyly y|z z

(a) Extended-Precision Floating-Point Format

31 24 23 22 0

x x|y]y y

(b) Single-Precision Floating-Point Format

The fraction field is truncated.
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4.4 Floating-Point Multiplication

A floating-pointnumber a can be written in floating-point format as in the fol-
lowing formula:

a = a(man) x 2¢(exp)

where:
a(man) is the mantissa and a(exp) is the exponent.

The product of a and b is ¢, defined as:
¢ = a x b = a(man) x b(man) x 2(a(exp) + b (exp))

where:
¢(man) = a{man} x b(man), and
c(exp) = a(exp) + b(exp)

During floating-point multiplication, source operands are always assumed to
be in the single-precisionfloating-point format. If the source of the operands
is in short floating-point format, it is extended to the single-precision float-
ing-point format. If the source of the operands is in extended-precision float-
ing-point format, it is truncated to single-precisionformat. These conversions
occur automatically in hardware with no overhead. All results of floating-point
multiplicationsare in the extended-precision format. These multiplications oc-
cur in a single cycle.

A flowchart for floating-point multiplicationis shown in Figure 4-13. In step 1,
the 24-bit source operand mantissas are multiplied, producing a 50-bit result
¢(man). (Note that input and output data are always represented as normal-
ized numbers.) In step 2, the exponents are added, yielding ¢(exp). Steps 3
through 6 check for special cases. Step 3 checks for whether ¢(man) in exten-
ded-precisionformat is equal to 0. If c{(man) is 0, step 7 sets ¢{exp) to -128,
thus yielding the representation for 0.

Steps 4 and 5 normalize the result. If a right shift of 1 is necessary, thenin step
8, c(man) is right-shifted 1 bit, thus adding 1 to ¢(exp). If aright shift of 2is nec-
essary, then in step 9, c(man) is right-shifted 2 bits, thus adding 2 to c(exp).
Step 6 occurs when the result is normalized.

In step 10, c(man) is set in the extended-precisionfloating-pointformat. Steps
11 through 16 check for special cases of ¢(exp). If ¢(exp) has overflowed (step
11) inthe positive direction,then step 14 sets c{exp) to the most positive exten-
ded-precisionformat value. If ¢(exp) has overflowed in the negative direction,
then step 14 sets ¢(exp) to the most negative extended-precisionformatvalue.
If c(exp) has underflowed (step 12), then step 15 sets c to 0; that is, ¢(man)
=0 and c{exp) = -128.
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Figure 4-13. Flowchart for Floating-Point Multiplication

a(man) b(man) a(exp) b(exp)
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Dispose of extra b’ii (10)
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—

Test for special cases of ¢c(exp)

(11) (12) (13)
¢(exp) overflow c(exp) underflow c(exp) inrange

{ (14 i

it c{man) > 0, clexp) =-128 | (19)
set ¢(exp) to most c(man) =0
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If c{man) < O,
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== .
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v
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Floating-PointMultiplication

Example 4-1, Example 4-2, Example 4-3, Example 4-4, and Example 4-5
illustrate how floating-point multiplication is performed on the TMS320C3x.
For these examples, the implied most significantnonsign bit is made explicit.

Example 4-1.Floating-Point Multiply (Both Mantissas =-2.0)

Let:
a=-2.0 x 2(exp) = 10.00000000000000000000000 x 2¢-(exp)

b = 2.0 x 2b(exp) = 10.00000000000000000000000 x 2b(exp)
where:

a and b are both represented in binary form according to the normalized sing-
le-precision floating-point format.

Then:

10.00000000000000000000000 x 2c(€xp)
x 10.00000000000000000000000 x 2b(exp)

0100.0000000000000000000000000000000000000000000000 x 2 (a(exp) + b(exp))

To place this number in the proper normalized format, it is necessary to shift
the mantissa two places to the right and add 2 to the exponent. This yields:

10.00000000000000000000000 x 22(exp)
x 10.00000000000000000000000 x 2b(exp)

01.0000000000000000000000000000000000000000000000 x 2 (a(exp) + b(exp) +2)

In floating-point multiplication, the exponent of the result may overflow. This
can occur whenthe exponents are initially added or when the exponent is mo-
dified during normalization.

Example 4-2. Floating-Point Multiply (Both Mantissas = 1.5)

Let:

a=1.5x 20(exp) = 01.10000000000000000000000 x 22(exp)
b = 1.5 x 2b(exp) = 01.10000000000000000000000 x 2b(exp)

where aand b are both represented in binary form according to the single-pre-
cision floating-point format. Then:

01.10000000000000000000000 x 2¢(€xp)
x 01.10000000000000000000000 x 2b(€xPp)

0010.0100000000000000000000000000000000000000000000 x 2 ((exp) + b(exp))
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To place this number in the proper normalizedformat, it is necessary to shift
the mantissa one place to the right and add 1 to the exponent. This yields:

01.10000000000000000000000 x 22(€xp)
x 01.10000000000000000000000 x 2b(exp)

01.00100000000000000000000000000000000000000000000 x 2 (a(exp) + b(exp) + 1)

Example 4-3.Floating-Point Multiply (Both Mantissas = 1.0)
Let:
a=1.0 x 2¢(exp) = 01 .00000000000000000000000 x 22(exp)
b =1.0 x 2b(exp) = 01 .00000000000000000000000 x 2b(exp)

where a and b are both representedin binary form accordingto the single-pre-
cision floating-point format. Then:

01.00000000000000000000000 x 20:(€xp)
x 01.00000000000000000000000 x 2b(exp)

0001.0000000000000000000000000000000000000000000000 x 2 (x(exp) + b(exp))

This numberisin the proper normalized format. Therefore, no shift of the man-
tissa or modification of the exponentis necessary.

These exampleshave showncases wherethe product of twonormalizednum-
bers can be normalized with a shift of 0, 1, or 2. For all normalized inputs with
the floating-pointformat used by the TMS320C3x, a normalizedresult can be
produced by a shift of 0, 1, or 2.

Example 4-4.Floating-Point Multiply Between Positive and Negative Numbers

Let:
a=1.0 x 2a(exp) = 01.00000000000000000000000 x 2a(exp)
b = —2.0 x 2b(expP) = 10.00000000000000000000000 x 2b(exp)

Then:

01.00000000000000000000000x 204(€xP)
x 10.00000000000000000000000x 2b(exp)

1110.0000000000000000000000000000000000000000000000 x 2 (a(exp) -+ b(exp))
The result is = —2.0 x 2(a(exp) .. b(exp))

Example 4-5.Floating-Point Multiply by 0

All multiplicationsby a floating-pointQ yield aresultof 0 (f = 0, s = 0, and exp
= -128).

Data Formats and Floating-PointOperation 4-13
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45 Floating-Point Addition and Subtraction

In floating-point addition and subtraction, two floating-pointnumbers a and b
can be defined as:

a = a(man) x 2 %(exp)
b = b(man) x 2 b(exp)

The sum (or difference) of a and b can be defined as:

c=azxb
= (a(man) = (b(man) x 2 —(a(exp)—b(exp)))) x 2 a(exp),
if a(exp) = b(exp)
= ((a(man) x 2 —(b(exp)—a(exp))) + b(man)) x 2 blexp),
if a(exp) < b(exp)

The flowchart for floating-point addition is shown in Figure 4-1 4. Since this
flowchartassumessigneddata, itis also appropriatefor floating-point subtrac-
tion. Inthis figure, it is assumedthat a(exp) s b{exp). In step 1, the source ex-
ponents are compared, and c(exp) is set equal to the largest of the two source
exponents. In step 2, dis set to the difference of the two exponents. In step 3,
the mantissa with the smallest exponent, in this case a(man), is right-shifted
d bits to align the mantissas. After the mantissashave been aligned, they are
added (step 4).

Steps 5 through 7 check for a special case of ¢(man). If ¢(man) is O (step 5),
then c(exp) is set to its most negative value (step 8) to yield the correctrepre-
sentation of 0. If ¢{man) has overflowedc (step 6), then ¢{man) is right-shifted
one bit, and 1 is addedto ¢(exp). Otherwise, step 10 normalizesc by left-shift-
ing c(man) and subtracting c¢(exp) by the number of leading non-significant
sign bits (step 7). Steps 11 through 13 check for special cases of ¢{exp). If
c(exp) has overflowed (step 11) in the positive direction, then step 14 sets
c(exp) to the most positive extended-precisionformat value. If ¢{exp) has over-
flowed (step 11) in the negative direction, then step 14 sets ¢(exp) to the most
negative extended-precisionformat value. If ¢(exp) has underflowed (step 12),
then step 15 sets c to 0; that is, ¢{man) = 0 and c(exp} = -128.
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Figure 4-14. Flowchart for Floating-Point Addition
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Example 4-6, Example 4-7, Example 4-8, and Example 4-9 describe the
floating-point addition and subtraction operations. It is assumed that the data
is in the extended-precision floating-point format.

Example 4-6.Floating-Point Addition

In the case of two normalized numbers to be summed, let

a = 1.5 = 01.1000000000000000000000000000000 x 20
b = 0.5 = 01.0000000000000000000000000000000 x 2-1

It is necessary to shift b to the right by 1 so that a and b have the same expo-
nent. This yields:

b = 0. 5= 00. 1000000000000000000000000000000 x 20
Then:

01.10000000000000000000000000000000 x 20
+ 00.10000000000000000000000000000000 x 20

010.00000000000000000000000000000000 x 20

Asinthe case of multiplication, itis necessaryto shift the binary pointoneplace
to the left and add 1 to the exponent. This yields:

01.1000000000000000000000000000000 x 20
+ 00.1000000000000000000000000000000 x 20

01.0000000000000000000000000000000 x 21

Example 4-7.Floating-Point Subtraction

A subtraction is performed in this example. Let

a = 01.0000000000000000000000000000001 x 20
b = 01.0000000000000000000000000000000 x 20

The operationto be performedis a—b. The mantissas are already aligned be-
cause the two numbers have the same exponent. The result is a large cancel-
lation of the upper bits, as shown below.

01.0000000000000000000000000000001 x 20
— 01.0000000000000000000000000000000 x 20

00.0000000000000000000000000000001 x 20
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The result must be normalized. In this case, a left-shift of 31 is required. The
exponent of the result is modified accordingly. The result is:

01.0000000000000000000000000000001 x 20
- 01.0000000000000000000000000000000 x 20

01.0000000000000000000000000000000 x 2-31

Example 4-8. Floating-Point Addition With a 32-Bit Shift

This exampleillustratesa situation where a full 32-bit shiftis necessaryto nor-
malize the result. Let

a=011111111111111111111111111111111 x 2127
b = 10.0000000000000000000000000000000 x 2127

The operationto be performedis a + b
0111111111 111111 11111111111111111 x 2127

+10.0000000000000000000000000000000 x 2127
11.1111111111111111111111111111111 x 2127

Normalizing the result requires a left-shift of 32 and a subtraction of 32 from
the exponent. The result is:

01.1111111111111111111111111111111 x 2127
+10.,0000000000000000000000000000000 x 2127
10.0000000000000000000000000000000 x 295

Example 4-9.Floating-Point Addition/Subtraction With Floating-Point 0

When floating-point addition and subtraction are performed with a float-
ing-point 0, the following identities are satisfied:

ax0=a(a=0)
0£0=0

0O—a=-a(a=0)
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4.6 Normalization Using the NORM Instruction

The NORM instruction normalizes an extended-precision floating-pointnum-
ber that is assumed to be unnormalized. See Example 4-10. Since the num-
ber is assumed to be unnormalized, no implied most significant nonsign bit is
assumed. The NORM instruction:

1) Locates the most significant nonsign bit of the floating-pointnumber,

2) Left-shifts to normalize the number, and
3) Adjusts the exponent.

Example 4-10. NORM Instruction

Assume that an extended-precision register contains the value
man = 00000000000000000001000000000001, exp = 0

When the normalization is performed on a number assumed to be unnormal-
ized, the binary pointis assumed to be:

man = 0.0000000000000000001000000000001, exp =0

This number is then sign-extended one bit so that the mantissa contains 33
bits.

man = 00.0000000000000000001000000000001, exp =0

The intermediate result after the most significantnonsign bitis located and the
shift performediis:

man = 01.0000000000010000000000000000000,exp = -19

The final 32-bit value output after removing the redundantbit is:
man = 00000000000010000000000000000000,exp = -19

The NORM instructionis useful for counting the number of leading 0Os or lead-
ing 1sin a32-bitfield. If the exponent s initially0, the absolute value of the final
value of the exponent is the number of leading | s or 0s. Thisinstructionis also
useful for manipulating unnormalized floating-point numbers.

Giventhe extended-precision floating-pointvalue ato be normalized, the nor-
malization, norm (), is performed as shown in Figure 4-15.
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Figure 4-15. Flowchart for NORM Instruction Operation
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4.7 Rounding: The RND Instruction

The RND instruction rounds a number from the extended-precision float-
ing-pointformatto the single-precision floating-point format. Roundingis simi-
lar to floating-point addition. Given the number a to be rounded, the following
operation is performedfirst.

C = a(man) x 2¢(exp) + (1 x 2a(exp)-24)
Next, a conversion from extended-precisionfloating-point to single-precision

floating-pointformat is performed. Giventhe extended-precisionfloating-point
value, the rounding, rnd( ), is performed as shown in Figure 4-16.



Rounding: The AND Instruction

Figure 4-16. Flowchart for Floating-Point Rounding by the RND Instruction
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4.8 Floating-Point-to-Integer Conversion

Floating-point to integer conversion, using the FIX instructions, allows exten-
ded-precisionfloating-point numbers to be convertedto single-precisioninte-
gers in a single cycle. The floating-pointto integer conversion of the value x
is referredto here as fix(x). The conversiondoes not overflowif a, the number
to be converted, is in the range

-231 s 25231 -9
First, you must be certain that
a(exp) <30

If these bounds are not met, an overflow occurs. If an overflow occurs in the
positive direction, the output is the most positive integer. If an overflow occurs
in the negative direction, the output is the most negative integer. If a(exp) is
withinthe validrange, then a(man), with implied bitincluded, is sign-extended
and right-shifted (rs) by the amount

rs = 31 — a(exp)

This right-shift (rs) shifts out those bits correspondingto the fractional part of
the mantissa. For example:

If 0 < x < 1, then fix(x) = 0.
If -1 s x < 0, then fix(x) = -1.

The flowchart for the floating-point-to-integer conversion is shown in
Figure 4-17.



Floating-Point-to-Integer Conversion

Figure 4-17. Flowchart for Floating-Point-to-Integer Conversion by FIX Instructions
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4.9 Integer-to-Floating-point Conversion

Integer to floating-point conversion, using the FLOAT instruction, allows sing-
le-precision integers to be converted to extended-precision floating-point
numbers. The flowchart for this conversionis shown in Figure 4-18.

Figure 4-18. Flowchart for Integer-to-Floating-PointConversion by FLOAT Instructions
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Chapter 5

Addressing

The TMS320C3x supports five groups of powerful addressing modes. Six
types of addressing may be used withinthe groups, which allow access of data
from memory, registers, and the instructionword. This chapter details the op-
eration, encoding, and implementation of the addressing modes. It also dis-
cussesthe managementof system stacks, queues, and dequeues in memory.

These are the major topics in this chapter:

Topic Page




Types of Addressing

5.1 Types of Addressing

Six types of addressing allow access of data from memory, registers, and the
instruction word:

Register

Direct

Indirect
Short-immediate
Long-immediate
PC-relative

ocooooo

Sometypes of addressingare appropriate for someinstructionsbut not others.
For thisreason, the types of addressing are usedinthe five groups of address-
ing modes as follows:

[ General addressing modes (G):

B Register

B Direct

B Indirect
Short-immediate

O Three-operand addressing modes (T):

B Register
W Indirect

O Paralleladdressing modes (P):

B Register
W Indirect

[ Conditional-branchaddressing modes (B):

B Register
B PC-relative

The six types of addressing are discussed first, followed by the five groups of
addressing modes.



Types of Addressing

5.1.1 Register Addressing

Inregister addressing, a CPU register contains the operand, as shown in this
example:

ABSF R1 : Rl = |R1|

The syntax for the CPU registers, the assembler syntax, and the assigned
function for those registers are listed in Table 5-1.

Table 5-1.CPU Register Address/Assembler Syntax and Function
Assembler Assigned

CPU Register Address Syntax Function
00h RO Extended-precision register
Olh R1 Extended-precision register
02h R2 Extended-precision register
03h R3 Extended-precision register
04h R4 Extended-precision register
05h R5 Extended-precision register
06h Ré6 Extended-precisionregister
07h R7 Extended-precision register
08h ARO Auxiliary register
0gh AR1 Auxiliary register
0Ah AR2 Auxiliary register
0Bh AR3 Auxiliary register
0Ch AR4 Auxiliary register
0Dh AR5 Auxiliary register
OEh AR6 Auxiliary register
OH AR7 Auxiliary register
10h DP Data-page pointer
[l1h IRO Index register 0
12h IR1 index register 1
13h BK Block-sizeregister
14h SP Active stack pointer
15h ST Status register
16h IE CPU/DMA interruptenable
17h IF CPU interrupt flags
18h IOF 1/O flags
19h RS Repeat start address
1Ah RE Repeat end address
1Bh RC Repeat counter

Addressing 53
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5.1.2 Direct Addressing

In direct addressing, the data address is formed by the concatenation of the
eight least significant bits of the data page pointer (DP) with the 16 least signifi-
cant bits of the instructionword (expr). This results in 256 pages (64K wordsper
page), giving the programmer a large address space without requiring achange
of the page pointer. The syntax and operation for direct addressing are:

Syntax: @expr
Operation:  address = DP concatenated with expr

Figure 5-1 shows the formation of the data address. Example 5-1 is an
instruction example with data before and after instruction execution.

Figure 5-1. Direct Addressing

31 16 15 0
Instruction
Word I expr
31 8 7 0
DP —¥| x X...X X page
(Data
Page Pointer) l
31 24 23 v v 0
0O 0...0 O address
31 l 0
operand
Example 5-1.Direct Addressing
ADDI €0BCDEh,R7
Before Instruction: After Instruction:
DP = 8Ah DP = 8Ah
R7 =0h R7 = 12345678h

Data at BABCDEh = 12345678h Data at 8ABCDEh = 12345678h
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5.1.3 Indirect Addressing

Indirect addressing is used to specify the address of an operand in memory
through the contents of an auxiliary register, optional displacements, and in-
dexregisters. Only the 24 least significant bits of the auxiliary registers andin-
dex registers are used in indirect addressing. This arithmetic is performed by
the auxiliary register arithmetic units (ARAUs) on these lower 24 bitsandis un-
signed. The upper eight bits are unmodified.

The flexibility of indirect addressing is possible because the ARAUs on the
TMS320C3x modify auxiliary registers in parallel with operations within the
main CPU. Indirect addressingis specified by a five-bit field in the instruction
word, referredto as the mod field. A displacementis either an explicitunsigned
eight-bit integer contained in the instruction word or an implicit displacement
of one. Twoindexregisters, IR0 and IR1, Can also be usedinindirect address-
ing. In some cases, an optional addressing scheme using circular or bit-rev-
ersed addressing can be used. The mechanism for generating addresses in
circular addressing is discussedin Section 5.3 on page 5-24; bit-reversedis
discussed in Section 5.4 on page 5-29.

Note: Auxiliary Register

The auxiliary register (ARn) to be usedis encodedin the instructionword ac-
cordingto its binary representationn (for example, AR3 is encoded as 115),
not its register machine address (shownin Table 5-1).

Example 5-2. Auxiliary Register Indirect
An auxiliary register (ARn) contains the address of the operand to be fetched.

Operation: operand address = ARn
Assembler Syntax: *ARn
Modification Field: 11000

31 24 23 0

ARn ——F X address
31 _ l _ 0

I operand I

Table 5-2 lists the various kinds of indirect addressing, along with the value
of the modification (mod) field, assembler syntax, operation, and function for
each. The succeeding 17 examples show the operation for each kind of indi-
rect addressing. Figure 5-2 shows the format in the instruction encoding.

Addressing 5-5
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Table 5-2.Indirect Addressing

Mod Fleld  Syntax Operation Description
Indirect Addressing with Displacement

00000 *+ARn(disp) addr = ARn + disp Wih predisplacementadd

00001 *— ARn(disp) addr = ARn - disp With predisplacementsubtract

00010 *++ARN(disp) addr = ARn + disp With predisplacementadd and modify
ARnN = ARn + disp

00011 *——ARn(disp) addr = ARn - disp With predispiacementsubtract and modify
ARn = ARn - disp

00100 *ARN++(disp) addr = ARn With postdisplacementadd and modify
ARn = ARn + disp

00101 *ARn—-— (disp) addr = ARn With postdisplacementsubtractand modify
ARn = ARn - disp

00110 *ARn++(disp)%  addr = ARn With postdisplacementadd and circular modify
ARn = cir¢(ARn + disp)

00111 *ARn—--(disp)% addr = ARn With postdisplacement subtract and circuler
ARn = circ(ARn — disp) modify

Indirect Addressing with Index Register IR0

01000 *+ARN(IR0) addr = ARn + IR0 With preindex (IRO) add

01001 *~ARn(IR0) addr = ARn - IRO With preindex (IRO) subtract

01010 *++ARN(IRO) addr = ARn + IRO With preindex (IRO) add and modify
ARn = ARn + IR0

01011 *—~—ARN(IRO) addr = ARn = IR0 With preindex (IRO) subtract and modify
ARn = ARn - IR0

01100 *ARn++ (IR0} addr = ARn With postindex (IRO) add and modify
ARn = ARn + IR0

01101 *ARn—-(IR0) addr= ARn With postindex (IRO) subtract and modify
ARn = ARn - IR0

01110 *ARn++(IR0)%  addr = ARn With postindex (IRO) add and circular
ARn = circ(ARn + IRO) modify

01111 *ARn—-(IR0)%  addr = ARn With postindex (IR0) subtract and circular
ARn = circ(ARNn) - IR0 modify

Legend: addr memory address ++ add and modify
ARn auxiliary register ARO-AR? — subtract and modify
circ() address in circular addressing % where circular addressing is performed

disp

displacement
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Table 5-2. Indirect Addressing (Continued)

Mod Fleld  Syntax Operation Desgcription
Indirect Addressing with index Reglster IR1

10000 *+ ARn(IR1) addr = ARn + IR1 Wih preindex (IR1) add

10001 *—ARN(IR1) addr = ARn - IR1 With preindex (IR1) subtract

10010 *++ARN(IR1) addr = ARn 1 IR1 Wih preindex (IR1) add
ARn = ARn + IR1 and modify

10011 *——ARN(IR1) addr = ARn - IR1 Wih preindex (IR1) subtract
ARn = ARn - IR1 and modify

10100 *ARntt(IR1) addr = ARn With postindex (IR1) add
ARn = ARn t IR1 and modify

10101 *ARn——(IR1) addr = ARn With postindex (IR1) subtract
ARn = ARn - IR1 and modify

10110 *ARn++ (IR1)% addr = ARn W ih postindex (IR1) add
ARn = circ(ARn * IR1) and circular modify

10111 *ARn——(IR1)% addr = ARn With postindex (IR1) subtract
ARn = circ(ARn — IR1) and circular modify

Indirect Addressing (Speclal Cases)

11000 *ARn addr = ARn Indirect

11001 *ARn++ (IR0)B addr = ARn With postindex (IRO) add
ARn = B(ARn * IRO) and bit-reversed modify

Legend: addr memory address cire() address in circular addressing
ARn auxiliary register ARO-AR?7 ++ add and modify
B where bit-reversed addressing is performed % where circular addressing is performed

Example 5-3, Example 54, Example 5-5, Example 5-8, Example 5-7,
Example 5-8, Example 5-9, Example 5-10, Example 5-11, Example 512,
Example 5-13, Example 5-14, Example 5-15 Example 5-16,
Example 5-17, Example 5-18, and Example 5-19 exemplify indirect addres-
sing in Table 5-2.

Figure 5-2. Instruction Encoding Format

Most Significant Bit Least Significant Bit
MOD ARn dispt

5 Bits 3 Bits 0, 5, or 8 Bits
T disp field may not exist in some instructions
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Example 5-3.Indirect With Predisplacement Add

The address of the operand to be fetched is the sum of an auxiliary register
(ARn) and the displacement (disp). The displacementis either an eight-bitun-
signed integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn + disp
Assembler Syntax: *+ ARn(disp)
Modification Field: 00000
31 24 23 0
ARn —DI X X address
31 8 7 0
disp|] 0 0..0 0 integer |—» (4|')
31 ¢ O
operand

Example 5-4.Indirect With Predisplacement Subtract

The address of the operandto be fetchedis the contents of an auxiliary register
(ARn) minus the displacement (disp). The displacementis either an eight-bit
unsigned integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn — disp
Assembler Syntax: *~ ARn(disp)
Modification Field: 00001
31 24 23 0
ARn —‘4:x X! address J
31 8 7 0
disp] O 0..0 0] integer —p (9
I
31 L 0

I operand
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Example 5-5.Indirect With PredisplacementAdd and Modify

The address of the operand to be fetched is the sum of an auxiliary register
(ARn) and the displacement (disp). The displacement is either an eight-bit
unsigned integer contained in the instruction word or an implied value of 1.
Afterthe datais fetched, the auxiliaryregisteris updatedwiththe address gen-
erated.

Operation:

Assembler Syntax:

operand address = ARn + disp
ARn = ARn + disp
*+t ARn (disp)

Modification Field: 00010

31 24 23 0
ARn—-OI X X address 4._J

I

31 8 7 0

disp| 0 0..0 0} integer —p (+)

31 0
operand

Example 5-6.Indirect With Predisplacement Subtract and Modify

Theaddress of the operandto be fetchedis the contentsof an auxiliary register
(ARn) minus the displacement (disp). The displacementis either an eight-bii
unsigned integer contained in the instruction word or animplied value of 1. Af-
ter the datais fetched, the auxiliary registeris updated with the address gener-

ated.
Operation: operand address = ARn — disp
ARn = ARn - disp
Assembler Syntax: *—— ARn(disp)
Modification Field: 00011
31 24 23 0
ARn —’l X X address _,
| -,
31 8 7 0
disp] 0 0..0 0} integer —p ()
31 0
operand
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Example 5-7.Indirect With PostdisplacementAdd and Modify

The addressof the operandto be fetched is the contents of an auxiliary register
(ARnN). After the operand is fetched, the displacement (disp) is added to the
auxiliaryregister. The displacementis either an eight-bitunsignedinteger con-
tained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = ARn + disp
Assembler Syntax: *ARn ++ (disp)
Modification Field: 00100
31 24 23 0

ARnN —-’I X X address
31 8 7 0 T

disp| O 0..0 0] integer l—p (+)

31 w O

operand

Example 5-8.Indirect With Postdisplacement Subtract and Modify

The address of the operandto be fetchedis the contents of an auxiliary register
(ARN). Afterthe operandis fetched, the displacement (disp) is subtractedfrom
the auxiliary register. The displacementis either an eight-bit unsigned integer
containedin the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = ARn - disp
Assembler Syntax: *ARn —- (disp)
Modification Field: 00101
31 24 23 0

ARn —ilx X address
31 8 7 0 T

disp] 0 0.0 0| integerf—p (-)

fe—
o

31

operand
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Example 5-9. Indirect With Postdisplacement Add and Circular Modify

Theaddress of the operandto be fetchedis the contentsof an auxiliary register
(ARn). After the operand is fetched, the displacement (disp) is added to the
contents of the auxiliary register using circular addressing. This result is used
to update the auxiliary register. The displacement is either an eight-bit un-
signed integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = circ(ARn + disp)
Assembler Syntax: *ARn ++ (disp)%
Modification Field: 00110
31 24 23 0
ARnN ——-ilx X address
31 8 7 (] (%)
I
disp| O 0..0 0] integer (+)
31 w O
operand

Example 5-10. Indirect With PostdisplacementSubtract and Circular Modify

The address of the operandto be fetchedis the contentsof an auxiliary register
(ARn). Afterthe operandis fetched, the displacement (disp) is subtracted from
the contents of the auxiliary register using circular addressing. This result is
used to update the auxiliary register. The displacement is either an eight-bit
unsigned integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = circ{ARn — disp)
Assembler Syntax: *ARn —— (disp)%
Modification Field: 00111
3L 24 23 0
ARn —4: X address
31 8 7 0 (%)
disp] O 0..0 0] integer}—p ('_)
31 w O
operand
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Example 5-11. Indirect With Preindex Add

The address of the operand to be fetched is the sum of an auxiliary register
(ARn) and an index register (IRO or IR1).

Operation:
Assembler Syntax:

Modification Field:

operand address = ARn + IRm
*+ ARn(IRm)

01000 ifm=20
10000 ifm=1

31 24 23 0
ARn ——OI X X address
31 24 23 0
IRm —th X index —>  (+)
31 l 0

operand

Example 5-12. Indirect With Preindex Subtract

The address of the operandto be fetchedis the difference of an auxiliary regis-
ter (ARn) and an index register (IRO or IR1).

Operation:
Assembler Syntax:
Modification Field:

operand address = ARn — IRm
*~ ARn(IRm)

01001 ifm=20
10001 ifm =1

31 24 23 0
ARn —4 X X address
|
31 24 23 0 |
IF\m—1 x x index -
31 l 0

operand
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Example 5-13. Indirect With Preindex Add and Modify

The address of the operand to be fetched is the sum of an auxiliary register
(ARn) and anindex register (RO or IR1). After the datais fetched, the auxiliary
register is updated with the address generated.

Operation:

Assembler Syntax:
Modification Field:

operand address = ARn + IRm
ARn = ARn + IRm

~t-+ARN(IRM)

01010 ifm=0
10010 ifm =1

31 24 23 0
ARn——iI X X address
31 24 23 0
IRm—p{ x X index —>  (+)
31 0
operand

Example 5-14. Indirect With Preindex Subtract and Modify

The address of the operandto be fetchedis the difference betweenan auxiliary
register (ARn) and an index register (RO or IR1). The resulting address be-
comes the new contents of the auxiliary register.

Operatlon:

Assembler Syntax:
Modification Field:

operand address = ARn — IRm
ARn = ARn - IRm

*——ARN(IRm)

01011 ifm=20
10011 ifm=1

31 24 23 0
ARn—q x X address
31 24 23 0
IRm —ol X X index L > o
31 0
operand
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Example 5-15. Indirect With Postindex Add and Modify

The address of the operandto be fetchedis the contents of an auxiliary register
(ARN). After the operand is fetched, the index register (IRO or IR1) is added
to the auxiliary register.

Operation: operand address = ARn
ARn = ARn + IRm

Assembler Syntax: *ARn ++ (IRm)

Modification Field: 01100 ifm=0

10100 ifm=1

31 24 23 0
ARn '—4x X l address
31 24 23 0 [I
IRm —p| X X index —> ()
3 x 0
[ operand

Example 5-16. Indirect With Postindex Subtract and Modify

The address of the operandto be fetchedis the contents of an auxiliary register
(ARN). After the operand is fetched, the index register (IRO or IR1) is sub-
tracted from the auxiliary register.

Operation: operand address = ARn
ARn = ARn - IRm

Assembler Syntax: *ARn —— (IRm)

Modification Field: 01101 ifm=20

10101 ifm =1

31 24 23 0

ARn —E X address

31 24 23 0 T

IRm—C{ X X index —» ()
31 -
r operand




Types of Addressing

Example 5~17. Indirect With Postindex Add and Circular Modify

The address of the operandto be fetchedis the contents of an auxiliary register
(ARn). After the operand is fetched, the index register (RO or IR1) is added
to the auxiliary register. This value is evaluated using circular addressing and
replaces the contents of the auxiliary register.

Operation: operand address = ARn
ARn = circ(ARn + IRm)

Assembler Syntax: *ARn ++ (IRM)%

Modification Field: 01110 ifm=0

10110 ifm=1

31 24 23 0
ARn—{x X address
31 24 23 0 («)ls)
—> i
IRm X X index P +)
31 0
operand

Example 5-18. Indirect With Postindex Subtract and Circular Modify

Theaddress of the operandto be fetchedis the contentsof an auxiliary register
(ARn). After the operand is fetched, the index register (RO or IR1) is sub-
tracted from the auxiliary register. This result is evaluated using circular ad-
dressing and replaces the contents of the auxiliary register.

Operation: operand address = ARn
ARn = circ(ARn — IRm)

Assembler Syntax: *ARn —— (IRM)%

Modification Field: 01111 fm=0

10111 ifm=1

31 24 23 0
ARn —F X address
31 24 23 0 (%)
. |
IRm —-il X X index —> () <«
31 - 0
operand
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Example 5-19. Indirect With Postindex Add and Bit-Reversed Modify

The address of the operandto be fetchedis the contents of an auxiliary register
(ARn). After the operand is fetched, the index register (IRO) is added to the
auxiliary register. This additionis performed with a reverse-carry propagation
and can be used to yield a bit-reversed (B) address. This value replaces the
contents of the auxiliary register.

Operation: operand address = ARn
ARn = B(ARn * IRO)
Assembler Syntax: *ARn ++ (IR0)B
Modification Field: 11001
31 24 23 0
ARn —il X X address
31 24 23 0 ®
IRm—lI X X index > (+) <
31 0
operand

5.1.4 Short-Immediate Addressing

In short-immediateaddressing, the operand is a 16-bit immediate value con-
tainedin the 16 least significantbits of the instructionword (expr). Depending
on the data types assumed for the instruction, the short-immediate operand
can be a two's complement integer, an unsigned integer, or a floating-point
number. This is the syntax for this mode:

Syntax: expr
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Example 5-20 illustrates before- and after-instructiondata.

Example 5~20. Short-lmmediate Addressing

SUBI 1,R0
Before Instructlon: After Instruction:
RO=(h RO = OFFFFFFFFh

5.15 Long-Immediate Addressing

In long-immediate addressing, the operand is a 24-bit immediate value con-
tainedin the 24 least significant bits of the instruction word (expr). This is the
syntax for this mode:

Syntax: expr

Example 5-21 illustrates before- and after-instructiondata.

Example 5-21. Long-Immediate Addressing

BR 8000h
Before Instruction: After Instruction:
PC =0h PC = 8000h

5.16 PC-Relative Addressing

Program counter (PC)-relative addressing is used for branching. It adds the
contents of the 16 or 24 least significant bits of the instruction word to the PC
register. The assembler takesthe src (alabel or address) specified by the user
and generates a displacement. If the branch is a standard branch, this dis-
placement is equal to [label - (instruction address+1)). If the branch is a
delayed branch, this displacement is equal to [label — (instruction ad-
dress+3)].

The displacement s stored as a 16-bit or 24-bit signed integer inthe least sig-
nificantbits of the instructionword. The displacement is added to the PC during
the pipeline decode phase. Notice that because the PC is incremented by 1
in the fetch phase, the displacement is added to this incremented PC value.

Syntax: expr (src)

Example 5-22 illustrates before- and after-instructiondata.

Addressing 517
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Example 6-22. PC-Relative Addressing

BU NEWPC; pc=1001h, NEWPC | abel = 1005h, displacement = 3

Before Instruction After Instruction
decode phase: execution phase:
PC =1002h PC = 1005h

The 24-bitaddressing mode encodes the program control instructions (for ex-
ample, BR, BRD, CALL, RPTB, and RPTBD). Depending on the instruction,
the new PC value is derived by adding a 24-bit signed value in the instruction
word with the present PC value. Bit 24 determines the type of branch (D =0
for a standard branch or D = 1 for a delayed branch). Some of the instructions
are encoded in Figure 5-3.

Figure 5-3. Encoding for 24-Bit PC-Relative Addressing Mode
(@ BR, BRD: unconditionalbranches (standard and delayed)

31 25 2423 0

ot t 000 ofo] displacement |
(b) CALL: unconditional subroutine call

31 2423 0

lO 1 1000 1TO r displacement ]
(c) RPTB: repeat block

a 25 2423 0

IO 1 1 001 0|0| displacement
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5.2 Groups of Addressing Modes

Six types of addressing (covered in Section 5.1, beginning on page 5-2) form
these four groups of addressing modes:

0 General addressing modes (G)

(0 Three-operand addressing modes (T)

O Parallel addressing modes (P)

[ Conditional-branch addressing modes (B)

5.2.1 General Addressing Modes

Instructions that use the general addressing modes are general-purposein-
structions, such as ADDI, MPYF, and LSH. Suchinstructionsusually have this
form:

dst operation src = dst

where the destination operand is signified by dst and the source operand by
src; operation defines an operationto be performedon the operands using the
general addressing modes. Bits 31-29 are 0, indicating general addressing
mode instructions. Bits 22 and 21 specify the general addressing mode (G)
field, which defines how bits 15-0 are to be interpreted for addressing the sre
operand.

