
TMS32OC3x
User's Guide

2558539-9721 revision J
October 1994

IMPORTANT NOTICE

Texas lnstruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriateTI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer's applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright O 1994, Texas lnstruments Incorporated

Read This First

About This Manual
This user's guide serves as a reference book for the TMS320C3x generation
of digital signal processors, which includes the TMS320C30, TMS320C30-27,
TMS320C30-40, TM S320C31, TMS320C31-27, TMS320C31-40,
TMS320C31-50, TMS320LC31, and TMS320C31 PQA. Throughout the book,
all references to 'C3x refer collectively to 'C30 and 'C31, and the TMS320C30
and TMS320C31 refer to all speed variations unless an exception is noted.
This document provides information to assist managers and
hardwarelsoftware engineers in application development.

How to Use This Book
This revision of the TMS320C3x User's Guide incorporates the following
changes:

Q Updated reference list of publications

Q lmproved description of repeat modes and interrupts in Chapter 6

0 Description of power management modes in Chapter 6

0 lmproved description of serial ports and DMA coprocessor in Chapter 8

Description of power management instructions in Chapter 10

Q Description of low-power-mode interrupt interface in Chapter 12

Q More detailed information on MPSD emulator interface, signal timings,
and connections between emulator and target system

0 Current timing specification in Chapter 13

Q TMS320C30PPM pinout, mechanical drawing, and timings in Chapter 13

Q Development support description and deviceltool part numbers in
Appendix B

Data sheet for current military versions of the 'C3x in Appendix E

Read This First iii

Notational Conventions

Notational Conventions

This document uses the following conventions:

0 Program listings, program examples, interactive displays, filenames, and
symbol names are shown in a special font. Examples use a bold version
of the special font for emphasis. Here is a sample program listing:

0011 0005 0001 . field 11 2
0012 0005 0003 . field 31 4
0013 0005 0006 .field 6, 3
0014 0006 . even
In syntax descriptions, the instruction, command, or directive is in a bold
face font and parameters are in italics. Portions of a syntax that are in
bold face should be entered as shown; portions of a syntax that are in
italics describe the type of information that should be entered. Here is an
example of a directive syntax:

.asect "section name", address

.asect is the directive. This directive has two parameters, indicated by
section nameand address. When you use .asect, the first parameter must
be an actual section name, enclosed in double quotes; the second
parameter must be an address.

0 Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don't enter the brackets themselves. Here's an example of an instruction
that has an optional parameter:

LALK 16-bit constant [, shift]

The LALK instruction has two parameters. The first parameter, 16-bit
constant, is required. The second parameter, shift, is optional. As this
syntax shows, if you use the optional second parameter, you must
precede it with a comma.

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the
pathname (they are not optional).

0 Braces ({and)) indicate a list. The symbol I (read as orj separates items
within the list. Here's an example of a list:

This provides three choices: *, *+, or *-.
Unless the list is enclosed in square brackets, you must choose one item
from the list.

Notational Conventions / lnformation About Cautions /Related Documentation from Texas lnstruments

IJ Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this
directive is

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters separated
by commas.

Information About Cautions

This book may contain cautions and warnings.

A caution describes a situation that could potentially cause your system
to behave unexpectedly.

The information in a caution is provided for your information. Please read each
caution carefully.

Related Documentation From Texas Instruments
The following books describe the TMS320 floating-point devices and related
support tools. To obtain a copy of any of these TI documents, call the Texas
lnstruments Literature Response Center at (800) 477-8924. When ordering,
please identify the book by its title and literature number.

TMS320 Floating-Point DSP Assembly Language Tools User's Guide
(literature number SPRU035) describes the assembly language tools
(assembler, linker, and other tools used to develop assembly language
code), assembler directives, macros, common object file format, and
symbolic debugging directives for the 'C3x and 'C4x generations of
devices.

TMS320 Floating-Point DSP Optimizing C Compiler User's Gulde
(literature number SPRU034) describes the TMS320 floating-point C
compiler. This C compiler accepts ANSI standard C source code and
produces TMS320 assembly language source code for the 'C3x and
'C4x generations of devices.

Read This First v

Related Documentation from Texas Instruments / References

TMS320C3x C Source Debugger (literature number SPRU053) describes
the 'C3x debugger for the emulator, evaluation module, and simulator.
This book discusses various aspects of the debugger interface, including
window management, command entry, code execution, data
management, and breakpoints. It also includes a tutorial that introduces
basic debugger functionality.

TMS320 Family Development Support Reference Guide (literature number
SPRUO11) describes the '320 family of digital signal processors and the
various products that support it. This includes code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). This book also
lists related documentation, outlines seminars and the university
program, and provides factory repair and exchange information.

TMS320 Third-Party Support Reference Guide (literature number
SPRU052) alphabetically lists over 100 third parties who supply various
products that serve the family of '320 digital signal processors, including
software and hardware development tools, speech recognition, image
processing, noise cancellation, modems, etc.

References

The publications in the following reference list contain useful information
regarding functions, operations, and applications of digital signal processing
(DSP). These books also provide other references to many useful technical
papers. The reference list is organized into categories of general DSP, speech,
image processing, and digital control theory and is alphabetized by author.

Q General Dlgital Signal Processing:

Antoniou, Andreas, Digital Filters: Analysis and Design. New York, NY:
McGraw-Hill Company, Inc., 1979.

Bateman, A., and Yates, W., Digital Signal Processing Design. Salt Lake
City, Utah: W. H. Freeman and Company, 1990.

Brigham, E. Oran, The Fast Fourier Transform. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1974.

Burrus, C.S., and Parks, T.W., DR/FFTand Convolution Algorithms. New
York, NY John Wiley and Sons, Inc., 1984.

Chassaing, R., and Horning , D., Digital Signal Processing with the
TMS320C25. New York, NY: John Wiley and Sons, Inc., 1990.

Digital Signal Processing Applications with the TMS320 Family, Vol. I.
Texas Instruments, 1986; Prentice-Hall, Inc., 1987.

References

Digital Signal Processing Applications with the TMS320 Family, Vol. 11.
Texas Instruments, 1990; Prentice-Hall, Inc., 1990.

Digital Signal Processing Applications with the TMS320 Family, Vol. 111.
Texas Instruments, 1990; Prentice-Hall, Inc., 1990.

Gold, Bernard, and Rader, C.M., Digital Processing of Signals. New York,
NY McGraw-Hill Company, Inc., 1969.

Hamming, R.W., Digital Filters. Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1977.

Hutchins, B., and Parks, T., A Digital Signal Processing Laboratory Using
the TMS320C25. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1990.

IEEE ASSP DSP Committee (Editor), Programs for Digital Signal
Processing. New York, NY IEEE Press, 1979.

Jackson, Leland B., Digital Filters and Signal Processing. Hingham, MA:
Kluwer Academic Publishers, 1986.

Jones, D.L., and Parks, T.W., A Digital Signal Processing Laboratory
Using the TMS32010. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Lim, Jae, and Oppenheim, Alan V. (Editors), Advanced Topics in Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988.

Morris, L. Robert, Digital Signal Processing Software. Ottawa, Canada:
Carleton University, 1983.

Oppen heim , Alan V. (Editor), Applications of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Oppenheim, Alan V., and Schafer, R.W., Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

Oppenheim, Alan V., and Schafer, R.W., Discrete-Time Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1989.

Oppenheim, Alan V., and Willsky, A.N., with Young, I.T., Signals and
Systems. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

Parks, T.W., and Burrus, C.S., Digital Filter Design. New York, NY John
Wiley and Sons, Inc., 1987.

Rabiner, Lawrence R., and Gold, Bernard, Theory and Application of
Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

Treichler, J.R., Johnson, Jr., C.R., and Larimore, M.G., Theory and Design
ofAdaptive Filters. New York, NY John Wiley and Sons, Inc., 1987.

Speech:

Gray, A.H., and Markel, J.D., Linear Prediction of Speech. New York, NY
Springer-Verlag, 1976.

Jayant, N.S., and Noll, Peter, Digital Coding of Waveforms. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1984.

Read This First vii

References

Papamichal is, Panos, Practical Approaches to Speech Coding.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Parsons, Thomas., Voice and Speech Processing. New York, NY:
McGraw Hill Company, Inc., 1987.

Rabiner, Lawrence R., and Schafer, R.W., Digital Processing of Speech
Signals. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Shaughnessy, Douglas., Speech Communication. Reading, MA:
Addison-Wesley, 1987.

0 lmage Processing:

Andrews, H.C., and Hunt, B.R., Digital lmage Restoration. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1977.

Gonzales, Rafael C., and Wintz, Paul, Digitallmage Processing. Reading,
MA: Addison-Wesley Publishing Company, Inc., 1977.

Pratt, William K,, Digitallmage Processing. New York, NY: John Wiley and
Sons, 1978.

IJ Multirate DSP:

Crochiere, R.E., and Rabiner, L.R., Multirate Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

Vaidyanathan, P.P., Multirate Systems and Filter Banks. Englewood Cliffs,
NJ: Prentice-Hall, Inc.

D Digital Control Theory:

Dote, Y., Servo Motor and Motion Control Using Digital Signal Processors.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1990.

Jacquot, R., Modern Digital Control Systems. New York, NY: Marcel
Dekker, Inc., 1981.

Katz, P., Digital Control Using Microprocessors. Englewood Cliffs, N J:
Prentice-Hall, Inc., 1981.