Options for bits 22 and 21 (G field) are as follows:

00 register (all CPU registers unless specified otherwise)

01 direct
10 indirect
11 immediate

If the sre and dstfields containregister specifications, the value in these fields
contains the CPU register addresses as defined by Table 5-1 on page 5-3.
For the general addressing modes, the following values of ARn are valid:

ARn,0 s ns 7

Figure 5-4 shows the encoding for the general addressing modes. The nota-
tion mod indicates the modificationfield that goes with the ARn field. Refer to
Table 5-2 on page 5-6 for further information.
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Figure 5-4. Encoding for General Addressing Modes

31 2928 2322 2120 1615 1110 87 54 0
0 0 operation 0 O dst 00000000000O0 sre
0 0 operation 0 1 dst direct
0 0 operation 1 0 dst modn ARn disp
0 0 operation 1 1 dst immediate

| G | Destination Source Operands

5.2.2 Three-Operand Addressing Modes

Instructionsthat use the three-operandaddressing modes, such as
ADDI3, LSH3, CMPF3. or XORS, usually have this form:

SRC1 operation SRC2 — dst

where the destination operandis signifiedby dstand the source operands by
SRC1 and SRC2; operation defines an operationto be performed. Note that
the 3 can be omitted from three-operand instructions.

Bits 31-29 are set to the value of 001, indicating three-operand addressing
mode instructions. Bits 22 and 21 specify the three-operand addressing mode
(T field, which defines how bits 15-0 are to be interpreted for addressing the
SRC operands. Bits 15-8 definethe SRC1 address; bits 7-0 define the SRC2
address. Options for bits 22 and 21 (T) are as follows:

T SRC1 SRC2
00 register register
01 indirect register
10 register indirect
11 indirect indirect

Figure 5-5 shows the encoding for three-operand addressing. If the SRC1
and SRC2 fields use the same auxiliary register, both addresses are correctly
generated. However, only the value created by the SRCH1 field is savedin the
auxiliaryregister specified. The assemblerissues a warning if you specify this
condition.

The following values of ARn and ARm are valid:

ARNnOsns< 7
ARMOsm=<7
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The notation modm or modn indicates that the modification field goes with the
ARm or ARn field, respectively. Refer to Table 5-2 on page 5-6 for further
information.

Inindirect addressing of the three-operand addressing mode, displacements
(if used) are allowedto be 0 or 1, and the index registers (RO and IR1) canbe
used. The displacement of 1 isimplied andis not explicitlycodedintheinstruc-
tion word.

Figure 5-5. Encoding for Three-Operand Addressing Modes

31 29 28 2322 2120 16 15 1312 11 10 87 54 3 2 0

001 operation 0 o0 dst 000 srcl 00O src2

001 operation 0o 1 dst rnodn ARn 000 sre2

001 operation 1 o dst 00O srcl modn ARn

001 operation I 1 dst rnodn I ARn modm ARm
I T I I SRC1 I SRC2

5.2.3 Parallel Addressing Modes

Instructions that use parallel addressing, indicated by || (two vertical bars), al-
low the most parallelism possible. The destination operands are indicated as
dl and d2, signifying dst1 and dst2, respectively (see Figure 56). The source
operands, signified by srcl and sre2, use the extended-precision registers.
Operation refers to the parallel operation to be performed.

Figure 5-6. Encoding for Parallel Addressing Modes

31 3029 2625 2423 22 21 19 18 16 15 10 11 87 32 0
I_l 0 Ioperationl P Idl |d2| srcl ] sre2 | rnodn I ARn | modm | ARm-]

| we | ew |
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The parallel addressing mode (P) field specifies how the operands are to be
used, thatis, whether they are source or destination. The specific relationship
between the P field and the operandsis detailedin the description of the indi-
vidual parallel instructions (see Chapter 10). However, the operands are al-
ways encoded in the same way. Bits 31 and 30 are set to the value of 10, indi-
cating parallel addressing mode instructions. Bits 25 and 24 specify the paral-
leladdressingmode (P) field, which defineshow bits 21-0 are to be interpreted
for addressing the src operands. Bits 21-19 define the srcl address, bits
18-16 define the sre2 address, bits 158 the sre3 address, and bits 7-0 the
src 4 address. The notations modn and modm indicate which modification field
goes with which ARn or ARm (auxiliary register) field, respectively. Following
is a list of the parallel addressing operands:

srcl  0Ossrcls7 (extended-precision registers RO-R7)
src2 Ossrc2s7 (extended-precisionregisters RO—R7)
dl If 0, dst1 isRO. If 1, dsH is R1.

dz2 If 0, ds2 is R2. If 1, dst2 is R3.

P 0sPs3

src3  indirect (disp =0, 1, IRO, IR1)

sro4  indirect (disp =0, 1, IRO, IR1)

OCO0000 00

As in the three-operand addressing mode, indirect addressing in the parallel
addressing mode allows for displacements of 0 or 1 and the use of the index
registers (RO and IR1). The displacement of 1 is implied and is not explicitly
coded in the instruction word.

In the encoding shown for this mode in Figure 5-8 on page 5-21, if the src3
and sre4 fields use the same auxiliary register, both addresses are correctly
generated, but only the value created by the sre3 field is saved in the auxiliary
register specified. The assembler issues a warning if you specify this condi-
tion.
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5.2.4 Conditional-BranchAddressing Modes

Instructions using the conditional-branch addressingmodes (Bcond, BeondD,
CALLcond, DBcond, and DBcondD) can perform avariety of conditionaloper-
ations. Bits 31-27 are set to the value of 01101, indicating conditional-branch
addressingmode instructions. Bit 26 is set to 0 or 1; 0 selects DBcond, 1 se-
lects Bcond. Selection of bit 25 determines the conditional-branch addressing
mode (B). If B =0, register addressingis used,; if B = 1, PC-relative addressing
is used. Selectionof bit 21 sets the type of branch: D = 0 for a standard branch
or D=1 for adelayedbranch. The condition field(cond) specifies the condition
checked to determine what action to take, that is, whether to branch (see
Chapter 10 for a list of condition codes). Figure 5-7 shows the encoding for
conditional-branch addressing.

Figure 5-7. Encoding for Conditional-Branch Addressing Modes

DBcond (D):

31 27 26 25 24 222120 16 15 5 4 0
01101 1]B] ARn |D cond 00000000O0O0O srcreg

0 11 0 1 1B} ARn |D cond immediate (PC relative)
Bcond(D):

31 27 26 25 24 222120 16 15 5 4 0
01101 0fJBJOOO |D cond 0000000O0O0OGO ~ srcreg
01101 0JBJO0O |D cond immediate (PC relative)
CAlLLcond:

31 2726 25 24 222120 16 15 5 4 0
01110 0)JBJpoOOOC jJoO cond 00000000000) srcreg
0111 00]BJooo0J}o cond immediate (PC relative)
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5.3 Circular Addressing

Many algorithms, such as convolution and correlation, require the implemen-
tation of acircular bufferin memory. In convolution and correlation, the circular
bufferis usedto implementa sliding window that contains the most recentdata
to be processed. As new datais brought in, the new data overwrites the oldest
data. Key to the implementation of a circular buffer is the implementation of a
circular addressing mode. This section describes the circular addressing
mode of the TMS320C3x.

Theblock size register (BK) specifiesthe size of the circular buffer. By labeling
the most significant1 of the BK register as bit N, with N < 15, you can find the
addressimmediately following the bottom of the circular buffer by concatenat-
ing bits 31 through N + 1 of a user-selectedregister {ARn) with bits N through
0 of the BK register. The address of the top of the buffer is referred to as the
effective base (EB) and can be found by concatenating bits 31 through N + 1
of ARn, with bits N through 0 of EB being 0.

Figure 58 illustrates the relationships between the block size register (BK),
the auxiliary registers (ARn), the bottom of the circular buffer, the top of the cir-
cular buffer, and the index into the circular buffer.

A circular buffer of size R must start on a K-bit boundary (that is, the K LSBs
of the starting address of the circular buffer must be 0), where K is an integer
that satisfies 2K> R. Since the value R must be loaded into the BK register,
K 2 N+ 1. For example, a 31-word circular buffer must start at an address
whose five LSBs are 0 (that is, X0C000CO000COOOOOOOOOOONNX000002),
and the value 31 must be loaded into the BK register.
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Figure 5-8. Flowchart for Circular Addressing

New
ARn

Legend: ARnN
EB

LsB

Most significant 1 at location N, where N < 15

31 N+1 N 0 3 N+ 1 l N 0
Aan H...H L...L BK 0 o l(NLSB‘
a of BK)
!._' !
3’Jr N+1 N 0 3‘LN+1 N l 9
1(NLSBs
EB C
H...H 0...0 H ..H of BK)
+
Top of Buffer * 1 Bottom of Buffer + 1
31 N+1 N v 0
Index H...H L...L
=
Circular
Addressing
Algorithm
Logic
New | o...0 L...L
31 N+1 N 0

H...H L...r
auxiliary register n BK blocksize register
effective base H high-order bits
low-order bits L new low-order bits
least significant bit N bit value
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In circular addressing, index refersto the N LSBs of the auxiliary register se-
lected, and step is the quantity being added to or subtracted from the auxiliary
register. Follow these two rules when you use circular addressing:

@ The step usedmust be less than or equal to the block size. The step size
is treated as an unsigned integer.

@ Thefirsttime the circular queue is addressed, the auxiliary register must
be pointingto an element in the circular queue.

The algorithm for circular addressing is as follows:

If 0 s index + step < BK:
index = index + step.

Else if index + step = BK:
index = index + step — BK.

Else if index + step < O:
index = index + step + BK.

Figure 5-8 shows how the circular bufferis implemented andillustratesthe re-
lationship of the quantities generated and the elements in the circular buffer.

Figure 5-9. Circular Buffer Implementation

Address Data
31 N+1 N 0 Top of Circular Buffer
EffectiveBase (EB) | H...H 0.0 | Element 0
MSBs of ARn Element 1
31 N+1 N 0

Auxiliary Register (ARn) I H...H J L...L l - Element (N LSBs of ARn)
MSBs of ARn  LSBs of ARn

31 N+l N 0 Last Element
[+ H LsBsBK | — Last Element t 1
MSBs of ARn
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Example 5- 23 shows circular addressing operation. Assuming that all ARs
are four bits, let ARO = 0000, and BK = 0110 (block size of 6). Example 5- 23
shows a sequence of modifications and the resulting value of ARO.
Example §-23 also shows how the pointer steps through the circular queue
with a variety of step sizes (both incrementing and decrementing).

Example 5-23. Circular Addressing

*ARO ++(5)% i ARO = 0 (Othvalue)

*ARO T+ (2)% i ARD = 5 (Istvalue)

*ARO--(3)% i ARO = 1 (2ndvalue)

*ARO++(6)% i ARO = 4 (3rdvalue)

*ARO--% ;. ARO = 4 (4thvalue)

*ARO i ARO = 3 (5thvalue)

Value Data Address

Oth - Element 0 0
nd — Element 1 1
Element 2 2
5th — Element 3 3
4th, 3rd — Element 4 4
ist — Element5 (Last Element) 5
Last Element + 1 6
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Circular addressing is especially useful for the implementation of FIR filters.
Figure 5—10 shows one possible data structure for FIR filters. Note that the ini-
tial value of ARO points to h(N-1), and the initial value of AR1 points to x(0).
Circular addressing is used in the TMS320C3x code for the FIR filter shown
in Example 5-24.

Figure 5-10. Data Structure for FIR Filters

Impulse Response Input Samples
ARO —* h(N-1) X(N-1)
h(N-2) x(N-2)
h(2) x(2)
h(1) x(1)
h(0) x(0) “— AR1

Example 5-24. FIR Filter Code Using Circular Addressing

: Initialization

LDl N,BK Load bl ock size.

LDl H,ARO Load pointer to impulse response.

LDI X,AR] ; Load pointer to bottom of input
;sample buffer.

TOP LDF IN, R3 ; Read input sanple.

STF R3, *AR1++% ;Store with other sanples,
;and point to top of buffer.

LDF 0,R0O ;Initialize RO
LDF 0,R2 ;Initialize R2.

*

*  Filter

*
RPTS N-1 ; Repeat next instruction.
MPYF3 *ARO++%,*AR1++%,R0

|| ADDF3 RO,R2,R2 ;Mul tiply and accumul ate.

. ADDF RO,R2 ; Last product accumul at ed.
STF R2,Y ; Save result.

B TOP ; Repeat .
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5.4 Bit-Reversed Addressing

Bit-reversed addressing on the TMS320C3x enhances execution speed and
program memory for FFT algorithms that use a variety of radices. The base
address df bit-reversed addressingmust be located on a boundary of the size
of the table. For example, if IR0 = 271, the n LSBs of the base address must
be 0. The base address of the datain memory must be on a 2" boundary. One
auxiliary register points to the physical location of a data value. IR0 specifies
one-half the size of the FFT, that is, the value contained in IR0 must be equal
to 21, where nis aninteger and the FFT size is 2. When you add IR0 to the
auxiliary register by using bit-reversed addressing, addresses are generated
in a bit-reversed fashion.

To illustrate this kind of addressing, assume eight-bit auxiliary registers. Let
AR2 containthe value 0110 0000 (96). This is the base address of the datain
memory. Let IR0 contain the value 0000 1000 (8). Example 525 shows a se-
quence of modifications of AR2 and the resulting values of AR2.

Example 5-256. Bit-Reversed Addressing

*AR2++(IR0)B ; AR2 = 0110 0000 (Oth value)
*AR2++(IR0)B ; AR2 = 0110 1000 (let value)
*AR2++(IR0)B ; AR2 = 0110 0100 (2nd value)
*AR2++(IR0)B ; AR2 = 0110 1100 (3rd value)
*AR2++(IRO)B ; AR2 = 0110 0010 (4th value)
*AR2++ (IR0 )B ; AR2 = 0110 1010 (5th value)
*AR2++(IR0)B : AR2 = 0110 0110 (6th value)
*AR2 ; AR2 = 0110 1110 (7th value)

Table 5-3 shows the relationship of the index steps and the four LSBs of AR2.
You can find the four LSBs by reversing the bit pattern of the steps.
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Table 5-3. Index Steps and Bit-Reversed Addressing

Step Bit Pattern Bit-Reversed Pattern Bit-Reversed Step
0 0000 0000 0
1 0001 1000 8
2 0010 0100 4
3 0011 1100 12
4 0100 0010 2
5 0101 1010 10
6 0110 0110 6
7 0111 1110 14
8 1000 0001 1
9 1001 1001 9
10 1010 0101 5
1 1011 1101 13
12 1100 0011 3
13 1101 1011 1
14 1110 o111 7
15 1111 111 15
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5.5 System and User Stack Management

The TMS320C3x provides a dedicated system stack pointer (SP) for building
stacks in memory. The auxiliary registers can also be used to build a variety
of more general linear lists. This section discusses the implementation of the
following types of linear lists:

O Stack
The stack is a linear list for which all insertions and deletions are made at
one end of the list.

O Queue

The queue is alinear list for which all insertionsare made at one end of the
list and all deletions are made at the other end.

1 Dequeue

The dequeue is a double-ended queue linear list for which insertions and
deletions are made at either end of the list.

5.5.1 System Stack Pointer

The system stack pointer (SP) is a 32-bit register that contains the address of
the top of the system stack. The system stack fills from low-memory address
to high-memory address (see Figure 5-11). The SP always points to the last
element pushed onto the stack. A push performs a preincrement, and a pop
performs a postdecrement of the system stack pointer.

The program counter is pushed onto the system stack on subroutine calls,
traps, and interrupts. It is popped from the system stack on returns. The sys-
tem stack can be pushed and popped using the PUSH, POP, PUSHF, and
POPF instructions.

Figure 5-11. System Stack Configuration

Low Memory

Bottom of Stack

sp — Top of Stack

(Free)

High Memory
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5.5.2 Stacks

Stacks can be built from low to highmemory or highto low memory. Two cases
for each type of stack are shown. Stacks can be built using the preincrement/
decrement and postincrementldecrement modes of modifying the auxiliary
registers (AR). Stack growth from high-to-lowmemaory can be implementedin
two ways:

CASE 1: Storesto memory using *~—ARn to push data onto the stack and
reads from memory using *ARn++ to pop data off the stack.

CASE 2: Stores to memory using *ARn-—to push data onto the stack and
reads from memory using * ++ARn to pop data off the stack.

Figure 5—12 illustrates these two cases. The only difference is that in case 1,
the AR always pointstothe top of the stack, andin case 2, the AR alwayspoints
to the next free location on the stack.

Figure 5~12. Implementations of High-to-Low Memory Stacks

Case 1 Case 2
Low Memory Low Memory
(Free) ARn — (Free)
ARn — Top of Stack Top of Stack
Bottom of Stack Bottom of Stack
High Memory High Memory

Stack growth from low-to-high memory can be implemented in two ways:

CASE 3. Stores to memory using *++ARn to push data onto the stack and
reads from memory using *ARn-~to pop data off the stack.

CASE 4: Stores to memory using *ARn ++ to push data onto the stack and
reads from memory using *--—ARn to pop data off the stack.

Figure 5—-13 showsthese two cases. In case 3, the AR always points to the top
of the stack. In case 4, the AR always points to the next free location on the
stack.
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Figure 5-13. Implementations of Low-to-High Memory Stacks

5.5.3 Queues

Case 3 Case 4
Low Memory Low Memory
Bottom of Stack Bottom of Stack_
ARn = Top of Stack . To,. of Stack
L (Free) , ARn— (Free)
High Memory High Memory

Aqueueis like a FIFO. Theimplementationof queuesis based on the manipu-
lation of auxiliary registers. Two auxiliary registers are used: one to mark the
front of the queue from which data is popped (or dequeued) and the other to
mark the rear of the queue where data is pushed. With proper management
of the auxiliary registers, the queue can also be circular. (A queue is circular
whenthe rear pointer is allowedto point to the beginning of the queue memory
after it has pointed to the end of the queue memory.)
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Chapter 6

_Program Flow Control

The TMS320C3x provides a complete set of constructsthat facilitate software
and hardware control of the program flow. Software control includes repeats,
branches, calls, traps, and returns. Hardware control includes operations,
reset, and interrupts. Because programming includes a variety of constructs,
you can select the one suited for your particular application.

Several interlocked operations instructions provide flexible multiprocessor
support and, through the use of external signals, a powerful means of
synchronization. They also guarantee the integrity of the communication and
result in a high-speed operation.

The TMS320C3x supports a nonmaskable external reset signaland a number
of internal and external interrupts. These functions can be programmed for a
particular application.

This chapter discusses the following major topics:

Topic Page

6.1 Repeat Modes .
6.2 Delayed Branches

6.3 Calls, Traps, and Returns

64 -"Interlocked Operations
65 "_Reset Operatlon . -
66 Interrupts e | .
' 67 - »TM8320LC31 Power Management Modes
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6.1 Repeat Modes

The repeat modes of the TMS320C3x can implement zero-overhead looping.
For many algorithms, most executiontime is spentin an inner kernel of code.
Using the repeat modes allows these time-critical sections of code to be ex-
ecuted in the shortest possible time.

The TMS320C3x provides two instructions to support zero-overhead looping:

RPTB (repeata block of code). RPTB repeats execution of a block of code
a specified number of times.

O RPTS (repeat a single instruction). RPTS fetches a singleinstructiononce
and then repeats its execution a number of times. Since the instructionis

fetched only once, bus traffic is minimized.

RPTB and RPTS are four-cycle instructions. These four cycles of overhead
occur during the initial execution of the loop. All subsequent executions of the
loop have no overhead (zero cycle).

Three registers (RS, RE, and RC) are associated with the updating of the pro-
gram counter (PC) when it is updated in a repeat mode. Table 6-1 describes
these registers.

Table 6 1. Repeat-Mode Registers

Reglster Function

RS Repeat Start Address Register. Holds the address of the first instruc-
tion of the block of code to be repeated.

RE Repeat End Address Register. Holds the address of the last instruc-
tion of the block of code to be repeated.

RC Repeat Count Register. Contains one less than the number of times
the block remains to be repeated. For example, to execute a block
N times, load N-1 into RC.

For correct operation of the repeat modes, you must correctly initialize all of
the above-mentioned registers.
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6.1.1 Repeat-Mode Control Bits

Two bits are important to the operation of RPTB and RPTS:

O RM bit. The repeat-mode flag (RM) bit in the status register specifies
whether the processor is running in the repeat mode.

RM = 0 indicates standard instruction fetching mode.
RM =1 indicates repeat-mode instruction fetches.

@O S bit. The Shit is internal to the processor and cannot be programmed,
but this bitis necessaryto fully describe the operationof RPTB and RPTS.

S = 0 indicates standard instruction fetches.
S =1 and RM = 1 indicates repeat-single instruction fetches.

6.1.2 Repeat-Mode Operation

Informationin the repeat-mode registers and associated control bits controls
the modification of the PC during repeat-mode fetches. The repeat modes
compare the contents of the RE register (repeatend addressregister) with the
PC after the execution of eachinstruction. If they matchand the repeat counter
(RC) is nonnegative, the RC is decremented, the PC is loaded with the repeat
start address, and the processing continues. The fetches and appropriate sta-
tus bits are modified as necessary. Note that the RC is never modified when
the RM flag is 0.

The repeat counter should be loaded with a value one less than the number
of times to execute the block; for example, an RC value of 4 would executethe
block five times. The detailed algorithm for the update of the PC is shown in
Example 6-1.

Note: Maximum Number of Repeats

The maximum number of repeats occurs when RC = 8000 0000h. This re-
sults in 8000 0001h repetitions. The minimum number of repeats occurs
when RC = 0. This results in one repetition.

RE should be greater than or equal to RS (RE = RS). Otherwise, the code
will not repeat even though the RM bit remains set to 1.

By writing a 0 into the repeat counter or writing 0 into the RM bit of the status
register, you can stop the repeating of the loop before completion.

[ _J
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Example 6-1.
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6.1.3 RPTB Instruction

.
¢

Repeat-Mode Control Algorithm

If in repeat node (RPTB or RPTS)

: | f RPTS
: Ifthisis the first fetch

Fetch instruction from menory
If not the first fetch

Fetch instruction fromIR
Decrement RC

; If RCis negative

Repeat single nmode conpl et ed
Turn of f repeat-node bit
Cear S

: Increnent PC
: If RPTB

1

.
’

Fetch instruction fromnenory
If this is the end of the block
Decrement RC

If RCis not negative

Set PCto start of block

If RCis negative

Turn off repeat node bits

1 Qear S

I ncrement PC

The RPTB instruction repeats a block of code a specified number of times.

The number of timesto repeatthe blockis the RC (repeat count) register value
plusone. Becausethe executionof RPTB does notload the RC, you mustload
thisregisteryourself. The RCregister must be loaded before the RPTB instruc-
tion is executed. A typical setup of the block repeat operation is shown in
Example 6-2.

Example 6-2.RPTB Operation
LD 15,R¢
RPTB  ENDLOOP

; Load repeat counter with 15
; Execute the bl ock of code

STLOOP ; fromsTLcor tO ENDLOOP 16 times

ENDLOOP
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Using the repeat-block mode of modifying the PC facilitates analysis of what
would happen in the case of branches within the block. Assume that the next
value of the PC will be either PC + 1 or the contents of the RS register. It is thus
apparent that this method of block repeat allows much branching within the
repeated block. Execution can go anywhere within the user's code via inter-
rupts, subroutinecalls, etc. For proper modification of the loop counter, the last
instruction of the loop must be fetched. You can stop the repeating of the ioop
prior to completionby writing a 0 to the repeat counter or writing a 0 to the RM
bit of the status register.

6.1.4 RPTS Instruction

An RPTS src instruction repeats the instruction following the RPTS src + 1
times. Repeats of a single instruction initiated by RPTS are not interruptible,
because the RPTS fetches the instruction word only once and then keeps it
in the instruction register for reuse. An interrupt would cause the instruction
word to be lost. Refetching the instruction word from the instruction register
reduces memory accesses and, in effect, acts as a one-word program cache.
If you need a singleinstructionthatis repeatable and interruptible, you can use
the RPTB instruction.

When RPTS src is executed, the following sequence of operations occurs:

1) PC+1—+RS

2 PC+1—RE

3) 1 — RM status register bit

4) 1 — Shit

5) src— RC (repeat count register)

The RPTSinstructionloads all registers and mode bits hecessary for the oper-
ation of the single-instruction repeat mode. Step 1 loads the start address of
the block into RS. Step 2 loads the end address into the RE (end address of
the block). Since this is a repeat of a single instruction, the start address and
the end address are the same. Step 3 sets the status register to indicate the
repeatmode of operation. Step 4 indicatesthat thisis the repeat single-instruc-
tion mode of operation. Step 5 loads src¢into RC.

Program Flow Control 6-5
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6.1.5 Repeat-ModeRestrictions

Since the block repeat modes modify the program counter, other instructions
cannot modify the program counter at the same time. There are two restric-
tions:

O The lastinstructionin the block (or the only instructionin a block of
size 1) cannot be a Bcond, BR, DBcond, CALL, CALLcond, TRAPcond,
RETIcond, RETScond, IDLE, RPTB, or RPTS. Example 6—3 shows anin-
correctly placed standard branch.

3 None of the last four instructions from the bottom of the block (orthe only
instruction in a block of size 1) can be a BcondD, BRD, or DBcondD.

Example 6-4 shows an incorrectly placed delayed branch.

Note: Rule Violation
If either of these rules is violated, the PC will be undefined.

L ]

Example 6-3.Incorrectly Placed Standard Branch

LDI 15,RC ; Load repeat counter with 15

RPTB ENDLOOP ; Execute the block Of code
STLOOP s from STLOOP to ENDLOOP 16 times
ENDLOOP BR OOPS ; This branch violates rule 1

Example 6—4.Incorrectly Placed Delayed Branch

LDI 15,RC ; Load repeat counter with 15
RPTB  ENDLOOP : Execute block of code

STLOOP S from STLOOP to ENDLOOP 16 times
BRD OOPS ; This branch violates rule 2
ADDF
MPYF

ENDLOOP SUBF

6.1.6 RC Register Value After Repeat Mode Completes

For the RPTBinstruction, the RC register normally decrementsto 0000 0000h
unlesstheblocksizeis 1;inthatcase, it decrementsto FFFF FFFFh. However,
if the RPTB instruction using a block size of 1 has a pipeline conflict in the
instruction being executed, the RC register decrements to 0000 0000h.,
Example 6-5 illustrates a pipeline conflict. Refer to Chapter 9 for pipeline in-
formation.
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RPTS normally decrements the RC register to FFFF FFFFh. However, if the
RPTS has a pipeline conflict on the last cycle, the RC register decrementsto
0000 0000h.

Note: Number of Repetitions

In any case, the number of repetitionsis always RC + 1.

Example 6-5. Pipeline Conflictin an RPTB Instruction
EDC .word40000000h; The program is | ocated in 4000000Fh

LDP EDC
LDl @EDC,ARO
LDl 15,RC Load repeat counter with 15

Execute bl ock of code

The *ARO read conflicts with

the instruction fetching

Then RC decrements to 0

If cache is enabled, RC decrenments
to FFFF FFFFh

RPTB ENDLOOP
ENDLOOPLDI  *ARO,RO

~e we w6 — N wa we

6.1.7 Nested Block Repeats

Blockrepeats (RPTB) can be nested. Sincethe registersRS, RE, RC, and ST
control the repeat-mode status, these registers must be saved and restored
in order to nest block repeats. For example, if you write an interrupt service
routine that requires the use of RPTB, it is possible that the interrupt asso-
ciated with the routine may occur during repeated execution of a block. The
interruptservice routine can check the RM bitto determine whether the block
repeat mode is active. If this RM is set, the interrupt routine should save ST,
RS, RE, and RC, in that order. The interruptroutine can then perform a block
repeat. Before returning to the interruptedroutine, the interruptroutine should
restore RC, RE, RS, and ST, inthat order. If the RM bitis not set, youdon't need
to save and restore these registers.

The order in which the registers are saved/restored is importantto guarantee
correct operation. The ST register should be restoredlast, after the RC, RE,
and RS registers. ST should be restored after restoring RC, becausethe RM
bit cannotbe setto 1 ifthe RC registeris 0 or—1. For this reason, if you execute
a POP ST instruction (with ST (RM bit) = 1} while RC = 0, the POP instruction
recovers all the ST register bits but not the RM bit that stays at 0 (repeat mode
disabled). Also, RS and RE should be correctly set before you activatethe re-
peat mode.

The RPTSinstructioncan be usedin ablock repeatloopif the properregisters
are saved.
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6.2 Delayed Branches

The TMS320C3x offers three maintypes of branching: standard, delayed, and
conditional delayed.

Standard branches empty the pipeline before performing the branch; this
guarantees correct management of the program counter and results in a
TMS320C3x branch taking four cycles. Included in this class are repeats,
calls, returns, and traps.

Delayed branches onthe TMS320C3x do not empty the pipeline, but rather
guarantee that the next three instructions will execute before the program
counter is modified by the branch. The result is a branch that requires only a
single cycle, thus making the speed of the delayed branch very close to that
of the optimal block repeat modes of the TMS320C3x. However, unlike block
repeatmodes, delayed branchesmay be usedin situations other than looping.
Every delayed branch has a standard branch counterpart that is used when
a delayed branch cannot be used. The delayed branches of the TMS320C3x
are BcondD, BRD, and DBcondD.

Conditional delayed branches use the conditions that exist at the end of the
instructionimmediately preceding the delayed branch. They do not dependon
the instructions following the delayed branch. The condition flags are set by
a previous instruction only when the destination register is one of the exten-
ded-precision registers (R0—R7) or when one of the compare instructions
(CMPF, CMPF3, CMPI, CMPI3, TSTB, or TSTB3) is executed. Delayed
branches guarantee that the next three instructions will execute, regardless
of other pipeline conflicts.

When a delayed branch s fetched, it remains pending until the three subse-
guent instructions are executed. None of the three instructions that follow a
delayed branch can be any of the following (see Example 6-6):

Bcond DBcondD
BcondD IDLE

BR RETIcond
BRD RETScond
CALL RPTB
CALLcond RPTS
DBcond TRAPcond

Delayed branches disable interrupts until the three instructions following the
delayed branch are completed. This is independent of whether the branch is
taken.
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Note: Incorrect Use of Delayed Branches

If delayed branches are used incorrectly, the PC will be undefined.

Example 6-6.Incorrectly Placed Delayed Branches
Bl: BD Ll

B2: B L2 ; This branch is incorrectly placed.
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6.3 Calls, Traps, and Returns

Calls and traps provide a means of executing a subroutine or function while
providing a return to the calling routine.

The CALL, CALLcond, and TRAPcond instructions store the value of the PC
onthe stack before changingthe PC's contents. The stack thus provides are-
turn using either the RETScondor RETIcondinstruction.

3 The CALL instruction places the next PC value on the stack and places

the sre (source) operandinto the PC. The srcis a 24-bitimmediate value.
Figure 6—1 shows CALL response timing.

The CALLcondinstructionis similar to the CALL instruction (above) ex-
cept for the following:

It executes only if a specific condition is true (the 20 conditions—in-
cluding unconditional —are listed in Table 10-9 on page 10-13).

The srcis either a PC-relative displacementor is in register-addres-
sing mode.

The conditionflags are set by a previousinstructiononly whenthe destina-
tion register is one of the extended-precisionregisters (R0—R7) or when
one of the compare instructions (CMPF, CMPF3, CMPI, CMPI3, TSTB, or
TSTB3) is executed.

The TRAPcondinstruction also executes only if a specificconditionis true
(same conditions as for the CALLcondinstruction). When executing, the
following actions occur:

1) Interrupts are disabled with O written to bit GIE of the ST.
2) The next PC value is stored on the stack.

3) A vector is retrieved from one of the addresses 20h to 3Fh and is
loaded into the PC.

The particular address is identified by a trap number in the instruction.
Using the RETIcondto return re-enables interrupts.

RETScondreturns execution from any of the above three instructions by
poppingthe top of the stack to the PC. To execute, the specifiedcondition
must be true. Conditions are the same as for the CALLcondinstruction.

RETIcondreturns from traps or calls like the RETScond(above) with the
addition that RETIcond also sets the GIE bit of the status register, which
enables all interrupts whose enabling bit is set to 1. Conditions are the
same as for the CALLcondinstruction.
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Calls and traps accomplish the same functional task (that is, a subfunctionis
calledand executed, and controlis then returnedto the calling function). Traps
offer several advantages. Among them are the following:

@ Interrupts are automatically disabled when a trap is executed. This allows
critical code to execute without risk of being interrupted. Thus, traps are
generally terminated with a RETleond instructionto re-enable interrupts.

@ Youcanusetraps toindirectly cdl functions. Thisis particularlybeneficial
when akernel of code contains the basic subfunctionsto be used by appli-
cations. In this case, the functionsin the kernel can be modified and relo-
cated without the need to recompile each application.

Figure 6-1. CALL Response Timing

Fetch CALL Decode CALL Read CALL Execute CALL Fetch First
(Store PC | Subroutine |

| [ | | on Stack) Instruction
H3 /_\I\_/—\_/_m
NN S\ S

/ \/ Firgt Ingthlnn\
ADDR \Vector Address X - Address

Data PC @
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6.4 Interlocked Operations

Among the most common multiprocessing configurations is the sharing of
global memory by multiple processors. In order for multiple processors to ac-
cess this global memory and share data in a coherent manner, some sort of
arbitrationor handshakingis necessary. This requirementfor arbitrationis the
purpose of the TMS320C3x interlocked operations.

The TMS320C3x provides aflexible means of multiprocessor support with five
instructions, referredto as interlockedoperations. Throughthe use of external
signals, these instructions provide powerful synchronization mechanisms.
They also guarantee the integrity of the communication and result in a high-
speed operation. The interlocked-operation instruction group is listed in
Table 6-2.

Table 6-2. Interlocked Operations

Mnemonic Description operation
LDFI Load floating-pointvalue into a register, Signalinterlocked
interlocked src — dst
LDH Load integer into a register, interlocked Signal interlocked
src — dst
SIGI Signal, interlocked Signal interlocked
Clear interlock
STFI Store floating-point value to memory, src — dst
interlocked Clear interlock
STII Store integer to memory, interlocked src —> dst

Clear interlock

The interlocked operations use the two external flag pins, XFO and XF1. XFO
must be configured as an output pin; XF1 is an input pin. When configured in
this manner, XFO signals an interlock operation request, and XF1 acts as an
acknowledgesignal for the requestedinterlocked operation. In this mode, XFO
and XF1 are treated as active-low signals.

The external timing for the interlockedloads and storesis the same as for stan-
dardloads and stores. The interlocked loads and stores may be extendedlike
standard accesses by using the appropriate ready signal (RDYnt or XRDYiny).
(RDY;t and XRDYjp are a combination of external ready input and software
wait states. Refer to Chapter 7, ExternalBus Operation, for more information
on ready generation.)
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The LDFI and LDII instructions perform the following actions:

1) Simultaneously set XFO to 0 and beginaread cycle. The timing of XFO is
similar to that of the address bus during a read cycle.

2) Execute an LDF or LDl instruction and extend the read cycle until XF1 is
set to 0 and aready (RDYjnt or XRDYjpy) is signaled.

3) Leave XFO setto 0 and end the read cycle.

The readlwrite operation is identical to any other readlwrite cycle except for
the specialuse of XFO and XF1. The src operand for LDFl and LDl is aiways
a direct or indirectmemary address. XFO is set to 0 only if the src is located
off-chip; that is, STRB, MSTRB, or IOSTRB is active, or the src is one of the
on-chip peripherals. If on-chipmemory is accessed, then XFO is not asserted,
and the operation is as an LDF or LDI from internal memory.

The STFI and STIl instructions perform the following operations:

1) Simultaneouslyset XFO to 1 and begin a write cycle. The timing of XFO is
similar to that of the address bus during a write cycle.

2) Execute an STF or STl instructionand extend the write cycle untila ready
(RDYint or XRDYjpy) is signaled.

As in the case for LDFI and LDII, the dstof STFI and STII affects XFO. If dst
is located off-chip (STR8, MSTRB, or IOSTRB is active) or the dstis one of
the on-chip peripherals, XFO is set to 1. if on-chip memory is accessed, then
XFO is not asserted and the operations are as an STF or STI to internal
memory.

The SIGI instruction functions as follows:

1) Sets XFOto 0.

2) Idles until XF1 is set to O.
3) Sets XFO to 1 and ends the operation.

While the LDFI, LDII, and SIGI instructions are waiting for XF1 to be set to 0,
you can interrupt them. LDFI and LDII require a ready signal (RDYjnt or'
XRDY;py) in order to be interrupted. Because interrupts are taken on bus cycle
boundaries (see Section 6.6), an interrupt may be taken any time after a valid
ready. This allows you to implement protectionmechanisms against deadlock
conditions by interruptingan interlockedload that has takentoo long. Upon re-
turn from the interrupt, the next instruction is executed. The STFl and STII
instructions are not interruptible. Since the STFI and STII instructions com-
plete when ready is signaled, the delay until an interrupt can occur is the same
as for any other instruction.
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Interlocked operations can be used to implement a busy-waiting loop, to
manipulate a multiprocessor counter, to implement a simple semaphore
mechanism, or to perform synchronization between two TMS320C3xs. The
following examples illustrate the usefulness of the interlocked operations in-
structions.

Example 6-7 shows the implementation of a busy-waiting loop. If location
LOCK is the interlock for a critical section of code, and a nonzero means the
lock is busy, the algorithm for a busy-waitingloop Can be used as shown.

Example 6-7.Busy-Waiting Loop

LDI 1,R0 ; Put 1into RO
Ll: LDII @LOCK,Rl Interlocked operation begun
Contents of LOCK — R1
Put RO (= 1) into LOCK, XFO = 1
; Interlocked operation ended
BNZ Ll ; Keep trying until Lock = 0

STII RO, @LOCK

Example 6—8 shows how a location COUNT may contain a count of the num-
ber of times a particular operation needs to be performed. This operation may
be performed by any processor in the system. If the countis 0, the processor
waits untilit is nonzero before beginning processing. The example also shows
the algorithm for modifying COUNT correctly.

Example 6-8. Multiprocessor Counter Manipulation

CT: OR 4,I0OF i XFO = 1
; Interlocked operation ended
LDIl @COUNT,R1 i Interlocked operation begun
i Contents of count — R1
BZ cT i If count = 0, keep trying
SUBI 1,R1 « Decrement R1 (= COUNT)
STII R1l, @COUNT i Update COUNT, XFO = 1

i Interlocked operation ended

Figure 6-2 illustratesmultiple TMS320C3xs sharing globalmemory and using
the interlocked instructions as in Example 6-9, Example 6-10, and
Example 6-11.
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Figure 6—2. Multiple TMS320C3xs Sharing Global Memory
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It might sometimes be necessary for several processors to access some
shareddataor other commonresources. The portion of code thatmust access
the shared data is called a critical section.

To ease the programming of critical sections, semaphores may be used.
Semaphores are variables that can take only non-negative integer values.
Two primitive, indivisible operations are defined on semaphores (with S being
a semaphore):

V(S): S+1—>s8
P(S): P: if (s ==0), gotoP
else s-1—>5s
Indivisibility of V(8) and P(S) means that when these processes access and

modify the semaphore S, they are the only processes accessing and modify-
ing S.

To enter a critical section, a P operation is performed on a common sema-
phore, say S (S is initialized to 1). The first processor performing P(S) will be
able to enter its critical section. All other processors are blocked because S
hasbecome 0. After leavingits critical section, the processorperformsa V(S),
thus allowing another processor to execute P(S) successfully.
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The TMS320C3x code for V(S) is shown in Example 6-9; code for P(S) is
shown in Example 6-10. Compare the code in Example 6-10 to the code in
Example 6-8.

Example 6-9.Implementation of V(S)

v: LDl es,rO i Interl ocked read of S begins (XFO = 0)
; Contents of S — RO
ADDI 1,R0O ; Increment RO (= S)
STII RO,€S ; Udate S, end interlock (xFo = 0)

Example 6 10. Implementation of P(S)

PP R 4,IOF ; End_interlockﬁXFQ = 1) )

NOP ; Avoid potential pipeline conflicts when
executi ng out of cache, on-chip menory
; OF zero Wwait-state menory

1]
1]
L]
1]
1]
1

!

>

LDl es,RrO ; Interlocked read of S begins
» Contents of S — RO
B2 P 11f S =10, gotoP and try again
SUBI 1,R0O Decr enent (= S
STII RO,€S : Update S, end interlock (xFo = 1)

The SIGI operation can synchronize, at an instruction level, multiple
TMS320C3xs. Consider two processors connected as shown in Figure 6-3.
The code for the two processorsis shown in Example 6-11.

Figure 6-3. Zero-Logic Interconnect of TMS320C3xs

TMS320C3x #1 TMS8320C3x #2
XFO »] XF1
XF1 | XFO

Processor #1 runs until it executes the SIGI. It then waits until processor #2
executesa SIGI. Atthis point, the two processors have synchronizedand con-
tinue execution.
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|

Example 6—11. Code to Synchronize Two TMS320C3xs at the Software Level

Time Code for TMS320C3x #1 Code for TMS320C3x #2

0 ® [
[ J [ ]
[ [ ]
s|Gl ®
[ ]
[ ]
[ J
(WRIT) L]
[ J
[ J
[ ]

@ <@———— Synchronization Occurs =& SiGl
[ [ ]
[ J [ ]
l . .
[ [
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6.5 Reset Operation

The TMS320C3x supports a nonmaskable external reset signal (RESET),
whichis used to perform systemreset. This section discussesthe reset opera-
tion.

At powerup, the state of the TMS320C3x processor is undefined. You can use
the RESET signal to place the processor in a known state. This signal must
be assertedlow for ten or more H1 clock cycles to guarantee a system reset.
H1 is an output clock signal generated by the TMS320C3x (see Chapter 13
for more information).

Resetaffectsthe other pins onthe devicein either asynchronousor asynchro-
nous manner. The synchronousreset is gated by the TMS320C3x’s internal
clocks. The asynchronousreset directly affects the pins and is faster than the
synchronousreset. Table 6-3 shows the state of the TMS320C3x's pins after
RESET = 0. Each pin is described according to whether the pinis reset syn-
chronously or asynchronously.
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Table 6-3. Pin Operation at Reset

Signal # Pins Operation at Reset
Primary Interface (61 Pins)
D31-DO 32 Synchronous reset; placed in high-impedance state
A23-A0 24 Synchronous reset; placed in high-impedance state
RW 1 Synchronous reset; deasserted by going to a high level
STRB 1 Synchronous reset; deasserted by going to a high level
RDY 1 Reset has no effect.
HOLD 1 Reset has no effect.
HOLDA 1 Reset has no effect.
Expansion Interface (49 Pins)t
XD31-XD0O 32 Synchronous reset; placed in high-impedance state
XA12-XA0 13 Synchronous reset; placed in high-impedance state
XRW 1 Synchronous reset; placed in high-impedance state
MSTRB 1 Synchronous reset; deasserted by going to a high level
IOSTRB 1 Synchronous reset; deasserted by going to a high level
XRDY 1 Reset has no effect.
Control Signals (9 Pins)
RESET 1 Reset input pin
INT3-INTO 4 Reset has no effect.
IACK 1 Synchronous reset; deasserted by going to a high level
MC/MP or 1 Reset has no effect.
MCBL/MP
XF1-XFO 2 Asynchronous reset; placed in high-impedance state
T Present only on TMS320C30
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Table 6-3. Pin Operation at Reset (Continued)

Signal # PIns Operation at Reset
Serial Port 0 Signals (6 Pins)
CLKXO 1 Asynchronous reset; placed in high-impedancestate
DXO 1 Asynchronous reset; placed in high-impedance state
FSXO 1 Asynchronous reset; placed in high-impedance state
CLKRO 1 Asynchronous reset; placed in high-impedancestate
DRO 1 Asynchronous reset; placed in high-impedance state
FSRO 1 Asynchronous reset; placed in high-impedancestate
Serilal Port 1 Signals (6 Pins) t
CLKX1 1 Asynchronous reset; placed in high-impedancestate
DX1 1 Asynchronous reset; placed in high-impedance state
FSX1 1 Asynchronous reset; placed in high-impedance state
CLKR1 1 Asynchronous reset; placed in high-impedance state
DR1 1 Asynchronous reset; placed in high-impedance state
FSR1 1 Asynchronous reset; placed in high-impedance state
Timer 0 Signal (1 Pin)
TCLKO 1 Asynchronous reset; placed in high-impedance state
Timer 1 Signal (1 Pin)
TCLK1 1 Asynchronous reset; placed in high-impedancestate
Supply and Oscillator Signals (29 Pins)
Vpp (3-0) 4 Reset has no effect.
I0DVpp (1,0) 2 Reset has no effect.
ADVpp (1,0) 2 Reset has no effect.
PDVpp 1 Reset has no effect.
DDVpg (1,0) 2 Reset has no effect.
MDVpp 1 Reset has no effect.
Vss (3-0) 4 Reset has no effect.

1 Present only on TMS$320C30
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Table 6-3. Pin Operation at Reset (Continued)

Slignal # Plns Operation at Reset

DVgs (3-0) 2 Reset has no effect.

CVgs (1,0) 2 Reset has no effect.

IVss 1 Reset has no effect.

VesP 1 Reset has no effect.
SUBS 1 Reset has no effect.

X1 1 Reset has no effect.
X2/CLKIN 1 Reset has no effect.

H1 1 Synchronous reset. Will go to its initial state when RESET makes a 1 to 0

transition. See Chapter 13.
H3 1 Synchronous reset. Will go to its initial state when RESET makes a1to 0
transition. See Chapter 13.
Emulation, Test, and Reserved (18 Pins)

EMUO 1 Undefined

EMU1 1 Undefined

EMU2 1 Undefined

EMU3 1 Undefined

EMU4/SHZ 1 Undefined

EMUst 1 Undefined

EMUst 1 Undefined

Rsvot 1 Undefined

Rsv1t 1 Undefined

RSvat 1 Undefined

Rsvat 1 Undefined

Rsva4t 1 Undefined

RSvst 1 Undefined

Rsvet 1 Undefined

Rsv7t 1 Undefined

Rsvst 1 Undefined

Rsvet 1 Undefined

Rsviot 1 Undefined

t Present only on TMS320C30
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At system reset, the following additional operations are performed:

Q

Q

Q

The peripherals are reset. Thisis asynchronousoperation. The peripheral
resetis described in Chapter 8.

The external bus controlregistersare reset. Theresetvalues of the control
registers are described in Chapter 7.

The following CPU registers are loaded with 0:

ST (CPU status register)
IE (CPU/DMA interrupt enable flags)
IF (CPU interrupt flags)

B IOF (/O flags)

The reset vector is read from memory location Ch and loaded into the PC.
This vector contains the start address of the system reset routine.

Execution begins. Refer to Example 11-1 on page 11-3 for an illustration
of a processor initializationroutine.

Multiple TMS320C3xs driven by the same system clock may be reset and syn-
chronized. Whenthe 1to 0transitionof RESET occurs, the processoris placed
on a well-definedinternal phase, and all of the TMS320C3xs will come up on
the same internal phase.

Unless otherwise specified, all registers are undefined after reset.
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6.6 Interrupts

The TMS320C3x supports multipleinternal and externalinterrupts, which can
be used for a variety of applications. This section discusses the operation of
these interrupts.

A functional diagram of the logic used to implement the external interrupt
inputs is shown in Figure 6-4; the logic for internal interrupts is similar. Addi-
tional information regarding internal interrupts can be found in Chapter 8.

Figure 6—4. Interrupt Logic Functional Diagram

Internal Interrupt

Set Signal EINTNn(CPU)
Interrupt GIE(CPV)
Flag (n)
INTn | Internal To
Pa ba ba interrupt |—  Control
Secti
CLK CLK CLK RESET. Processor ection
I— l— InternalFterrupt GIEDMA)
{
H1 H3 H1 Clear/gci:gzglw edge

EINTn(DMA)

External interrupts are synchronized internally, as illustrated by the three flip-
flops clockedby H1 and H3. Once synchronized, the interruptinput will set the
corresponding interrupt flag register (IF) bit if the interruptis active.

Externalinterruptsare latchedinternally on the falling edge of H1 (see Chapter
13 for timing information). An external interrupt must be held low for at least
one H1/H3 cycle to be recognized by the TMS320C3x. Interrupts should be
held low for only one or two H1 falling edges. If the interruptis heldlow for three
or more H1 falling edges, multiple interrupts may be recognized.

6.6.1 Interrupt Vector Table

Table 64 and Table 6-5 containthe interrupt vectors. In the microprocessor
mode of the TMS320C30 and the TMS320C31 (Table 6-4) and the microcom-
puter mode of the TMS320C31 (Table 6-5), the interrupt vectors contain the
addressesof interruptservice routines that should start executing when anin-
terrupt occurs. On the other hand, in the microcomputer/boot loader mode of
the TMS320C31, the interrupt vector contains a branchinstructionto the start
of the interrupt service routine.
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Table 6+4. Reset, Interrupt, and Trap-Vector Locations for the TMS320C30/TMS320C31
Microprocessor Mode

Address Routine

00h RESET

01lh INTO

02h INT1

03h INT2

04h INT3

05h XINTO

06h RINTO

07h XINT11

08h RINT11

0sh TINTO

0Ah TINT1

0Bh DINT

0OCh

1Fh Reserved

20h TRAP 0

3Bh TRAP 27

3Ch TRAP 28 (Reserved)
3Dh TRAP 29 (Reserved)
3Eh TRAP 30 (Reserved)
3Fh TRAP 31 (Reserved)

TReserved on TMS320C31
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Table 6-5. Reset, Interrupt, and Trap Vector Locations for the TMS320C31 Microcomputer
Boot Mode

Address Description
809FC1 INTO
809FC2 INT1
809FC3 INT2
809FC4 INT3
809FC5 XINTO
809FC6 RINTO
809FC7 Reserved
B0O9FC8 Reserved
809FC9 TINTO
80SFCA TINTL
80SFCB DINTO
809FCC-809FDF Reserved
809FEO TRAPO
809FE1 TRAPT
809FFB TRAP27

809FFC—809FFF Reserved

6.6.2 Interrupt Prioritization

When two interrupts occur in the same clock cycle or when two previously
receivedinterruptsare waiting to be serviced, one interruptwill be serviced be-
fore the other. The CPU handles this prioritization by servicing the interrupt
with the least priority. Table 66 shows the priorities assigned to the reset and
interrupt vectors.

The CPU controlsall prioritization of interrupts (See Table 66 for resetand in-
terrupt vector locations and priorities).
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Table 6-6. Reset and Interrupt Vector Priorities

Resetor Vector
Interrupt Location

Priority ~ Function

TINT1
DINT

th
Ih
2h
3h
4h
5h
6h
7h
8h
Sh
0Ah
0Bh

0

© 0 N o o M~ W N -

S

External reset signal input on the RESET pin

External interrupt on the INTO pin

External interrupton the INT1 pin

External interrupt on the INT2 pin

Externalinterrupt on the INT3 pin

Internal interrupt generated when serial-port O transmit buffer is empty
Internal interrupt generated when serial-port 0 receive buffer is full
Internal interrupt generated when serial-port 1 transmit buffer is empty
Internal interrupt generated when serial-port 1 receive buffer is full
Internal interrupt generated by timer 0

Internal interrupt generated by timer 1

Internal interrupt generated by DMA controller O

t Reserved 0N TMS320C31

6.6.3

Interrupt Control Bits

Four CPU registers contain bits used to control interrupt operation:

[ Status Register (ST)

The CPU global interrupt enable bit (GIE) located in the CPU status regis-
ter (ST) controlsall maskable CPU interrupts. When this bitis setto 1, the
CPU responds to an enabled interrupt. When this bit is cleared to 0, all
CPU interrupts are disabled. Refer to subsection 3.1.7 on page 3-4 for
more information.

CPU/DMA Interrupt Enable Register (IE)

This register individually enables/disables CPU and DMA (external, serial
port, and timer) interrupts. Refer to subsection 3.1.8 on page 3-7 for more
information.

CPU Interrupt Flag Register (IF)

This register contains interruptflag bits that indicate the correspondingin-
terruptis set. Refer to subsection 3.1.9 on page 3-9 for more information.
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@ DMA Global Control Register

Interrupts to the DMA are controlled by the synchronization bits of the
DMA global control register. DMA interrupts are independent of the ST
(GIE) bit.

Interrupt Flag Register Behavior

When an external interrupt occurs, the corresponding bit of the IF register is
setto 1. When the CPU or DMA controller processes this interrupt, the corre-
sponding interrupt flag bitis cleared by the internalinterrupt acknowledge sig-
nal. It should be noted, however, that if INTn is still low when the interrupt ac-
knowledge signal occurs, the interrupt flag bit willbe clearedfor only one cycle
and then set again because INTn is still low. Accordingly, itis theoreticallypos-
sible that, depending on when the IF register is read, this bit may be 0 even
though INTn is 0. When the TMS320C3x is reset, 0 is written to the interrupt
flag register, thereby clearing all pending interrupts.

The interrupt flag register bits may be read and written under software control.
Writinga 1 to an IF register bit sets the associated interruptflagto 1. Similarly,
writing a 0 resetsthe corresponding interruptflag to 0. In this way, allinterrupts
may be triggered and/or cleared through software. Since the interrupt flags
may be read, the interrupt pins may be polledin software when aninterrupt-dri-
ven interface is not required.

Internal interrupts operate in a similar manner. In the IF register, the bit corre-
sponding to an internal interrupt may be read and written through software.
Writing a 1 sets the interrupt latch; writing a 0 clears it. Allinternal interrupts
are one H1/H3 cycle in length.

The CPU global interrupt enable bit (GIE), locatedin the CPU status register
(ST), controls all CPU interrupts. AllDMA interruptsare controlled by the DMA
global interrupt enable bit, which is not dependent on ST(GIE) and is local to
the DMA. The DMA global interrupt enable bit is dependent, in part, on the
state of the DMA SYNC bits. Itis not directly accessible through software (see
Chapter 8). The AND of the interrupt flag bit and the interrupt enables is then
connected to the interrupt processor.

6.6.4 Interrupt Processing

The 'C3x allows the CPU and DMA coprocessor to respond to and process in-
terrupts in parallel. Figure 6-5 on page 6-28 shows interrupt processing flow;
for exact sequence, refer to Table 6-7 on page 6-29.
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Figure 6-5. Interrupt Processing

Is an Enabled
Interrupt Set

] !

if Enabled, If Enabled,
Interrupt Is Interrupt Is
a CPU Interrupt a DMA Interrupt
Disable Interrupts
GIE~ 0 Clear Inteirupt Flag
Clear Interrupt Flag | DMA ﬁ?g?ﬁg gci:tzordmg
PC — *(++SP) DMA Continues

:

Complete All Fetched Instructions

!

PC <« Interrupt Vector

v

CPU Starts Executing ISR Routine

Note: CPU and DMA Interrupts

CPU and DMA interrupts are acknowledged (respondedto by the CPU) on
instruction fetch boundaries only. If instruction fetches are halted because
of pipeline conflicts or execution of RPTSloops, CPU and DMA interrupts are
not acknowledged until instruction fetching continues.

6-28
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Table 6-7. Interrupt Latency

Cycle Description Fetch Decode Read Execute

1 Recognize interrupt in single-cycle fetched prog prog a prog a1 prog a2
(prog a + 1) instruction. a+1

2 Temporarily disable interrupt until GIE is cleared. - interrupt  prog a prog &1

3 Read the interrupt vector table. — — interrupt  prog a

4 Clear Interruptflag; clear GIE bit; storereturnaddress — — — interrupt
to stack.

5 Pipeline begins to fill with ISR instruction. isrl - — —

6 Pipeline continuesto fill with ISR instruction. isr2 isrl — —

7 Pipeline continuesto fill with ISR instruction. isr3 isr2 isrl —

8 Execute first instruction of interrupt service routine,  isr4 isr3 isr2 isrl

Inthe CPU interrupt processing cycle (left side of Figure 6-5), the correspond-
ing interrupt flag in the IF register is cleared, and interrupts are globally dis-
abled (GIE = 0). The CPU completes all fetched instructions. The current PC
is pushedto the top of the stack. Theinterruptvector is fetched and loadedinto
the PC, and the CPU starts executing the first instruction in the interrupt ser-
vice routine (ISR).

If you wish to make the interrupt service routine interruptible, you can set the
GIE bit to 1 after entering the ISR.

The DMA interrupt processing cycle (right side of Figure 6-5) is similar to that
of the CPU. After the pertinent interruptflag is cleared, the DMA coprocessor
proceeds according to the status of the SYNC bits in the DMA coprocessor
global control register.

The interrupt acknowledge (IACK) instruction can be used to signal externally
that aninterrupthas been serviced. If external memoryis specifiedinthe oper-
and, IACK drives the TACK pin and performs a dummy read. The read is per-
formed from the address specified by the IACK instruction operand. IACK is
typically placed in the early portion of an interrupt service routine. However,
it may be better suited at the end of the interrupt service routine or be totally
unnecessary.

Note the following:

Q Interruptsare disabled during an RPTS and during a delayed branch (until
the three instructions following a delayed branch are completed). Inter-
rupts are held until after the branch.
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O When an interrupt occurs, instructions currently in the decode and read
phases continue regular execution. This is not the case for an instruction
in the fetch phase:

If the interrupt occurs in the first cycle of the fetch of aninstruction, the
fetched instruction is discarded (not executed), and the address of
that instruction is pushed to the top of the system stack.

B Iftheinterruptoccurs after first cycle of the fetch (inthe case of a multi-
cycle fetch due to wait states), thatinstructionis executed, and the ad-
dress of the next instructionto be fetched is pushed to the top of the
system stack.

6.6.5 CPU Interrupt Latency

CPU interrupt latency, defined as the time from the acknowledgement of the
interrupt to the execution of the first interrupt service routine (ISR) instruction,
is at least eight cycles. Thisis explainedin Table 6-7 on page 6-29, where the
interrupt is treated as an instruction. It assumed that all of the instructionsare
single-cycle instructions.

6.6.6 CPU/DMA Interaction

If the DMA is not using interrupts for synchronizationof transfers, it will not be
affected by the processing of the CPU interrupts. Detected interrupts are re-
sponded to by the CPU and DMA on instruction fetch boundaries only. Since
instruction fetches are halted due to pipeline conflicts or when executing
instructionsin an RPTS loop, interrupts will not be responded to until instruc-
tion fetching continues. It is therefore possible to interrupt the CPU and DMA
simultaneouslywiththe same or differentinterruptsand, in effect, synchronize
their activities. For example, it may be necessary to cause a high-priority DMA
transfer that avoids bus conflicts with the CPU (that is, that makes the DMA
higher priority than the CPU). This may be accomplished by usingan interrupt
that causes the CPU to trap to an interrupt routine that contains an IDLE
instruction. Then if the same interrupt is used to synchronize DMA transfers,
the DMA transfer counter can be usedto generatean interruptand thusreturn
control to the CPU following the DMA transfer.

Since the DMA and CPU share the same set of interrupt flags, the DMA may
clear an interrupt flag before the CPU can respond to it. For example, if the
CPUinterruptsare disabled, the DMA can respondto interruptsand thus clear
the associated interrupt flags.
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6.6.7 TMS320C3x interrupt Considerations

Give careful consideration to TMS320C3x interrupts, especially if you make
modifications to the status register when the global interrupt enable (GIE) bit
is set. This canresultinthe GIE bit being erroneously set or reset as described
in the following paragraphs.

The GIE bitis set to 0 by aninterrupt. This can cause a processing error if any
code following within two cycles of the interrupt recognition attempts to read
or modify the statusregister. For example, if the statusregisteris being pushed
ontothe stack, it will be storedincorrectlyif an interruptwas acknowledgedtwo
cycles before the store instruction.

When an interrupt signal is recognized, the TMS320C3x continues executing
the instructionsalreadyin the read and decodephasesin the pipeline. Howev-
er, because the interrupt is acknowledged, the GIE bit is reset to 0, and the
store instruction already in the pipeline will store the wrong status register
value.

For example, if the program is like this:

NOP

interrupt recogni zed —>LDI  €V_ADDR, ARl
MPYI *AR1, RO
PUSH ST

POP ST

the PUSH ST instructionwill save the ST contents in memory, whichincludes
GIE =0. Sincethe device is expected to have GIE = 1, the POP ST instruction
will put the wrong status register value into the ST.

A similar situationmay occur if the GIE bit = 1 and aninstructionexecutesthat
is intended to modify the other status bits and leave the GIE bit set. In the
above example, this erroneous setting would occur if the interruptwere recog-
nized two cycles before the POP ST instruction. In that case, the interrupt
would clear the GIE bit, but the execution of the POP instruction would set the
GIE bit. Since the interrupthas been recognized, the interrupt service routine
will be entered with interrupts enabled, rather than disabled aS expected.

One solutionis to use traps. For example, you can use TRAP 0 to reset GIE
and use TRAP 1 to set GIE. This is accomplished by making TRAP 0 and
TRAP 1 be the instructions RETS and RETI, respectively.
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PUSH
LDl
NOP
NOP
AND
POP

Another alternative incorporates the following code fragment, which protects
against modifying or saving of the status register by disabling interrupts
through the interrupt enable register:

Added instruction
to avoid pipeline

I E i save IE register * Added instructionsto
0, IE i Clear IE register avoid pipeline problems
; « 2 NOPs or useful instructions
H
ODFFFh, ST ; Set GIE =0 * Instructionthat reads or
IE ; writes to ST register.
H
;
;

problems.

6.6.8 TMS320C30 Interrupt Considerations

The TMS320C30 has two unique exceptions to the interrupt operation.

@ The status register global interrupt enable (GIE) bit may be erroneously

resetto O (disabled setting) if all of the following conditions are true:

B A conditional trap instruction (TRAPcond) has been fetched,

B The conditionfor the trap is false, and

W Apipeline conflict has occurred, resultingin a delay in the decode or
read phases of the instruction.

During the decode phase of a conditional trap, interrupts are temporarily
disabledto ensurethat the trap willexecute before a subsequentinterrupt.
If a pipeline conflict occurs and causes a delay in execution of the condi-
tional trap, the interrupt disabled condition may become the last known
condition of the GIE bit. In the case that the trap condition is false, inter-
rupts will be permanently disabled untilthe GIE bit is intentionally set. The
condition does not present itself when the trap condition is true, because
normal operation of the instructioncauses the GIE to be reset, and stan-
dard coding practice will set the GIE to 1 before the trap routine is exited.
Severalinstruction sequencesthat can cause pipeline conflictshave been
found:

LDI mem SP
TRAPcond n

LDI mem SP
NOP

TRAPcond n
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ISR n:

STI SP,mem
TRAPcond n
STI Rx, *ARy
LD *ARX, Ry
| |lLDI *ARZ ,Rw
TRAPcond n

Other similar conditions may also cause a delay in the execution. There-
fore, the following solutionis recommended to avoid or rectifythe problem.

Insert two NOP instructionsimmediately prior to the TRAPcondinstruc-
tion. One NOP is insufficientin some cases, as illustrated in the second
bulleted item, above. This eliminates the opportunity for any pipeline con-
flictsinthe immediately precedinginstructionsand enablesthe conditional
trap instruction to execute without delays.

Asynchronous accesses to the interrupt flag register (IF) can cause the
TMS320C3x to fail to recognize and service an interrupt. This may occur
when an interrupt is generated and is ready to be latchedinto the IF regis-
ter on the same cycle that the IF is being written to by the CPU. Note that
logic operations (AND, OR, XOR) may write to the IF register.

The logic currently gives the CPU write priority; consequently, the as-
serted interrupt might be lost. This is particularly true if the assertedinter-
rupt has been generated internally (for example, a direct memory access
(DMA) interrupt). This situation can arise as a result of a decision to poll
certaininterruptsor a desire to clear pending interruptsdue to along pulse
width. In the case of a long pulse width, the interrupt may be generated
after the CPUrespondsto the interrupt and attempts to automaticallyclear
it by the interrupt vector process.

The recommended solutionis not to use the interrupt polling technique but
to design the external interrupt inputs to have pulse widths of between 1
and 2 instruction cycles. The alternative to strict polling is to periodically
enable and disable the interrupts that would be polled, thereby allowing
the normal interrupt vectoring to take place; that automatically clears the
interrupt flag without affectingother interrupts. If you needto clear a pend-
ing interrupt, itis recommended that you use amemory locationto indicate
that the interrupt isinvalid. Then the interrupt service routine canread that
location, clear it (if the pending interrupt is invalid), and returnimmediately.
The following code fragments show how a dummy interrupt due to a long
interrupt pulse might be handled:

PUSH ST :

PUSH DP ; Save registers

PUSH RO ;

LDl o, DP ; Clear Data Page Pointer
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If DUMW-INT is 0 or positive,
go to ISR_n_START
Set DUMW- INT = 0

LDl  eDUMMY_INT, RO
BNN ISR_n_START
STI DP, @UMW- | NT

POP RO

popP DP

popP ST Housekeepi ng, return frominterrupt
RETI

NN Sewe ulowI NI

ISR_n_START:

ISR_n_END:

Nornmal interrupt service routine
Code goes here
LDl  INT_Fn, RO

AND IF, RO If ones in |F reg match
BZ ISR_n_END INT_Fn, exit ISR
LDI o, DP O herwi se cl ear

DP and set
DUMW- | NT negative & exit

LDl OFFFFh, RO
STI RO, @UVW- | NT

NI NI NN NS uT N

POP RO :
pop DP : Exit ISR
POP ST i
RETI ;

6.6.9 Prioritization and Control

The CPU controls all prioritization of interrupts (see Table 68 for reset and in-
terrupt vector locations and priorities). If the DMA is not using interrupts for
synchronization of transfers, it will not be affected by the processing of the
CPU interrupts. Detected interrupts are responded to by the CPU and DMA
on instruction fetch boundaries only. If instruction fetches are halted due to
pipeline conflicts or when executing instructionsin an RPTS loop, interrupts
will not be respondedto until instructionfetching continues. It is therefore pos-
sible to interrupt the CPU and DMA simultaneously with the same or different
interrupts and, in effect, synchronize their activities. For example, it may be
necessary to cause a high-priority DMA transfer that avoids bus conflicts with
the CPU, that is, make the DMA higher priority than the CPU. This may be ac-
complished by using an interrupt that causes the CPU to trap to an interrupt
routine that contains an IDLE instruction. Then if the same interruptis used to
synchronize DMA transfers, the DMA transfer counter can be usedto generate
an interrupt, thereby returning control to the CPU following the DMA transfer.

Since the DMA and CPU share the same set of interrupt flags, the DMA can
clear an interrupt flag before the CPU can respondto it. For example, if the
CPU interruptsare disabled, the DMA canrespondto interruptsand thus clear
the associated interrupt flags.
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Table 6-8. Reset and Interrupt Vector Locations

Reset or Vector

Interrupt Location Priority Function

RESET Ch 0 External reset signal input on the RESET pin

INTO Ih 1 External interrupt input on the INTO pin

INT1 2h 2 External interrupt input on the INTT pin

INT2 3h 3 External interrupt input on the INT2 pin

INT3 4h 4 External interrupt input on the INT3 pin

XINTO 5h 5 Internalinterrupt generated when serial-port 0 transmit
buffer is empty

RINTO 6h 6 Internaliinterrupt generated when serial-port 0 receive
buffer is full

XINT1 T 7h 7 internal interrupt generated when serial-port 1 transmit
buffer is empty

RINT1 1 8h 8 Internalinterrupt generated when serial-port 1 receive
buffer is full

TINTO Sh 9 Internalinterrupt generated by timer 0

TINT1 OAh 10 Internalinterrupt generated by timer 1

DINT 08h n Internalinterrupt generated by DMA controller 0

T Reserved on TMS320C31
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6.7 TMS320LC31 Power Management Modes

6.7.1

IDLE2

The TMS320LC31 CPU has been enhanced by the addition of two power man-
agement modes:

Q
Q

IDLE2, and
LOPOWER.

The H1 instruction clock is held high until one of the four external interruptsis
asserted. In IDLE2 mode, the TMS320C31 behaves as follows:

Q
Q

No instructions are executed.
The CPU, peripherals, and internal memory retain their previous states.

The primary bus output pins are idle:

B The address lines remain in their previous states,
B The datalines are in the high-impedance state, and
The output control signals are inactive.

Whenthe deviceis in the functional (non-emulation)mode, the clocksstop
with H1 high and H3 low (see Figure 6-86).

The 'C31 will remain in IDLE2 until one of the four external interrupts
(INT3-INTO) is asserted for at least one H1 cycle. When one of the four
interrupts is asserted, the clocks start after a delay of one H1 cycle. When
the clocks restart, they may be in the opposite phase (that is, H1 may be
high if H3 was high before the clocks were stopped; H3 may be high if H1
was previously high). The H1 and H3 clocks willremain 180° out of phase
with each other (see Figure 6-7).

For one of the four external interrupts to be recognized and serviced by
the CPU during the IDLE2 operation, the interrupt must be asserted for
less than three cycles but more than two cycles.

The instruction following the IDLEZ2 instruction will not be executed until
after the return from interrupt instruction (RET!) is executed.

When the deviceis in emulation mode, the H1 and H3 clocks will continue
to runnormally and the CPU will operate as if an IDLE instruction had been
executed. The clocks continue to run for correct operation of the emulator.
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Figure 6-6. IDLE2 Timing
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6.7.2 LOPOWER

In the LOPOWER (low power) mode, the CPU continues to execute instruc-
tions, and the DMA can continue to perform transfers, but at a reduced clock
rate of CLKIN frequency

16

A TMS8320C31 with a CLKIN frequency of 32 MHz will perform identically to
a 2 MHz TMS320C31 with an instruction cycle time of 1,000 ns.

During the read phase of the. .. The TMS320C31 ...
LOPOWER instruction (Figure 6-8) slows to 1/16 of full-speed operation.
MAXSPEED instruction (Figure 6-9) resumes full-speed operation.

Figure 6-8. LOPOWER Timing
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Figure 6-9. MAXSPEED Timing
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Chapter 7

External Bus Operation

Memoriesand external peripheral devices are accessible throughtwo external
interfaces on the TMS320C30:

[ the primary bus, and
[ the expansionbus.

Onthe TMS320C31, one bus, the primary bus, is available to access external
memories and peripheral devices. You can control wait-state generation, per-
mitting access to slower memories and peripherals, by manipulating
memory-mapped controlregistersassociatedwith the interfacesand by using
an external input signal.

Major topics discussed in this chapter are listed below.

Topic Page

7-1
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7.1 External Interface Control Registers

The TMS320C30 providestwo external interfaces: the primarybus andthe ex-
pansion bus. The TMS320C31 provides one external interface: the primary
bus. The primary bus consists of a 32-bit data bus, a 24-bit addressbus, and
a set of control signals. The expansion bus consists of a 32-bit data bus, a
13-bit address bus, and a set of control signals. Both buses support soft-
ware-controlled wait states and an external ready input signal, and both buses
are useful for data, program, and 1/O accesses.

Accessis determined by an active strobe signal (STRB, MSTRB, or IOSTRB).
When a primary bus access is performed, STRB is low. The expansion bus of
the TMS320C30 supports two types of accesses:

O Memory access signalled by MSTRB low. The timing for an MSTRB ac-
cess is the same as that of the STRB access on the primary bus.

(O Externalperipheral device access is signaled by IOSTRB low.

Eachof the buses (primary and expansion) has an associated control register.
These registers are memory-mapped as shown in Figure 7-1.

Figure 7-1. Memory-Mapped External Interface Control Registers

Register Peripheral
Address
Expansion-Bus Control (see subsection 7.1 2t 808060h
Reserved 808061h
Reserved 808062h
Reserved 808063h
Primary-Bus Control (see subsection 7.1.1) 808064h
Reserved 808065h
Reserved 808066h
Reserved 808067h
Reserved 808068h
Reserved 808069h
Reserved 80806Ah
Reserved 80806Bh
Reserved 80806Ch
Reserved 80806Dh
Reserved 80806Eh
Reserved 80806Fh

t Reserved on the TMS320C31
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7.1.1 Primary-Bus Control Register

The primary bus control register is a 32-bit register that contains the control
bits for the primary bus (see Figure 7-2). Table 7-1 lists the register bits with
the bit names and functions.