Kuo, B.C., Digital Control Systems. New York, NY: Holt, Reinholt and
Winston, Inc., 1980.

Moroney, P., Issues in the Implementation of Digital Feedback
Compensators. Cambridge, MA: The MIT Press, 1983.

Phillips, C., and Nagle, H., Digital Control System Analysis and Design.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

Q Adaptive Signal Processing:

Haykin, S., Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1991.

Widrow, B., and Stearns, S.D. Adaptive Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1985.

References / If You Need Assistance / Trademarks

Q Array Signal Processing:

Haykin, S., Justice, J.H., Owsley, N.L., Yen, J.L., and Kak, A.C. Array
Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985.

Hudson, J.E. Adaptive Array Principles. New York, N Y John Wiley and
Sons, 1981.

Monzingo, R.A., and Miller, J.W. Introduction to Adaptive Arrays. New
York, N Y John Wiley and Sons, 1980.

If You Need Assistance. . .
If you want to.. . Do thls. . .
Order Texas Instruments Call the TI Literature Response Center:
documentation (800) 477-8924

Ask questions about product Call the DSP hotline:
operation or report suspected (713) 274-2320
problems FAX: (71 3) 274-2324

Electronic Mail: 438975O@mclmall.com.
European fax line: t33-1-3070-1032

Report mistakes in this document Fill out and return the reader response card at
or any other TI documentation the end of this book, or send your comments to:

Texas Instruments Incorporated
Technical Publications Manager, MS 702
P.O. Box 1443
Houston, Texas 77251-1 443

Trademarks

ABEL is a registered trademark of Data I10 Corporation.
CodeView, MS, MS-DOS, MS-Windows, and Presentation Manager are trademarks of
Microsoft Corp.
DEC, Digital DX, Ultrix, VAX, and VMS and are trademarks of Digital Equipment Corp.
HPGL is a registered trademark of Hewlett-Packard Co.
Macintosh and MPW are trademarks of Apple Computer Corp.
Micro Channel, OSl2, PC-DOS, and PGA are trademarks of IBM Corp.
SPARC, Sun 3, Sun 4, Sun Workstation, SunView, and Sunwindows are trademarks
of Sun Microsystems, Inc.
UNlX is a registered trademark of UNlX Systems Laboratories, Inc.

Read This First ix

Contents

1 lntroductlon ... 1-1
A general description of the TMS320C30 and TMS320C31. their key features. and typical
applications .
1.1 General Description . 1-2
1.2 TMS320C30 Key Features . 1-6
1.3 TMS320C31 Key Features . 1-8
1.4 Typical Applications . 1-10

2 TMS320C3x Architecture ... 2-1
Functional block diagram. TMS320C3x design description. hardware components. device
operation. and instruction set summary .
2.1 Architectural Overview 2-2
2.2 Central Processing Unit (CPU) . 2-4

2.2.1 Multiplier 2-6
2.2.2 Arithmetic Logic Unit (ALU) ... 2-6
2.2.3 Auxiliary Register Arithmetic Units (ARAUs) . 2-6
2.2.4 CPU Register File . 2-7

2.3 Memory Organization 2-11
2.3.1 RAM. ROM. and Cache . 2-11
2.3.2 Memory Maps . 2-13
2.3.3 Memory Addressing Modes . 2-16

2.4 Instruction Set Summary . 2-17
2.5 Internal Bus Operation . 2-22
2.6 Parallel Instruction Set Summary . 2-23
2.7 External Bus Operation . 2-26

2.7.1 External Interrupts . 2-26
2.7.2 Interlocked-Instruction Signaling . 2-26

2.8 Peripherals . 2-27
2.8.1 limers 2-28
2.8.2 Serial Ports . 2-28

2.9 Direct Memory Access (DMA) . 2-29
2.1 0 TMS320C30 and TMS320C31 Differences . 2-30

2.1 0.1 DatdProgram Bus Differences . 2-30
2.1 0.2 Serial-Port Differences . 2-30
2.1 0.3 Reserved Memory Locations . 2-30

Contents

. Unsigned-Integer Formats 4-3
. 4.2.1 Short Unsigned-Integer Format 4-3

. 4.2.2 Single-Precision Unsigned-Integer Format 4-3
. Floating-point Formats 4-4

4.3.1 Short Floating-point Format . 4-4
. 4.3.2 Single-Precision Floating-point Format 4-6

. 4.3.3 Extended-Precision Floating-point Format 4-6
. 4.3.4 Conversion Between Floating-point Formats 4-8

. Floating-point Multiplication 4-10
Floating-point Addition and Subtraction . 4-14

. Normalization Using the NORM Instruction 4-18
. Rounding: The RND Instruction 4-20

. Floating-Point-to-Integer Conversion 4-22

. Integer-to-Floating-point Conversion 4-24

5 Addressing .. 5-1
Operation. encoding. and implementation of addressing modes . Format descriptions . System
stack management .

. 5.1 Types of Addressing 5-2
. 5.1.1 Register Addressing 5-3

5.1.2 Direct Addressing 5-4
. 5.1.3 Indirect Addressing 5-5

. 5.1.4 Short-Immediate Addressing 5-16

. 5.1.5 Long-Immediate Addressing 5-17
. 5.1.6 PC-Relative Addressing 5-17

. 5.2 Groups of Addressing Modes 5-19
. 5.2.1 General Addressing Modes 5-19

. 5.2.2 Three-Operand Addressing Modes 5-20
. 5.2.3 Parallel Addressing Modes 5-21

. 5.2.4 Conditional-Branch Addressing Modes 5-23
. 5.3 Circular Addressing 5-24

. 5.4 Bit-Reversed Addressing 5-29
. 5.5 System and User Stack Management 5-31

. 5.5.1 System Stack Pointer 5-31
. 5.5.2 Stacks 5-32

5.5.3 Queues . 5-33

... 6 Program Flow Control 6-1
Software control of program flow with repeat modes and branching . Interlocked operations .
Reset and interrupts .

. 6.1 Repeat Modes 6-2
. 6.1.1 Repeat-Mode Control Bits 6-3

. 6.1.2 Repeat-Mode Operation 6-3
. 6.1.3 RPTB Instruction 6-4

Contents

Contents

. 6.1.4 RPTS Instruction 6-5
. 6.1.5 Repeat-Mode Restrictions 6-6

. 6.1.6 RC Register Value After Repeat Mode Completes 6-6
. 6.1.7 Nested Block Repeats 6-7

6.2 DelayedBranches . 6-8
. 6.3 Calls. Traps. and Returns 6-10

. 6.4 Interlocked Operations 6-12
. 6.5 Reset Operation 6-18

. 6.6 Interrupts 6-23
. 6.6.1 Interrupt Vector Table 6-23
. 6.6.2 Interrupt Prioritization 6-25

. 6.6.3 Interrupt Control Bits 6-26

. 6.6.4 Interrupt Processing 6-27
. 6.6.5 CPU Interrupt Latency 6-30

. 6.6.6 CPU/DMA Interaction 6-30
. 6.6.7 TMS320C3x Interrupt Considerations 6-31
. 6.6.8 TMS320C30 Interrupt Considerations 6-32

. 6.6.9 Prioritization and Control 6-34
. 6.7 TMS320LC31 Power Management Modes 6-36

. 6.7.1 IDLE2 6-36
. 6.7.2 LOPOWER ... 6-38

.. 7 External Bus Operation 7-1
Description of primary and expansion interfaces . External interface timing diagrams .
Programmable wait-states and bank switching .

. 7.1 External Interface Control Registers 7-2
. 7.1.1 Primary-Bus Control Register 7-3

. 7.1.2 Expansion-Bus Control Register 7-5
. 7.2 External Interface Timing 7-6

. 7.2.1 Primary-Bus Cycles 7-6
. 7.2.2 Expansion-Bus I/O Cycles 7-11

. 7.3 Programmable Wait States 7-28
. 7.4 Programmable Bank Switching 7-30

... 8 Peripherals 8-1
Description of the DMA controller, timers. and serial ports .

. . 8.1 Timers ... 8-2
. 8.1 . 1 Timer Global-Control Register 8-3

. 8.1.2 Timer Period and Counter Registers 8-8
. 8.1.3 Timer Pulse Generation 8-8
. 8.1.4 Timer Operation Modes 8-10

. 8.1.5 Timer Interrupts 8-11
. 8.1.6 Timer Initialization/Reconfiguration 8-12

. 8.2 Serial Ports 8-13
. 8.2.1 Serial-Port Global-Control Register 8-15
. 8.2.2 FSX/DX/CLKX Port-Control Register 8-18

xiv

Contents

. 10.1.4 Program-Control Instructions 10-5
. 10.1.5 Low-Power Control Instructions 10-5

. 10.1.6 Interlocked-Operations Instructions 10-6
. 10.1.7 Parallel-Operations Instructions 10-7

. 10.1.8 Illegal Instructions 10-9
. 10.2 Condition Codes and Flags 10-1 0

. 10.3 Individual Instructions 10-1 4
. 10.3.1 Symbols and Abbreviations 10-1 4
. 10.3.2 Optional Assembler Syntax 10-1 6

. 10.3.3 Individual Instruction Descriptions 10-1 8

.. 11 Software Applications 11-1
Software application examples for the use of various TMS320C3x instruction set features . . .