Figure 7-2. Primary-Bus Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 LO
|xx LXXT XX BNKCMP WTCNT  SWW HIZ NOHOLqHOLDSTI

RW RW RW RW RW RW RW RWRWRWRW  RW R

NOTE:  xx = resewed bit, read asoO.
R =read, W = write.

External Bus Operation 7-3



ExternalInterface Control Registers

Table 7-1. Primary-Bus Control Register Bits Summary

Blt Name Reset Value Function

0 HOLDST X t Hold status bit. This bit signals whether the port is being held
(HOLDST = 1) or is not being held (HOLDST = 0). This status bii is valid
whether the port has been held via hardware or software.

1 NOHOLD 0 Port hold signal. NOHOLD allows or disallows the port to be held by an
external HOLD signal. When NOHOLD = 1, the TMS320C3x takes over
the external bus and controls it, regardless of serviced or pending re-
quests by external devices. No hoid acknowledge (HOLDA,) is asserted
when a HOLD is received. However, it is asserted if an internal hold is
generated (HIZ = 1). NOHOLD is set to 0 at reset.

2 HIZ 0 Internal hold. When set (HIZ = 1), the port is put in hold mode. This is
equivalentto the external HOLD signal. By forcing a high-impedance
condition, the TMS320C3x can relinquish the external memory port
through software. HOLDA goes low when the port is placed in the
high-impedance state. HIZ is set to 0 at reset.

4-3 sSww n Software wait mode. In conjunction with WTCNT, this two-bit field de-
fines the mode of wait-state generation. Itis setto 1 1 at reset.

7-5 WTCNT 11 Software wait mode. This three-bit field specifies the number of cycles
to use when in software wait mode for the generation of internal wait
states. The range is 0 (WTCNT=000)to 7 (WTCNT=1 1 1) H1/H3
cycles. Itissetto 111 at reset.

12-8 10000 Bank compare. This five-bit field specifies the number of MSBs of the
BNKCMP address to be used to define the bank size. Itis setto 1 0 0 0 0 at reset.
31-13 Reserved 0-0 Read as 0.

tx=0o0r1
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7.1.2 Expansion-Bus Control Register

The expansion-bus control register is a 32-bitregister that contains control bits
for the expansion bus (see Figure 7-3 and Table 7-2).

Figure 7-3. Expansion-Bus ControlRegister

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
xx [ x| x| oxx | xoc | xx xxl WTCNT ISWW I”‘l’“lﬁ_l

RW RW RW RW RW

NOTE: xx =reserved bit, read as 0.
R =read, W = mite.

Table 7-2. Expansion-Bus Control Register Bits Summary

Reset

Blt Name Value Function

2-0 Reserved 000 Read as 0.

43 SWW 1 Software wait-state generation. In conjunction with the WTCNT, this
two-bit field defines the mode of wait-state generation. Itis setto 1 1
at reset.

75 WTCNT 1m Software wait mode. This three-bit field specifies the number of cycles
to use when in software wait mode for the generation of internal wait
states. Therangeis 0 (WTCNT=000)to7 (WTCNT =11 1) H1/H3
clock cycles. Itissetto1 1 1 at reset.

31-8 Reserved 0-0 Read as 0.

External Bus Operation 7-5
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7.2 External Interface Timing

This section discusses functional timing of operations on the primary bus and
the expansion bus, the TMS320C3x’s two independent parallel buses.
Detailedtiming specifications for all TMS320C3x signals are containedin Sec-
tion 13.6 on page 13-31.

The parallelbusesimplementthree mutually exclusive address spaces distin-
guishedthroughthe use of three separate control signals: STRB, MSTRB, and
IOSTRB. The STRB signal controls accesses on the primary bus, and the
MSTRB and IOSTRB control accesses on the expansion bus. Since the two
buses are independent, you can make two accesses in parallel.

With the exception of bank switching and the external HOLD function (dis-
cussed later in this section), timing of primary bus cycles and MSTRB expan-
sion bus cycles are identical and are discussed collectively. The acronym
(M)STRB s usedinreferencesthat pertainequallyto STRB andMSTRB. Sim-
ilarly, X)RW, (X)A, (X)D, and (X)RDY are used to symbolize the equivalent
primary and expansion bus signals. The IOSTRB expansion bus cycles are
timed differently and are discussed independently.

7.21 Primary-BusCycles

All bus cycles comprise integral numbers of H1 clock cycles. One H1 cycleis
defined to be from one falling edge of H1 to the next falling edge of H1. For
full-speed (zero wait-state) accesses, writes require two H1 cycles and reads
one cycle; however, if the read follows a write, the read requires two
cycles. This applies to both the primary bus and the MSTRB expansionbus ac-
cess. Recallthat, internally (from the perspective of the CPU and DMA), writes
require only one cycle if no accessesto that interface are in progress. The fol-
lowing discussions pertain to zero wait-state accesses unless otherwise spe-
cified.

The (M)STRB signalis low for the active portion of both reads and writes. The
active portion lasts one H1 cycle. Additionally, before and after the active por-
tion ((M)STRB low) of writes only, there is a transition cycle of H1. This transi-
tion cycle consists of the following sequence:

1) (M)STRBis high.
2) If required, (X)R/W changes state on H1 rising.

3) Ifrequired, address changes on H1 rising if the previous H1 cycle was the
active portion of a write. If the previous H1 cycle was a read, address
changes on H1 falling.
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Figure 7-4 illustrates a read-read-write sequence for (M)STRB active and no
wait states. The datais read as late in the cycle as possibleto allow maximum
accesstime from address valid. Note that although external writes require two
cycles, internally (from the perspective of the CPU and DMA) they require only
one cycleif no accessesto that interface are in progress. In the typical timing
for all external interfaces, the (X)R/W strobe does not change until (M)STRB
or IOSTRB goes inactive.

Figure 7-4. Read-Read-Write for (M)STRB =0

Note: Back-to-Back Read Operations
(M)STRB will remain low during back-to-back read operations.

External Bus Operation 7-7
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Figure 7-5 illustrates a write-write-read sequence for (M)STRB active and no
wait states. The address and data written are held valid approximately
one-half cycle after (M)STRB changes.

Figure 7-5. Write-Write-Read for (M)STRB =0

we N
D SR, SE—, 6
00— Vit Bty Vit Data
o N/ N/ N/

7-8
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Figure 7-6 illustrates a read cycle with one wait state. Since (X)RDY = 1, the
read cycle is extended. (M)STRB, (X)R/W, and (X)A are also extended one
cycle. The next time (X)RDY is sampled, it is 0.

Figure 7-6. Use of Wait States for Read for (MJSTRB =0

NI U 2 UV D e
AU
R S

. ' ‘\ Read ,‘ . ( YVrite Dat:el )———
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Figure 7-7 illustrates a write cycle with one wait state. Sinceinitially (X)RDY =
1, the write cycle is extended. (M)STRB, (X)R/W, and (X)A are extended one
cycle. The next time (X)RDY is sampled, it is 0.

Figure 7-7. Use of Wait States for Write for (M)STRB =0

MSTRE 1 N\

XD —E—( . Write Datall ‘ )——(7 Write Dat.a j'—
RO T\ '/

L_ Extra _,|

Cycle
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7.2.2 Expansion-Bus /O Gycl es

In contrast to primary bus and MSTRB cycles, IOSTRB reads and writes are
both two cycles in duration (with no wait states) and exhibit the same timing.
During these cycles, address always changes on the falling edge of H1, and
IOSTRB is low from the rising edge of the first H1 cycle to the rising edge of
the second H1 cycle. The IOSTRB signal always goes inactive (high) between
cycles, and XR/W is high for reads and low for writes.

Figure 78 illustrates read and write cycles when IOSTRB is active and there
arenowait states. For IOSTRB accesses,readsand writesrequireaminimum
of two cycles. Some off-chip peripherals might change their status bits when
read or writtento. Therefore, it is important to maintain valid addresses when
communicating with these peripherals. For reads and writes when IOSTRB is
active, IOSTRB is completely framed by the address.

Figure 7-8. Read and Write for IOSTRB =0

XRDY

. —
NN
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Figure 7-9 illustrates a read with one wait state when IOSTRB is active, and
Figure 7-10 illustrates a write with one wait state when IOSTRB is active. For
each wait state added, IOSTRB, XR/W, and XA are extended one clock cycle.
Writes hold the data on the bus one additional cycle. The sampling of XRDY
is repeated each cycle.

Figure 7-9. Read With One Wait State for IOSTRB =0

, X ' P . ! '
XD . . { Read ) , ;

7-12
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Figure 7-10. Write With One Wait State for JOSTRB =0

H3

........ /

H1

IOSTRB

b - - ]-- -

Write Data

XA
XD

b - -

7-13
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Figure 7-11, Figure 7-12, Figure 7-13, Figure 7-14, Figure 7-15,
Figure 7-16, Figure 7-17, Figure 7-18, Figure 7-19, Figure 7-20, and
Figure 7-21 illustrate the various transitions between memory reads and
writes, and |/O writes over the expansion bus.

Figure 7-11. Memory Read and //O Write for Expansion Bus

&
-----h-------.\

'0'0'0'0'0

XA Memory Address AOAQAQ.O 0’0":;?.0 I/O Address %
1

\ 1/O Write

o\ / — :\g/—_
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Figure 7-12. Memory Read and //O Read for Expansion Bus

-
IOSTRE . . \ / .
XA W '\A/Igg:gg X . Vo Adc;ress . m
s (D

External Bus Operation 7-15



External Interface Timing

Figure 7-13. Memory Write and /O Write for Expansion Bus
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Figure 7-14. Memory Write and //O Read for Expansion Bus
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Figure 7-15. /O Write and Memory Write for Expansion Bus
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Figure 7-16. /O Write and Memory Read for Expansion Bus
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Figure 7-17. /O Read and Memory Write for Expansion Bus
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Figure 7-18. }/O Read and Memory Read for Expansion Bus
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Figure 7-19. /O Write and I/O Read for Expansion Bus

External Interface Timing

llllllllll

-

XRDY




External Interface Timing

Figure 7-20. I/O Write and I/O Write for Expansion Bus

Write Data

Write Data
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Figure 7-21. /O Read and I/O Read for Expansion Bus

XRDY
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Figure 7-22 and Figure 7-23 illustratethe signal states when a busis inactive
(after an IOSTRB or (M)STRB access, respectively). The strobes (STRB,
MSTRB and IOSTRB) and (X)RW) go to 1. The address is undefined, and the
ready signal (XRDY or RDY) is ignored.

Figure 7-22. Inactive Bus States for [OSTRB
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.
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Figure 7-23. Inactive Bus States for STRS and MSTRB
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Figure 724 illustrates the timing for HOLD and HOLDA. HOLD is an external
asynchronousinput. Thereis aminimumof one cycle delay fromthe time when
the processor recognizesHOLD = 0 until HOLDA = 0. When HOLDA = 0, the
address, data buses, and associated strobes are placed in a high-impedance
state. All accesses occurring over an interface are complete before a hold is
acknowledged.

Figure 7-24. HOLD and HOLDA Timing

D Write Data
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Bus
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7.3 Programmable Wait States

You can control wait-state generation by manipulatingmemory-mappedcon-
trol registers associated with both the primary and expansioninterfaces. Use
the WTCNT field to load an internaltimer, and use the SWW field to select one
of the following four modes of wait-state generation:

0 External RDY

O WTCNT-generated RDYwtent

O Logical-AND of RDY and RDYwtent
O Logical-OR of RDY and RDYwtcnt

The four modes are used to generate the internal ready signal, RDYjpy, that
controls accesses. As long as RDYjy; = 1, the current external access is
delayed. When RDYijn = 0, the current access completes. Since the use of
programmable wait states for both externalinterfacesis identical, only the pri-
mary bus interface is described in the following paragraphs.

RDYytent is an internally generated ready signal. When an external accessis
begun,the value in WTCNT is loadedinto acounter. WTCNT can be any value
from 0 through 7. The counter is decremented every H1/H3 clock cycle until
it becomes 0. Once the counter is set to 0, it remains set to 0 until the next ac-
cess. While the counter is nonzero, RDYygent = 1. While the counter is 0,
ﬁwwtcnt =0.
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When SWW = 0 0, RDYj,t depends only on RDY. RDYggent is ignored.

Table 7-3 is the truth table for this mode.

Table 7-3. Wait-State Generation When SWW =0 0
RDY ﬁwten! DY)y
0

- -0
200

1
0
1

When SWW = 0 1, RDYjy depends only on RDYygent. RDY is ignored.

Table 7—4 is the truth table for this mode.

Table 7—4. \Wait-State Generation When SWW =0 1

0 0 0
0 1 1
1 0 C
1 1 1

When SWW =1 0, RDYj is the logical-OR (electrical-AND, since these sig-

rials are low true) of RDY and RDYygcnt (See Table 7-5).

Table 7-5. \Wait-State Generation When SWW =10

When SWW =11, RDYjnt is the logical-AND (electrical-OR, since these sig-
rials are low true) of RDY and RDYygcnt. The truth table for this mode is

Table 7-6.

Table 7-6. Wait-State Generation When SWW =11

0 0 0
0 1 1
1 0 1
1 1 1

External Bus Operation
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7.4 Programmable Bank Switching

Programmable bank switching allows youto switch between externalmemory
banks without externally inserting wait states due to memories that require
several cycles to turn off. Bank switching is implemented on the primary bus
and not on the expansion bus.

The size of a bank is determined by the number of bits specified to be ex-
amined on the BNKCMP field of the primary bus control register (see
Table 7-1 on page 7-4). For example (see Figure 7-25), if BNKCMP = 16,
the 16 MSBs of the address are used to define a bank. Since addresses are
24 bits, the bank size is specified by the eight LSBs, yielding abank size of 256
words. If BNKCMP = 16, only the 16 MSBs are compared. Bank sizes from 28
= 256 to 224 = 16M are allowed. Table 7-7 summarizes the relationship be-
tweenBNKCMP, the address bits usedto define a bank, and the resulting bank
size.

Figure 7-25. BNKCMP Example

e 24-bit address ’
23 8l 7 0

l‘-—- Number of bits to compare —*- Defines bank size —'|

Table 7-7. BNKCMP and Bank Size

BNKCMP MSBs Defining a Bank Bank Size (32-Bit Words)
00000 None 224= 16M
00001 23 223= gM
00010 23-22 222= 4M
00011 23-21 221_ 7\
00100 23-20 220= 1M
00101 2349 219= 512K
00110 23--18 218= 256K
00111 23-17 217-128K
01000 23—16 216= 4K
01001 23-15 215_ 32K
01010 23-14 214= 16K
01011 23-1 3 213= 8K
01100 23—22 212_ 4K
01101 23-1 211= 2K
01110 23-12 210= 1K
01111 23-9 29 =512
10000 23--8 28 - 256
10000—11111 Reserved Undefined
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The TMS320C3x has an internal register that contains the MSBs (as defined
by the BNKCMP field) of the last address used for a read or write over the pri-
mary interface. Atreset, the register bits are setto 0. If the MSBs of the address
beingusedfor the current primary interface read do not match those contained
inthisinternal register, aread cycleis not asserted for one H1/H3 clock cycle.
During this extra clock cycle, the address bus switches over to the new ad-
dress, but STRBis inactive (high). The contents of the internal register are re-
placed with the MSBs being used for the current read of the current address.
If the MSBs of the address being used for the current read match the bits in
the register, a normal read cycle takes place.

If repeated reads are performedfrom the same memory bank, no extracycles
areinserted. Whenareadis performedfrom adifferentmemory bank, memory
conflicts are avoidedby the insertion of an extracycle. This feature can be dis-
abled by setting BNKCMP to 0. The insertion of the extra cycle occurs only
when aread is performed. The changing of the MSBs in the internal register
occurs for all reads and writes over the primary interface.

Figure 7-26 illustrates the addition of an inactive cycle when switches be-
tween banks of memory occur.

Figure 7-26, Bank-Switching Example
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The TMS320C3x features two timers, two serial ports (one on the
TMS320C31), and an on-chip direct memory access (DMA) controlier. These
peripheralmodules are controlled through memory-mappedregisters located
on the dedicated peripheral bus.

The DMA controlleris used to perform input/output operations withoutinterfer-
ing with the operation of the CPU. Therefore, it is possible to interface the
TMS320C3x to slow external memories and peripherals (A/Ds, serial ports,
etc.) without reducing the computationalthroughput of the CPU. The resultis
improved system performance and decreased system cost.

Major topics discussed in this chapter on peripherals are listed below.

Topic Page




Timers

8.1 Timers

The TMS320C3x timer modules are general-purpose, 32-bit, timer/event
counters, with two signaling modes and internal or external clocking (see
Figure 8-1). You can use the timer modulesto signalto the TMS320C3x or the
external world at specifiedintervals or to count external events. With an inter-
nal clock, you can use the timer to signal an external A/D converter to start a
conversion, or it can interrupt the TMS320C3x DMA controllerto begin a data
transfer. The timer interrupt is one of the internal interrupts. With an external
clock, the timer can count external events and interrupt the CPU after a speci-
fied number of events. Each timer has an I/O pin that you can use as an input
clock to the timer, an output clock signal, or a general-purpose I/O pin.

Figure 8~1. Timer Block Diagram

|4 Internal Clock/2

Counter (32-bit) 4_Gf External Clock
\\— INV

Period Register (31-0) Coun;g: I_'\Zgglster
32
32
Comparator

?
Period = Counter

2

Pulse Generator

INV

» TSTAT

Timer Out

Three memory-mapped registers are used by each timer:

d Global-ControlRegister

The global-control register determines the operating mode of the timer,
monitorsthe timer status, and controls the function of the I/O pin of the timer.

O Period Register

The period register specifies the timer's signaling frequency.
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a Counter Register

The counter register containsthe current value of the incrementing count-
er. You canincrement the timer on the rising edge or the falling edge of the
input clock. The counter is zeroed and can cause an internal interrupt
whenever its value equals that in the period register. The pulse generator
generates two types of external clock signals: pulse or clock. The memory
map for the timer modules is shown in Figure 8-2.

Figure 8-2. Memory-Mapped Timer Locations

Register Peripheral Address
Timer 0 Timer 1
Timer Global Control (See Table 8-1) 808020h 808030h
Reserved 808021h 808031h
Reserved 808022h 808032h
Reserved 808023h 808033h
Timer Counter (See subsection 8.1.2) 808024h 808034h
Reserved 808025h 808035h
Reserved 808026h 808036h
Reserved 808027h 808037h
Timer Period (See subsection 8.1.2) 808028h 808038h
Reserved 808028h 808039h
Reserved 80802Ah 80803Ah
Reserved 80802Bh 80803Bh
Reserved 80802Ch 80803Ch
Reserved 80802Dh 80803Dh
Reserved 80802Eh 80803Eh
Reserved 80802Fh 80803Fh

8.1.1 TIimer Global-Control Register

The timer global controlregister is a 32-bitregister that contains the globaland
port control bits for the timer module. Table 8-1 defines this register's bits,
names, and functions. Bits 3-0 arethe port controlbits; bits 11-6  are thetim-
er global control bits. Figure 8-3 shows the 32-bit register. Note that at reset,
all bits are set to 0 except for DATIN (whichis set to the value read on TCLK).

Peripherals 8-3
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Figure 8-3. Timer Global-Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 18

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[oc Toox [oox [ | TSTAT | INV | CLkSRC | C/P | HID | GO | xx | xx | DATIN | DATOUT | 1/0 | FUNC |
R RW RW RW RW RW R RW RW RW

R = Read, W =Write, xx=reserved bit,read as 0

Table 8-1. Timer Global-Control Register Bits Summary

Bits Name Reset Value Function

(0] FUNC 0 FUNC controls the function of TCLK. If FUNC = 0, TCLK is confi-
gured as a general-purposedigital I/O port. If FUNC = 1, TCLK is
configured as a timer pin (see Figure 84 for a description of the
relationship between FUNC and CLKSRC).

1 /0 0 If FUNC =0 and CLKSRC = 0, TCLK is configured as a general-
purpose IO pin. In this case,-if I/O = 0, TCLK is configuredas a
general-purposeinput pin. If 1/O = 1, TCLK is configured as a gen-
eral-purpose output pin.

2 DATOUT 0 DATOUT drives TCLK when the TMS320C3x is in I/O port mode.
You can use DATOUT as an input to the timer.
3 DATIN xt Data input on TCLK or DATOUT. A write has no effect.
54 Reserved 0-0 Read as 0.
6 GO 0 The GO bit resets and starts the timer counter. When GO = 1 and

the timer is not held, the counter is zeroed and begins increment-
ing on the next rising edge of the timer input clock. The GO bit is
cleared on the same rising edge. GO = 0 has no effect on the
timer.

7 HLD 0 Counter hold signal. When this bit is 0, the counter is disabled and
held in its current state. If the timer is driving TCLK, the state of
TCLK s also held. The internal divide-by-two counter is also held
so that the counter can continue where it left off when HLD is set to
1. You can read and modify the timer registers while the timer is
being held. RESET has priority over HLD. Table 8-2 shows the
effect of writing to GO and HLD.

8 cP 0 Clock/Pulse mode control. When C/P = 1, clock mode is chosen,
and the signaling of the TSTAT flag and external output will have a
50 percent duty cycle. When C/P = 0, the status flag and external
output will be active for one H1 cycle during each timer period (see
Figure 8-5 on page 8-7).

tx=0o0r1
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Table 8-1. Timer Global-Control Register Bits Summary (Continued)

Bits

Name

Reset Value

Function

9

10

1

31-12

CLKSRC

INV

TSTAT

Resewed

0

Specifies the source of the timer clock. When CLKSRC = 1, an inter-
nal clock with frequency equal to one-half of the H1 frequency is
used to incrementthe counter. The INV bit has no effect on the inter-
nal clock source. When CLKSRC = 0, you can use an external signal
from the TCLK pin to incrementthe counter. The external clock is
synchronizedinternally, thus allowing external asynchronous clock
sources that do not exceed the specified maximum allowable exter-
nal clock frequency. This will be less than f(H1)/2. (See Figure 8—
for a description of the relationship between FUNC and CLKSRC).

Inverter control bit. If an external clock sourceis usedand INV = 1, the
external clock is inverted as it goes into the counter. If the output of the
pulse generator is routed to TCLK and INV = 1, the output is inverted
before it goes to TCLK (see Figure 8-1). If INV = 0, no inversion is
performedon the input or output of the timer. The INV bit has no effect,
regardless of its value, when TCLK is used in I/O port mode.

This bit indicates the status of the timer. It tracks the output of the
uninverted TCLK pin. This flag sets a CPU interrupt on a transitionfrom
0to 1. Awrite has no &fedt.

Read as 0.

tx=0o0r1
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Figure 8. Timer Modes as Defined by CLKSRC and FUNC
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Figure 8-5. Timer Timing

——— 2/f(H1)
—-: r—t— 1/f(H1)
|
IH——bl— 1/f(CLKSRC) }
je ®— period register/f{(CLKSRC)

t

TINT TINT TINT
() TSTAT and timer output (INV = 0) when C/P = 0 (pulse mode)

j—————»— 1/(CLKSRC)
h——-:——t— 2/f(H1)

S

'I period register/f(CLKSRC)
——————————— 2 x period registerf{CLKSRC) ———————!

t t

TINT TINT
(b) TSTAT and timer output (INV = 0) when C/P = 1 (clock mode)

The rate of timer signalingis determined by the frequency of the timer input
clock and the period register. The following equations are valid with either an
internal or an external timer clock:

f(pulse mode) = f(timer clock) / period register

f(clock mode) = f(timer clock) / (2 x period register)

Note: Period Register
If the period register equals 0, refer to Section8.1.2.

L J

Table 8-2 shows the result of a write using specified values of the GO and HLD
bits in the global control register.
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Table 8-2. Result of a Write of Specified Values of GO and HLD

GO 'I-T[-_) Result
0 0 Alltimer operations are held. Noresetis performed. (Resetvalue)
0 1 Timer proceeds from state before write.
1 0 Alltimer operations are held, includingzeroing of the counter. The

GO bit is not cleared until the timer is taken out of hold.

1 1 Timer resets and starts.

8.1.2 Timer Period and Counter Registers

The 32-bit timer period register is used to specify the frequency of the timer
signaling. The timer counter register is a 32-bit register, which is reset to 0
whenever it increments to the value of the period register. Both registers are
setto O at reset.

Certainboundary conditions affecttimer operation. These conditions are listed
below:

[d When the period and counter registers are 0, the operation of the timer is
dependentupon the C/P mode selected. In pulse mode (C/P = 0), TSTAT
is set and remains set. In clock mode (C/P = 1), the width of the cycle is
2/f{H1), and the external clocks are ignored.

@ Whenthe counterregister is not 0 and the period register = 0, the counter
will count, roll over to 0, and then behave as described above.

O Whenthe counterregister is setto a value greaterthanthe period register,
the counter may overflow when being incrernented. Once the counter
reaches its maximum 32-bit value (OFFFFFFFFh), it simply clocks overto
0 and continues.

Writes from the peripheralbus override register updates from the counter and
new status updates to the control register.

8.1.3 Timer Pulse Generation

The timer pulse generator (see Figure 8-1 on page 8-2) can generate sever-
al external signals. You caninvert these signals with the INV bit. The two basic
modes are pulse mode and clock mode, as shown in Figure 8-5 on page 8-7.
In both modes, an internal clock source f (timer clock) has a frequency of
f(H1)/2, and an externally generated clock source f (timer clock) can have a
maximum frequency of f(H1)/2.6. Refer to timer timing in subsection 13.5.16
on page 13-66. In pulse mode (C/P = 0), the width of the pulse is 1/(H1).



Timers

Figure 8-6 provides some examplesof the TCLKx output when the period reg-
ister is set to various values and clock or pulse mode is selected.

Figure 8-6. Timer Output Generation Examples

j—3— 2H1

H1 - D

(@ INV =0, C/P =0 (Pulse Mode)
Timer Period = 1

INV =0, C/P = 1 (Clock Mode)
Timer Period = 0

j—¥%— 4H1
H1
}rh m_Jvr

(b) INV =0, C/P =0 (Pulse Mode)
Timer Period = 2

H1 -’r—sm N
_I"r I"| M Mn___r

© NV =0, C/P =0 (Puise Mode)
Timer Period = 3

j— 4H1 ¥
¥ 2H1p-

| ) L L 1

d) INV=0,C/P =1 (Clock Mode)
Timer Period = 1

e 8H1 »
'l-— 4H1 ¥
(e) INV=0,C/P =1 (Clock Mode)
Timer Period = 2

fe 12H1 |
j—6H1 —
J —  —1I I I

INV =0, C/P =1 (Clock Mode)
Timer Period = 3
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8.1.4 Timer Operation Modes

The timer can receive its input and send its output in several different modes,
depending uponthe setting of CLKSRC, FUNC, and I/O. The four timer modes
of operation are defined as follows:

O If CLKSRC =1 and FUNC = 0, the timer input comes from the internal
clock. The internal clock is not affected by the INV bit. In this mode, TCLK
is connected to the 1/O port control, and you use TCLK as a general-pur-
pose I/O pin (see Figure 8-7).1f1/0 = 0, TCLK is configured as a general-
purpose input pin whose state you can read in DATIN. DATOUT has no
effect on TCLK or DATIN. If /O = 1, TCLK is configured as a
general-purposeoutput pin. DATOUT is placed on TCLK and canbe read
in DATIN.

Figure 8-7. Timer //O Port Configurations

I
Internal | External
I
DATOUT (NC) o <4—}+— TCLK
l |
DATIN
/0O=0
(a)
I
Internal | External
I
DATOUT TCLK
I
DAYIN
10 =1

(b)

@ If CLKSRC =1 and FUNC = 1, the timer input comes from the internal
clock,andthe timer output goes to TCLK. This value can be invertedusing
INV, and you can read in DATIN the value output on TCLK.

O IfCLKSRC =0 and FUNC = 0, the timer is driven accordingto the status
of the 1/O bit. If I/O = 0, the timer input comes from TCLK. This value can
beinverted using INV, and you canread in DATIN the value of TCLK. If /O
= 1, TCLK s an output pin. Then, TCLK and the timer are both driven by
DATOUT. All0-to-1 transitions of DATOUT increment the counter. INV has
no effect on DATOUT. You can read in DATIN the value of DATOUT.

O If CLKSRC =0and FUNC =1, TCLK drivesthe timer. If INV = 0, all 0-to-1
transitions of TCLK increment the counter. If INV = 1, all 1-to-0 transitions
of TCLK increment the counter. You canreadin DATIN the value of TCLK.
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Figure 84 on page 8-6 shows the four timer modes of operation.

8.1.5 Timer Interrupts

Atimer interruptis generated whenever the TSTAT bit of the timer control reg-
ister changes from a 0 to a 1. The frequency of timer interrupts depends on
whether the timer is set up in pulse mode or clock mode.

@ In pulse mode, the interrupt frequency is determined by the following

equation:

. - fgtimerclockz » where
f('me"“pt) period register whe
f(interrupt) = timer frequency

f(timer clock) = interrupt frequency

O Inclock mode, theinterruptfrequencyis determined by the followingequa-

tion:
. f(timer clock)
interrupy) = 75 period register’ where
f(interrupty = timer frequency

ftimer clock) = interrupt frequency

The timer counter is automatically resetto 0 whenever itis equal to the value
in the timer period register. You can use the timer interruptfor either the CPU
or the DMA.. Interrupt enable control for each timer, for either the CPU or the
DMA, is foundin the CPU/DMA interrupt enable register. Refer to subsection
3.1.8 on page 3-7 for more information on the CPU/DMA interrupt enable
register.

When a timer interrupt occurs, a change in the state of the corresponding
TCLK pin will be observed if FUNC = 1 and CLKSRC = 1 in the timer global-
control register. The exact change in the state depends on the state of the
C/P bit.
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8.1.6 Timer Inlitialization/Reconfiguration

The timers are controlled through memory-mapped registers located on the
dedicated peripheral bus. Following is the general procedure for initializing
and/or reconfiguring the timers:

1) Haltthetimer by clearingthe GO/HLD bits of the timer global-control regis-
ter. To do this, write a 0 to the timer global-control register. Note that the

timers are halted on RESET.

2) Configure the timer via the timer global-control register (with GO = HLD
=0), the timer counter register, and timer period register, if necessary.

3) Start the timer by setting the GO/HLD bits of the timer global-control
register.
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8.2 Serial Ports

The TMS320C30 has two totally independent bidirectional serial ports. Both
serial ports are identical, and there is a complementary set of control registers
in each one. Only one serial portis available onthe TMS320C31. You can con-
figure each serial portto transfer 8, 16, 24, or 32 bits of data per word simulta-
neously in both directions. The clock for each serial port can originate either
internally, via the serial port timer and period registers, or externally, via a
supplied clock. An internally generated clock is a divide-down of the clockout
frequency, f(H1). A continuous transfer mode is available, which allows the se-
rial portto transmit and receive any number of words withoutnew synchroniza-
tion pulses.

Eight memory-mapped registers are provided for each serial port:

[ Global-control register

@ Two control registers for the six serial I/O pins
O Three receiveltransmit timer registers

Q Data-transmit register

 Data-receive register

The global-control register controls the global functions of the serial port and
determines the serial-port operating mode. Two port control registers control
the functions of the six serial port pins. The transmit buffer contains the next
complete wordto be transmitted. The receive buffer containsthe lastcomplete
word received. Three additional registers are associated with the transmit/re-
ceive sections of the serial-port timer. A serial-port block diagram is shownin
Figure 8-8 on page 8-14, and the memory map of the serial ports is shownin
Figure 8-9 on page 8-15.
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Figure 8-8. Serial-Port Block Diagram
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Figure 8-9. Memory-Mapped Locations for the Serial Ports

Register Peripheral Address

Serial Serlal

Port 0 Port 1t
Serial-Port Global Control (See Figure 8—10) 808040h 808050h
Reserved 808041h 808051h
FSX/DX/CLKX Port Control (See Figure 8—11) 808042h 808052h
FSR/DR/CLKR Port Control (See Figure 8-12) 808043h 808053h
R/X Timer Control (See Figure 8-13) 808044h 808054h
R/X Timer Counter (See Figure 8—14) 808045h 808055h
R/X Timer Period (See Figure 8-15) 808048h 808056h
Reserved 808047h 808057h
Data Transmit (See Figure 8—16) 808048h 808058h
Reserved 80804%h 808058h
Reserved 80804Ah 80805Ah
Reserved 80804Bh 80805Bh
Data Receive (See Figure 8-17) 80804Ch 80805Ch
Reserved 80804Dh 80805Dh
Reserved 80804Eh 80805Eh
Reserved 80804Fh 80805Fh

t Resewed locations on the TMS320C31

8.2.1 Serial-Port Global-Control Reglster

The serial-portglobal-controlregister is a 32-bit register that containsthe glob-
al control bits for the serial port. Table 8-3 defines the register bits, bit names,
and bit functions. The register is shown in Figure 8-10.

Table 8-3. Serial-Port Global-Control Register Bits Summary

Blt Name Reset Value Function

0 RRDY 0 If RRDY = 1, the receive buffer has new data and is ready to be read. A
three H1/H3 cycle delay occurs from the loading of DRR to RRDY = 1. The
rising edge of this signal sets RINT. If RRDY= 0 at reset, the receive buffer
does not have new data since the last read. RRDY = 0 at reset and after
the receive buffer is read.

1 XRDY 1 If XRDY = 1, the transmit buffer has written the last bit of data to the shifter
and is ready for a new word. A three H1/H3 cycle delay occurs from the
loading of the transmit shifter until XRDY is set to 1. The rising edge of this
signal sets XINT. If XRDY =0, the transmit buffer has not written the last
bit of data to the transmit shifter and is not ready for a new word. XRDY =
1 atreset.

2 FSXOUT 0 This bit configures the FSX pin as an input (FSXOUT = 0) or an output
(FSXOUT=1).

Peripherals 8-15



Serial Ports

Table 8-3. Serial-Port Global-Control Register Bits Summary (Continued)

Bit

Name

Reset Value

Function

10

1

12

XSREMPTY

RSRFULL

HS

XCLKSRCE

RCLKSRCE

XVAREN

RVAREN

XFSM

RFSM

CLKXP

0

If XSREMPTY = 0, the transmit shift register is empty. If XSREMPTY =1,
the transmit shift register is not empty. Reset or XRESET causes this bit
to=0.

If RSRFULL = 1, an overrun of the receiver has occurred. In continuous
mode, RSRFULL is setto 1 when both RSR and DRR are full. Innoncontin-
uous mode, RSRFULL s setto 1 when RSR and DRR are full and a new
FSR is received. A read causes this bit to be set to 0. This bit can be set
to 0 only by a system reset, a serial-port receive reset (RRESET = 1), or
aread. When the receivertriesto set RSRFULLto 1 at the same time that
the global register is read, the receiver will dominate, and RSRFULL is set
to 1. If RSRFULL = 0, no overrun of the receiver has occurred.

If HS = 1, the handshake mode is enabled. If HS = 0, the handshakemode
is disabled.

If XCLKSRCE = 1, the internal transmit clock is used. If XCLKSRCE = 0,
the external transmit clock is used.

If RCLKSRCE = 1, the internal receive clock is used. If RCLKSRCE = 0,
the external receive clock is used.

This bit specifies fixed (XVAREN = 0) or variable (XVAREN = 1) datarate
sighalingwhentransmitting. With a fixed datarate, FSX is active for atleast
one XCLK cycle and then goes inactive before transmission begins. With
variable data rate, FSX is active while all bits are being transmitted. When
youuse anexternalFSX andvariabledatarate signaling, the DX pinis driv-
en by the transmitter when FSX is held active or when a word is being
shifted out.

This bit specifies fixed (RVAREN = 0) or variable (RVAREN = 1) datarate
signaling when receiving. With a fixed data rate, FSR is active for at least
one RCLK cycle and then goes inactive before the reception begins. With
variable data rate, FSR is active while all bits are being received.

Transmitframe sync mode. Configuresthe portfor continuous mode oper-
ation(XFSM = 1) or standard mode (XFSM = 0}. In continuous mode, only
the first word of a block generates a sync pulse, and the rest are simply
transmitted continuously to the end of the block. In standard mode, each
word has an associated sync pulse.

Receive frame sync mode. Configures the port for continuous mode
(RFSM =1) or standard mode (RFSM = 0) operation. In continuous mode,
only the firstword of a block generatesa sync pulse, andthe rest are simply
received continuously without expectation of another sync pulse. In stan-
dard mode, each word received has an associated sync pulse.

CLKX polarity. If CLKXP = 0, CLKX is active high. If CLKXP = 1, CLKX is
active low.




Serial Ports

Table 8-3. Serial-Port Global-Control Register Bits Summary (Continued)

Blt  Name Reset Value Function

13 CLKRP 0 CLKR polarity. If CLKRP = 0, CLKR is active (high). If CLKRP =1, CLKR
is active (low).

14 DXP 0 DX polarity. If DXP = 0, DX is active (high). If DXP = 1, DX is active (low).

15 DRP 0 DR polarity. If DRP = 0, DR is active (high). If DRP = 1, DR is active (low).

16 FSXP 0 FSX polarity. If FSXP = 0, FSX is active (high). If FSXP = 1, FSX Is
active (low).

17 FSRP 0 FSR polarity. If FSRP = 0, FSR is active (high). If FSRP = 1, FSR is
active (low).

19-18 XLEN 00 These two bits define the word length of serial data transmitted. All data
is assumedto be right-justifiedin the transmit buffer when fewer than 32
bits are specified.

0 0---8 bib 1 0--- 24 bits
0 1-- 16bib 1 1--~ 32 bits
21-20 RLEN 00 These two bits define the word length of serial data received. All data is
right-justifiedin the receive buffer.
0 0™ 8 bits 1 0--- 24 bits
0 1 16bits 1 1-- 32 bits
22  XTINT 0 Transmit timer interrupt enable. If XTINT = 0, the transmit timer interrupt
is disabled. If XTINT = 1, the transmit timer interrupt is enabled.
23  XINT 0 Transmitinterrupt enable. If XINT = 0, the transmit interrupt is disabled. If
XINT= 1, the transmitinterruptis enabled. Note that the CPU receive flag
XINT andthe serial port-to-DMAinterrupt (EXINTO inthe IE register) is the
OR of the enabledtransmit timer interrupt and the enabled transmit inter-
rupt.
24 RTINT 0 Receive timer interrupt enable. If RTINT = 0, the receive timer interruptis
disabled. If RTINT = 1, the receive timer interrupt is enabled.
25 RINT 0 Receive interrupt enable. If RINT = 0, the receive interrupt is disabled. If
RINT= 1, the receive interrupt is enabled. Note that the CPU receive flag
RINT and the serial-port-to-DMAinterrupt (ERINTOinthe IE register) isthe
OR of the enabled receive timer interrupt and the enabled receive inter-
rupt.
26 XRESET 0 Transmit reset. If XRESET = 0, the transmit side of the serial portis reset.

To take the transmit side of the serial port out of reset, set XRESET to 1.
However, dod set XRESETto 1 untilat least three cycles after XRESET
goesinactive. Thisapplies only to systemreset. Setting XRESETto 0 does
not change the contents of any of the serial-portcontrolregisters. It places
the transmitterin a state correspondingto the beginning of a frame of data.
Resettingthe transmitter generates a transmitinterrupt. Reset this bit dur-
ing the time the mode of the transmitter is set. You can toggle XFSM with-
out resetting the global-control register.
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Table 8-3. Serial-Port Global-Control Register Bits Summary (Concluded)

Bit Name Reset Value Function

27 RRESET 0 Receivereset. If RRESET = 0, the receive side of the serial portis reset.
To take the receive side of the serial port out of reset, set RRESET to 1.
Setting RRESET to 0 does not change the contents of any of the serial-
portcontrolregisters.lt placesthereceiverin a state correspondingto the
beginning of aframe of data. Reset this bit at the same time thatthe mode
of the receiver is set. RFSM can be toggled without resetting the global-
control register.

31-28 Reserved 00 Read as 0.

Figure 8-10. Serial-Port Global-Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
X X xx xx RRESE EESET RIN  RTINT XINT  XTINT RLEN XLEN FSRP  FSXP
RW RW RW RW RW RW RW RW  RW RW RW RW
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DRP | DXP | CLKRPJCLKXP} RFSM|XFSM| RVAREN| XVAREN] RCLK] XCLK | HS| RSR] XSR | FSXOUT] XRDY | RRDY
SRCE | SRCE FULL] EMPTY

RW RW RW RW RW RW RW RW RW RW RW R R RW R R

R = Read, W=Write, xx=reserved bit, read as 0

8.2.2 FSX/DX/CLKX Port-Control Register

This 32-bit port control register controlsthe function of the serial port FSX, DX,
and CLKX pins. At reset, all bits are setto 0. Table 8—4 defines the register bits,
bit names, and functions. Figure 8-11 shows this port control register.
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Table 8—+4. FSWDWCLKX Port-Control Register Bits Summary

Bit Name Reset Value Function

0 CLKXFUNC 0 CLKXFUNC controls the function of CLKX. If CLKXFUNC = 0,
CLKX is configured as a general-purpose digital I/O port. If
CLKXFUNC = 1, CLKX is a serial port pin.

1 CLKXi/O 0 If CLKX /O = 0, CLKX is configured as a general-purpose input
pin. If CLKX 1/0 = 1, CLKX is configured as a general-purposeout-
put pin.

2 CLKXDATOUT 0 Data output on CLKX.

3 CLKXDATIN X Datainput on CLKX. A write has no effect.

4 DXFUNC 0] DXFUNC controlsthe function of DX. If DXFUNC = 0, DX is config-
ured as a general-purposedigital /O port. If DXFUNC = 1, DX is
a serial port pin.

5 DX /0 0 If DX 1/0 = 0, DX is configured as a general-purpose input pin. If
DX I/O = 1, DX is configured as a general-purpose output pin.

6 DXDATOUT 0 Data output on DX.

7 DXDATIN xt Data input on DX. A write has no effect.

8 FSXFUNC 0 FSXFUNC controls the function of FSX. If FSXFUNC = 0, FSX is
configuredas a general-purposedigital I/O port. If FSXFUNC = 1,
FSX is a serial port pin.

9 FSX1/0 0 If FSX }/O = 0, FSX is configured as a general-purposeinput pin.
If FSX1/O = 1, FSX s configured as a general-purposeoutput pin.
10 FSXDATOUT 0 Data output on FSX.
11  FSXDATIN xt Data input on FSX. A write has no effect.
31-12 Reserved 0-0 Read as 0.
tx=00r1

Figure 8-11. FSWDWCLKX Port-Control Register

3 30 20 28 2 26 25 24 23 22 20 20 19 18 17 18
15 14 13 12 N 10 9 8 7 6 5 4 3 2 1 0
o oo | oo | o | FSX FSX FsX FSX DX px | ox | ox |cuox | cux |cux | ouex
DATIN | paTout | 1o | Func | patin | patout | vo | FUNC | DATIN | paTouT | WO | FUNC
A RW AW RW R RW RW RW R AW  RW RW

AR = Read, W =Write, xx = reserved bit, read as 0
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8.2.3 FSR/DR/CLKR Port-Control Register

This 32-bit port control register is controlled by the function of the serial port
FSR, DR, and CLKR pins. At reset, all bits are setto 0. Table 8-5 defines the
register bits, the bit names, and functions. Figure 8-1 2 illustratesthis port con-
trol register.

Table 8-5. FSR/DR/CLKR Port-Control Register Bits Summary

Bit Name Reset Value Function

0 CLKRFUNC 0 CLKRFUNC controls the function of CLKR. If CLKRFUNC=0,
CLKR is configured as a general-purpose digital 1/O port. If
CLKRFUNC = 1, CLKR is a serial port pin.

1 CLKRI/O 0 If CLKRI/O = 0, CLKR is configured as a general-purposeinput pin.
If CLKRI/O = 1, CLKR is configuredas ageneral-purpose output pin.

2 CLKRDATOUT 0 Data output on CLKR.

3 CLKRDATIN X Data input on CLKR. A write has no effect.

4 DRFUNC 0 DRFUNC controls the function of DR. If DRFUNC = 0, DR is
configuredas ageneral-purpose digital /O port. If DRFUNC =1, DR
is a serial port pin.

5 DRI/O 0 If DRI/O=0, DR is configured as a general-purposeinput pin.

If DRI/O=1, DR is configured as a general-purpose output pin.

6 DRDATOUT 0 Data output on DR

7 DRDATIN xt Data input on DR. A write has no effect.

8 FSRFUNC 0 FSRFUNC controls the function of FSR. If FSRFUNC = 0, FSR is
configured as a general-purpose digital /O port. |If
FSRFUNC=1, FSRis a serial port pin.

9 FSRI1/O 0 If FSR 1/0=0, FSR is configuredas a general-purposeinputpin. If
FSR 1/0=1, FSR is configured as a general-purposeoutput pin.

10 FSRDATOUT 0 Data output on FSR

11 FSRDATIN X Data input on FSR. A write has no effect.

31-12 Reserved 0-0 Read as 0.
tx=00r1

Figure 8-12. FSR/DR/CLKR Port-Control Register

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
w b Poox Toe I osx | x I x I x I XX l XX I XX | XX I XX T xx | xx I xx I
15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 o
FSR FSR FSR FSR DR DR DR | DR | clxR | CLKR |CLKR | CLKA
oo oo ) x| | paTIN | DATOUT [Te) FUNC | oaTin | patout | 70 | FUNC | DATIN | DATOUT | WO | FUNC
R RW RW RW R RW RW RW R RW RW  RW

R = Read, W =Write, xx=resewed bit, read as 0
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8.2.4 Recelve/Transmit Timer-Control Register

A 32-bit receive/transmit timer control register contains the control bits for the
timer module. At reset, all bits are set to 0. Table 86 lists the register bits, bit
names, and functions. Bits 5—0 controlthe transmittertimer. Bits 11-6 control
the receiver timer. Figure 8-13 shows the register. The serial port receive/
transmit timer function is similar to timer module operation. It can be consid-
ered a 16-bit-wide timer. Refer to Section 8.1 on page 8-2 for more informa-
tion on timers.

Table 86. Receive/Transmit Timer-Control Register

BIt

Name

Reset Value

Function

0

XGO

XHLD

XC/P

XCLKSRC

Reserved
XTSTAT

RGO

RHLD

0

The XGO bit resets and starts the transmit timer counter. When XGO
is set to 1 and the timer is not held, the counter is zeroed and begins
incrementingonthe nextrising edge of the timerinput clock. The XGO
bit is cleared on the same rising edge. Writing 0 to XGO has no effect
on the transmit timer.

Transmit counter hold signal. Whenthis bitis setto 0, the counteris dis-
abled and held in its current state. The internal divide-by-two counter
is also held so that the counter will continue where it left off when XHLD
is setto 1. You can read and modify the timer registers while the timer
is being held. RESET has priority over XHLD.

XClock/Pulse mode control. WhenXC/P = 1, the clock mode is chosen.
The signaling of the status flag and external output has a 50 percent
duty cycle. When XC/P = 0, the status flag and external output are ac-
tive for one CLKOUT cycle during each timer period.

This bit specifies the source of the transmit timer clock. When
XCLKSRC = 1, an internal clock with frequency equal to one-half the
CLKOUT frequency is usedto increment the counter. When XCLKSRC
=0, you canuse an external signal from the CLKX pin to incrementthe
counter. The external clock source is synchronizedinternally, thus al-
lowing for external asynchronous clock sourcesthat do notexceedthe
specified maximum allowable external clock frequency, that is, less
thanf(H1)/2.6.

Read as zero.

This bit indicates the status of the transmit timer. It tracks what would
be the output of the uninverted CLKX pin. This flag sets a CPU interrupt
on a transition from 0 to 1. A write has no effect.

The RGO bit resets and starts the receive timer counter. When RGO
is set to 1 and the timer is not held, the counter is zeroed and begins
incrementingon the next rising edge of the timer input clock. The RGO
bit is cleared on the same rising edge. Writing 0 to RGO has no effect
on the receive timer.

Receive counter hold signal. When this bitis setto 0, the counteris dis-
abled and held in its current state. The internal divide-by-two counter
is also held so that the counter will continue where it left off when RHLD
is setto 1. You can read and modify the timer registers while the timer
is being held. RESET has priority over RHLD.
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Table 8-6. Receive/Transmit Timer-Control Register (Concluded)

Bit Name Reset Value Function

8 RC/P 0 RClock/Pulse mode control. When RC/P = 1, the clock mode is cho-
sen. The signaling of the status flag and external output has a 50 per-
cent duty cycle. When RC/P = 0, the status flag and external output
are active for one CLKOUT cycle during each timer period.

9 RCLKSRC 0 This bit specifies the source of the receive timer clock. When
RCLKSRC = 1, an internal clock with frequency equalto one-halfthe
CLKOUT frequency is used to increment the counter. When
RCLKSRC = 0, you can use an external signal from the CLKR pinto
incrementthe counter. The external clock source is synchronizedin-
ternally, thus allowing for external asynchronous clock sources that
do not exceed the specified maximum allowable external clock fre-
guency, that is, less than f(H1}/2.6.

10 Reserved 0 Read as zero.

11 RTSTAT 0 This bitindicatesthe status of the receive timer. It tracks what would
be the output of the uninverted CLKR pin. This flag sets a CPU inter-
rupt on a transitionfrom 0 to 1. A write has no effect.

31—12 Reserved 0-0 Read as 0.

Figure 8-13. Receive/Transmit Timer-Control Register

31 30 28 28 27 26 25 24 23 22 21 20 19 18 17 16
XX 1 XX | XX | XX X xx xx XX XX XX xx X ped xX 1 XX 1 XX
16 14 13 12 1" 10 9 8 7 6 s 4 3 2 1 [¢]

[oo Tox oo [ox [Rtstar [ [rowksrc [ reP | A0 | Reo [ xtstar | [ xcikshc | xcP | XHD | xeo |
R RW AW R AW RW R RW RW AW

R = Read, W=Wirite, xx =resewed bit, read as 0

8.2.5 Receive/Transmit Timer-Counter Register

The receiveftransmit timer counter register is a 32-bit register (see
Figure 8-14). Bits 15-0 arethe transmittimer counter, and bits 31— 16 are the
receivetimer counter. Each counter is cleared to 0 whenever it incrementsto
the value of the period register (see Section 8.2.6). It is also set to O at reset.

Figure 8~14. Receiveflransmit Timer Counter Register
31 16
[ Receive Counter )

15 0
| Transmit Counter |

NOTE: All bits are read/write.
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8.2.6 Recelve/Transmit Timer-Period Register

The receiveftransmit timer period register is a 32-bit register (see
Figure 8-15). Bits 15-0 are the timer transmit period, and bits 31-16 are the
receive period. Eachregister is usedto specify the period of the timer. Itis also
clearedto 0 at reset.

Figure 8-15. Receive/Transmit Timer-Period Register
31 16

| Receive Period |

15 0
| Transmit Period l

Note: All bits are read/write.

8.2.7 Data-Transmit Register

When the data-transmit register (DXR) is loaded, the transmitter loads the
word into the transmit shift register (XSRY), and the bits are shifted out. The
delay from a write to DXR until an FSX occurs (or can be accepted) is two
CLKX cycles. The word is not loaded into the shift register until the shifter is
empty. When DXR is loaded into XSR, the XRDY bitis set, specifying that the
buffer is available to receive the next word. Four tap points within the transmit
shiftregister are usedto transmitthe word. Thesetap points correspondto the
four data word sizes and are illustratedin Figure 8-1 6. The shift is a left-shift
(LSB to MSB) with the data shifted out of the MSB correspondingto the appro-
priate tap point.

Figure 8-16. Transmit Buffer Shift Operation

« Shift Direction «

31 24 23 16 15 8 7 0
32-bit 24-bit 16-bit 8-bit
word tap word tap word tap word tap
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8.2.8 Data-ReceiveRegister

When serial datais input, the receiver shifts the bits into the receive shiftregis-
ter (RSR). When the specified number of bits are shifted in, the data-receive
register (DRR) is loaded from RSR, and the RRDY status bit is set. The receiv-
er is double-buffered. If the DRR has not been read and the RSR is full, the
receiver is frozen. New data coming into the DR pin is ignored. The receive
shifter will not write over the DRR. The DRR must be read to allow new data
in the RSR to be transferred to the DRR. When a write to DRR occurs at the
same time that an RSR to DRR transfer takes place, the RSR to DRR transfer
has priority.

Datais shifted to the left (LSB to MSB). Figure 8-17 illustrates what happens
when words less than 32 bits are shifted into the serial port. In this figure, it is
assumed that an 8-bit word is being received and that the upper three bytes
of the receive buffer are originally undefined. In the first portion of the figure,
byte ahas been shiftedin. When byte b is shiftedin, byte aiis shifted to the left.
When the data receive register is read, both bytes a and b are read.

Figure 8~17. Receive Buffer Shift Operation

« Shift Direction «
31 24 23 16 15 8 7 0
After Byte a X X X a
After Byte b X X a b

8.2.9 Serial-Port Operation Configurations

Several configurations are provided for the operation of the serial port clocks
andtimer. The clocks for each serial port can originate eitherinternally or exter-
nally. Figure 8-1 8 shows serial port clocking in the I/O mode (CLKRFUNC =
0) when CLKX is either an input or an output. Figure 8-19 shows clockingin
the serial-port mode (CLKRFUNC=1). Both figures use a transmit section for
an example. The same relationship holds for a receive section.
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Figure 8-18. Serial-Port Clocking in /O Mode
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Figure 8-19. Serial-Port Clocking in Serial-Port Mode
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8.2.10 Serial-Port Timing

The formula for calculating the frequency of the serial-port clock with aninter-
nally generated clock is dependent upon the operation mode of the serial-port

timers, defined as
f (pulse mode) = f (timer clock)/period register

f (clock mode) = f (timer clock)/(2 x period register)

Aninternally generated clock source f(timer clock) has a maximum frequency
of f(H1)/2. An externally generated serial-port clock f (timer clock) (CLKX or
CLKR) has a maximum frequency of lessthan f{H1)/2.6. See serial port timing
in Table 13-27 on page 13-58. Also, see subsection 8.1.3 on page 8-8 forin-

formation on timer pulse/clock generation.
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Transmit datais clocked out onthe rising edge of the selectedserial-portclock.
Receive datais latchedinto the receive shift register on the falling edge of the
serial-port clock. All data is transmitted and loaded MSB first and right-justi-
fied. If fewer than 32 bits are transferred, the data are right-justifiedin the 32-bit
transmit and receive buffers. Therefore, the LSBs of the transmit buffer are
the bits that are transmitted.

The transmit ready (XRDY) signal specifies that the data-transmit register
(DXR) is available to be loaded with new data. XRDY goes active as soon as
the datais loaded into the transmit shift register (XSR). The last word may still
be shifting out when XRDY goes active. If DXR is loaded before the last word
has completedtransmission, the data bits transmittedare consecutive; thatis,
the LSB of the first word immediately precedes the MSB of the second, with
all signaling valid asin two separate transmits. XRDY goesinactive when DXR
is loaded and remains inactive until the data is loaded into the shifter.

The receive ready (RRDY) signal is active as long as a hew word of data is
loaded into the data receive register and has not been read. As soon as the
data is read, the RRDY bit is turned off.

When FSX is specified as an output, the activity of the signal is determined
solely by the internal state of the serial port. If a fixed datarateis specified, FSX
goes active when DXR is loaded into XSR to be transmitted out. One serial-
clock cyclelater, FSX turnsinactive,and datatransmissionbegins. If avariable
datarate is specified, the FSX pin is activatedwhen the data transmissionbe-
gins and remains active during the entire transmissionof the word. Again, the
data is transmitted one clock cycle after it is loaded into the data transmit
register.

Aninput FSXinthe fixed datarate mode shouldgo activefor at least one serial
clock cycle and then inactive to initiate the data transfer. The transmitterthen
sends the number of bits specified by the LEN bits. In the variable data-rate
mode, the transmitter begins sending from the time FSX goes active until the
number of specified bits has been shifted out. In the variable data-rate mode,
when the FSX status changes prior to all the data bits being shifted out, the
transmission completes, and the DX pinis placed in a high-impedance state.
An FSR input is exactly complementaryto the FSX.

Whenusingan external FSX, if DXR and XSR are empty, a write to DXR results
in a DXR-to-XSR transfer. This data is held in the XSR until an FSX occurs.
When the external FSX is received, the XSR begins shifting the data. If XSR
is waiting for the external FSX, a write to DXR will change DXR, but a DXR-to-
XSR transfer will not occur. XSR begins shifting when the external FSX is re-
ceived, or when it is reset using XRESET.
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Continuous Transmit and Receive Modes

When continuous mode is chosen, consecutive writes do not generate or ex-
pect new sync pulse signaling. Only the first word of a block begins with an ac-
tive synchronization. Thereafter, data continues to be transmitted as long as
new data is loaded into DXR before the last word has been transmitted. As
soon as TXRDY is active and all of the data has been transmitted out of the
shiftregister, the DX pinis placedin a high-impedance state,and asubsequent
write to DXR initiates a new block and a new FSX.

Similarly with FSR, the receiver continues shifting in new data and loading
DRR. If the data-receive buffer is not read before the next word is shiftedin,
youwilllose subsequentincoming data. You canuse the RFSMbitto terminate
the receive-continuous mode.

Handshake Mode

The handshake mode (HS = 1) allows for direct connection between proces-
sors. In this mode, all data words are transmitted with a leading 1 (see
Figure 8-20). For example, if an eight-bit word is to be transmitted, the first bit
sentis a 1, followed by the eight-bit data word.

In this mode, once the serial port transmits a word, it will not transmit another
word until it receives a separately transmitted zero bit. Therefore, the 1 bit that
precedes every dataword is, in effect, a request bit.

Figure 8-20. Data Word Format in Handshake Mode

je—— DataWord (8 Bits) »
I

DX

leading 1

After a serial port receives a word (withthe leading 1) and that word has been
read fromthe DRR, the receiving serialport sends a single 0 to the transmitting
serial port. Thus, the single 0 bit acts as an acknowledgebit (see Figure 8-21).
This single acknowledgebitis sent every time the DRR isread, evenif the DRR
does not contain new data.

Figure 8-21. Single Zero Sent as an Acknowledge Bit

DX _Q__
single 0
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When the serial portis placedin the handshake mode, the insertionand dele-
tionof aleading1 for transmitteddata, the sendingof a 0 for acknowledgement
of received data, and the waiting for this acknowledge bit are all performedau-
tomatically.Using this scheme, itis simple to connectprocessorswithno exter-
nal hardware and to guarantee secure communication. Figure 8-22 is a typi-
cal configuration.

Inthe handshake mode, FSX is automatically configuredas an output. Contin-
uous mode is automatically disabled. After a system reset or XRESET, the
transmitter is always permitted to transmit. The transmitter and receiver must
be reset when entering the handshake mode.

Figure 8-22, Direct Connection Using Handshake Mode

TMS320C3x #1 TMS320C3x #2
CLKX 1 CLKR
FSX —+>1FSR
DX »{ DR
CLKR |« CLKX
FSR & FSX
DR |« DX

8.2.11 Serial-Port Interrupt Sources

A serial port has the following interrupt sources:

[ Thetransmittimer interrupt: The rising edge of XTSTAT causes asing-
le-cycle interrupt pulse to occur. When XTINT is 0, this interrupt pulse is
disabled.

@ Thereceivetimerinterrupt: Therisingedge of RTSTAT causesa single-
cycle interruptpulse to occur. When RTINT is 0, this interrupt pulse is dis-
abled.

[ Thetransmitterinterrupt: Occursimmediatelyfollowing a DXR-to-XSR
transfer. The transmitter interrupt is a single-cycle pulse. When the
serial-port global-control register bit XINT is 0, this interrupt pulse is dis-
abled.

[ The receiver interrupt: Occurs immediately following an RSR to DRR
transfer. The receiver interrupt is a single-cycle pulse. When the
serial-port global-control register bit RINT is 0, this interrupt pulse is
disabled.

The transmit timer interrupt pulse is ORed with the transmitter interrupt pulse to create
the CPU transmit interrupt flag XINT. The receive timer interrupt pulse is ORed with the
receiver interrupt pulse to create the CPU receive interrupt flag RINT.
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8.2.12 Serial-Port Functional Operation

The following paragraphs and figuresillustratethe functionaltiming of the vari-
ous serial-port modes of operation. The timing descriptionsare presented with
the assumption that all signal polarities are configured to be positive, that is,
CLKXP = CLKRP =DXP =DRP = FSXP = FSRP = 0. Logicaltiming, in situa-
tions where one or more of these polarities are inverted, is the same except
with respect to the opposite polarity reference points, that is, rising vs. falling
edges, etc.

These discussions pertain to the numerous operating modes and configura-
tions of the serial-port logic. When it is necessary to switch operating modes
or change configurations of the serial port, you should do so only when
XRESET or RRESET are asserted (low), as appropriate. Therefore, when
transmit configurations are modified, XRESET should be low, and when re-
ceive configurations are modified, RRESET should be low. When you use
handshake mode, however, since the transmitter and receiver are interrelated,
you should make any configuration changeswith XRESET and RRESET both
low.

All of the serial-port operating configurations can be broadly classified in two
categories: fixed data-rate timing and variable data-rate timing. The following
paragraphsdiscussfixed and variable data-rate operationand all of their vari-
ations.

Fixed Data-Rate Timing Operation

Fixed data-rate serial-port transfers can occur in two varieties: burst mode and
continuous mode. In burst mode, transfers of single words are separated by
periods of inactivity on the serial port. In continuous mode, there are no gaps
between successive word transfers; the first bit of a new word is transferred
on the next CLIX/R pulse following the last bit of the previous word. This oc-
curs continuously until the process is terminated.

In burst mode with fixed data-rate timing, FSX/FSR pulses initiate transfers,
and each transfer involves a single word. With an internally generated FSX
(see Figure 8-23), transmission is initiated by loading DXR. In this mode,
there is a delay of approximately 2.5 CLKX cycles (depending on CLKX and
H1 frequencies) from the time DXR is loaded until FSX occurs. With an exter-
nal FSX, the FSX pulseinitiatesthe transfer, and the 2.5-cycle delay effectively
becomesa setup requirementfor loading DXR with respect to FSX. Therefore,
in this case, you must load DXR no later than three CLKX cycles before FSX
occurs. Once the XSR is loaded from the DXR, an XINT is generated.
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Figure 8-23. Fixed Burst Mode
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DXR Loaded XINT RINT

In receive operations, once atransfer is initiated, FSR is ignored until the last
bit. For burst-mode transfers, FSR must be low during the last bit, or another
transfer will be initiated. After a full word has been received and transferredto
the DRR, an RINT is generated.

Infixed data-rate mode, you can perform continuous transfers evenif R/ XFSM
= 0, as long as properly timed frame synchronization is provided, or as long
as DXR is reloaded each cycle with an internally generated FSX (see
Figure 8-24).

Figure 8—-24. Fixed Continuous Mode With Frame Sync
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XINT XINT

DXR Loaded XINT RINT RINT
DXR Loaded Load DXR Load DXR
Read DRR Read DRR
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For receive operations and with externally generated FSX, once transfers
have begun, frame sync pulses are requiredonly during the last bit transferred
to initiate another contiguous transfer. Otherwise, frame sync inputs are ig-
nored. Therefore, continuous transfers will occur if frame sync is held high.
With an internally generated FSX, there is a delay of approximately 2.5 CLKX
cycles from the time DXR is loaded until FSX occurs. This delay occurs each
time DXR is loaded; therefore, during continuous transmission, the instruction
that loads DXR must be executed by the N3 bit for an Kbit transmission.
Since delays due to pipeliningmay vary, you should incorporate a conserva-
tive margin of safety in allowing for this delay.

Once the process begins, an XINT and an RINT are generated at the begin-
ning of each transfer. The XINT indicates that the XSR has been loaded from
DXR and can be used to cause DXR to be reloaded. To maintain continuous
transmission in fixed rate mode with frame sync, especially with an internally
generated FSX, DXR must be reloaded early in the ongoing transfer.

The RINT indicates that afull word has been received and transferred into the
DRR. RINT isthereforecommonly usedtoindicate an appropriatetime to read
DRR.

Continuous transfers are terminated by discontinuing frame sync pulses or, in
the case of internally generated FSX, not reloading DXR.

You can accomplish continuous serial-port transfers without the use of frame
sync pulses if R’XFSM are set to 1. In this mode, operation of the serial port
is similar to continuous operation with frame sync, except that a frame sync
pulse is involved only in the first word transferred, and no further frame sync
pulses are used. Following the first word transferred (see Figure 8-25), noin-
ternal frame sync pulses are generated, and frame sync inputs are ignored.
Additionally, you should set R/XFSM prior to or during the first word trans-
ferred; you must set R/ XFSM no later thanthe transfer of the N—1 bit of the first
word, except for transmit operations. For transmit operationsin the fixed data-
rate mode, XFSM must be set no later than the N-2 bit. You must clear
R/XFSM no later than the N-1 bit to be recognized in the current cycle.
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Figure 8-25. Fixed Continuous Mode Without Frame Sync
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Timing of RINT and XINT and data transfersto and from DXR and DRR, re-
spectively, are the same as in fixed data-rate continuous mode with frame
sync. This mode of operation also exhibitsthe same delay of 2.5 CLKX cycles
after DXR is loaded before aninternal FSX is generated. As in the case of con-
tinuous operation in fixed data-rate mode with frame sync, you must reload
DXR no later than transmission of the A=3 bit.

When you use continuous operationin fixed data-rate mode, WXFSM can be
set and cleared as desired, even during active transfers, to enable or disable
the use of frame sync pulses as dictated by system requirements. Under most
conditions, the effect of changingthe state of WXFSM occurs during the trans-
fer in which the WXFSM change was made, provided the change was made
early enoughin the transfer. For transmit operations with internal FSX in fixed
data-rate mode, however, a one-word delay occurs before frame sync pulse
generation resumes when clearing XFSM to 0 (see Figure 8-26). Therefore,
in this case, one additional word is transferred before the next FSX pulse is
generated. Also note that, as discussed previously, the clearing of XFSM is
recognized during the transmission of the word currently being transmitted as
long as XFSMis clearedno later than the A-1 bit. The setting of XFSM is rec-
ognized as long as XFSM is set no later than the N-2 bit.
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Figure 8-26. Exiting Fixed Continuous Mode Without Frame Sync, FSX Internal
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Variable Data-Rate Timing Operation

Variable data-rate timing also supports operationin either burst or continuous
mode. Burst-mode operation with variable data-rate timing is similar to burst-
mode operation with fixed data-rate timing. With variable data-ratetiming (see
Figure 8-27), however, FSX/R and data timing differ slightly at the beginning
and end of transfers. Specifically, there are three major differences between
fixed and variable data-rate timing:

O FSWR pulses typically last for the entire transfer interval, although FSR
and external FSX are ignored after the first bit transferred. FSWR pulses
in fixed data-rate mode typically last only one CLKX/R cycle but can last
longer.

O Data transfer begins during the CLKX/R cycle in which FSWR occurs,
rather than the CLKX/R cycle following FSWR, as is the case with fixed
data-rate timing.

O Withvariabledata-ratetiming, frame sync inputs are ignored untilthe end
of the last bit transferred, rather than the beginning of the last bit trans-
ferred, as is the case with fixed data-rate timing.
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Figure 8-27. Variable Burst Mode
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When you transmit continuously in variable data-rate mode with frame sync,
timing is the same as for fixed data-rate mode, except for the differences be-
tweenthesetwo modes as describedunder Variable Data-Rate Timing Opera-
tion. The only other exceptionis that you must reload DXR no later than the
N-4 bit to maintain continuous operation of the variable data-rate mode (see
Figure 8-28); you must reload DXR no later than the =3 bit to maintain con-
tinuous operation of the fixed data-rate mode.

Figure 8-28. Variable Continuous Mode With Frame Sync

cwr_ L L LML L L L L

FSWFSX (External) P XXX ARV R XOXXX XXX A——
FSX (Internal) ]
DX/DR —— D OEDCED DT X
DXR Loaded XINT XINT XINT
RINT RINT
Load
DXR Load DXR Load DXR
Read DRR Read DRR

Continuous operation in variable data-rate mode without frame sync (see
Figure 8-29) is also similar to continuous operationwithout frame syncin fixed
data-rate mode. As with variable data-rate mode continuous operation with
frame sync, youmustreload DXR no later than the N—4 bit to maintain continu-
ous operation. Additionally, when R/XFSM is set or cleared in the variable da-
ta-rate mode, you must make the modification no later than the N-1 bit for the
result to be affected in the current transfer,
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Figure 8-29. Variable Continuous Mode Without Frame Sync

= S A e e 1 1 N e N e N Y 1 1 e N

AOR000000040 O X
FSR/FSX (Exte m aI) DOC XXX XXOOKXXXXRKXXXORKXXXORKXXXONE XORRKXXXOREXXXORRXXXORRKXXXXRKXXXOHIAXXXRREXXX XN

FSX (Internal) 1 o

T

Set XINT XINT

DXR Loaded R/XFSM RINT RINT
Load DXR Load DXR
DXR Loaded Read DRR Read DRR

8.2.13 Serial-Port Initialization/Reconfiguration

The serial ports are controlled through memory-mappedregisters on the dedi-
cated peripheral bus. Followingis a general procedure for initializing and/or
reconfiguring the serial ports.

1) Haltthe serialportby clearingthe XRESET and/or RRESET bits of the ser-
ial-port global-controlregister. To do this, write a 0 to the serial-port global-
control register. Note that the serial ports are halted on RESET.

2) Configure the serial port via the serial-port global-control register (with
XRESET = RRESET=0) andthe FSX/DX/CLKX and FSR/DR/CLKR port-
control registers. |f_necessary, configure the receiveftransmit registers:
timer control (with XHLD = RHLD =0), timer counter, and timer period. Re-
fer to subsection 8.2.14 for more information.

3) Start the serial port operation by setting the XRESET and RRESET bits
of the serial-port global-control register and the XHLD and RHLD bits of

the serial-port receive/transmit timer-control register, if necessary.

8.2.14 TMS320C3x Serial-PortInterface Examples

In additionto the examplespresentedin this section, DMA/serial port initializa-
tion examples can be found in Example 8—6 and Example 8—7 on pages 8-59
and 8-61, respectively.



Serial Ports

8.2.14.1 Handshake Mode Example

When handshake mode is used, the transmit (FSX/DS/CLKX) and receive
(FSR/DR/CLKR) signals transmit and receive data, respectively. In other
words, even if the TMS320C3x serial port is receiving data only with hand-
shake mode, the transmit signals are stillneededto transmitthe acknowledge
signal. This is the serial port register setup for the TMS320C3x serial port
handshake communication, as shown in Figure 8-22 on page 8-29:

Global control 011.x0x0»00xx00000000xx01100100b

Transmit portcontrol = 0111h
Receive portcontrol = 0111h
S_port timer control = OFh
S_port timer count = (h

S_port timer period z 01h (if two C3xs have the same
system clock)

X = user-configurabie

Sincethe FSXis set as an outputand continuous mode is disabled whenhand-
shake modeis selected, you shouldset the XFSM and RFSM bits to 0 and the
FSXOUT bit to 1 in the global control register. You should set the XRESET,
RRESET, andHS bitsto 1 in order to startthe handshake communication. You
should set the polarity of the serial port pins active (high) for simplification. Al-
thoughthe CLWCLKR can be set as either input or output, you should set
the CLKX as output andthe CLKR as input. The rest of the bits are user-confi-
gurable as long as both serial ports have consistent setup.

You need the serial port timer only if the CLKX or CLKR is configured as an
output. Since only the CLKX is configured as an output, you should set the tim-
er control register to OFh. When the serial port timer is used, you should also
set the serial timer register to the proper value for the clock speed. The serial
port timer clock speed setup is similar to the TMS320C3x timer. Refer to Sec-
tion 8.1 on page 8-2 for detailed information on timer clock generation.

The maximum clock frequency for serial transfersis F(CLKIN)/4 if the internal
clockis used and F(CLKIN)/5.2 if an external clock is used. Therefore, if two
TMS320C3xs have the same system clock, the timer period register should
be set equal to or greater than 1, which makes the clock frequency equal to
F(CLKIN}/8.

Example 8-1 and Example 8-2 are serial port register setups for the above
case. (Assume two TMS320C3xs have the same system clock.)
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Example 8-1.Serial-Port Register Setup #1

d obal control

Transmit port control

Recei ve port control
Sgort timer control
s_port timer count

S_port timer period

OEBC0064h; 32 bits, fixed data rate, burst node,
0111h ; FSX (output), CLKX (output) = F(CLKIN)/8
dllh ; KR (input), handshake node, transnit
OFh; and receive interrupt i s enabl ed.