. . 11 1 Processor Initialization 11-2
. 11.2 Program Control 11-6

. 11.2.1 Subroutines 11-6
. 11 .2.2 Software Stack 11-8

. 11.2.3 Interrupt Service Routines 11-9
. 11.2.4 Delayed Branches 11 -1 7

. 11.2.5 Repeat Modes 11 -1 8
. 11.2.6 Computed GOTOs 11 -22

. 11.3 Logical and Arithmetic Operations 11 -23
. 11.3.1 Bit Manipulation 11 -23

. 11.3.2 Block Moves 11 -25
. 11.3.3 Bit-Reversed Addressing 11 -25

. 11.3.4 Integer and Floating-point Division 11 -26
. 11.3.5 Square Root 11 -34

. 11.3.6 Extended-Precision Arithmetic 11 -38
. 11.3.7 IEEE/TMS320C3x Floating-point Format Conversion 11 -42

. 11.4 Application-Oriented Operations 11 -53
. 11.4.1 Companding 11 -53

. 11.4.2 FIR, IIR,andAdaptiveFilters 11-58
. 11.4.3 Matrix-Vector Multiplication 11 -70

. 11.4.4 Fast Fourier Transforms (FFT) 11 -73
. 11.4.5 Lattice Filters 11 -125

. 11.5 Programming Tips 11 -131
. 11.5.1 C-Callable Routines 11 -131

. 11.5.2 Hints for Assembly Coding 11 -131
. 11.5.3 Low-Power-Mode Wakeup Example 11 -133

.. 12 Hardware Applications 12-1
Hardware design techniques and application examples for interfacing to memories.
peripherals. or other microcomputers/microprocessors .

. 12.1 System Configuration Options Overview 12-2
. 12.1.1 Categories of Interfaces on the TMS320C3x 12-2

. 12.1.2 Typical System Block Diagram 12-3

Contents

12.2 Primary Bus Interface . 12-4
12.2.1 Zero-Wait-State Interface to Static RAMS . 12-4
12.2.2 Ready Generation 12-9
12.2.3 Bank Switching Techniques . 12-1 3

12.3 Expansion Bus Interface ... 12-1 9
12.3.1 AID Converter Interface 12-1 9
12.3.2 D/A Converter Interface 12-23

12.4 System Control Functions 12-27
. 12.4.1 Clock Oscillator Circuitry 12-27

12.4.2 Reset Signal Generation . 12-29
12.5 Serial-Port Interface . 12-32
12.6 Low-Power-Mode Interrupt Interface . 12-36
12.7 XDS Target Design Considerations . 12-39

12.7.1 Designing Your MPSD Emulator Connector (1 2-Pin Header) 12-39
12.7.2 MPSD Emulator Cable Signal Timing . 12-40
12.7.3 Connections Between the Emulator and the Target System 12-41
12.7.4 Mechanical Dimensions for the 12-Pin Emulator Connector 12-43
12.7.5 Diagnostic Applications . 12-45

13 TMS320C3x Signal Descriptions and Electrical Characteristics 13-1
Pin locations. pin descriptions. dimensions. electrical characteristics. signal timing diagrams.
and characteristics .
13.1 Pinout and Pin Assignments . 13-2

13.1.1 TMS320C30 Pinouts and Pin Assignments . 13-2
13.1.2 TMS320C30 PPM Pinouts and Pin Assignments . 13-8
13.1.3 TMS320C31 Pinouts and Pin Assignments 13-1 2

13.2 Signal Descriptions 13-1 6
13.2.1 TMS320C30 Signal Descriptions . 13-1 6
13.2.2 TMS320C31 Signal Descriptions . 13-22

13.3 Electrical Specifications . 13-25
13.4 Signal Transition Levels . 13-29

13.4.1 lTL-Level Outputs . 13-29
13.4.2 TTL-Level Inputs . 13-29

13.5 Timing . 13-30
13.5.1 X2/CLKIN, H l , and H3 Timing . 13-30
13.5.2 Memory ReadlWrite Timing . 13-32
13.5.3 XFO and XF1 Timing When Executing LDFl or LDll . 13-38
13.5.4 XFO Timing When Executing STFl and STll . 13-40
13.5.5 XFO and XF1 Timing When Executing SlGl . 13-41
13.5.6 Loading When the XF Pin Is Configured as an Output 13-42
13.5.7 Changing the XF Pin From an Output to an Input . 13-43
13.5.8 Changing the XF Pin From an Input to an Output . 13-44
13.5.9 Reset Timing .. 13-45 - ... 13.5.1 0 SHZ Pin Timing 13-51

Contents xvii

Contents

. 13.5.11 Interrupt Response Timing 13-52
. 13.5.1 2 Interrupt Acknowledge Timing 13-54

. 13.5.1 3 Data Rate Timing Modes 13-55
. 13.5.1 4 HOLD Timing 13-61

. 13.5.1 5 General-Purpose I10 Timing 13-63
. 13.5.1 6 Timer Pin Timing 13-66

... A Instruction Opcodes A-1
List of the opcode fields for the TMS320C3x instructions .

................................... 6 Development SupportIPart Ordering Information B-1
Lists of the hardware and software available to support the TMS320C3x devices .

. B.l TMS320C3x Development Support Tools 8-2
. B.1 . 1 TMS320 Third Parties 8-4

. 8.1.2 TMS320 Literature B-5
. 8.1.3 DSP Hotline 8-5

. B.1.4 Bulletin Board Service (BBS) 8-5
. 8.1.5 Technical Training Organization (TTO) TMS320 Workshop B-6

. 8.2 TMS320C3x Part Ordering Information B-7
. 8.2.1 Device and Development Support Tool Prefix Designators 8-8

. B.2.2 Device Suffixes B-9

... C Quality and Reliability C-1
Discussion of Texas Instruments quality and reliability criteria for evaluating performance .

. C.1 Reliability Stress Tests C-2
. C.2 TMS320C31 PQFP Reflow Soldering Precautions C-7

..................................... D Calculation of TMS320C30 Power Dissipation D-1
Discussion of information used to determine the power dissipation and the thermal
management requirements for the TMS320C30 .

. D.1 Fundamental Power Dissipation Characteristics D-2
. D.l . 1 Components of Power Supply Current Requirements D-2

. D . 1.2 Dependencies D-2
. D.1.3 Determining Algorithm Partitioning D-4

. D.1.4 Test Setup Description D-4
. D.2 Current Requirement for Internal Circuitry D-5

. D.2.1 Quiescent D-5
. D.2.2 Internal Operations D-5

. D.2.3 Internal Bus Operations D-6
. D.3 Current Requirement for Output Driver Circuitry D-9

. D.3.1 Primary Bus D-10
. D.3.2 Expansion Bus D-13

. D.3.3 Data Dependency D-14
. D.3.4 Capacitive Load Dependence D-16

Con tents

. D.4 Calculation of Total Supply Current D-18
0.4.1 Combining Supply Current Due to All Components . D-18
D.4.2 Supply Voltage. Operating Frequency. and Temperature Dependencies . . . D-19

. 0.4.3 Design Equation D-21
. D.4.4 Peak Versus Average Current D-22

. D.4.5 Thermal Management Considerations D-23
. D.5 Supply Current Calculations 0-26

. D.5.1 Processing D-26
. D.5.2 Data Output D-26

. D.5.3 Average Current D-27
. D.5.4 Experimental Results D-27

. D.6 Summary D-28
. 0.7 Photo of I D ~ for FFT D-29
. D.8 FFT Assembly Code D-30

................................... E SMJ320C3x Digital Signal Processor Data Sheet E-1
Data sheet for the military version of the digital signal processor, the SMJ320C30 .

..................................... F Analog Interface Peripherals and Applications F-1
Devices that interface to the TMS320 DSPs .

. F.l Multimedia Applications F-2
. F.l.l System Design Considerations F-2

. F.1.2 Multimedia-Related Devices F-4
. F.2 Telecommunications Applications F-5

. F.3 Dedicated Speech Synthesis Applications F-11
. F.4 Servo ControlIDisk Drive Applications F-14

. F.5 Modem Applications F-17
F.6 Advanced Digital Electronics Applications for Consumers . F-20

.. G Boot Loader Source Code G-1
Source code for the TMS320C3x boot loader .