Ch

adh

[LVZNN T I | I R

Example 8-2. Serial-Port Register Setup #2

d obal control

Transmt port control

Recei ve port control
Sgort timer control
s_port timer count

Sgort timer period

8.2.14.2 CPU Transfer

0C000364h; 8 bits, variable data rate, burst node,
0111h; FSX (output), CLKX (output) = £(CLKIN)/24
Allh ; CLKR (input), handshake rmode, transmit
((J;h; and receive interrupt is disabled.

ah

Mowow |]ow ]

Sincethe data has a leading 1 and the acknowledge signal is a 0 in the hand-
shake mode, the TMS320C3x serial portcandistinguishbetweenthe dataand
the acknowledge signal. Therefore, even if the TMS320C3x serial port re-
ceives the data before the acknowledge signal, the data will not be misinter-
preted as the acknowledge signal and be lost. In addition, the acknowledge
signal is not generated until the data is read from the data receive register
(DRR). Therefore, the TM8320C3x will not transmit the dataand the acknowl-
edge signal simultaneously.

With Serial-Port Transmit Polling Method

Example 8-3 setsupthe CPUtotransfer data (128 words) froman array buffer
to the serial port 0 output register when the previous value stored in the serial
port output register has been sent. Serial port 0 is initializedto transmit 32-bit
data words with an internally generated frame sync and a bit-transfer rate of
8H1 cycles/bit.
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Example 8-3.CPU Transfer With Serial-Port Transmit Polling Method

¢ TITLE: CPU TRANSFER W TH SERI AL- PORT TRANSM T POLLI NG METHOD

. GLOBAL START
.DATA
SOURCE .WORD _ARRAY
.BSS _ARRAY, 128
SPORT . WORD 808040H
SPRESET .WORD 008C0044
SGCCTRL . WORD 048C0044H
SXCTRL . WORD 111H
STCTRL . WORD OCFH
STPERIOD . WORD 00000002h
RESET  .WORD CH
. TEXT
START LDP RESET
ANDN 10H,IE

* SERI AL PORT | NI TI ALI ZATI ON

* CPU WRI TES THE FI RST WORD

LDl @SPORT,AR1
LDl @RESET,R0
LDl 4,IR0

STI RO, *+AR1(IR0)
LDl @SPRESET,R0
STI RO,*AR1

LDl @SXCTRL,RO
STI RO,*+AR1(3)
LDl @STPERIOD,RO
STI RO,*+AR1(6)
LDl @STCTRL,RO
STI RO, *+AR1(4)
LDl @SGCCTRL,R0
STI RO *AR1

LDl @SOURCE,ARO
LDl *ARO++,R1
STI R1,*+AR1(8)

we Mo NI We N6 e we wme NI w1

~e

DATA ARRAY LOCATED IN .Bss SECTI ON

THE UNDERSCORE USED IS JUST TO MAKE I T

ACCESSI BLE FROM C ( OPTI ONAL)

SERI AL- PORT GLOBAL CONTROL REG ADDRESS

SERI AL- PORT RESET

SERI AL- PORT GLOBAL CONTROL REG | NI TI ALI ZATI ON
SERI AL- PORT TX PORT CONTROL REG I NI TI ALI ZATI ON
SERI AL- PORT TI MER CONTROL REG | NI TI ALI ZATI ON
SERI AL- PORT TI MER PERI OD

SERI AL- PORT TI MER RESET VALUE

LOAD DATA PAGE PO NTER
DI SABLE SERI AL- PORT TRANSM T | NTERRUPT TO CPU

SERI AL- PORT TI MER RESET

SERI AL- PORT RESET
SERI AL- PORT TX CONTROL REG I NI TI ALI ZATON

SERIAL-PORT TI MER PERI OD | NI TI ALI ZATI ON
SERI AL- PORT TI MER CONTROL REG | NI Tl ALI ZATI ON
SERI AL- PORT GLOBAL CONTROL REG I NI TI ALI ZATI ON

* CPU WRI TES 127 WORDS TO THE SERI AL PORT OUTPUT REG

VAI'T
LOOP

LDl 8, IRO

LDl 2,RO

LDl 126,RC

RPTB LOOP

AND *AR1,R0,R2
BZ WAIT

STI R1,*+AR1(IR0)
LDl *++ARO(1),R1
BU $

. END

WAIT UNTIL XRDY BIT = 1
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8.2.14.3 Serial AIC Interface Example

The TLC320C4x analog interface chips (AIC) from Texas Instruments offer a
zero-glue-logic interface to the TMS320C3x family of DSPs. The interface is
shownin Figure 8-30 as an example of the TMS320C3x serial-port configura-
tion and operation.

Figure 8-30. TMS320C3x Zero-Glue-Logic Interface to TLC3204x Example

TMS320C3x TMS320C4x
XFO RESET WORD — vce
CLKRO :j—— SCLK
CLKXO OUT+ [—® Analog
FSRO [+ FSR ouUT- Out
DRO [+ DR
FSXO 4 FSX IN+ [¢— Analog
DXO DX IN~- In
TCLKO MCLK |a
GND

The TMS320C3x resets the AIC through the external pin XFO. It also gener-
ates the master clock for the AIC through the timer 0 output pin, TCLKO. (Pre-
cise selection of a sample rate may require the use of an external oscillator
rather than the TCLKO output to drive the AIC MCLK input.) In turn, the AIC
generates the CLKRO and CLKX0 shift clocks as well as the FSRO and FSXO
frame synchronization signals.

A typical use of the AIC requires an 8-kHz sample rate of the analog signal.
If the clock input frequency to the TMS320C3x device is 30 MHz, you should
load the following values into the serial port and timer registers.

Serial Port:

Port global control register: 0E970300h
FSX/DX/CLKX port control register 00000111h

FSR/DR/CLKR port control register 00000111h

Timer:

Timer global control register 000002C1h
Timer period register 00000001h

8.2.14.4 Serial A/D and D/A Interface Example

The DSP201/2 and DSP101/2 family of D/As and A/Ds from Burr Brown also
offer a zero-glue-logicinterfaceto the TMS320C3x family of DSPs. The inter-
face is shown in Example 84. This interface is used as an example of the
TMS320C3x serial-port configuration and operation.
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Example 8-4. TMS320C3x Zero-Glue-Logic Interface to Burr Brown A/D and D/A

22 pF

Burr Brown DSP102 A/D

Burr Brown DSP202 D/A

CASC +5V +5V — CASC
TMS320C3x ‘
XCLK CLKRO CLKXO XCLK
SOUTA »1 DRO DXO SINA
=275V —»{ VINA I VOUTA 3V
SYNC olrsro SINB
>
£275V —»] VINB roxole cyne VOUTB[ > 23V
0SCo SSF p—-+5V ssr
0SCi V-
R +5V —| SWL
CONV TCLKO CONV

1 MOhm

12.29 MHz

t—lF—

1

4

T

The DSP102 AlDis interfaced to the TMS320C3x serial port receive side; the
DSP202 D/A is interfaced to the transmit side. The A/Ds and D/As are hard-
wired to run in cascade mode. In this mode, when the TMS320C3x initiates a
convert command to the A/D via the TCLKO pin, both analog inputs are con-
vertedinto two 16-bit words, which are concatenated to form one 32-bit word.
The AID signalsthe TMS320C3x viathe A/D’s SYNC signal (connectedto the
TMS320C3x FSRO pin) that serial data is to be transmitted. The 32-bit word
is then serially transmitted, MSB first, out the SOUTA serial pin of the DSP102
to the DRO pin of the TMS320C3x serial port. The TMS320C3x is programmed
to drive the analog interface bit clock from the CLKXO pin of the TMS320C3x.
The bit clock drives both the A/D’s and D/A's XCLK input. The TMS320C3x
transmit clock also acts as the input clock on the receive side of the
TMS320C3x serial port. Since the receive clock is synchronousto the internal
clock of the TMS320C3x, the receive clock can run at full speed (that is,
f(H1)/2).

Peripherals 8-41



Serial Ports

Similarly, on receiving a convert command, the pipelined D/A convertsthe last
word received from the TMS320C3x and signals the TMS320C3x via the
SYNC signal (connectedto the TMS320C3x FSXO pin) to begin transmitting
a 32-bit word representing the two channels of datato be converted. The data
transmittedfrom the TMS320C3x DXO pin s input to boththe SINA and SINB
inputs of the D/A as shown in the figure.

The TMS320C3x is set up to transfer bits at the maximum rate of about eight
Mbps, with a dual-channelsample rate of about 44.1 kHz. Assuming a32-MHz
CLKIN, you can configure this standard-mode fixed-data-rate signaling inter-
face by setting the registers as described below:

Serial Port:

Port global-control register: OEBC0040h
FSX/DX/CLKX port-controlregister 00000111h
FSR/DR/CLKR port-controlregister 00000111h
Receive/transmit timer-controlregister 0000000Fh
Timer:

Timer global-control register 000002C1h

Timer period register 000000B5h
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8.3 DMA Controller

The TMS320C3x has an on-chip direct memory access (DMA) controllerthat
reducesthe need for the CPU to performinput/output functions. The DMA con-
troller can perform input/output operations without interfering with the opera-
tion of the CPU. Therefore, it is possible to interface the TMS320C3x to slow
external memories and peripherals (A/Ds, serial ports, etc.) without reducing
the computationalthroughput of the CPU. The resultis improved system per-
formance and decreased system cost.

ADMA transfer consists of two operations: a read froma memory locationand
a write to a memory location. The DMA controller can read from and write to
any location in the TMS320C3x memory map. This includes all
memory-mapped peripherals. The operation of the DMA is controlled with the
following set of memory-mapped registers:

O DMA global-control register

O DMA source-address register

[ DMA destination-addressregister
[ DMA transfer-counter register

Table 8-7 shows these registers, their memory-mapped addresses, and their
functions. Each of these DMA registersis discussedinthe succeedingsubsec-
tions.
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Table 8-7. Memory-Mapped Locations for a DMA Channel

Peripheral
Register Address
DMA Global Control (See Table 8-8) 808000h
Reserved 808001h
Resewed 808002h
Reserved 808003h
DMA Source Address (see subsection 8.3.2) 808004h
Reserved 808005h
DMA Destination Address (see subsection 8.3.2) 808006h
Reserved 808007h
DMA Transfer Counter (see subsection 8.3.3) 808008h
Reserved 808009h
Reserved 80800Ah
Reserved 80800Bh
Reserved 80800Ch
Resewed 80800Dh
Resewed 80800Eh

Reserved 80800Fh
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Table 8-8. DMA Global-Control Register Bits

Bit Name Reset Value Function

1-0 START 0-0 These bits control the state in which the DMA starts and stops. The
DMA may be stopped without any loss of data (see Table 8-9).

32 STAT 0-0 These bits indicate the status of the DMA and change every cycle
(see Table 8-10).

4 INCSRC 0 If INCSRC = 1, the source address is incremented after every read.

5 DECSRC 0 If DECSRC = 1, the source address is decremented after every
read. If INCSRC = DECSRC, the source address is not modified
after a read.

6 INCDST 0 If INCDST = 1, the destination address is incremented after every
write.

7 DECDST 0 If DECDST = 1, the destination address is decremented after every
write. If INCDST = DECDST, the destination address is not modified
after a write.

98 SYNC 0-0 The SYNC bits determine the timing synchronizationbetween the
events initiating the source and the destination transfers. The inter-
pretation of the SYNC bits is shownin Table 8-11.

10 TC 0 The TC bit affects the operation of the transfer counter. If TC = 0,
transfers are not terminated when the transfer counter becomes 0.
If TC = 1, transfers are terminated when the transfer counter be-
comes 0.

11 TCINT 0 If TCINT = 1, the DMA interrupt is set when the transfer counter
makes a transitionto Q. If TCINT = O, the DMA interruptis not set
when the transfer counter makes a transitionto 0.

31-12 Reserved 00 Read as 0.

Note:

Whenthe DMA completes atransfer, the START bits remainin 11 (base 2). The DMA starts whenthe START b i are set
to 11 and one o the following conditions applies:

O The transfer counter is set to a value different from 0x0, or
[ The TC bitis setto 0.
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Table 8-9. START Bits and Operation of the DMA (Bits 0—1)

START

Function

00

01

10

11

DMA read or write cyclesin progress will be completed; any dataread will
be ighored. Any pendingread or write will be cancelled. The DMA is reset
so that when it starts a new transaction begins; that is, a read is per-
formed. (Reset value)

If aread or write has begun, it is completed before it stops. If a read or
write has not begun, no read or write is started.

If a DMA transfer has begun, the entire transfer is completed (including
both read and write operations) before stopping. If a transfer has not be-
gun, none is started.

DMA starts from reset or restarts from the previous state.

Table 8-10.STAT Bits and Status of the DMA (Bits 2-3)

STAT

Function

00

01

10
11

DMA is being held between DMA transfer (between a write and read).
This is the value at reset. (Reset value)

DMA s being heldin the middle of a DMA transfer, that is, betweenaread
and a write.

Reserved.

DMA busy; that is, DMA is performing a read or write or waiting for a
source or destination synchronization interrupt.

Table 8-11. SYNC Bits and Synchronization of the DMA (Bits 8-9)

SYNC

Function

00
01

10

11

No synchronization. Enabled interrupts are ignored. (Reset value)

Source synchronization. A read is performed when an enabledinterrupt
occurs.

Destinationsynchronization. Awrite is performed when an enabled inter-
rupt occurs.

Source and destination synchronization. A read is performed when an
enabled interrupt occurs. A write is then performed when the next en-
abled interrupt occurs.
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8.3.1 DMA Global-Control Register

The global-controlregister controls the statein whichthe DMA controlleroper-
ates. This register also indicates the status of the DMA, which changes every
cycle. Source and destination addresses Can be incremented, decremented,
or synchronized using specified global-controlregister bits. At system reset,
all bits in the DMA control register are cleared to 0. Table 8-8 on page 8-45
lists the register bits, names, and functions. Figure 8-31 shows the bit config-
uration of the global-controlregister.

Figure 8-31. DMA Global-Control Register

31302028 27 26 25 24 23 2 21 20 19 18 17 18
Loxfoxoofood ¢ [ oex Jooe] o J o J oo o [ [ o [ o [ o] » |
15 14 13 12 11 10 98 8 7 8 5 4 3 2 1 0

1
|

| x| <[ s« | xx | TONT] TC | synNc [ DECDST] INCDST| DECSRC] INCSRC| STAT [ START |
RW RW RWRW RW RW RW RW R RRAW RW

R = Read, W =Write, xx = reserved bit, read as 0

8.3.2 Destination- and Source-Address Registers

The DMA destination-and-sourceaddressregisters are 24-bitregisterswhose
contents specify destination and source addresses. As specified by control
bits DECSRC, INCSRC, DECDST, and INCDST of the DMA global-control
register, these registers are incremented and decremented at the end of the
corresponding memory access, that is, the source register for a read and the
destinationregister for a write. On systemreset, 0 is written to these registers.

8.3.3 Transfer-Counter Register

The transfer-counterregister is a 24-bit register, controlled by a 24-bit counter
that countsdown. The counter decrements at the beginning of a DMA memory
write. Inthis way, it can control the size of a block of datatransferred. Thetrans-
fer counter register is set to 0 at system reset. When the TCINT bit of DMA
global-controlregisteris set, the transfer-counter register will cause a DMA in-
terrupt flag to be set upon count down to 0.

8.3.4 CPU/DMA Interrupt-EnableRegister

The CPU/DMA interrupt enable register (IE) is a 32-bit register located in the
CPU register file. The CPU interrupt enable bits are in locations 10-1. The
DMA interrupt-enable bits are in locations 26-16. A 1 ina CPUIDMA interrupt-
enable register bit enables the correspondinginterrupt. A0 disablesthe corre-
sponding interrupt. At reset, 0 is written to this register.
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Table 81 2 lists the bits, names, and functions of the CPU/DMA interrupt en-
able register. Figure 8-32 shows the IE register. The priority and decoding
schemes of CPU and DMA interrupts are identical. Note that when the DMA
receives an interrupt, this interrupt is acted upon according to the SYNC field
of the DMA control register. Also note that an interrupt can affect the DMA but
notthe CPU and canaffect the CPU but not the DMA. Refer to subsection3.1.8

on page 3-7 and to Chapter 6.

Table 8-12. CPU/DMA Interrupt-Enable Register Bits

Blt Name Function
0 EINTO Enable external interrupt 0 (CPU)
1 EINT1 Enable externalinterrupt 1 (CPU)
2 EINT2 Enable external interrupt 2 (CPU)
3 EINT3 Enable external interrupt 3 (CPU)
4 EXINTO Enable serial-port 8 transmitinterrupt (CPU)
5 ERINTO Enable serial-port 0 receive interrupt (CPU)
6 EXINT1 Enable serial-port 1 transmitinterrupt (CPU)
7 ERINT1 Enable serial-port 1 receive interrupt (CPU)
8 ETINTO Enable timer 0 interrupt (CPU)
9 ETINTA Enable timer 1 interrupt (CPU)
10 EDINT Enable DMA controller interrupt (CPU)
1511 Reserved Read as 0
16 EINTO Enable external interrupt 0 (DMA)
17 EINT1 Enable externalinterrupt 1 (DMA)
18 EINT2 Enable external interrupt 2 (DMA)
19 EINT3 Enable external interrupt 3 (DMA)
20 EXINTO Enable serial-port 0 transmit interrupt (DMA)
21 ERINTO Enable serial-port 0 receive interrupt (DMA)
22 EXINT1 Enable serial-port 1 transmit interrupt (DMA)
23 ERINT1 Enable serial-port1 receive interrupt (DMA)
24 ETINTO Enable timer 0 interrupt (DMA)
25 ETINT1 Enable timer 1 interrupt (DMA)
26 EDINT Enable DMA controller interrupt (DMA)
31-27 Reserved Readas 0
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Figure 832. CPU/DMA Interrupt-Enable Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| o] ol soc| oc| ECINT | ETINT1 | ETINTO | ERINT1 | EXINT1 | ERINTO | EXINTO | EINT3 EINT2 EINTY EINTO
(DMA) (OMA) (OMA) (OMA) (OMA) (DMA) (DMA) (DMA) (DMA) (OMA) (DMA)
RW RW RW RW RW RW RW RW RW RW RW
15 14 13 12 1 10 9 8 7 ] 5 4 3 2 1 0
s | s | ol sl o | EDINT | ETINT1 | ETINTO | ERINTY | EXINT1 [ ERINTO | EXINTO | EINTS EINT2 EINTY EINTO
(cPU) (CPU) (CPU) (CPU) (CPU) {CPU) (CPU) (CPY) {CPU) {CPU) (CPU)
RW RW RW RW RW RW RW RW RW RW RW
Note:  xx = Reserved bii, read as 0

8.3.5

R =read, W = write

DMA Memory Transfer Operation

Each DMA memory transfer consists of two parts:
O Read data from the address specified by the DMA source register

O Write datathat has beenread to the address specified by the DMA desti-
nation register

Atransferis complete only whenthe read and wriie are complete. You can stop
atransfer by settingthe START bits to the desired value. When the DMA is re-
started (START = 1 1), it completes any pending transfer.

Atthe end of a DMA read, the source address is modified as specified by the
SRCINC and SRCDEC bits of the DMA global-control register. At the end of
a DMA write, the destination address is modified as specified by the DSTINC
and DSTDEC bits of the DMA global controlregister. At the end of every DMA
write, the DMA transfer counter is decremented.

DMA on-chip reads and writes (reads and writes from on-chip memory and pe-
ripherals) are single-cycle. DMA off-chip reads are two cycles. The first cycle
is the externalread, and the secondcycle loads the DMA register. The external
read cycle is identical to a CPU read cycle. DMA off-chip writes are identical
to CPU off-chip writes. If the DMA has been started and is transferring data
over either external bus, you should not modify the bus-controlregister asso-
ciated with that bus. If you must modify the bus-controlregister (see Chapter
7), stop the DMA, make the modification, and then restartthe DMA. Failureto
do this may produce an unexpected zero-wait-state bus access.
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Throughthe 24-bit source and destinationregisters, the DMA is capable of ac-
cessing any memory-mapped location in the TMS320C3x memory map.
Table 8-13, Table 8-14, and Table 8-15 show the number of cycles a DMA
transfer requires, depending on whether the source and destinationare on-
chip memory and peripherals, the external port, or the I/O port. Trepresents
the number of transfers to be performed, C; represents the number of wait-
statesforthe sourceread, and Gy, represents the number of wait-states for the
destinationwrite. Each entry in the table represents the total cycles required
to do the T transfers, assuming that there are no pipeline conflicts.

Accompanyingeachtableis afigure illustratingthe timing of the DMA transfer.
|[R| and |W]| represent single-cycle reads and writes, respectively. |R.R| and
|[W.W]| represent multicycle reads and writes. |C;| and |Cyy| show the number
of wait cycles for a read and write.

Table 8-13.DMA Timing When Destination Is On-Chip

Legend:

T = Number of transfers

Cr = Source-read wait states
Cw = Destination-write wait states
IR} = Single-cyclereads

Wi = Single-cycle writes

[R.R = Multicycle reads

[WW]| = Multicycle writes

Internal register cycle

Cycles (H1) 1 | 2 | 3| 4 | 5 | 6 | 7 | 8| 9 |10| 11|12|13| 14|15|16|17|18|19
Source On-Chip rR| IrR| |R]| s
Destination On-Chip iwl Iwl |wl] -
Source Primary Bus R.R-R:1| |R.R.R:1| |R.R.R:I|
| Cr | | C | = = | Cr|
Destination On-Chip (wl :wl : (wl
Source Expansion Bus R.R.R: I| |R.R.R:I| |R.R.R:I]
| G | | Cr | | Cr|
Destination On-Chip |wl [w| [w|
Source Destination On-Chlip
On-Chip (1+1)T
Primary Bus 2+CG +1)T
ExpansionBus (2 + Ct1T
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Table 8-14.DMA Timing When Destination Is a Primary Bus

Cycles (H1) l|2 3|4|5|6|7|8|9|141]|1*14141516l‘|7|18|19

Source On-Chip RI IR] ¢ IR] & ¢ ¢t 12 &t ¢ 2
iwfwfwfwl:w_:w.:w.:W|=w.:w,:w.:w|:
Destination Primary Bus - lewl s lew ] lewl

Source Primary Bus R.R.R:I| : : : .R.R.R: 1]
P S} 20 02 2 ]G]

|W,W,W.W| s ww.owwl

Destination Primary Bus R -V R R - ™
Source Expansion Bus R.-R.R:I| |R.R.R:1I|] |R.R.R:I|
[ C | =« | C | - : | C |
: Iwwww|l [wwww| |wwww|
Destination Primary Bus s s Jew | s s lew s sl owl
Source Destlnatlon Primary Bus

onChip  1+@2+CyT
Primary @t t2toyT

Bus
Expansion (2+ Cyt 2+ Cy)
Bus +(@2+CGy+max(1,G - Gy +
N(T-1)
Legend:
T = Number of transfers
Cr = Source-read wait states
Cw = Destination-write wait states
|R| = Single-cycle reads
W] = Single-cycle writes
|R.R] = Multicycle reads
[W.W| = Multicycle writes

Internalregister cycle
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Table 8-15.DMA Timing When Destination Is an Expansion Bus

Cycles (H1) 1[2]3]4]5]6|7|8]9]|10]11)12 13[14]15] 16/ 17 18] 19
Source On-Chip RI IR] ¢+ IR & ¢+ v ¢ ¢ o0 ¢+ 0 0

lw. w.wWwWlw wwwlwww.w|

Destination Expansion Bus : s lewl @ Jew!l : lew
Source Primary Bus R.R.R|I|] |R-R.R:I| |RI-RC.R:I|
.. . .

| C | =+ | G|
: (ww.wwl lwwww| lwwwwl
Destination Expansion Bus R S S R - A A e

Source Expansion Bus R-R.R:1| : : : |R.R.R: 1|
[ C | : : : : ¢ | G|

IWwWW.W| @ @ [WwW.w.w|
: | Cwl

Destination Expansion Bus : : ot 1 |Cw |

Source Destination Expansion Bus
On-Chip 1+ Q2+ CWT
Primary @tC+2+ Gy

Bus +(2+ Cy+max(1,G-Cy +
ON(T-1)

Expansion 2+ Grt2+GyT
Bus

Legend:

T = Number of transfers

Cr = Source-readwait states

Cw = Destination-write wait states

IR| = Single-cyclereads

w| = Single-cycle writes

JR.R| = Multicyclereads

IW.W| = Multicycle writes

Internal register cycle
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Table 8-16 shows the maximum DMA transfer rates, assuming that there are
no wait states (C; = G, = 0). Table 8-17 shows the maximum DMA transfer
rates, assuming there is one wait state for the read (C; = 1) and no wait states
for the write (G, = 0). Table 8-18 shows the maximum DMA transfer rates,
assumingthereis one wait state for the read (G, = 1) and one wait state for the

write (Gy = 1).

In eachtable, the time for the complete transfer (the read and the write) is con-
sidered. Since one bus access is required for the read and another for the
write, internal bus transfer rates will be twice the DMA transfer rate. It is also
assumedthat no conflicts with the CPU exist. Rates are listed in Mwordslsec.
A word is 32 bits (4 bytes).

Table 8-16.Maximum DMA Transfer Rates When G- = G, =0

Source

Destination

internal Primary

Expansion

Internal
Primary

Expansion

8. 33Mwordslsec
5. 56 Mwords/sec
5. 56 Mwords/sec

8. 33Mwordslsec
417 Mwords/sec
5. 56 Mwords/sec

8. 33 Mwords/sec
5. 56 Mwordslsec
4.17 Mwordslsec

Table 8-17.Maximum DMA Transfer Rates When G =1, Gy =0

Source

Destination

Internal

Primary

Expansion

Internal
Primary

Expansion

8. 33Mwords/sec
4.17 Mwords/sec
4.17 Mwords/sec

8. 33Mwords/sec
3. 33Mwords/sec
4,17 Mwords/sec

8. 33Mwordslsec
417 Mwordslsec
3. 33Mwordslsec

Table 8-18.Maximum DMA Transfer Rates When G, = 1, G, = 7

Source

Destination

internal

Primary

Expansion

Internal
Primary

Expansion

8. 33Mwords/sec
4.17 Mwords/sec
4.17 Mwords/sec

5. 56 Mwords/sec
2. 78 Mwordslsec
4.17 Mwords/sec

5. 56 Mwordslsec
417 Mwords/sec
2. 78 Mwords/sec
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8.3.6 Synchronizationof DMA Channels

You can synchronize a DMA channel with interrupts. Refer to Table 8-11 on
page 8-46 for the relationshipbetween the SYNC bits of the DMA global con-
trolregister andthe synchronization performed. This section describesthe fol-
lowing four synchronization mechanisms:

O No synchronization (SYNC =0 0)

O Source synchronization (SYNC=0 1)

O Destination synchronization (SYNC = 1 0)

O Source and destination synchronization (SYNC =1 1)

No Synchronization

When SYNC = 0 0, no synchronizationis performed. The DMA performsreads
and writes whenever there are no conflicts. All interrupts are ignored and
therefore are consideredto be globally disabled. However, no bits in the DMA
interrupt-enable register are changed. Figure 833 shows the
synchronizationmechanism when SYNC = 0 0.

Figure 8-33. No DMA Synchronization

 Start |
| Disable DMA Interrupts |
I
| DMA Channel Performs a Read |
%

| DMA Channel Performs a Write |

Source Synchronization

When SYNC=0 1, the DMA is synchronizedto the source (see Figure 8-34).
A read will not be performed until an interruptis received by the DMA. Then
all DMA interrupts are disabled globally. However, no bits in the DMA interrupt
enable register are changed.



DMA Controller

Figure 8-34. DMA Source Synchronization
 Start ]

| idle Until Enabled Interrupt Is Received |

| Disable DMA Interrupts Globally |

[DMA Channel Performs a Read I

| Enable DMA Interrupts Giobally ]

| DMA Channel Performs a Write |

Destination Synchronization

When SYNC=1 0, the DMA is synchronizedto the destination. First, allinter-
rupts are ignored until the read is complete. Though the DMA interrupts are
considered globally disabled, no bits in the DMA interrupt-enable register are
changed. A write will not be performed until an interrupt is received by the
DMA. Figure 8-35 shows the synchronization mechanism when SYNC=1 0.

I DMA Channel Performs a Read |

Figure 8-35. DMA Destination Synchronization

| 'dle Until Enabled interrupt Is Received |

|  Disable DMA Interrupts Globally - |

| DMA Channel Performs a Write |

| DMA Interrupts Are Enabled Globally |

Go to Start

Source and Destinatlon Synchronization

When SYNC =1 1, the DMA is synchronizedto both the source and destina-
tion. A read is performed when an interruptis received. A write is performed
on the following interrupt. Source and destination synchronization when
SYNC = 1 1 is shown in Figure 8-36.

Peripherals 8-55



DMA Controller

Figure 8-36. DMA Source and Destination Synchronization

J idie Until Enabled Interrupt is Received |

| Disable DMA Interrupts Globally |

| DMA Channel PerformsaRead |

:

|  Enable DMA Interrupts Globally |

x

[ 1die Until Enabled Interrupt Is Received |

:

|  Disable DMA Interrupts Globally |
1

| DMA Channel Performs a Write |

il

| Enable DMA Interrupts Globally |

8.3.7 DMA Interrupts

You can generate a DMA interrupt to the CPU whenever the transfer count
reaches 0, indicating that the last transfer has taken place. The TCINT bit in
the DMA global controlregister determineswhether the interrupt willbe gener-
ated. If TCINT = 1, the DMA interruptis generated. If TCINT = 0, the DMA inter-
rupt is not generated. If the DMA interrupt is generated, the EDINT bit, bit 10
in the interrupt enable register, must also be set to enable the CPU to be inter-
rupted by the DMA.

A second bit in the DMA global control register, the TC bit, is also generally
associated with the state of the TCINT bit and the interrupt operation. The TC
bit determines whether transfersare terminated when the transfer counter be-
comes 0 or whether they are allowedto continue. If TC = 1, transfersare termi-
nated when the transfer count becomes 0. If TC = 0, transfers are not termi-
nated when the transfer count becomes 0.

In general, if TCINT s 0, TC shouldalso be clearedto 0. Otherwise, the DMA
transferwill terminate, and the CPU willnotbe notified. If TCINTis 1, TC should
alsobe 1in most cases. Inthis case, the CPU will be notified when the transfer
completes, and the DMA will be halted and ready to start a new transfer.
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8.3.8 DMA Initialization/Reconfiguration

You can control the DMA through memory-mapped registers located on the
dedicated peripheral bus. Following is the general procedure for initializing
and/or reconfiguring the DMA:

1) Haltthe DMA by clearing the START bits of the DMA global-controlregis-
ter. You can do this by writing a 0 to the DMA global-control register. Note

that the DMA is halted on RESET.

2) Configurethe DMA viathe DMA global-controlregister (with START = 00),
as well as the DMA source, destination, and transfer-counter registers, if
necessary. Refer to subsection8.3.10 on page 8-58 for more information.

3) Startthe DMA by settingthe START bits of the DMA global-controlregister
as necessary.

8.3.9 Hints for DMA Programming

The following hints help you improve your DMA programmingand avoid unex-
pected results:

O Reset the DMA register before starting it. This clears any previously
latched interrupt that may no longer exist.

J In the event of a CPU-DMA access conflict, the CPU always prevails.
Carefully allocate the different sections of the programin memory for fast-
er execution. If a CPU program access conflicts witha DMA access, enab-
ling the cache helps if the programis locatedin external memory. DMA on-
chip access happens during the H3 phase. Refer to Chapter 9 for details
on CPU accesses.

Note: Expansionand Peripheral Buses

The expansion and peripheral buses cannot be accessed simultaneously
because they are multiplexed into a common port (see Figure 2-1 on page
2-3). This might increase CPU-DMA access conflicts.

@ Ensurethateachinterruptisreceived whenyou useinterruptsynchroniza-
tion; otherwise, the DMA will never complete the block transfer.

O Useread/write synchronizationwhenreadingfrom or writingto serialports
to guarantee data validity.

The following are indications that the DMA has finished a set of transfers:

O The DINT bitin the IIF registeris set to 1 (interrupt polling). This requires
that the TCINT bit in the DMA control register be set first. This interrupt-
polling method does not cause any additional CPU-DMA access conflict.
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O The transfer counter has a zero value. However, notice that the transfer
counter is decremented after the DMA read operation finishes (not after
the write operation). Nevertheless, a transfer counter with a O value can
be used as an indication of a transfer completion.

[ The STAT bits inthe DMA channel control register are setto 002. You can
pollthe DMA channel control register for thisvalue. However, because the
DMA registers are memory-mapped into the peripheral bus address
space, this option can cause further CPU-DMA access conflicts.

8.3.10 DMA Programming Examples

Example 8-5, Example 8-6, and Example 8-7 illustrate initialization proce-
dures for the DMA.

When linking the examples, you should allocate section memory addresses
carefullyto avoid CPU-DMA conflict. In the 'C3x, the CPU always prevailsin
cases of conflict. In the event of a CPU program-DMA data conflict, the enab-
ling of the cache helpsif the .text sectionis in external memory. For example,
when linking the code in Example 8-5, Example 8-6, and Example 8-7, the
text section can be allocated into RAMO, .data into RAM1, and .bss into
RAM1, where RAMO and RAML correspondto on-chip RAM block 0 and block
1, respectively.

InExample 8-5, the DMA initializesa 128-elementarray to 0. The DMA sends
aninterruptto the CPU after the transferis completed. This programassumes
previousinitialization of the CPU interrupt vector table (specifically the DMA-
to-CPU interrupt). The program initializes the ST and |E registers for interrupt
processing.

Example 8-5.Array Initialization With DMA

* TITLE: ARRAY INITIALIZATION WITH DMA

*

DMA
RESET
CONTROL
SOURCE
DESTIN
COUNT
ZERO

.GLOBAL START

«DATA

WORD
WORD
WORD
WORD
WORD
WORD

808000H
0C40H
0C43H
ZERO
_ARRAY
128

.FLOAT 0.0
.BSS _ARRAY, 128

.TEXT

NI uL NS ul Nl ou

DMA GLOBAL CONTROL REG ADDRESS
DMA GLOBAL CONTROL REG RESET VALUE

DMA GLOBAL CONTROL REG INITIALIZATION

DATA SOURCE ADDRESS

DATA DESTINATION ADDRESS

NUMBER OF WORDS TO TRANSFER

ARRAY INITIALIZATION VALUE 0.0 = 0x80000000
DATA ARRAY LOCATED IN .BSS SECTION
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START  LDP
LDl
LDI
STI
LDI
STI
LDl
STI
LDI
STI
OR
R
LDI
STI

BU §

. END

DVA

@DMA, ARO
@RESET, RO
RO, *ARO
@SOURCE, RO
RO, *+AR0(4)
@DESTIN,RO
RO, *+AR0(6)
@COUNT, RO
RO, *+AR0 (8)
400H,1E
2000H,ST
@CONTROL, RO
RO, *ARO

LOAD DATA PAGE PO NTER
PO NT TO DMA GLOBAL CONTROL REG STER
RESET DNA

I NI TI ALI ZE DMA SOURCE ADDRESS REGI STER

I NI TI ALI ZE DMA DESTI NATI ON ADDRESS REG STER
I NI TI ALI ZE DMA TRANSFER COUNTER REGI STER

ENABLE | NTERRUPT FROM DVA TO CPU
ENABLE CPU | NTERRUPTS GLOBALLY

I NI TI ALI ZE DMA GLOBAL CONTROL REGI STER
START DMA TRANSFER

Example 8-6sets upt he DMAtotransfer data(l 28 wor ds) fromt he serial port
0input register toan array buffer vith serial port recei veinterrupt (R NTQ. The
DMAsends an interrupt tothe CPUwhen the datatransfer completes.

Serial prt 01iS initializedto recei ve 32hit data wor ds vith an internally gener -
ated receivehit clock and a bit-tramsfer rae d 8HL cycles/bit.

Thi s programassunes previ ous initialization d the CPUinterrupt vector tahl e
(specifically the DMA't 0-CPU interrupt). The serial part interrupt directly af-
fectsonlyt he DMA; theref ore, no CPU serial part interrupt vector settingisre

qui red.

Example 8—6.DMA Transfer With Serial-Port Receive Interrupt
¥ TITLE DMA TRANSFER W TH SERI AL PORT RECEI VE | NTERRUPT

.GLOBAL START

. DATA
DVA .WORD 808000H
CONTROL .WORD O0D43H
SOURCE .WORD 80804CH
DESTI N .WORD _ARRAY
COUNT .WORD 128
| EVAL .WORD 00200400H
RESET1  .WORD 0D40H

.BSS _ARRAY, 128
SPORT .WORD 808040H
SGCCTRL .WORD O0A300080H
SRCTRL .WORD 111H
STCTRL .WORD 3COH
STPERIOD .WORD 00020000H
SPRESET .WORD 01300080R
RESET .WORD H

TEXT
START LDP DMA

DMA GLOBAL CONTROL REG ADDRESS

DVA GLOBAL CONTROL REG I NI TI ALI ZATI ON

DATA SOURCE ADDRESS: SERI'AL PORT | NPUT REG
DATA DESTI NATI ON ADDRESS

NUMBER OF WORDS TO TRANSFER

| E REG STER VALUE

DVA RESET

DATA ARRAY LOCATED IN .BSS SECTI ON
THE UNDERSCORE USED |'S JUST TO MAKE I T
ACCESSI BLE FROM C ( OPTI ONAL)

SERI AL PORT GLOBAL CONTROL REG ADDRESS

SERI AL PORT GLOBAL CONTROL REG I NI TI ALI ZATI ON
SERI AL PORT RX PORT CONTROL REG I NI TI ALI ZATI ON
SERI' AL PORT TI MER CONTROL REG | NI TI ALI ZATI ON
SERI AL PORT TI MER PERI OD

SERI AL PORT RESET

SERI AL- PORT TI MER RESET

LOAD DATA PAGE PO NTER

Peripherals 8-59



DMA Controller

* pMa | NI TI ALl ZATI ON

LDl @DMa,ARO ; PONT TO pMA GLOBAL CONTROL REG STER

LDl @SPORT,AR1

LDl @eRESET,RO

STI RO, *+AR1(4) ; RESET SPORT TI MER

LDl €RESET1,R0O

STI RO, *ARO ; RESET DMA

LDl @SPRESET,R0

STI RO, *AR1 ; RESET SPORT

LDl @SOURCE,RO ; INITI ALI ZE pMA SOURCE ADDRESS REG STER
STI RO, *+ARO(4)

LDl @DESTIN,RO ; NI TI ALI ZE DMA DESTI NATI ON ADDRESS REG STER
STI RO, *+AR0(6)

LDl @COUNT,RO ; NI TIALI ZE pMA TRANSFER COUNTER REG STER
STI RO, *+AR0(8)

OR @I1EVAL,IE ; ENABLE | NTERRUPTS

OR 2000H,ST ; ENABLE CPU | NTERRUPTS GLOBALLY

LDl @CONTROL,RO ; INITI ALl ZE DVA GLOBAL CONTROL REG STER
STI RO, *AR0O ; START DVA TRANSFER

* SERI AL PORT | NI TI ALI ZATI ON

LDI
STI
LDI
STI
LDI
STI
LDI
STI

@SRCTRL, RO
RO, *+AR1(3)
@STPERIOD, RO
RO, *+AR1(6)
@STCTRL, RO
RO, *+AR1(4)
@SGCCTRL, RO
RO, *AR1

BU §
.END

SERI AL- PORT RECEI VE CONTROL REG I NI TI ALI ZATI ON
SERI AL- PORT TI MER PERI OD | NI TI ALI ZATI ON

SERI AL- PORT TI MER CONTROL REG | NI TI ALI ZATI ON
SERI AL- PORT GLOBAL CONTROL REG | NI Tl ALI ZATI ON

Example 8-7 setsup the DMA to transfer data (128 words) from an array buff-
er to the serial part 0 output register with serial part transmit interrupt XINTO.
The DMA sends an interrupt to the CPU when the data transfer completes.

Serial pat Qisinitializedto transmit 32-bit data words with aninternallygener-
ated frame sync and a bit-transferrate of 8H1 cycles/bit. The receive-bitclock
is internally generated and equal in frequency to one-half of the 'C3x H1 fre-
quency.

This programassumes previous initializationof the CPU interrupt vector table
(specifically the DMA-to-CPU interrupt). The serial pat interrupt directly af-
fects only the DMA,; therefore, no CPU serial port interrupt vector settingis re-
quired.

Note: Serial Port Transmit Synchronization

The DMA uses serial port transmitinterrupt XINTO to synchronize transfers.
Becausethe XINTOis generatedwhenthe transmit buffer has written the last
bit of data to the shifter, an initial CPU write to the serial part is required to
trigger XINTO to enable the first DMA transfer.
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Example 8-7.DMA Transfer With Serial-Port Transmit Interrupt
* TITLE: DMA TRANSFER W TH SERI AL PORT TRANSM T | NTERRUPT

DVA
CONTROL
SCURCE
DESTI N

| EVAL

RESET1
SPORT
SGCCTRL
SXCTRL
STCTRL
STPERIOD
SPRESET
RESET

START

. GLOBAL START
. DATA
.VWWORD 808000H

OE13H

80804CH
127
00100400H

OE10H
8080408
048800448
111H

OOFH
00000002H
00880044H
.WRD H

. TEXT

LDP DMA

e DVA | NI TIALI ZATI ON

LDl epMA,ARO
LDl @SPORT,AR1
LDl @RESET,RO
STIRO,*+AR1(4)
STI RO, *AR0

STI RO *AR1

LDl @OURCE, RO
STIRO,*+AR0(4)
LDl @DESTIN,RO
STIRO,*+AR0(6)
LDl @OUNT, RO
STIRO, *+AR0(8)
OR @IEVAL,IE
OR 2000H,ST
LDl @CONTROL,RO
STI RO, *AR0

(_ARRAY+1)

_ARRAY, 128

NI Ne Me Ul We Wme Ul We We We we we we W

N1 we we

~e we we we

DVA GLOBAL CONTROL REG ADDRESS

DMA GLOBAL CONTRCL REG I NI TI ALI ZATI ON

DATA SOURCE ADDRESS

DATA DESTI N ADDRESS: SERI AL- PORT QUTPUT REG
NUMBER OF WORDS TO TRANSFER =(MSG LENGHT-1)

| E REG STER VALUE

DATA ARRAY LOCATED IN .Bss SECTI ON

THE UNDERSCORE USED | S JUST TO MAKE | T
ACCESSI BLE FROM C ( OPTI ONAL)

DVA RESET

SERI AL- PORT GLOBAL CONTROL REG ADDRESS

SERI AL- PORT GLOBAL CONTROL REG I NI Tl ALI ZATI ON
SERI AL- PORT TX PORT CONTROL REG | NI Tl ALI ZATI ON
SERI AL- PORT TI MER CONTROL REG | NI TI ALI ZATI ON
SERI AL- PORT TI MER PERI OD

SERI AL- PORT RESET

SERI AL- PORT Tl MER RESET

LOAD DATA PAGE PO NTER

PO NT TO DVA GLOBAL CONTROL REAQ STER

RESET SPORT TI MER

RESET DMA

RESET SPORT

I'NI TI ALI ZE DVA SOURCE ADDRESS REG STER

I NI TI ALI ZE DVA DESTI NATI ON ADDRESS REGQ STER
I NI TI ALI ZE DMA TRANSFER COUNTER REG STER
ENABLE | NTERRUPT FROM DMA TO CPU

ENABLE CPU | NTERRUPTS GLOBALLY

INI TI ALI ZE pMA GLOBAL CONTROL REG STER
START DVA TRANSFER
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* SERIAL PORT INITIALIZATION

LDIRSXCTRL,RO ; SERIAL-PORT TX CONTROL REG INITIALIZATION
STIRO,*+AR1(2)

LDI @STPERIOD,RO : SERIAL~PORT TIMER PERIOD INITIALIZATION
STIRO,*+AR1(6)

LDI@STCTRL,RO ; SERIAL-PORT TIMER CONTROL REG INITIALIZATION
STIRO, *+AR1(4)

L DI 8SGCCTRL,RO : SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION
STIRO, *AR1

*

L D | @SOURCE ARO
LDI*=ARO(1),R0O
STIRO,*+AR1(8)
BU §
.END

Other examples are as follows:

O Transfer a 256-word block of data from off-chip memory to on-chip
memory and generate an interrupt on completion. The order of memory

is to be maintained.

DMA source address:
DMA destination address:
DMA transfer counter:
DMA global control:

CPU WRITES THE FIRST WORD (TRIGGERING EVENT ——> XINT | S GENERATED)

800000h
809800h
00000100h
00000C53h

CPU/DMA interrupt enable (IE): 00000400h

@ Transfer a 128-word block of data from on-chip memory to off-chip
memory and generate an interrupt on completion. The order of memory

is to be inverted; that is, the highest addressed member of the block is to

become the lowest addressed member.

DMA source address:
DMA destination address:
DMA transfer counter:
DMA global control:

809800h
800000h
00000080h
00000C93h

CPU/DMA interrupt enable (IE): 00000400h

[d Transfer a 200-word block of data from the serial-port-0 receive register
to on-chip memory and generate an interrupt on completion. The transfer
is to be synchronized with the serial-port-0 receive interrupt.

DMA source address:
DMA destinationaddress:
DMA transfer counter:
DMA global control:

80804Ch
809C0O0h
000000C8h
00000D43h

CPU/DMA interrupt enable (IE): 00200400h
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Q Transfera200-wordblock of datafrom off-chipmemoryto the serial-port-0
transmit register and generate an interrupt on completion. The transferis
to be synchronizedwith the serial-port-Otransmit interrupt.

DMA source address: 809C00h
DMA destination address: 808048h
DMA transfer counter: 000000C8h
DMA global control: 00000E13h

CPU/DMA interrupt enable (IE): 00400400h

@ Transfer data continuously between the serial-port-Oreceive register and
the serial-port-Otransmitregister to create a digitalloop back. The transfer
isto be synchronizedwiththe serial-port-Oreceive and transmitinterrupts.

DMA source address: 80804Ch
DMA destination address: 808048h
DMA transfer counter: 00000000h
DMA global control: 00000303h

CPU/DMA interrupt enable (IE): 00300000h
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Chapter 9

Pipeline Operation

Two characteristicsof the TMS320C3x that contributeto its high performance
are:

@ Pipelining, and
O Concurrent /O and CPU operation.

Five functional units control TMS320C3x operation:

Fetch

Decode

Read

Execute

Direct memory access (DMA)

o000

Pipeliningis the overlapping or parallel operations of the fetch, decode, read,
and execute levels of a basic instruction.

By performing input/output operations, the DMA controller reduces the need
for the CPU to do so, thereby decreasing pipeline interference and enhancing
the CPU’s computational throughput.

Major topics discussed in this chapter are as follows:

Topic Page
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9.1 Pipeline Structure

The five major units of the TMS320C3x pipeline structure and their functions
are as follows:

O Fetch Unit (F)

This unit fetches the instructionwords from memory and updatesthe pro-
gram counter (PC).

QO Decode Unit (D)

This unit decodes the instructionword and performs address generation.
The unit also controls any modifications to the auxiliary registers and the
stack pointer.

O Read Unit (R)

This unit, if required, reads the operands from memory.

O Execute Unit (E)

This unit, if required, reads the operands from the register file, performs
any necessary operation, and writes results to the register file. If required,
the unit writes results of previous operations to memory.

O DMA Channel (DMA)

The DMA channel reads and writes to memory.

A basic instruction has four levels:

O Fetch
d Decode
O Read
(d Execute

Figure 9-1 illustratesthese four levels of the pipeline structure. Thelevels are
indexed according to instruction and execution cycle. The perfect overlap in
the pipeline, where all four units operate in parallel, occurs at cycle (m). Those
levels about to be executed are at m+ 1, and those just executedare atm— 1.
The TMS320C3x pipeline control allows a high-speed execution rate of one
execution per cycle. It also manages pipeline conflicts so that they are trans-
parent to the user. You do not need to take any special precautions to guaran-
tee correct operation.
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Figure 9-1. TMS320C3x Pipeline Structure

CYCLE
m-3
m-2
m-1
m

m + |
m+2
m+3

F D R E
w - - -
X W - -
Y X w -
z Y X w Perfect overlap
- Z Y X
- - 2 Y
- - - z

D = Decode, E = Execute, F = Fetch, R = Read; W, X Y, Z = Instruction Representations

Priorities from highest to lowest have been assignedto each of the functional
units as follows:

1) Execute (highest)
2) Read

3) Decode

4) Fetch

5) DMA (lowest)

When the processing of an instruction is ready to pass to the next higher pipe-
line level, but that level is not ready to accept a new input, a pipeline conflict
occurs. In this case, the lower-priority unit waits until the higher-priority unit
completes its currently executing function.

Despite the DMA controller'slow priority, you can minimize or even eliminate
conflicts withthe CPU throughsuitable datastructuringbecause the DMA con-
troller has its own data and address buses.
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9.2 Pipeline Conflicts

The pipeline conflicts of the TMS320C3x can be grouped into the following
categories:

O Branch Conflicts

Branch conflictsinvolve most of those instructions or operationsthat read
and/or modify the PC.

O Register Conflicts

Register conflictsinvolve delays that can occur when reading from or writ-
ing to registers that are used for address generation.

O Memory Conflicts

Memory conflicts occur when the internal units of the TMS320C3x com-
pete for memory resources.

Each of these three categories is discussed in the following sections. Exam-
ples are included. Note that in these examples, when data is refetched or an
operationis repeated, the symbolrepresenting the stage of the pipeline is ap-
pended with a number. For example, if a fetch is performed again, the instruc-
tion mnemonic is repeated. Whenan accessis detained for multiple cycles be-
cause of not ready, the symbols RDY and RDY are used to indicate not ready
and ready, respectively.

9.2.1 Branch Conflicts

The first class of pipeline conflicts occurs with standard (nondelayed)
branches, thatis, BR, Bcond, DBcond, CALL, IDLE, RPTB, RPTS, RETIcond,
RETScond, interrupts, and reset. Conflicts arise with these instructions and
operations because during their execution, the pipeline is used only for the
completionof the operation; other information fetched into the pipeline is dis-
carded or refetched, or the pipeline is inactive. This is referred to as flushing
the pipeline. Flushing the pipeline is necessary in these cases to guarantee
that portions of succeeding instructions do not inadvertently get partially ex-
ecuted. TRAPcond and CALLcond are classified differently from the other
types of branches and are considered later.

Example 9-1 shows the code and pipeline operation for a standard branch.

Note: Dummy Fetch

One dummy fetch (an MPYF instruction) is performed, which affects the
cache. After the branchaddressis available, a new fetch (an OR instruction)
is performed.
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Example 9-1.Standard Branch

BR THREE
MPYF
ADD
SUBF :
AND H
THREE OR :
STI
PC F
n BR
n+1 MPYF
n+1 (nop)
n+t (nop)

THREE OR

STI

/!

: Uncondi tional
: Not executed
: Not execut ed
Not executed
Not executed

branch

Fetched after BR is fetched

PIPELINE OPERATION

D
BR
(nop)
(nop)
(nop)
OR

/

THREE — PC  Fetch held tor
new PC value

D = Decode, E = Execute, F = Fetch, A = Read, PC = Program Counter

BR
(nop)
(nop)
(nop)

BR
(nop)
(nop)

RPTSandRPTB bothflushthe pipeline, allowing the RS, RE, and RC registers
to be loadedat the proper time relativeto the flow of the pipeline. If theseregis-
ters are loaded without the use of RPTS or RPTB, no flushing of the pipeline
occurs. If youare notusing any of the repeatmodes, thenyoucan use RS, RE,
and RC as general-purpose 32-bit registers and not cause any pipeline con-
flicts. In cases such as the nesting of RPTB due to nested interrupts, it might
be necessary to load and store these registers directly while using the repeat
modes. Since up to four instructions can be fetched before enteringthe repeat
mode, you should follow loads by a branch to flush the pipeline. If the RC is
changing when an instruction is loading it, the direct load takes priority over
the modification made by the repeat mode logic.

Pipeline Operation 8-5



Pipeline Conflicts

Delayedbranches are implementedto guaranteethefetching of the nextthree
instructions. The delayed branches include BRD, BconaD, and DBcondD.
Example 92 shows the code and pipeline operation for a delayed branch.

Example 9-2.Delayed Branch

BD THREE ; Unconditional delayed branch
MPYF ; Executed
ADD :+ Executed
UBF ; Executed
AND s+ Not executed
THREE MPYF ; Fetched after 9UBF is fetched
PIPELINE OPERATION
PC | F ] o | R | E |
n BRD - - -
n+1 MPYF BRD - - No executedelay
n+2 ADDF MPYF BRD -
n+3 SUBF ADDF MPYF BRD

THREE /' MPYF SUBF ADDF MPYF

THREE — PC

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter
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9.22 Register Conflicts

Register conflicts involve reading or writing registers used for addressing.
These conflicts occur whenthe pertinentregisteris notreadyto be used. Some
conditions under which you can avoid register conflicts are discussedin Sec-
tion 9.3 on page 9-18.

The registers comprise the following three functional groups:

O Group 1

This group includes auxiliary registers (AR0O—AR7), index registers (RO,
IR1), and block size register (BK).

d Group2
This group includes the data page pointer (DP).

g Group3
This group includes the system stack pointer (SP).

If aninstruction writes to one of these three groups, the decode unit cannot use
any register within that particular group until the write is complete, that is, in-
struction execution is completed. In Example 9-3, an auxiliary register is
loaded, and a different auxiliary register is used on the next instruction. Since
the decode stage needs the result of the write to the auxiliary register, the de-
code of this second instruction is delayed two cycles. Every time the decode
is delayed, a refetch of the program word is performed; that is, the ADDF is
fetchedthree times. Since these are actual refetches, they can cause not only
conflicts with the DMA controller but also cache hits and misses.

Pipeline Operation 9-7
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Example 9-3.Write to an AR Followed by an AR for Address Generation

PC

n+1

n+2

n+2

n+2

n+3

LDl 7,AR1 ; 7 —AR1

NEXT MPYF  *AR2,RO ; Decode del ayed 2 cycles
ADDF
FLOAT

PIPELINE OPERATION

F | o | R | E
LDl - - -
MPYF LDl - -
ADDF MPYF LDI -
ADDF MPYF (nop) LDI 7,ARl
ADDF MPYF (nop) (nop)
FLOAT ADDF MPYF (nop)

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter

The case for reads of these groups is similar to the case for writes. If an
instructionmust read amember of one of these groups, the use of that particu-
lar group by the decode for the following instructionis delayed until the read
is complete. The registersare read at the start of the execute cycle and there-
fore require only a one-cycle delay of the following decode. For four registers
(RO, IR1, BK, or DP), there is no delay. For all other registers, including the
SP, the delay occurs.

In Example 8—4, two auxiliaryregistersare added together, with the resultgo-
ing to an extended-precisionregister. The nextinstructionuses a differentaux-
iliary register as an address register.
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Example 9-4.A Read of ARs Followed by ARs for Address Generation

ADDI ARQO,AR]1,R1 ; ARO + ARl — Rl

NEXT MPYF  *++AR2,R0 ; Decode del ayed one cycle
ADDF
FLOAT

PIPELINE OPERATION

PC | F | D | R | E |

n ADDI - - -

n+1 MPYF ADDI - -

nt2 ADDF MPYF ADDI -

n+2 ADDF MPYF  (nop) ADDIARO,ARL,RO
n+t3 FLOAT  ADDF MPYF (nop)

D = Decode, E = Execute, F= Fetch, R = Read, PC = Program Counter

Loop counter auxiliary registersfor the decrement and branch (DBR)) instruc-
tion are regarded in the same way as they are for addressing. Therefore, the
operation shown in Example 9-3 and Example 9-4 can also occur for this in-
struction.

Pipeline Operation 99
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9.2.3 Memory Conflicts

Memory conflicts can occur when the memory bandwidth of a physical
memory space is exceeded. For example, RAM blocks 0 and 1 and the ROM
block can support only two accesses per cycle. The externalinterface can sup-
portonly one access per cycle. Section9.4 on page 9-21 containssome condi-
tions under which you can avoid memory conflicts.

Memory pipeline conflicts consist of the following four types:

O Program wait

A program fetch is prevented from beginning.

O Program fetchincomplete

A program fetch has begun but is not yet complete.

O Executeonly

An instruction sequence requires three CPU data accesses in a single
cycle.

O Hold everything

A primary or expansion bus operation must complete before another one
can proceed.

These four types of memory conflicts are illustrated in examples and dis-
cussed in the paragraphs that follow.

Program Wait
Two conditions can prevent the program fetch from beginning:

O The start of a CPU data access when:

B Two CPU data accesses are made to an internal RAM or ROM block,
and a program fetch from the same block is necessary.

B Oneofthe externalportsis startinga CPU dataaccess, and aprogram
fetch from the same port is necessary.

O Amulticycle CPU data access or DMA data access over the external bus
is needed.



Pipeline Conflicts

Example 9-5 illustrates a program wait until a CPU data access completes.
Inthis case, *AR0 and *AR1 are both pointing to datain RAM block O, and the
MPYF instruction will be fetched from RAM block 0. This resultsin the conflict
shown in Example 9-5. Since no more than two accesses can be made to
RAM block 0 in a single cycle, the program fetch cannot begin and must wait
until the CPU data accesses are complete.

Example 9-5.Program Wait Until CPU Data Access Completes

PC

n+1

n+2
n+2
n+3

n+4

ADDF3 *ARO,*AR1,R0
F1X

MPYF

ADDF3

NEGB

PIPELINE OPERATION

FI X ADDF3 - -
(WAIT) FIX  ADDF3 -

WY F (nop) FI X ADDF3 *ARO,AR1,RO
ADDF3 MPYF  (nop) FI X

NEGB  ADDF3 MPYF (nop)

D= Decode, E = Execute, F = Fetch, R = Read, PC =Program Counter

Example 9-6 shows a program wait due to a multicycle data-data access or
a multicycle DMA access. The ADDF, MPYF, and SUBF are fetched from a
portion of memory other than the external port that the DMA requires. The
DMA begins a multicycle access. The program fetch corresponding to the
CALL is made to the same external port that the DMA is using.

Either of two cases may produce this situation:

O One of the following two memory boundaries is crossed:

B From 7F FFFFh to 80 0000h, or
From 80 9FFFh to 80 AOOOh.

3 Code that has been cached is executed, and the instruction prior to the
ADDF is one of the following (conditional or unconditional):

B adelayed branch instruction, or
a delayed decrement and branch instruction.
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Even though the DMA has the lowest priority, multicycle access cannot be
aborted. The program fetch must therefore wait until the DMA access com-
pletes.

Example 8—6.Program Wait Due to Multicycle Access

PIPELINE OPERATION

PC | F | D | R | E |
n ADDF - - -
n+1 MPYE  ADDF - -
n+2 SUBF MPYF  ADDF -
n+3 (WAIT) SUBF  MPYF  ADDF
n+3 CALL (nop) SUBF MPYF
n+4 - CALL  (nop) SUBF

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter
Program Fetch Incomplete

A program fetch incomplete occurs when a program fetch requires more than
one cycle to complete due to wait states. In Example 9-7, the MPYF and
ADDF are fetched from memory that supports single-cycle accesses. The
SUBF is fetched from memory, which requires one wait state. One example
that demonstrates this conflict is a fetch across a bank boundary on the
primary port. See Section 7.4 on page 7-30.

Example 9—7. Multicycle Program Memory Fetches

PIPELINE OPERATION

PC | F | Do | R | E |
n MPYF - - -
n+1 ADDF MPYF - -

n + 2RDY SUBF  ADDF  MPYF -

n + 2 RDY SUBF  (nop)  ADDF MPYF
n+3 ADDI SUBF  (nop) ADDF

D = Decode, E = Execute, F = Fetch, R = Read, PC =Program Counter
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Execute Only

The execute only type of memory pipeline conflict occurs when performing an
interlocked load or when a sequence of instructions requires three CPU data
accesses in a single cycle. There are three cases in which this occurs:

@ Aninstruction performs a store and is followed by an instruction that does
two memory reads.

 Aninstruction performs two stores and is followed by an instruction that
performs at least one memory read.

@ Aninterlockedload (LDIl or LDFI) instruction is performed, and XF1=1.

The first case is shown in Example 8—8. Since this sequence requires three
data memory accesses and only two are available, only the execute phase of
the pipeline is allowed to proceed. The dual reads required by the LDF || LDF
are delayed one cycle. Note that a refetch of the next instructioncan occur.

Example 9-8.Single Store Followed by Two Reads

n+1

n+2

n+3

n+4

n+4

STF  RO,*ARl ; RO — *ARl _
LDF *AR2,R1 ; *aAR2 —R1 in parallel wth
I LDF  *AR3,R2 ; *AR3 —R2

PIPELINE OPERATION

| F Lo | R | E |
STF - - -
LDF || LDF STF - -
w LDF || LDF STF -
X W LDF || LDF STP
X w LDF || LDF (nop)
Y X W LDF || LDF *AR2,R1 and *AR3,R2

D = Decode, E = Execute, F= Fetch, R = Read, PC =Program Counter, W,X, Y =InstructionRepresentations
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Example 9-9 shows a parallel store followed by a single load or read. Since
thetwo parallel stores arerequired, the next CPU datamemory read must wait
a cycle before beginning. One program memory refetch can occur.

Example 9-9.Parallel Store Followed by Single Read
STF RO, *ARO ; RO —*aR0 in parallel with

[l STE.  R2,*AR1  ; R2 — *ARl
ADDF @sUM,R1 ; R1 + @SUM —RI1
| ACK
ASH
PIPELINE OPERATION
Pc | F | Do | R | E |
n STF || STF - - -
nt1 ADDF STF || STF - -
n+2 IACK ADDF STF || sTF -
n+3 ASH IACK ADDF STF || STF
n+4 ASH IACK ADDF (nop)
n+4 - ASH IACK ADDF

D = Decode, E = Execute, F = Fetch, R = Read, PC =Program Counter
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Example 9-10. Interlocked Load

PC

nt1
n+2
n+3
n+3

nt4

The final case involves an interlockedload (LDII or LDFI) instructionand XF1
= 1. Since the interlocked loads use the XF1 pin as an acknowledge that the
read can complete, the loads might need to extend the read cycle, as shown
in Example 9-10. Note that a program refetch can occur.

NOT

LDl |

ADDI

CMPI

NOT

LDl |
ADDI
CMPI

PIPELINE OPERATION

LDl |

ADDI

CwPl

CMPI

R1,RO
300h,AR2

*AR2,R2
RO,R2

NOT

LDl |

ADDI

ADDI

NOT

LDII

LDII

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter

Hold Everything

Three situations result in hold-everything memory pipeline conflicts:

@ ACPUdataload or store cannot be performed because an external port is

busy.

Q An external load takes more than one cycle.

3 Conditional calls and traps are processed.
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The firsttype of hold everything conflict occurs when one of the external ports
is busy dueto an accessthat has started butis not complete. In Example 9-11,
the first store is a two-cycle store. The CPU writes the datato an external port.
The port control then takes two cycles to complete the data-data write. The
LDFis aread over the same external port. Since the store is not complete, the
CPU continues to attempt LDF until the port is available.

Example 9-11. Busy External Port

STF RO, @DMAL
LDF @DMA2, RO

PIPELINE OPERATION

PC | F 1 o | R | E|
n STF - - -
n+1 LDF STF - -
n+2 W LDF STF -
n+2 W LDF (nop) STF
n+2 W LDF (nop) (nop)
n+3 X w LDF (nop)
n+4 Y X W LDF

D = Decode, E = Execute, F= Fetch, A = Read, PC=Program Counter, W, X, Y =Instruction Representations
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The secondtype of hold everythingconflictinvolves multicycle datareads. The
read has begun and continues until completed. In Example 8-12, the LDF is
performed from an external memory that requires several cyclesto complete.

Example 8-12. Multicycle Data Reads

PC
n
n+1
n+2
nt+3

n+3

LDF €DMA,RO

PIPELINE OPERATION
| F I o | R | E|
LDF - - -
[ LDF - -
J | LDP -
K, (dummy) I LDF -
K2 J | LDF

D - Decode, E = Execute, F= Fetch, A = Read, PC- Program Counter, J, J, K = Instruction Representations

The final type of hold everything conflict involves conditional calls and traps,
which are different from the other branch instructions. Whereas the other
branch instructions are conditional loads, the conditional calls and traps are
conditional stores, which require one cycle more than a conditional branch
(see Example 9-13). The added cycle is used to pushthe return address after
the call conditionis evaluated.

Example 9-13. Conditional Calls and Traps

PIPELINE OPERATION

PC | F | D R | E |
n9 CALLcond - - -

n+1 I CALLcond - -

n+l (nop) {nop) CALLcond -
n+1 (nop) (nop) (nop) CALLcond
n+l {nop) (nop) (nop) CALLcond
n+2/CALLaddr [ (nop) (nop) (nop)

D = Decode, E = Execute, F= Fetch, A = Read, PC =Program Counter, 1,= Instruction Representation
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9.3 Resolving Register Conflicts

If the auxiliary registers (AR7-ARO), the index registers (IR1-IR0), data page
pointer (DP), or stack pointer (SP) are accessed for any reason other than ad-
dress generation, pipeline conflicts associated with the next memory access
can occur. The pipeline conflicts and delays are presented in subsection 9.2
on page 9-4.

Example 9-14, Example 9-15, and Example S 1 6 demonstrate either some
commonuses of these registers that do not produce a conflict or waysthat you
can avoid the conflict.

Example 9-14. Address Generation Update of an AR Followed by an AR for Address

Generation

nt+2
n+3
n+4

nts

LDF  7.0,R0 ; 7.0 = RO
MPYF  *++ARO(IR1),RO

ADDF  *AR2,R0

FIX

MPYF

ADDF

PIPELINE OPERATION

| F | o | R | E |
LDF - - -
MPYF LDF - -
ADDF MPYF LDF -
FIX ADDF MPYF LDF
MPYF FIX ADDF MPYF
ADDF MPYF FIX ADDF

D = Decode, E = Execute, F= Fetch, R =Read, PC=Program Counter, W, X, ¥, Z=InstructionRepresentations
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Example 8-15. Write fo an AR Followed by an AR for Address Generation Without a

Pipeline Conflict

n+1
n+2

n+3

n+4

n+5

MPYF

ADDF

MPYF

SUBF

STF

LD
MPYF
ADDF
MPYF
SUBF
STF

@ ABLE,AR2
@VALUE,R1
R2,R1
*AR2++,R1

PIPELINE OPERATION

LDl

MPYF

ADDF

MPYF

SUBF

R | E |
LDI -
MPYF LDI 7,
AR2
ADDF MPYF
MPYF ADDF

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter
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Example 9-16. Write to DP Followed by a Direct Memory Read Without a Pipeline Conflict
LDP  TABLE_ADDR

POP RO

LDF  *- AR3(2),R1

LDI @TABLE_ADDR, ARO
PUSHF R6

PUSH R4

PIPELINE OPERATION

Pc | F | D | R | E |
n LDP - - -
n+1 POP LDP - -
n+2 LDF POP LDP -
n+3 LDI LDF POP LDP
n+4 PUSHF LDI LDF POP
n+5 PUSH PUSHF LDI LDF

D = Decode, E = Execute, F = Fetch, R = Read, PC =Program Counter
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9.4 Resolving Memory Conflicts

If programfetchesand dataaccesses are performedin suchamannerthatthe
resources being used cannot provide the necessary bandwidth, the program
fetch is delayed until the data access is complete. Certain configurations of
program fetch and data accesses yield conditions under which the
TMS320C3x can achieve maximum throughput.

Table 8-1 shows how many accesses can be performed from the different
memory spaces when it is necessary to do a program fetch and a single data
access and still achieve maximum performance (one cycle). As shown in
Table 8-1, four cases achieve one-cycle maximization.

Table 9-1.0ne Program Fetch and One Data Access for Maximum Performance

Accesses From Expansion Bust
Primary Bus Dual-Access Or Peripheral
Case # Accesses internal Memory Accesses
1 1 1 -
2 1 - 1
2 from any
3 - combination -
of internal memory
4 - 1 1

1 The expansion bus is available only on the TM$320C30.
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Table 92 shows how many accesses can be performed from the different
memory spaces when it is necessary to do a program fetch and two data ac-
cesses and still achieve maximum performance (one cycle). Six conditions

achieve this maximization.

Table 9-2. One Program Fetch and Two Data Accesses for Maximum Performance

Primary Bus
Case # Accesses

Accesses From
Dual-Access
Internal Memory

Expansion? Or
Peripheral Bus
Accesses

2t 1 Program
at 1 Data
4 _

2 from any
combination
of internal memory

1 Data

1 Data
2 from same internal
memory block and
1 from a different
internal memory
block
3 from different
internal memory
blocks
2 from any

combination
of internal memory

1 Data
1 Program

1 The expansion bus is available only on the TMS320C30.
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9.5 Clocking of Memory Accesses

This sectionuses the relationships betweeninternalclock phases (H1 and H3)
to memory accesses to illustrate how the TMS320C3x handles multiple
memory accesses. Whereas the previous section discusses the interaction
between sequences of instructions, this section discussesthe flow of dataon
an individual instruction basis.

Each major clock period of 60 ns is composed of two minor clock periods of
30 ns, labeled H3 and H1. The active clock period for H3 and H1 is the time
when that signal is high.

J¢—————— Major Clock Period

H1

H3

The precise operation of memory reads and writes can be defined according
to these minor clock periods. The types of memory operationsthat can occur
are program fetches, data loads and stores, and DMA accesses.

9.51 Program Fetches

Internalprogram fetches are always performed during H3 unless a single data
store must occur at the same time due to another instructionin t he pipeline.
Inthis case, the program fetch occurs during H |, and the data store duringH3.

External program fetches always startat the beginning of H3, withthe address
being presentedon the externalbus. Atthe end of H1, they are completedwith
the latching of the instructionword.
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9.5.2 Data Loads and Stores

Four types of instructions perform loads, memory reads, and stores:

O Two-operandinstructions,

O Three-operand instructions,

O Multiplier/ALU operation with store instructions, and
O Parallel multiply and add instructions.

See Chapter 5 for detailed information on addressing modes.

As discussed in Chapter 7, the number of bus cycles for external memory
accesses differsin some cases from the number of CPU executioncycles. For
external reads, the number of bus cycles and CPU execution cycles is identi-
cal. For external writes, there are always at least two bus cycles, but unless
there is a port access conflict, there is only one CPU execution cycle. In the
following examples, any difference in the number of bus cycles and CPU
cycles is noted.

Two-Operand Instruction Memory Accesses

Two-operandinstructions include all instructions whose bits 31-29 are 000 or
010 (see Figure 9-2). In the case of a dataread, bits 15-0 represent the src
operand. Internal data reads are always performed during H1. External data
reads always start at the beginning of H3, with the address being presented
onthe external bus; they complete with the latching of the dataword at the end
of H1.

Figure 9-2. Two-Operand Instruction Word

31 24 23 16 15 87 0
T 1 L IO N B B L | B B | r T 1T 1T 1T 1T rrrrrrrrr
0 X0 Operation G dst(src) sre(ds?)

In the case of a data store, bits 15-0 represent the dst operand. Internal data
stores are performed duringH3. External data stores always start at the begin-
ning of H3, with the address and data being presented on the external bus.

Three-Operand Instruction Memory Reads

Three-operand instructions include all instructions whose bits 31-29 are 001
(see Figure 8-3). The source operands, src? and sre2, come from either regis-
ters or memory. When one or more of the source operands are from memory,
these instructions are always memory reads.
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Figure 9-3. Three-Operand Instruction Word

31 24 23 16 15 L (0]
LI LR L 1 LB L L L 11 1 1 1 1 1
001 Operation T dst srel sre2

If only one of the source operands is from memory (either srcf or src2) andis
located in internal memory, the data is read during H1. If the single memory
source operand is in external memory, the read starts at the beginning of H3,
with the address being presented on the external bus, and completes with the
latching of the data word at the end of H1.

If both source operands are to be fetched from memory, several cases occur.
If both operands are located in internal memory, the srct read is performed
during H3 and the sre2read during H1, thus completing two memory reads in
a single cycle.