Contents xix

Figures

. Current Measurement Test Setup D-4
. Internal Bus Current Versus Transfer Rate D-7

Internal Bus Current Versus Data Complexity Derating Curve . D-7
. Primary Bus Current Versus Transfer Rate and Wait States D-11

. Primary Bus Current Versus Transfer Rate at Zero Wait States D-12

..................... Expansion Bus Current Versus Transfer Rate and Wait States D-13
Expansion Bus Current Versus Transfer Rate at Zero Wait States 0-14

. Primary Bus Current Versus Data Complexity Derating Curve D-15
. Expansion Bus Current Versus Data Complexity Derating Curve D-16

. Current Versus Output Load Capacitance 0-17
. Current Versus Frequency and Supply Voltage D-20
. Current Versus Operating Temperature Change D-20

. Load Currents D-23
. System Block Diagram F-2

. Multimedia Speech Encoding and Modem Communication F-3
. TMS320C25 to TLC32047 Interface F-3

. Typical DSPICombo Interface F-6

. DSPICombo Interface Timing F-7
. General Telecom Applications F-9
. Generic Telecom Applications F-10

. Generic Servo Control Loop F-14
. Disk Drive Control System Block Diagram F-15

. TMS320C14-TLC32071 Interface F-16
High-speed V.32 Bis and Multistandard Modem With the TLC320AC01 AIC F-18

. Applications Performance Requirements F-20
. Video Signal Processing Basic System F-21

. Typical Digital Audio Implementation F-21

Contents

Tables

Serial-Port Global-Control Register Bits Summary . 8-15
FSWDWCLKX Port-Control Register Bits Summary . 8-19
FSWDWCLKR Port-Control Register Bits Summary . 8-20
ReceiveEransmit Timer-Control Register . 8-21
Memory-Mapped Locations for a DMA Channel . 8-44
DMA Global-Control Register Bits . 8-45
START Bits and Operation of the DMA (Bits 0-1) . 8-46
STAT Bits and Status of the DMA (Bits 2-3) . 8-46
SYNC Bits and Synchronization of the DMA (Bits 8-9) . 8-46
CPUIDMA Interrupt-Enable Register Bits . 8-48
DMA Tming When Destination Is On-Chip . 8-50
DMA Timing When Destination Is a Primary Bus . 8-51
DMA Timing When Destination Is an Expansion Bus . 8-52
Maximum DMA Transfer Rates When Cr = C, = 0 . 8-53
Maximum DMA Transfer Rates When Cr = 1. C, = 0 . 8-53
Maximum DMA Transfer Rates When Cr = 1. C, = 1 . 8-53
One Program Fetch and One Data Access for Maximum Performance 9-21
One Program Fetch and Two Data Accesses for Maximum Performance 9-22
Load-and-Store Instructions . 10-2
Two-Operand Instructions . 10-3
Three-Operand Instructions . 10-4
Program Control Instructions . 10-5
Low-Power Control Instructions . 10-5
Interlocked Operations Instructions . 10-6
Parallel Instructions 10-7
Output Value Formats . 10-1 0
Condition Codes and Flags . 10-1 3
Instruction Symbols . 10-1 5
CPU Register Syntax . 10-1 8
TMS320C3x FFT Timing Benchmarks (Cycles) . 11 -125
TMS320C3x FFT Timing Benchmarks (Milliseconds) . 11 -125
Bank Switching Interface Tming . 12-1 8
Key Timing Parameter for D/A Converter Write Operation . 12-26
12-Pin Header Signal Descriptions and Pin Numbers . 12-39
Emulator Cable Pod Timing Parameters . 12-41
TMS320C30-PGA Pin Assignments (Alphabetical) . 13-6
TMS320C30-PGA Pin Assignments (Numerical) . 13-7
TMS320C30-PPM Pin Assignments (Alphabetical) . 13-1 0
TMS320C30-PPM Pin Assignments (Numerical) . 13-1 1
TMS320C31 Pin Assignments (Alphabetical) . 13-1 4
TMS320C31 Pin Assignments (Numerical) . 13-1 5
TMS320C30 Signal Descriptions . 13-1 7
TMS320C31 Signal Descriptions . 13-22
Absolute Maximum Ratings Over Specified Temperature Range 13-25

Contents xxvi i

Examples

Byte-Wide Configured Memory . 3-31
16-Bit-Wide Configured Memory . 3-32
32-Bit-Wide Configured Memory . 3-32
Floating-point Multiply (Both Mantissas = .2.0) 4-1 2
Floating-point Multiply (Both Mantissas = 1.5) . 4-1 2
Floating-point Multiply (Both Mantissas = 1 . 0) . 4-13
Floating-point Multiply Between Positive and Negative Numbers 4-1 3
Floating-point Multiply by 0 . 4-1 3
Floating-point Addition . 4-1 6
Floating-point Subtraction . 4-1 6
Floating-point Addition With a 32-Bit Shift . 4-1 7
Floating-point AdditionISubtraction With Floating-point 0 . 4-1 7
NORM Instruction . 4-1 8

. Direct Addressing 5-4
Auxiliary Register Indirect . 5-5
Indirect With Predisplacement Add . 5-8
Indirect With Predisplacement Subtract . 5-8
Indirect With Predisplacement Add and Modify . 5-9
Indirect With Predisplacement Subtract and Modify . 5-9
Indirect With Postdisplacement Add and Modify . 5-1 0
Indirect With Postdisplacement Subtract and Modify . 5-1 0
Indirect With Postdisplacement Add and Circular Modify . 5-1 1
Indirect With Postdisplacement Subtract and Circular Modify . 5-1 1
Indirect With Preindex Add . 5-1 2
Indirect With Preindex Subtract . 5-12
Indirect With Preindex Add and Modify . 5-1 3
Indirect With Preindex Subtract and Modify 5-13
Indirect With Postindex Add and Modify . 5-1 4
Indirect With Postindex Subtract and Modify . 5-1 4
Indirect With Postindex Add and Circular Modify . 5-1 5
Indirect With Postindex Subtract and Circular Modify . 5-1 5
Indirect With Postindex Add and Bit-Reversed Modify . 5-1 6
Short-Immediate Addressing . 5-1 7
Long-Immediate Addressing . 5-1 7
PC-Relative Addressing . 5-1 8
Circular Addressing . 5-27

Contents mix

Examples

11-7 Delayed Branch Execution . 11 -1 7
11 -8 Loop Using Block Repeat . 11 -1 9
11-9 Use of Block Repeat to Find a Maximum . 11 -20
11-1 0 Loop Using Single Repeat . 11 -21
11 -1 1 Computed GOT0 . 11 -22
11 -1 2 Use of TSTB for Software-Controlled Interrupt . 11 -23
11-1 3 Copy a Bit From One Location to Another . 11 -24
11-1 4 Block Move Under Program Control . 11 -25
11 -1 5 Bit-Reversed Addressing . 11 -26
11 -1 6 Integer Division . 11 -29
11-1 7 Inverse of a Floating-point Number . 11 -32
11-18 Square Root of a Floating-point Number . 11 -35
11-1 9 64-Bit Addition . 11 -39
11-20 64-Bit Subtraction . 11 -39
11-21 32-Bit-by-32-Bit Multiplication . 11 -40
11 -22 IEEE-to-TMS320C3x Conversion (Fast Version) . 11 -44
11-23 IEEE-to-TMS320C3x Conversion (Complete Version) . 11 -46
11-24 TMS320C3x-to-IEEE Conversion (Fast Version) . 11 -49
11 -25 TMS320C3x-to-I EEE Conversion (Complete Version) . 11 -51
11 -26 p-Law Compression . 11 -54
11 -27 p-Law Expansion . 11 -55
11 -28 A-Law Compression . 11 -56

. 11 -29 A-Law Expansion 11 -57
. 11-30 FIR Filter 11 -59

11-31 IIR Filter (One Biquad) . 11 -61
11-32 IIR Filters (N > 1 Biquads) . 11-64
11 -33 Adaptive FIR Filter (LMS Algorithm) . 11 -68
11-34 Matrix Tmes a Vector Multiplication . 11 -72
11-35 Complex. Radix.2. DIF FFT . 11 -75
11-36 Table With Twiddle Factors for a 64-Point FFT . 11 -78
11-37 Complex. Radix.4. DIF FFT . 11 -81
11 -38 Real. Radix-2 FFT . 11 -88
11-39 Real Inverse. Radix-2 FFT . 11 -108
11-40 Inverse Lattice Filter . 11 -127
11-41 Lattice Filter . 11 -129
11-42 Setup of IDLE2 Power-Down-Mode Wakeup . 11 -133

. 12-1 State Machine and Equations for the Interrupt Generation 16R4 PLD 12-37

Contents xxxi

Introduction

The TMS320C3x generation of digital signal processors (DSPs) are high-per-
formance CMOS 32-bit floating-point devices in the TMS320 family of
single-chip digital signal processors. Since 1982, when the TMS32010 was in-
troduced, the TMS320 family, with its powerful instruction sets, high-speed
number-crunching capabilities, and innovative architectures, has established
itself as the industry standard. It is ideal for DSP applications.

The 40-ns cycle time of the TMS320C31-50 allows it to execute operations at
a performance rate of up to 60 million floating-point instructions per second
(MFLOPS) and 30 million instructions per second (MIPS). This performance
was previously available only on a supercomputer. The generation's perform-
ance is further enhanced through its large on-chip memories, concurrent direct
memory access (DMA) controller, and two external interface ports.

This chapter presents the following major topics:

Topic Page

General Description
s

1 .I General Description

The TMS320 family consists of five generations: TMS320Clx, TMS320C2x,
TMS320C3xI TMS320C4x, and TMS320C5x (see Figure 1-1). The expan-
sion includes enhancements of earlier generations and more powerful new
generations of DSPs.

The TMS320's internal busing and special DSP instruction set have the speed
and flexibility to execute at up to 50 MFLOPS. The TMS320 family optimizes
speed by implementing functions in hardware that other processors imple-
ment through software or microcode. This hardware-intensive approach pro-
vides power previously unavailable on a single chip.

The emphasis on total system cost has resulted in a less expensive processor
that can be designed into systems currently using costly bit-slice processors.
Also, costlperformance selection is provided by the different processors in the
TMS320C3x generation:

a TMS320C30: 60-ns, single-cycle execution-time

iJ TMS320C30-27: Lower cost; 74-ns, single-cycle execution time

Q TMS320C30-40: Higher speed; 50-ns, single-cycle execution time

Q TMS320C30-50: Highest speed; 40-ns, single-cycle execution time

Q TMS320C31: Low cost; 60-ns, single-cycle execution time

Q TMS320C31-27: Lower cost; 74-ns, single-cycle execution time

Q TMS320C31-40: Low cost; 50-ns, single-cycle execution time

IJ TMS320C31 PQA: Low cost; extended temperature; 60-ns, single-cycle
execution time

TMS320C3 1-50: Highest speed; 40-ns, single-cycle execution time

Q TMS320LC31: Low power; 60-ns, single-cycle execution time,
3.3-volt operation

All of these processors are described in this user's guide. Essentially, their
functionality is the same. However, electrical and timing characteristics vary
(as described in Chapter 13); part numbering information is found in Section
B.2 on page B-7. Throughout this book, TMS320C3x is used to refer to the
TMS320C30 and TMS320C31 and all speed variations. TMS320C30 and
TMS320C31 are used to refer to all speed variants of those processors where
appropriate. Special references, such as TMS320C30-40, are used to note
specific exceptions.

General Description

Figure 1 - 1. TMS320 Device Evolution

Fixed-Point Generations Floating-point Generations

Introduction 1-3

General Description

The TMS320C30 and TMS320C31 can perform parallel multiply and arithme-
tic logic unit (ALU) operations on integer or floating-point data in a single cycle.
The processor also possesses a general-purpose register file, a program
cache, dedicated auxiliary register arithmetic units (ARAU), internal dual-ac-
cess memories, one DMA channel supporting concurrent 110, and a short ma-
chine-cycle time. High performance and ease of use are products of thosefea-
tures.

General-purpose applications are greatly enhanced by the large address
space, multiprocessor interface, internally and externally generated wait
states, two external interface ports (one on the TMS320C31), two timers, two
serial ports (one on the TMS320C31), and multiple interrupt structure. The
TMS320C3x supports a wide variety of system applications from host proces-
sor to dedicated coprocessor.

High-level language is more easily implemented through a register-based ar-
chitecture, large address space, powerful addressing modes, flexible instruc-
tion set, and well-supported floating-point arithmetic.

General Descri~tion

Figure 1-2 is a functional block diagram that shows the interrelationships be-
tween the various TMS320C3x key components.

Figure 1-2. TMS320C3x Block Diagram

-
RDY

HOLD
H-A

STRJ
WW

D31-0
A 2 2 4

RESET
I N T M -

IACK
XF1-0

MCBUFP
XI

X2lCLKIN
VDD
vss
SHZ

0 Available on
TMS320C30,
TMS320C30-27, and
TMS320C30-40

Introduction 1-5

TMS320C30 Kev Features

1.2 TMS320C30 Key Features

Some key features of the TMS320C30 are listed below.

0 Performance

W TMS320C30 (33 MHz)

60-ns, single-cycle instruction execution time
m 33.3 MFLOPS
m 16.7 MlPS

m 74-ns, single-cycle instruction execution time
27 MFLOPS

m 13.5 MlPS

50-ns, single-cycle instruction execution time
m 40 MFLOPS

20MlPS

0 One 4K x 32-bit, single-cycle, dual-access, on-chip, read-only memory
(ROM) block

0 Two 1K x 32-bit, single-cycle, dual-access, on-chip, random access
memory (RAM) blocks

Q 64- x 32-bit instruction cache

IJ 32-bit instruction and data words

iJ 24-bit addresses

0 40-132-bit floating-pointbnteger multiplier and ALU

0 32-bit barrel shifter

5 Eight extended-precision registers (accumulators)

0 Two address generators with eight auxiliary registers and two auxiliary
register arithmetic units

Q On-chip DMA controller for concurrent I10 and CPU operation

Q Integer, floating-point, and logical operations

0 Two- and three-operand instructions

Q Parallel ALU and multiplier instructions in a single cycle

TMS320C30 Kev Features

0 Block repeat capability

0 Zero-overhead loops with single-cycle branches

0 Conditional calls and returns

0 Interlocked instructions for multiprocessing support

a Two 32-bit data buses (24- and 13-bit address)

Two serial ports to support 811 6124132-bit transfers

a Two 32-bit timers

a Two general-purpose external flags; four external interrupts

181 -pin grid array (PGA) package; 1 -pm CMOS

Introduction 1-7

TMS320C3 1 Key Features

1.3 TMS320C31 Key Features
The TMS320C31 is a low-cost 32-bit DSP that offers the advantages of afloa-
ting-point processor and ease of use. The TMS320C31 devices are object-
code compatible with the TMS320C30. Aside from lacking a ROM block and
having a single serial port, the TMS320C31 is functionally equivalent to the
TMS320C30 but differs in its respective electrical and timing characteristics.
Chapter 13 describes these differences in detail.

a The TMS320C31 (33 MHz) features are identical to those of the
TMS320C30 device, except that the TMS320C31 uses a subset of the
TMS320C30's standard peripheral and memory interfaces. This main-
tains the 33-MFLOPS performance of the TMS320C30's core CPU while
providing the cost advantages associated with 132-pin plastic quad flat
pack (PQFP) packaging.

The TMS320C31-27 is the slower speed version of the TMS320C31. The
TMS320C31-27 delivers 27 MFLOPS and runs at 27 MHz. The reduced
speed allows you to realize an immediate system cost reduction by using
slower off-chip memories and a lower-cost processor.

Q The TMS320C31-40 is a high-speed version of the TMS320C31. The
40-MHz TMS320C31-40 runs with 50-ns cycle time and offers up to 40
MFLOPS in performance.

The TMS320C31-50 is the highest-speed version of the TMS320C31. The
50-MHz TMS320C31-50 runs with 40-ns cycle time and offers up to 50
MFLOPS in performance.

The TMS320C31 PQA (33 MHz) offers extended-temperature capabilities
to TMS320C31 performance. The TMS320C31 PQA will operate at case
temperatures ranging from -40" C to +85" C, making it a lower-cost floa-
ting-point solution for industrial and extended-temperature commercial
applications.

The TMS320LC31 is the low-power version of the TMS320C31. The
TMS320LC31 runs with 60-ns cycle time and offers up to 33 MFLOPS in
performance at 3.3-volt operation.

Some key features of the TMS320C31, including those which differentiate it
from the TMS320C30, are summarized as follows:

a Performance

TMS320C31 (PQVPQA)

60-ns, single-cycle instruction execution time
33.3 MFLOPS
16.7 MIPS (million instructions per second)

TMS32OC31 Kev Features

74-ns, single-cycle instruction execution time
H 27 MFLOPS
H 13.5 MlPS

H 50-ns, single-cycle instruction execution time
H 40 MFLOPS
H 20MlPS

40-ns, single-cycle instruction execution time
H 50 MFLOPS
H 25 MlPS

H 60-ns, single-cycle instruction execution time
H 33.3 MFLOPS
H 16.7 MlPS
H Low-power, 3.3 volt operation
H Two power-down nodes; 2-MHz operation and idle

0 Flexible boot program loader

One serial port to support 8-11 6-124-132-bit transfers

IJ 132-pin PQFP package, .8 pm CMOS

Introduction 1-9

Typical Applications
I

1.4 Typical Applications

The TMS320family's versatility, real-time performance, and multiple functions
offer flexible design approaches in a variety of applications, which are shown
in Table 1-1.

Table 1-1. Typical Applications of the TMS320 Family

General-Purpose DSP Graphlcs/lmaglng Inrtrumentatlon

Digital Filtering
Convolution
Correlation
Hilbert Transforms
Fast Fourier Transforms
Adaptive Filtering
Windowing
Waveform Generation

3-D Transformations Rendering Spectrum Analysis
Robot Vision Function Generation
lmage Transmission1Compression Pattern Matching
Pattern Recognition Seismic Processing
Image Enhancement Transient Analysis
Homomorphic Processing Digital Filtering
Workstations Phase-Locked Loops
Animation/Digital Map

VoiceISpeech Control Mllltary

Voice Mail
Speech Vocoding
Speech Recognition
Speaker Verification
Speech Enhancement
Speech Synthesis
Text-to-Speech
Neural Networks

Disk Control
Servo Control
Robot Control
Laser Printer Control
Engine Control
Motor Control
Kalman Filtering

Secure Communications
Radar Processing
Sonar Processing
lmage Processing
Navigation
Missile Guidance
Radio Frequency Modems
Sensor Fusion

Telecommunlcatlons Automotive

Echo Cancellation
ADPCM Transcoders
Digital PBXs
Line Repeaters
Channel Multiplexing
1 200- to 19200-bps Modems
Adaptive Equalizers
DTMF EncodingIDecoding
Data Encryption

FAX
Cellular Telephones
Speaker Phones
Digital Speech
Interpolation (DSI)
X.25 Packet Switching
Video Conferencing
Spread Spectrum
Communications

Engine Control
Vibration Analysis
Antiskid Brakes
Adaptive Ride Control
Global Positioning
Navigation
Voice Commands
Digital Radio
Cellular Telephones

Consumer lndustrlal

Radar Detectors Robotics
Power Tools Numeric Control
Digital Audiom Security Access
Music Synthesizer Power Line Monitors
Toys and Games Visual Inspection
Solid-state Answering Lathe Control

Machines CAM

Hearing Aids
Patient Monitoring
Ultrasound Equipment
Diagnostic Tools
Prosthetics
Fetal Monitors
MR Imaging

TMS320C3x Architecture

This chapter gives an architectural overview of the TMS320C3x processor.