If src1is in internalmemory and src2is in external memory, the sre2 access
begins at the start of H3 and latches at the end of H1. At the same time, the
src1 access to internal memory is performed during H3. Again, two memory
reads are completed in a single cycle.

If sretisin externalmemory and sre2is ininternalmemory, two cycles are nec-
essary to complete the two reads. In the first cycle, both operands are ad-
dressed. Since src1takes an entire cycle to be read and latched from external
memory, the internal operation on sre2 cannot be completed until the second
cycle. Ordering the operands so that sre1 is located internally is necessary to
achieve single-cycle execution.

If sre1and src2 are both fromexternalmemory, two cycles are requiredto com-
plete the two reads. In the first cycle, the sref accessis performedand loaded
on the next H3; in the second cycle, the src2 access is performedand loaded
on that cycle's H1.

If sre2is in externalmemory and sre1 is in on-chip or externalmemory andis
immediately preceded by a single store instruction to external memory, a
dummy sre2read can occur between the execution of the storeinstructionand
the src2 read, regardiess of which memory space is accessed (STRB,
MSTRB, or IOSTRB). The dummy read can cause an externally interfaced
FIFO address pointerto be incrementedprematurely, thereby causingthe loss
of FIFO data. Example 9-17 illustrates how the dummy read can occur.
Example 9-18 offers an alternative code segmentthat suppressesthe dummy
read. In the alternative code segment, the dummy read is eliminated by swap-
ping the order of the source operands.
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Example 9-77. Dummy src2 Read

H1

H3

STI RO, *AR6

; AR6 points to MSTRB space

ADDI3 *AR3,*AR1,R0 ; AR3 points to on-chip RAM
nts to MSTRB apace

; AR1 poi

1 ] 1 J
1 L J | g
PIPELINE OPERATION
PC F | D | R
n STI
n+1 ADDI3 STI
n+2 ADDI3 STI
n+3 -
n+4 -
n+5 ADDI3
n+6 -
n+7 ADDI3
n+8

STI

ADDI3

RO, *AR6

The read of sre2 cannot start
until the store is conplete.

dummy load of src2

second cycle of dumy |oad

actual read of sre2 and srcl

*AR3, *AR1,RO

D = Decode, E = Execute, F = Fetch, A = Read, PC = Program Counter

Two cycles are required for the MSTRB store. Two other cycles are required for the
dummy MSTRB read of *AR3 (because the read follows a write). One cycle is required
for an actual MSTRB read of *ARS3.
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Example 9-18. Operand Swapping Alternative

Switch the operands of the three-operandinstruction so that the internal read
is performed first.

STI RO, *AR6 ;AR6 points to MSTRB space
ADDI3 *AR1,*AR3,R0 ;AR3 points to on-chip RAM
;AR1 points to MSTRB space

H1 J

J J L 1

H3 I S B 11

PC

n+1

n+2

n+3

n+4

n+5

n+6

n+7

PIPELINE OPERATION

F | D | R | E
STI
ADDI3 STI
ADDI3 STI
- STI RO, *AR6
- - The read of src2 cannot start
until the store is conplete.
ADDI3 = actual read of src2 and ercl

- - eecond cycle of srec2 read

- ADDI3 *AR1, *AR3,R0

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter

Operations with Parallel Stores

The next class of instructionsincludes every instructionthat has a storein par-
allel with another instruction. Bits 31 and 30 for these instructions are equal
tol11.

The instructionword format for those operationsthat performamultiply or ALU
operation in parallel with a store is shown in Figure 9~4. If the store operation
to dst2 is external or internal, it is performed during H3. Two bus cycles are
requiredfor external stores, but only one CPU cycle is necessary to complete
the write.

If the memory read operation is external, it starts at the beginning of H3 and
latches at the end of H1. If the memory read operation is internal, it is per-
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formed during H1. Note that memory reads are performed by the CPU during
the read (R) phase of the pipeline, and stores are performed during the ex-
ecute (E) phase.

Figure 9-4. Multiply or CPU Operation With a Parallel Store

31 24 23 16 15 87 0
| S B S | L LI T 1 1 rreors L L B B S B |
1 Operation dsti srcl src3 dst2 sre2

The instruction word format for those instructionsthat have parallel stores to
memory is shown in Figure 9-5. If both destination operands, dstl and dst2,
are located in internal memory, dstlis stored during H3 and dst2 during H1,
thus completing two memory stores in a single cycle.

If dstlisin external memory and dst2is in internalmemory, the dstl store be-
gins at the start of H3. The dst2 store to internal memory is performed during
H1. Two bus cycles are requiredfor the external store, but only one CPU cycle
is necessary to complete the write. Again, two memory stores are completed
in a single cycle.

If dstlisin internalmemory and dst2is in external memory, an additional bus
cycleis necessary to complete the dst2 store. Only one CPU cycle is neces-
saryto complete the write, but the port accessrequiresthree buscycles. Inthe
first cycle, the internal dstl store is performed during H3, and dst2is written
to the port during H1. During the next cycle, the dst2store is performedon the
external bus, beginning in H3, and executes as normal through the following
cycle.

If dstl and dst2 are both written to external memory, a single CPU cycleis still
all that is necessary to complete the stores. In this case, four bus cycles are
required.

1) Inthefirstcycle, both dstland dst2are written to the port, and the external
bus access for dstl begins.

2) The storefor dstlis completed onthe second cycle, and the store for dst2
begins on the third external bus cycle.

3) Finally, the store for dst2is completed on the fourth external bus cycle.
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Figure 9-5. Two Parallel Stores

31 24 23 16 15 87 0
LI S BELEL T 1 T 1 T 1 1r1rrr7 1T rrrri
11 ST||sT src2 10 0 0] srct dsti ast2

Parallel Multiplies and Adds

Memory addressing for parallel multiplies and adds is similar to that for three-
operand instructions. The parallel multiplies and adds include all instructions
whose bhits 31-30 = 10 (see Figure 9-6).

For these operations, src3 and src4 are both located in memory. If both oper-
ands are located in internal memory, sre3is performed during H3, and sre4is
performed during H1, thus completing two memory reads in a single cycle.

If sre3is in internal memory and sre4 is in external memory, the sre4 access
begins at the start of H3 and latches at the end of H1. At the same time, the
sre3 access to internal memory is performed during H3. Again, two memory
reads are completed in one cycle.

If sre3is in externalmemory and sre4is ininternalmemory, two cycles are nec-
essary to complete the two reads. In the first cycle, the internal sre4 access
is performed. During the H3 of the next cycle, the sre3 access is performed.

If sre3 and sre4 are both from external memory, two cycles are necessary to
complete the two reads. In the first cycle, the sre3 access is performed;in the
second cycle, the src4 access is performed.

Figure 9-6. Parallel Multiplies and Adds

31

0

T 1T 1
Operation

P

24 23 16 15 87 0
)
d1]d2] srecl src2 src3 srod

1 ' LI L AL L L L L
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Assemblx Language Instructions

The TMS320C3x assembly language instruction set supports numeric-inten-
sive, signal-processing, and general-purpose applications. The instructions
are organizedinto major groups consisting of load-and-store, two- or three-op-
erand arithmetic/logical, parallel, program-control, and interlocked operations
instructions. The addressing modes used with the instructions are described
in Chapter 5.

The TMS8320C3x instruction set can also use one of 20 condition codes with
any of the 10 conditionalinstructions, such as LDFcond. This chapter defines
the condition codes and flags.

The assembler allows optional syntax formsto simplifythe assembly language
for special-case instructions. These optional forms are listed and explained.

Each of the individualinstructionsis described and listed in alphabetical order
(seesubsection 10.3.2 on page 10-16). Exampleinstructionsdemonstrate the
special format and explain its content.

This chapter discusses the following major topics:

Topic Page




Instruction Set

10.1 Instruction Set

All of the instructions in the TMS320C3x instructionset are one machine word
long. Most require one cycle to execute. Allinstructionsare a single machine
word long, and most instructions require one cycle to execute. In addition to
multiply and accumulate instructions, the TMS320C3x possesses a full com-
plement of general-purpose instructions.

The instruction set contains 113 instructionsorganizedinto the following func-
tional groups:

Load-and-store

Two-operand arithmetic/logical
Three-operand arithmetic/logical
Program control

Interlocked operations

Parallel operations

o0o0doo

Each of these groups is discussed in the succeeding subsections.

10.1.1 Load-andostore Instructions

The TMS320C3x supports 12 load-and-storeinstructions (see Table 10-1).
These instructions can:

1 Loada word from memory into a register,
[ Store a word from a register into memory, or
[ Manipulate data on the system stack.

Two of these instructions can load data conditionally. This is usefulfor locating
the maximumor minimum value in adataset. See Section10.2 on page 10-10
for detailed information on condition codes.

Table 710~1. Load-and-Store Instructions

Instruction Description Instruction Description

LDE Load floating-pointexponent POP Pop integer from stack

LDF Load floating-pointvalue POPF Pop floating-point value from stack

LDFcond Load floating-pointvalue PUSH Push integer on stack
conditionally

LDI Load integer PUSHF Push floating-point value on stack

LDlcond Load integer conditionally STF Store floating-point value

LDM Load floating-pointmantissa STI Store integer

LDP Load data page pointer
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10.1.2 Two-Operand Instructlons

The TMS320C3x supports 35 two-operand arithmetic and logical instructions.
Thetwo operands are the source and destination. The source operand can be
amemory word, a register, or a part of the instruction word. The destination
operand is always a register.

As shown in Table 10-2, these instructions provide integer, floating-point, or
logical operations, and multiprecision arithmetic.

Table 10-2.Two-Operand Instructions

Instruction Description " Instruction Description
ABSF Absolute value of a floating- NORM Normalize floating-point value
point number
ABSI Absolute value of an integer NOT Bitwise logical-complement
ADDCt Add integers with carry ORT Bitwise logical-OR
ADDFt Add floating-point values RND Round floating-point value
ADDIt Add integers ROL Rotate left
ANDt Bitwise logical-AND ROLC Rotate left through carry
ANDN? Bitwise logical-AND with ROR Rotate right
complement
ASH? Arithmetic shift RORC Rotate right through carry
CMPF1 Compare floating-point values susst Subtractintegers with borrow
CMmPIt Compare integers SUBC Subtract integers conditionally
FIX Convert floating-point value to SUBF Subtract floating-point values
integer
FLOAT Convert integer to floating-point | SUBI Subtractinteger
value [
LSHt Logical shift SUBRB Subtract reverse integer with
borrow
MPYFt Multiply floating-point values SUBRF Subtract reverse floating-point
value
MPYIt Multiply integers SUBRI Subtract reverse integer
NEGB Negate integer with borrow TsTBt Test bit fields
NEGF Negate floating-point value XORt Bitwise exclusive-OR
NEGI Negate integer u

T Two- and three-operand versions

Assembly Language Instructions 10-3
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10.1.3 Three-Operand Instructions

Most instructionshave only two operands; however, some arithmetic and log-
ical instructions have three-operand versions. The 17 three-operand instruc-
tions allow the TMS320C3x to read two operands from memory or the CPU
register file in a single cycle and store the results in a register. The following
factors differentiate the two- and three-operand instructions:

O Two-operand instructions have a single source operand (or shift count)
and a destination operand.

W Three-operandinstructionscan have two source operands (or one source
operand and a count operand) and a destination operand. A source oper-
and can be a memory word or a register. The destination of a three-oper-
and instructionis always a register.

Table 10-3 lists the instructions that have three-operand versions. Note that
you can omit the 3 in the mnemonic from three-operandinstructions (see sub-
section 10.3.2 on page 10-16).

Table 10-3.Three-Operand Instructions

instruction Description instruction Description

ADDC3 Add with carry MPYF3 Multiply floating-pointvalues
ADDF3 Add floating-point values MPYI3 Multiply integers

ADD13 Add integers OR3 Bitwise logical-OR

AND3 Bitwise logical-AND SUBB3 Subtractintegers with borrow
ANDN3 Bitwise logical-AND with complement || SUBF3 Subtract floating-pointvalues
ASH3 Arithmetic shift SUBI3 Subtractintegers

CMPF3 Compare floating-point values TSTB3 Test bit fields

CMPI3 Compare integers XOR3 Bitwise exclusive-OR

LSH3 Logical shift
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10.1.4 Program-Controlinstructlons

The program-controlinstruction group consists of all of those instructions (17)
that affect program flow. The repeat mode allows repetition of a block of code
(RPTB) or of a single line of code (RPTS). Both standard and delayed
(single-cycle)branching are supported. Several of the program controlinstruc-
tions are capable of conditional operations (see Section 11.2 on page 11-6
for detailedinformation on condition codes). Table 10-4 lists the program con-
trol instructions.

Table 10-4. Program Control Instructions

Instructlon Descrlptlon Instructlon Descrlptlon

Bcond Branch conditionally (standard) IDLE Idle until interrupt

BcondD Branch conditionally (delayed) NOP No operation

BR Branch unconditionally (standard) RETlcond Return from interrupt conditionally

BRD Branch unconditionally (delayed) RETScond Return from subroutine

conditionally

CALL Call subroutine RPTB Repeat block of instructions

CALLcond Call subroutine conditionally RPTS Repeat single instruction

DBcond Decrement and branch Swi Software interrupt
conditionally (standard)

DBconadD Decrement and branch TRAPcond Trap conditionally
conditionally (delayed)

1ACK Interrupt acknowledge

10.1.5 Low-Power Control Instructions

The low-power control instruction group consists of three instructionsthat af-
fect the low-power modes. The low-power idle (IDLE2) instruction allows ex-
tremely low-power mode. The divide-clock-by-16 (LOPOWER) instructionre-
duces the rate of the input clock frequency. The restore-clock-to-reguiar-
speed (MAXSPEED) instruction causes the resumption of full-speed opera-
tion. Table 10-5 lists the low-power control instructions.

Table 10-5.Low-Power Control Instructions

Instruction  Description [[ Instruction  Description
IDLE2 Low-power idle MAXSPEED Restore clock to regular speed
LOPOWER Divide clock by 16

Assembly Languagenstructions 10-5
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Table 10-7.Parallel Instructions (Continued)

Mnemonic Description
Parallel Arithmetie with Store Inotructlons (Concluded)
NEGF Negate floating-point value and store floating-point value
I| STF
NEGI Negate integer and store integer
J| ST
NOT Complement value and store integer
|| STI
OR3 Bitwise logical-OR value and store integer
|| STI
STF Store floating-point values
)| STF
STl Store integers
J| STI
ﬁg?;a Subtract floating-point value and store floating-point value
SUB13 Subtractinteger and store integer
{| STI
I)l(g%s Bitwise exclusive-OR values and store integer
Parallel Load Instructlons
LDF Load floating-point
|| LDF
LDI Load integer
|| LDI
Parallel Multiply and Add/Subtract Instructions
MPYF3 Multiply and add floating-point
|| ADDF3
MPYF3 Multiply and subtract floating-point
|| SUBF3
MPYI3 Multiply and add integer
|| ADDI3
MPYI3 Multiply and subtract integer

| suBI3
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10.1.8 lllegal Instructions

The TMS320C3x has no illegalinstruction-detectionmechanism. Fetching an
illegal (undefined) opcode can cause the execution of an undefined operation.
Proper use of the Tl TMS320 floating-pointsoftware tools will not generate an
illegal opcode. Only the following can cause the generation of an illegal op-
code:

O Misuse of the tools
O An error in the ROM code
O Defective RAM

Assembly Language /nstructions 10-9
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10.2 Condition Codes and Flags

The TMS320C3x provides 20 condition codes (00000-10100, excluding
01011) thatyou can placeinthe condfield of any of the conditionalinstructions,
such as RETScond or LDF cond. The conditions include signed and unsigned
comparisons, comparisonsto 0, and comparisons based on the status of indi-
vidual conditionflags. Note that all conditional instructions can accept the suf-
fix U to indicate unconditional operation.

Seven condition flags provide information about properties of the result of
arithmetic and logicalinstructions. The conditionflags are storedin the status
register (ST) and are affected by an instruction only when either of the follow-
ing two cases occurs:

[Q The destination register is one of the extended-precision registers
(R7-RO). (This allows for modification of the registers used for addressing
but does not affect the condition flags during computation.)

Q Theinstructionis one of the compare instructions (CMPF, CMPF3, CMPI,
CMPI3, TSTB, or TSTB3). (This makesitpossibleto setthe conditionflags
according to the contents of any of the CPU registers.)

The condition flags can be modified by most instructions when either of the
preceding conditions is established and either of the following two cases oc-
curs:

[ Aresultis generated when the specifiedoperationis performedto infinite
precision. This is appropriate for compare and test instructions that do not
store results in a register. It is also appropriate for arithmetic instructions
that produce underflow or overflow.

[ The output is written to the destination register, as shown in Table 10-8.
This is appropriate for other instructions that modify the condition flags.

Table 10-8.0Output Value Formats

Type Of Operation Output Format

Floating-point 8-bit exponent, one sign bit, 31-bit fraction
Integer 32-bitinteger

Logical 32-bit unsigned integer

Figure 10—1 on page 10-11 shows the condition flags in the low-order bits of
the statusregister. Following the figureis alist of status register conditionflags
and descriptions of how the flags are set by most instructions. For specific de-
tails of the effect of a particular instruction on the condition flags, see the de-
scription of that instructionin subsection 10.3.3 on page 10-18.
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Figure 10-1. Status Register
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Latched Floating-point Underflow Condition Flag

LUF is set whenever UF (floating-point underflow flag) is set. LUF can be
cleared only by a processor reset or by modifyingitin the status register (ST).

Latched Overflow Condition Flag

LV is set whenever V (overflow condition flag) is set. Otherwise, it is un-
changed. LV can be cleared only by a processor reset or by modifyingitin the
status register (ST).

Floating-Point Underflow Condition Flag

A floating-point underflow occurs whenever the exponent of the resultis less
than or equalto —128. if a floating-pointunderflow occurs, UF is set, and the
outputvalue is setto 0. UF is cleared if a floating-pointunderflow does not oc-
cur.

Negative Condition Flag

Logical operationsassign N the state of the MSB of the output value. For inte-
ger and floating-point operations, N is set if the result is negative, and cleared
otherwise. Zero is positive.

Zero Condition Flag

For logical, integer, and floating-pointoperations, Z is set if the outputis 0 and
cleared otherwise.
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Overflow Conditlon Flag

For integer operations, Vis set if the result does not fit into the format specified
for the destination (that is, —2 32 < result s 232 - 1). Otherwise, V is cleared.
For floating-point operations, V is set if the exponent of the result is greater
than 127; otherwise,V is cleared. Logical operations always clear V.

Carry Flag

When an integer addition is performed, C is set if a carry occurs out of the bit
corresponding to the MSB of the output. When an integer subtraction is per-
formed, C is setif aborrow occurs into the bit correspondingto the MSB of the
output. Otherwise, for integer operations, C is cleared. The carry flag is unaf-
fected by floating-point and logical operations. For shift instructions, this flag
is set to the final value shifted out; for a 0 shift count, thisis setto 0.

Table 10-9 lists the condition mnemonic, code, description, and flag for each
of the 20 condition codes.
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Table 10-9. Condition Codes and Flags

Condltlon Code Description Fiagt
Uncondltlonal Compares
U 00000 Unconditional Don't care
Unsigned Compares
Lo 00001 Lower than C
LS 00010 Lower than or same as CORZ
HI ooo1L Higher than ~C AND ~Z
HS 00100 Higher than or same as ~C
EQ 00101 Equal to z
NE 00110 Not equal to ~Z
Signed Compares
LT 00111 Less than N
LE 01000 Less than or equal to NORZ
GT 01001 Greater than ~N AND ~Z
GE 01010 Greater than or equal to ~N
EQ 00101 Equal to 4
NE 00110 Not equal to ~Z
Compare to Zero
z 00101 Zero Z
NZ 00110 Not zero ~Z
P 01001 Positive ~N AND ~Z
N 00111 Negative N
NN 01010 Nonnegative ~N
Compare to Condition Flags
NN 01010 Nonnegative ~N
N 00111 Negative N
NZ 00110 Nonzero ~Z
VA 00101 Zero VA
NV 01100 No overflow ~V
\% 01101 Overflow \%
NUF 01110 No underflow -UF
UF 01111 Underflow UF
NC 00100 No carry ~C
C 00001 Carry C
NLV 10000 No latched overflow 4V
LV 10001 Latched overflow LV
NLUF 10010 No latched floating-point underflow ~LUF
LUF 10011 Latched floating-point underflow LUF
ZUF 10100 Zero or floating-point underflow Z OR UF

t = = logical complement (not-true condition)
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10.3 Individual Instructions

This section contains the individual assembly language instructions for the
TMS320C3x. The instructions are listed in alphabetical order. information for
each instruction includes assembler syntax, operation, operands, encoding,
description, cycles, status bits, mode bit, and examples.

Definitions of the symbols and abbreviations, as well as optional syntax forms
allowed by the assembler, precede the individual instruction description sec-
tion. Also, an example instructionshows the specialformat used and explains
its content.

Afunctional grouping of the instructions, as well as a complete instruction set
summary, can be found in Section 10.1 on page 10-2. Appendix A lists the
opcodes for all of the instructions. Refer to Chapter 5 for information on
memory addressing. Code examples using many of the instructions are pro-
vided in Chapter 11.

10.3.1 Symbols and Abbreviations

Table 1010 lists the symbols and abbreviations usedin the individualinstruc-
tion descriptions.
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Table 10-10. Instruction Symbols

Symbol Meaning
src Source operand
srcl Source operand 1
src2 Source operand 2
src3 Source operand 3
srod Source operand 4
dst Destination operand
dst Destination operand 1
dst2 Destination operand 2
disp Displacement
cond Condition
count Shift count
G General addressing modes
T Three-operandaddressingmodes
P Parallel addressing modes
B Conditional-branchaddressingmodes
x| Absolute value of x o
X—>y Assign the value of x to destination y
x(man) Mantissafield (sign * fraction) of x
x(exp) Exponent field of x
opi
|| op2 Operation 1 performedin parallel with operation 2
x AND y Bitwise logical-AND of x and y
XORYy Bitwise logical-OR of x and y
XXORYy Bitwise logical-XOR of x and y
~X Bitwise logical-complementof x
X <<y Shift x to the lefty bits
X >> Y Shift x to the right y bits
*++SP Increment SP and use incremented SP as address
*SP- - Use SP as address and decrement SP
ARn Aucxiliary register n
IRn Index registern
Rn Register address n
RC Repeat count register
RE Repeat end address register
RS Repeat start address register
ST Status register
C Carry bit
GIE Global interrupt enable bit
N Trap vector
PC Program counter
RM Repeat mode flag
SP System stack pointer

Assembly Language Instructions
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10.3.2 Optional Assembler Syntax

The assembler allows a relaxed syntax form for some instructions. These op-
tional forms simplify the assembly language so that special-case syntax can
be ignored. Following is a list of these optional syntax forms.

@ Youcanomitthe destinationregister on unary arithmetic and logical oper-
ations when the same register is used as a source. For example,
ABSI RO,RO can be written as ABSI RO.

Instructions affected: ABSI, ABSF, FIX, FLOAT, NEGB, NEGF, NEGI,
NORM, NOT, RND

@ You can write all three-operand instructions without the 3. For example,
ADD13 RO,R1,R2 can be written as ADDI RO,R1,R2.

Instructions affected: ADDC3, ADDF3, ADDI3, AND3, ANDN3, ASH3,
LSH3, MPYF3, MPYI3, OR3, SUBB3, SUBF3, SUBI3, XOR3

This also applies to all of the pertinent parallelinstructions.

[ Youcanwrite allthree-operandcomparisoninstructions withoutthe 3. For
example,
CMPI3 RO,*ARO can be writtenas CMPI RO,*ARO.
Instructions affected: CMPI3, CMPF3, TSTB3

@ Indirectoperandswith an explicitQ displacementare allowed. In three-op-
erand or parallelinstructions, operands with Q displacementare automati-
cally converted to no-displacement mode. For example:

LDI *+ARO0(0),R1 is legal.
Also
ADD13 *+AR0(0),R1,R2 is equivalentto ADD13*ARO,R1,R2.
@ Youcanwriteindirect operandswith no displacement,in which case a dis-
placement of 1 is assumed. For example,
LDI *AR0++(1),R0 can be writtenas  LDI *ARO++,R0.
@ Allconditionalinstructionsacceptthe suffix U to indicate unconditional op-

eration. Also, you can omit the U from unconditional short branch instruc-
tions. For example:

BU label can be written as B label,

@ You can write labels with or without a trailing colon. For example:

labelQ: NOP
label1 NOP
label2; (Label assembles to next source line.)
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Empty expressions are not allowed for the displacement in indirect mode:
LDI *+ARO(),RO is not legal.

You can precede long immediate mode operands (destination of BR and
CALL) with an @ sign:

BR label can be written as BR @label.

You can use the LDP pseudo-op to load a register (usually DP) with the
eight MSBs of a relocatable address:

LDP  addr,REG or LDP @addr,REG
The @ signis optional.

If the destination REG is the DP, you Can omitthe DP in the operand. LDP
generates an LDI instruction with animmediate operand and a special re-
locationtype.

You can write parallel instructionsin either order. For example:

ADDI can be written as STl
I sTi || ADDI.

You canwrite the parallelbarsindicating part2 of a parallelinstructionany-
where on the line from column 0 to the mnemonic. For example:

ADDI can be written as ADDI
I ST || STI.

If the second operand of a parallelinstructionis the same as the third (des-
tinationregister) operand, you can omit the third operand. This allows you
to write three-operandparallelinstructions that look like normal twe-oper-
and instructions. For example,

ADDI *ARO,R2,R2 can be written as ADD *ARO,R2
|| MPYI1 *AR1,R0,R0 || MPYI *AR1,RO0.

Instructions (appliesto all parallel instructionsthat have aregister second
operand) affected: ADDI, ADDF, AND, MPYI, MPYF, OR, SUBI, SUBF,
and XOR.

You can write all commutative operations in parallel instructionsin either
order. For example, you can write the ADDI part of a parallel instructionin

either of two ways:
ADDI *ARO,R1,R2 or ADDI R1,*AR0,R2.

Instructions affected: parallel instructions containing any of ADDI, ADDF,
MPYI, MPYF, AND, OR, and XOR.
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@ Use the syntax in Table 10-11 to designate CPU registers in operands.
Note the alternate notationRn, 0 = n s 27, whichis usedto designate
any CPU register.

Table 10-11. CPU Register Syntax

Assemblers Alternate
Syntax Register Syntax Assigned Function

RO RO Extended-precisionregister
R1 R1 Extended-precisionregister
R2 R2 Extended-precisionregister
R3 R3 Extended-precisionregister
R4 R4 Extended-precisionregister
R5 R5 Extended-precisionregister
R6 R6 Extended-precisionregister
R7 R7 Extended-precisionregister

ARO R8s Auxiliary register

AR1 R9 Auxiliary register

AR2 R10 Auxiliary register

AR3 R11 Auxiliary register

AR4 Ri12 Auxiliary register

AR5 R13 auxiliary register

ARG R14 Auxiliary register

AR7 R15 Auxiliary register

DP R16 Data-page pointer

IRO R17 Index register 0

IR1 R18 Index register 1

BK R19 Block-size register

SP R20 Active stack pointer

ST R21 Status register
IE R22 CPU/DMA interrupt enable
IF R23 CPU interrupt flags

IOF R24 I/O flags

RS R25 Repeat start address

RE R26 Repeat end address

RC R27 Repeat counter

10.3.3 Individual Instruction Descriptions

Each assembly language instruction for the TMS320C3x is described in
this sectionin alphabetical order. The descriptionincludes the assembler syn-
tax, operation, operands, encoding, description, cycles, status bits, mode bit,
and examples.
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Syntax

Operation

Operands

INST src, dst
or

INSTY src2, dst1
|| INST2 sre3, dst2

Each instruction begins with an assembler syntax expression. You can place
labels either before the command (instruction mnemonic) on the same line or
on the precedingline in the first column. The optional comment field that con-
cludes the syntax is not included in the syntax expression. Space(s) are
required between each field (label, command, operand, and comment fields).

The syntax examples illustrate the common one-line syntax and the two-line
syntax used in parallel addressing. Note that the two vertical bars || that indi-
cate a parallel addressingpair can be placed anywhere before the mnemonic
onthe secondline. Thefirstinstructionin the pair canhave alabel, but the sec-
ond instruction cannot have a label.

|sre| — dst
or

|sre2| — dst?
|| sre3— dst2

The instruction operation sequence describes the processing that occurs
when the instruction is executed. For parallel instructions, the operation se-
guenceis performed in parallel. Conditional effectsof status register specified
modes are listed for such conditional instructions as Bcond.

src general addressing modes (G):
00 register (Rn,0sns 27)
01 direct
10 indirect
11 immediate

dstregister (Rn, 0 s n s 27)
or

sre2  indirect (disp =0, 1, IR0, IR1)
dstl  register (Rnl,0snl s7)
sre3  register (Rn2,0snN2s7)
dst2  indirect (disp =0, 1, IR0, IR1)

Operands are definedaccordingto the addressingmode and/or the type of ad-
dressing used. Note that indirect addressing uses displacementsand the in-
dex registers. Refer to Chapter 5 for detailed information on addressing.
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Example Instruction

Encoding

Description

Cycles

Status Bits

31 24 23 16 15 87 0
L L ] T ] ] I L Ll | ) ] T 1 ] 1 1 1 1 1 1 1 1 1 1 1 1
000 INST G dst src
or
31 24 23 16 15 87 0
T T T 71 =T 1 T 1 T 1 LN I A N ORI | rirTrrrrrr
1 1| INST1||INST2| dst |0 0 O] src3 dst2 src2

Encoding examples are shown using general addressing and paralleladdres-
sing. The instruction pair for the parallel addressing example consists of
INST1 and INST2.

Instructionexecution and its effect on the rest of the processor or memory con-
tentsis described. Any constraints on the operandsimposed by the processor
or the assembler are discussed. The description parallels and supplements
the information given by the operation block.

1
The digit specifies the number of cycles required to execute the instruction.

LUF Latched Floating-Point Underflow Condition Flag. 1if a
floating-pointunderflow occurs; unchanged otherwise.

Lv Latched Overflow Condition Flag. 1 if an integer or floating-point
overflow occurs; unchanged otherwise.

UF Floating-Point Underflow Condition Flag. 1 if a floating-point un-
derflow occurs; 0 otherwise.

N Negative Condition Flag. 1 if a negative result is generated; 0 other-
wise. In some instructions, this flag is the MSB of the output.

Z Zero Condition Flag. 1if a0resultis generated; 0 otherwise. For log-
ical and shift instructions, 1 if a 0 output is generated; 0 otherwise.

\Y Overflow ConditionFlag. 1 if aninteger or floating-pointoverfiow oc-
curs; 0 otherwise.

C Carry Flag. 1if acarry or borrow occurs; 0 otherwise. For shift instruc-
tions, this flag is set to the value of the last bit shifted out; 0 for a shift

count of 0.

The seven condition flags storedinthe status register (ST) are modified by the
majority of instructions only if the destination register is R7-RO. The flags pro-
vide information about the properties of the result or the output of arithmetic
or logical operations.



Example Instruction EXAMPLE

Mode Bit

Example

OVM Overflow Mode Flag. Ingeneral, integer operationsare affected by the
OVM hit value (described in Table 3-2 on page 3-6).

INST €98AEh,R5
Before Instructlon:

DP = 80h

R5 = 0766900000h = 2.30562500e+02

Memory at 8098AEh = SCDFh = 1.00001107e + 00
LUFLWUF NZV C=0000000

After Instructlon:

DP = 80h

R5 = 0066900000h = 1.80126953e * 00

Memory at 8098AEh = 5CDFh = 1.00001107e + 00
LFLWUFNZV C=0000000

The sample code presented in the above format shows the effect of the code
on system pointers (for example, DP or SP), registers (for example, R1 or RS},
memory at specific locations, and the seven status bits. The values given for
theregistersincludethe leading 0s to show the exponentin floating-pointoper-
ations. Decimal conversions are provided for all register and memory loca-
tions. The seven status bits are listed in the order in which they appear Inthe
assembler and simulator (see Section 10.2 on page 10-10 and Table 10-9 on
page 10-13 for further information on these seven status hits).
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ABSF  Absolute Value of Floating-Point

Syntax ABSF src, dst

Operation |sre] — dst

Operands S'C general addressing modes (G):
00 register(Rn,0sns7)
01 direct
10 indirect

11 immediate

dst register (Rn, <0 n's7)

Encoding
31 2423 16 15 87 0
LI 7 v 1 LI L vy T vy oy T rnruona
0oojoo o000 O] G dst sre
Description The absolute value of the SrC operand is loaded into the dSt register. The SIC
and dst operands are assumed to be floating-pointnumbers.
An overflow occurs if S'C (man) = 80000000h and SIC (exp) = 7Fh. The result
is dst (man) = 7ZFFFFFFFh and dst (exp) = 7Fh.
Cycles 1
Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF  Unaffected
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 0
N 0
Z 1 if a 0 result is generated; 8 otherwise
\% 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected
Mode Bit OVM Operationis not affected by OVM bit value.
Example ABSF R4,R7

Before Instruction:

R4 = 05C8000F971h = —9.90337307e + 27
R7 = 07D251100AEh = 5.48527255e + 37
LWWFWWUFNZVC=00000O0DO0DO0

After Instruction:

R4 = 05C8000F971h = —9.90337307e + 27
R7 = 05C7FFF068Fh = 9.90337307e + 27
LUFWWUF NZVC=0000UO0O0ODO0
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Parallel ABSF and STF  ABSF||STF

Syntax ABSF src2, dstl
I STF  src3, dst2
Operation |src2| — dst?
|| sre3— dst2
Operands sre2  indirect (disp =0, 1, IR0, IR1)

dstl  register (Rnl,0snl s7)
sre3  register (Rn2,0sn2s<7)
dst2 indirect (disp = 0, 1, IR0, IR1)

Encoding
31 2423 16 15 87 0
T L LI N LI ) ] L | J ] | J ) LI L] LA L) LI
110 01 00| dst |o 0 O] sreB ds2 src2
Description A floating-pointabsolute value and a floating-point store are performedin par-
allel. All registers are read at the beginning and loaded at the end of the ex-
ecute cycle. This meansthat if one of the parallel operations (STF) reads from
a register and the operation being performed in parallel (ABSF) writes to the
same register, STF acceptsas inputthe contents of the register beforeit is mo-
dified by the ABSF.
If sre2 and dst2 point to the samelocation, src2is read before the write to dst2.
If sre3and dstl point to the same register, sre3is read before the write to dstl.
An overflow occurs if src (man) = 80000000h and src (exp) = 7Fh. The result
is dst (man) = 7FFFFFFFh and dst (exp) = 7Fh.
Cycles 1
Status Bits LUF  Unaffected
Lv 1 if a floating-point overflow occurs; unchanged otherwise
UF 0
N 0
Z 1if a 0 resultis generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected
Mode Bit OVM  Operationis not affected by OVM bit value.
Example ABSF *++AR3(IR1) ,R4

|| STF R4,*=AR7(1)
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ABSF|ISTF Parallel ABSFand STF -

Before Instruction:

AR3 = 809800h

IR1 = OAFh

R4 = 733C00000h = 1.79750e + 02

AR7 = 8098C5h

Data at 8098AFh = 58B4000h = - 6.1187508 + 01
Data at 8098C4h = Ch

LUFLV UFNZV C=0 00 0 0 00O

After Instruction:

AR3 = 8098AFh

IR1 = OAFh

R4 = 574C00000h = 6.118750e t 01

AR7 = 8098C5h

Data at 8098AFh = 58B4000h =-6.1187508 + 01
Data at 8098C4h = 733C000h = 1.79750e + 02
LUFLVUF NZV C=0000000

Note: Cycle Count

See subsection 8.5.2 on page 9-24 for operand ordering effects on cycle
count.




Absolute Value of Integer

ABSI

Syntax
Operation

Operands

Encoding

Description

Cycles

Status Bits

Mode Bit

Example1

ABSI src, dst
|sre] — dst
src general addressing modes (G):
00 any CPU register
01 direct
10 indirect
11 immediate
dstany CPU register
31 24 23 16 15 87 0
Tr+rJgJrgqgrgrerrrv r 7 rUrerrrrYrUYYMIUOTMYTTITIITTTTTTY
000J0o0 00O 1] G dst src

The absolute value of the sre operand is loaded into the dstregister. The src