Major areas of discussion are listed below.

Topic Page

Architectural Overview

2.1 Architectural Overview

The TMS320C3x architecture responds to system demands that are based on
sophisticated arithmetic algorithms and that emphasize both hardware and
software solutions. High performance is achieved through the precision and
wide dynamic range of the floating-point units, large on-chip memory, a high
degree of parallelism, and the direct memory access (DMA) controller.

Figure 2-1 is a block diagram of the TMS320C3x architecture.

Figure 2-2. Central

Central Processing Unit (CPU)

Processing Unit (CPU)

Disp = an 8-bit integer displacement carried in a program control instruction

TMS320C3x Architecture

Central Processing Unit (CPU)

2.2.1 Muitlpller

The multiplier performs single-cycle multiplications on 24-bit integer and 32-bit
floating-point values. The TMS320C3x implementation of floating-point arith-
metic allows for floating-point operations at fixed-point speeds via a 50-11s in-
struction cycle and a high degree of parallelism. To gain even higher through-
put, you can use parallel instructions to perform a multiply and ALU operation
in a single cycle.

When the multiplier performs floating-point multiplication, the inputs are 32-bit
floating-point numbers, and the result is a 40-bit floating-point number. When
the multiplier performs integer multiplication, the input data is 24 bits and yields
a 32-bit result. Refer to Chapter 4 for detailed information on data formats and
floating-point operation.

2.2.2 Arithmetic Logic Unit (ALU)

The ALU performs single-cycle operations on 32-bit integer, 32-bit logical, and
40-bit floating-point data, including single-cycle integer and floating-point con-
versions. Results of the ALU are always maintained in 32-bit integer or 40-bit
floating-point formats. The barrel shifter is used to shift up to 32 bits left or right
in a single cycle. Refer to Chapter 4 for detailed information on data formats
and floating-point operation.

Internal buses, CPUl/CPU2 and REGIlREG2, carry two operands from
memory and two operands from the register file, thus allowing parallel multi-
plies and addslsubtracts on four integer or floating-point operands in a single
cycle.

2.2.3 Auxiliary Register Arithmetic Units (ARAUs)

Two auxiliary register arithmetic units (ARAUO and ARAU1) can generate two
addresses in a single cycle. The ARAUs operate in parallel with the multiplier
and ALU. They support addressing with displacements, index registers (IRO
and IRl), and circular and bit-reversed addressing. Refer to Chapter 5 for a
description of addressing modes.

Central Processing Unit (CPU)

2.2.4 CPU Register File

The TMS320C3x provides 28 registers in a multiport register file that is tightly
coupled to the CPU. All of these registers can be operated upon by the multipli-
er and ALU and can be used as general-purpose registers. However, the regis-
ters also have some special functions. For example, the eight extended-praci-
sion registers are especially suited for maintaining extended-precision float-
ing-point results. The eight auxiliary registers support a variety of indirect ad-
dressing modes and can be used as general-purpose 32-bit integer and logical
registers. The remaining registers provide such system functions as address-
ing, stack management, processor status, interrupts, and block repeat. Refer
to Chapter 6 for detailed information and examples of stack management and
register usage.

The register names and assigned functions are listed in Table 2-1. Following
the table, the function of each register or group of registers is briefly described.
Refer to Chapter 3 for detailed information on each of the CPU registers.

TMS320C3x Architecture 2-7

Central Processing Unit (CPU)

Table 2-1. CPU Registers

Reglrter
Name Assigned Function

RO
R1
R2
R3
R4
R5
R6
R7

ARO
AR 1
AR2
AR3
AR4
AR5
AR6
AR7

DP
I RO
IR1
BK
SP

ST
I E
IF

IOF

RS
RE
RC

Extended-precision register 0
Extended-precision register 1
Extended-precision register 2
Extended-precision register 3
Extended-precision register 4
Extended-precision register 5
Extended-precision register 6
Extended-precision register 7

Auxiliary register 0
Auxiliary register 1
Auxiliary register 2
Auxiliary register 3
Auxiliary register 4
Auxiliary register 5
Auxiliary register 6
Auxiliary register 7

Data-page pointer
lndex register 0
lndex register 1
Block size
System stack pointer

Status register
CPUJDMA interrupt enable
CPU interrupt flags
It0 flags

Repeat start address
Repeat end address
Repeat counter

The extended-precision registers (R7-RO) are capable of storing and sup-
porting operations on 32-bit integer and 40-bit floating-point numbers. Any in-
struction that assumes the operands are floating-point numbers uses bits
39-0. If the operands are either signed or unsigned integers, only bits 31-0
are used; bits 39-32 remain unchanged. This is true for all shift operations.
Refer to Chapter 4 for extended-precision register formats for floating-point
and integer numbers.

The 32-bit auxiliary registers (AR7-ARO) can be accessed by the CPU and
modified by the two ARAUs. The primary function of the auxiliary registers is
the generation of 24-bit addresses. They can also be used as loop counters
or as 32-bit general-purpose registers that can be modified by the multiplier
and ALU. Refer to Chapter 5 for detailed information and examples of the use
of auxiliary registers in addressing.

Central Processing Unit (CPU)

The data page pointer (DP) is a 32-bit register. The eight LSBs of the data
page pointer are used by the direct addressing mode as a pointer to the page
of data being addressed. Data pages are 64K words long, with a total of 256
pages.

The 32-bit index registers (IRO, IR1) contain the value used by the ARAU to
compute an indexed address. Refer to Chapter 5 for examples of the use of
index registers in addressing.

The ARAU uses the 32-bit block size register (BK) in circular addressing to
specify the data block size.

The system stack pointer (SP) is a 32-bit register that contains the address
of the top of the system stack. The SP always points to the last element pushed
onto the stack. A push performs a preincrement of the system stack pointer;
a pop performs a postdecrement. The SP is manipulated by interrupts, traps,
calls, returns, and the PUSH and POP instructions. Refer to Section 5.5 for in-
formation about system stack management.

The status register (ST) contains global information relating to the state of the
CPU. Operations usually set the condition flags of the status register accord-
ing to whether the result is 0, negative, etc. This includes register load and
store operations as well as arithmetic and logical functions. When the status
register is loaded, however, a bit-for-bit replacement is performed with the con-
tents of the source operand, regardless of the state of any bits in the source
operand. Therefore, following a load, the contents of the status register are
identical to the contents of the source operand. This allows the status register
to be easily saved and restored. See Table 3-2 for a list and definitions of the
status register bits.

The CPUIDMA interrupt enable register (IE) is a 32-bit register. The CPU
interrupt enable bits are in locations 10-0. The DMA interrupt enable bits are
in locations 26-1 6. A 1 in a CPUIDMA interrupt enable register bit enables the
corresponding interrupt. A 0 disables the corresponding interrupt. Refer to
subsection 3.1.8 for bit definitions.

The CPU interrupt flag register (IF) is also a 32-bit register (see subsection
3.1 -9). A 1 in a CPU interrupt flag register bit indicates that the corresponding
interrupt is set. A 0 indicates that the corresponding interrupt is not set.

The 110 flags register (IOF) controls the function of the dedicated external
pins, XFO and XF1. These pins may be configured for input or output and may
also be read from and written to. See subsection 3.1.1 0 for detailed informa-
tion.

TMS320C3x Architecture 2-9

Central Processing Unit (CPU)
I

The repeat counter (RC) is a 32-bit register used to specify the number of
times a block of code is to be repeated when performing a block repeat. When
the processor is operating in the repeat mode, the 32-bit repeat start address
register (RS) contains the starting address of the block of program memory
to be repeated, and the 32-bit repeat end address register (RE) contains the
ending address of the block to be repeated.

The program counter (PC) is a 32-bit register containing the address of the
next instruction to be fetched. Although the PC is not part of the CPU register
file, it is a register that can be modified by instructions that modify the program
flow.

Memory Organization

2.3 Memory Organization

The total memory space of the TMS320C3x is 16M. (million) 32-bit words. Pro-
gram, data, and I10 space are contained within this 16M-word address space,
thus allowing tables, coefficients, program code, or data to be stored in either
RAM or ROM. In this way, memory usage is maximized and memory space
allocated as desired.

2.3.1 RAM, ROM, and Cache

Figure 2-3 shows how the memory is organized on the TMS320C3x. RAM
blocks 0 and 1 are each 1 K x 32 bits. The ROM block, available only on the
TMS320C30, is 4K x 32 bits. Each RAM and ROM block is capable of support-
ing two CPU accesses in a single cycle. The separate program buses, data
buses, and DMA buses allow for parallel program fetches, data reads and
writes, and DMA operations. For example: the CPU can access two data val-
ues in one RAM block and perform an external program fetch in parallel with
the DMA loading another RAM block, all within a single cycle.

TMS320C3x Architecture 2-1 1

Memory Organization

Figure 2-3. Memory Organization

Instruction Register

Available on TMS320C30

A 64 x 32-bit instruction cache is provided to store often-repeated sections of
code, thus greatly reducing the number of off-chip accesses necessary. This
allowsfor code to be stored off-chip in slower, lower-cost memories. The exter-
nal buses are also freed for use by the DMA, external memoryfetches, or other
devices in the system.

Refer to Chapter 3 for detailed information about the memory and instruction
cache.

Memory Organization

2.3.2 Memory Maps

The memory map depends on whether the processor is running in micropro-
cessor mode (MCI~ or M C B U ~ = 0) or microcomputer mode (MCIW or
M C B U ~ = 1). The memory maps for these modes are similar (see
Figure 2-4 and Figure 2-5). Locations 800000h-801 FFFh are mapped to the
expansion bus. When this region, available only on the TMS320C30, is ac-
cessed, is active. Locations 802000h403FFFh are reserved. Loca-
tions 804000h-805FFFh are mapped to the expansion bus. When this region,
available only on the TMS320C30, is accessed, is active. Locations
806000h-807FFFh are reserved. All of the memory-mapped peripheral bus
registers are in Iccations 808000M097FFh. In both modes, RAM block 0 is
located at addresses 809800M09BFFh, and RAM block 1 is located at ad-
dresses 809COOM09FFFh. Locations 80AOOOh-OFFFFFFh are accessed
over the external memory port (STRB active).

In microprocessor mode, the 4K on-chip ROM (TMS320C30) or boot loader
(TMS320C31) is not mapped into the TMS320C3x memory map. Locations
Oh-OBFh consist of interrupt vector, trap vector, and reserved locations, all of
which are accessed over the external memory port (STRB active). Locations
OCOh-7FFFFFh are also accessed over the external memory port.

In microcomputer mode, the 4K on-chip ROM (TMS320C30) or boot loader
(TMS320C31) is mapped into locations Oh-OFFFh. There are 192 locations
(Oh-OBFh) within this block for interrupt vectors, trap vectors, and a reserved
space (TMS320C30). Locations 1000h-7FFFFFh are accessed over the ex-
ternal memory port (-active).

Section 3.2 on page 3-13 describes the memory maps in greater detail and
provides the peripheral bus map and vector locations for reset, interrupts, and
traps.

Memory -
Figure

Organization

2-4. TMS320C30 Memory Maps

and Resewed Locations (1 92)
(External STRB Active)

03Fh
040h

7FFFFFh

MSTRB Active

801 FFFh
802000h

I Resewed I
I (8K Words) I

803FFFh
Expansion Bus
IOSTRB Active

(8K Words)
805FFFh
806000h I

I Resewed
(8K Words) I

Peripheral Bus
Memory-Mapped

Registers
(6K Words Internal)

8097FFh 8098OOhl-

RAM Block 0

(a) Microprocessor Mode

809BFFh
809C00h

809FFFh
80A000h

OFFFFFFh

(Internal)

(1 K Word Internal)

RAM Block 1
(1 K Word Internal)

External -
STRB Active

OFFFh

STRB Actkre
7FFFFFh

MSTRB Actiie

801 FFFh
802000h

Resewed I (8K Words) 1

I Reserved
(8K Words)

807FFFh
808000h

Peripheral Bus
Memory-Mapped

Registers
(Internal)

(8K Words Internal)

8097FFh
809800h

RAM Block 0
(1 K Word Internal)

809BFFh 809CWh 1-
RAM Block 1 I (1 K Word Internal)

809FFFh
80A000h

STRB Active
OFFFFFFh 1-

(b) Microcomputer Mode

Memory Organization

Figure 2-5. TMS320C31 Memory Maps

(External STRB Active)

Resewed
(32K Words)

Peripheral Bus
Memory-Mapped

Registers
(6K Words Internal)

RAM Block 0
(1 K Word Internal)

RAM Block 1
(1 K Word Internal)

809FFFh

External
STRB Active

(a) Microprocessor Mode

I Resewed for Boot
Loader Operationo
(See Section 3.4) I

FFFFFFh

807FFFh
808000h

8097FFh
809800h

809BFFh
809cooh

809FCOh
809FCl h

(b) Mirocomputer/Boot Loader Mode

Resewed
(32K Words)

,

Peripheral Bus
Memory-Mapped

Registers
(6K Words Internal)

'

RAM Block 0
(1 K Word Internal)

RAMBlockl
(1 K Word-63 Internal)

User Program Interrupt
and Trap Branches
(63 Words Internal)

TMS320C3x Architecture 2-1 5

Memory Organization

2.3.3 Memory Addressing Modes

The TMS320C3x supports a base set of general-purpose instructions as well
as arithmetic-intensive instructions that are particularly suited for digital signal
processing and other numeric-intensive applications. Refer to Chapter 5 for
detailed information on addressing.

Five groups of addressing modes are provided on the TMS320C3x. Six types
of addressing can be used within the groups, as shown in the following list:

0 General addressing modes:

Register. The operand is a CPU register.
Short immediate. The operand is a 1 6-bit immediate value.
Direct. The operand is the contents of a 24-bit address.
Indirect. An auxiliary register indicates the address of the operand.

0 Three-operand addressing modes:

Register. Same as for general addressing mode.
Indirect. Same as for general addressing mode.

0 Parallel addressing modes:

Register. The operand is an extended-precision register.
Indirect. Same as for general addressing mode.

a Long-immediate addressing mode.

The Long-immediate operand is a 24-bit immediate value.

0 Conditional branch addressing modes:

Register. Same as for general addressing mode.
PC-relative. A signed 16-bit displacement is added to the PC.

Instruction Set Summary

2.4 Instruction Set Summary

Table 2-2 lists the TMS320C3x instruction set in alphabetical order. Each
table entry shows the instruction mnemonic, description, and operation. Refer
to Chapter 10 for a functional listing of the instructions and individual instruc-
tion descriptions.

Table 2-2. Instruction Set Summary

Mnemonic Deacrlptlon Operation
ABSF Absolute value of a floating-point number lsrd -. Rn
ABSl
ADDC
ADDC3
ADDF
ADDF3
ADD1
ADD13
AND
AND3
ANDN
ANDN3
ASH

Bcond

BcondD

BR
BRD

CALL

Legend:

Absolute value of an integer
Add integers with carry
Add integers with carry (3 operand)
Add floating-point values
Add floating-point values (3 operand)
Add integers
Add integers (3 operand)
Bitwise logical AND
Bitwise logical AND (3 operand)
Bitwise logical AND with complement
Bitwise logical ANDN (3 operand)
Arithmetic shift

Arithmetic shift (3 operand)

Branch conditionally (standard)

Branch conditionally (delayed)

Branch unconditionally (standard)
Branch unconditionally (delayed)

Call subroutine

C carry 't
cond condition code
Dreg register address (any register)
Rn register address (R7-RO)
srcl three-operand addressing modes

lsrd -, Dreg
src + Dreg + C -+ Dreg
srcl + src2 + C -, Dreg
src + Rn -+ Rn
srcl + src2 4 Rn
src + Dreg -. Dreg
srcl + src2 + -, Dreg
Dreg AND src -, Dreg
srcl AND src2 -, Dreg
Dreg AND -, Dreg
srcl AND srd -9 Dreg
If count a 0:

(Shifted Dreg left by count) -+ Dreg
Else:

(Shifted Dreg right by]count/) 4 Dreg
If count a 0:

(Shifted src left by count) -, Dreg
Else:

(Shifted src right by Icountl) -, Dreg
If cond = true:

If Csrc is a register, Csrc 4 PC
If Csrc is a value, Csrc + PC + PC

Else, PC + 1 -, PC
If cond = true:

If Csrc is a register, Csrc 4 PC
If Csrc is a value, Csrc + PC + 3 -, PC

Else, PC + 1 -, PC

Value -, PC
Value -, PC

PC+ 1 -TOS
Value -.. PC
Csrc conditional-branch addressing modes
count shift value (general addressing modes)
PC program counter
src general addressing modes
src2 three-operand addressing modes

TMS320C3x Architecture 2-1 7

Instruction Set Summary

Table 2-2. Instruction Set Summary (Continued)

Mnemonlc Description Operation

CALLcond Call subroutine conditionally If cond = true:
PC t 1 -,TOS
If Csrc is a register, Csrc -, PC
If Csrc is a value, Csrc t PC + PC

Else, PC + 1 -, PC

CMPF Compare floating-point values

CMPF3 Compare floating-point values
(3 operand)

CMPl Compare integers

CMP13 Compare integers (3 operand)

DBcond Decrement and branch conditionally
(standard)

DBcondD Decrement and branch conditionally
(delayed)

FIX Convert floating-point value to integer

Set flags on Rn - src

Set flags on srcl - s r d

Set flags on Dreg - src

Set flags on srcl - s r d

ARn - 1 -, ARn
If cond = true and ARn r: 0:

If Csrc is a register, Csrc 4 PC
If Csrc is a value, Csrc t PC + 1 -r PC

Else, PC t 1 -, PC

ARn - 1 -, ARn
If cond = true and ARn r 0:

If Csrc is a register, Csrc -, PC
If Csrc is a value, Csrc + PC t 3 -. PC

Else, PC t 1 - PC

Fix (src) -, Dreg

FLOAT Convert integer to floating-point value Float(src) -, Rn

lACK Interrupt acknowledge

IDLE Idle until interrupt

LD E Load floating-point exponent

Dummy read of src -
IACK toggled low, then high

PC+ 1 -.PC
ldle until next interrupt

LDF Load floating-point value src -, Rn

LDFcond Load floating-point value conditionally If cond = true, src -. Rn
Else, Rn is not changed

LDFl Load floating-point value, interlocked Signal interlocked operation src -, Rn

LDI Load integer src 4 Dreg

LDl cond Load integer conditionally If cond = true, src -, Dreg
Else, Dreg is not changed

Legend: ARn auxiliary register n (AR7-ARO Rn register address (R7 - RO)
Csrc conditional-branch addressing modes src general addressing modes
cond condition code srcl threesperand addressing modes
Dreg register address (any register) sf& threeoperand addressing modes
PC program counter TOS top of stack

Instruction Set Summary

Table 2-2. Instruction Set Summary (Continued)

Mnemonic Descrlptlon Operetion

LDll Load integer, interlocked Signal interlocked operation src -+ Dreg

LD M Load floating-point mantissa src (mantissa) -+ Rn (mantissa)

LSH Logical shift

LSH3 Logical shift (3-operand)

MPYF Multiply floating-point values

If count r 0:
(Dreg left-shifted by count) -+ Dreg

Else:
(Dreg right-shifted by Icountl) -, Dreg

If count r 0:
(src left-shifted by count) -, Dreg

Else:
(src right-shifted by JcountJ) -+ Dreg

srcx Rn - Rn

M PYF3 Multiply floating-point value (3 operand) srcl x s r d -, Rn

MPYl Multiply integers src x Dreg -. Dreg

MPY13 Multiply integers (3 operand) srcl x s r d -r Dreg

NEGB Negate integer with borrow 0- src-C -, Dreg

NEGF Negate floating-point value 0-src-, Rn

NEGl Negate integer 0 - src -, Dreg

NOP No operation Modify ARn if specified

NORM Normalize floating-point value Normalize (src) -, Rn
-

NOT Bitwise logical complement src 4 Dreg

OR Bitwise logical OR Dreg OR src -. Dreg

OR3 Bitwise logical OR (3 operand) srcl OR s r d -. Dreg

POP Pop integer from stack *SP-- -. Dreg

POPF Pop floating-point value from stack *SP-- -. Rn

PUSH Push integer on stack Sreg -. *++ SP

PUSHF Push floating-point value on stack Rn -. *++ SP

Legend: ARn auxiliary register n (AR7-ARO) SP stack pointer
C carry bi Sreg register address (any register)
Dreg register address (any register) src general addressing modes
PC program counter srcl Joperand addressing modes
Rn register address (R7-RO) src2 toperand addressing modes

TMS320C3x Architecture 2-1 9

Instruction Set Summary

Table 2-2. instruction Set Summary (Continued)

Mnemonic Description Operation
- - -

RETl cond Return from interrupt conditionally If cond = true or missing:
*SP-- -- PC
1 - ST (GIE)

Else, continue

RETScond Return from subroutine conditionally If cond = true or missing:
*SP-- -- PC

Else, continue

RND Round floating-point value Round (src) - Rn

ROL Rotate left Dreg rotated left 1 bit -- Dreg

ROLC Rotate left through carry Dreg rotated left 1 bit through carry -, Dreg

ROR Rotate right Dreg rotated right 1 bit - Dreg

RORC Rotate right through carry Dreg rotated right 1 bit through carry -, Dreg

RPTB Repeat block of instructions

RPTS Repeat single instruction

SlGl Signal, interlocked

STF Store floating-point value

src -c RE
1 -- ST (RM)
Next PC -- RS

src -, RC
1 - ST (RM)
Next PC - RS
Next PC -. RE

Signal interlocked operation
Wait for interlock acknowledge
Clear interlock

Rn -, Daddr

STFl Store floating-point value, interlocked Rn -, Daddr
Signal end of interlocked operation

ST1 Store integer Sreg - Daddr

STll Store integer, interlocked Sreg - Daddr
Signal end of interlocked operation

SUBB Subtract integers with borrow Dreg - src - C - Dreg
Le~end: C carw bit RM repeat mode bit -

cond condition code RS r e k t start register
Daddr destination memory address Rn register address (R7-RO)
Dreg register address (any register) SP stack pointer
GIE global interrupt enable register ST status register
PC program counter Sreg register address (any register)
RC repeat counter register src general addressing modes
RE repeat interrupt register

Instruction Set Summary

Table 2-2. Instruction Set Summary (Concluded)

Mnemonlc Descrlptlon Operation

SUBB3 Subtract integers with borrow (3 operand) srcl - srd - C 4 Dreg

SUBC Subtract integers conditionally If Dreg - src + 0:
[(Dreg - src) << 11 OR 1 -. Dreg
Else, Dreg << 1 -. Dreg

SUBF Subtract floating-point values Rn - src + Rn

SUBF3 Subtract floating-point values (3 operand) srcl - src2 -+ Rn

SUB1 Subtract integers Dreg - src -, Dreg

SUB13 Subtract integers (3 operand) srcl - srQ -, Dreg

SUBRB Subtract reverse integer with borrow src - Dreg - C -. Dreg

SUBRF Subtract reverse floating-point value src- Rn -, Rn

SUBRl Subtract reverse integer src - Dreg + Dreg

SWI Software interrupt Perform emulator interrupt sequence

TRAPcond Trap conditionally If cond = true or missing:
Next PC -, * ++ SP
Trap vector N -. PC
0 -, ST (QIE)

Else, continue

TSTB Test bit fields Dreg AND src

TSTW Test bit fields (3 operand) srcl AND src2

XOR Bi i ise exclusive OR Dreg XOR src + Dreg

XOR3 B i i s e exclusive OR (3 operand) srcl XOR src2 -, Dreg

Legend: C cany bit Rn register address (R7310)
cond condition code SP st&% pointer
Dreg register address (any register) sn: general addressing modes
GIE global interrupt enable register mi Soperand addressing modes
N any trapvectw0-27 wc2 3operand addressing msdes
PC program counter ST status register

TMS320C3x Architecture 2-21

lnternal Bus Operation

2.5 Internal Bus Operation

Much of the TMS320C3x's high performance is due to internal busing and par-
allelism. The separate program buses (PADDR and PDATA), data buses
(DADDRl, DADDR2, and DDATA), and DMA buses (DMAADDR and
DMADATA) allow for parallel program fetches, data accesses, and DMA ac-
cesses. These buses connect all of the physical spaces (on-chip memory,
off-chip memory, and on-chip peripherals) supported by the TMS320C30.
Figure 2-3 shows these internal buses and their connection to on-chip and off-
chip memory blocks.

The PC is connected to the 24-bit program address bus (PADDR). The instruc-
tion register (IR) is connected to the 32-bit program data bus (PDATA). These
buses can fetch a single instruction word every machine cycle.

The 24-bit data address buses (DADDRI and DADDR2) and the 32-bit data
data bus (DDATA) support two data memory accesses every machine cycle.
The DDATA bus carries data to the CPU over the CPU1 and CPU2 buses. The
CPU1 and CPU2 buses can carry two data memory operands to the multiplier,
ALU, and register file every machine cycle. Also internal to the CPU are regis-
ter buses REG1 and REG2, which can carry two data values from the register
file to the multiplier and ALU every machine cycle. Figure 2-2 shows the buses
internal to the CPU section of the processor.

The DMA controller is supported with a 24-bit address bus (DMAADDR) and
a32-bit data bus (DMADATA). These buses allow the DMA to perform memory
accesses in parallel with the memory accesses occurring from the data and
program buses.

Parallel Instruction Set Summary
L

2.6 Parallel lnstruction Set Summary

Table 2-3 lists the 'C3x instruction set in alphabetical order. Each table entry
shows the instruction mnemonic, description, and operation. Refer to Section
10.3 on page 10-14 for a functional listing of the instructions and individual
instruction descriptions.

Parallel lnstruction Set Summary

Table 2-3. Parallel Instruction Set Summary

Mnemonic Description Operation

Parallel Arithmetic With Store Instruction8

ABSF Absolute value of a floating point
II STF

ABSl
II ST1

Absolute value of an integer

Add floating point

Add integer

Bitwise logical AND

Arithmetic shift

FIX Convert floating point to integer
II ST'

FLOAT Convert integer to floating point
II STF

LD F Load floating point
I1 STF

LDI Load integer
II ST1

LSH3 Logical shift
II ST1

srcl t src2 -, dsfl
11 src3 -* dsf2

srcl t src2 -. dstl
)I src3 -, ds12

srcl AND src2 -, dstl
)I src3 + dst2

If count r 0:
src2 << count - dstl
11 src3 -+ dsf2
Else:
src2 >> Jcountl -, dstl
11 src3 -, dst2

Fix(src2) 4 dstl
11 src3 - dst2

Float(src2) 4 dstl
11 src3 -+ dsf2

src2 -, dstl
(1 src3 -, dst2

src2 -, dstl
11 src3 -, dsf2

If count r 0:
s r d << count -, dstl
)I s r d -, dst2
Else:
src2 >> (count1 -, dstl
)I src3 dsf2

MPYF3 Multiply floating point srcl x src2 -, dstl
11 STF I I src3 4 dsf2

MPY13 Multiply integer srcl x src2 -, dstl
11 ST1 (1 src3 + dst2

Legend: count register addr (R 7 4 0) srcl register addr (R74O)
dstl register addr (R7-RO) srQ indirect addr (disp = 0, 1, IRO, IR1)
dsa indirect addr (disp = 0, 1, IRO, IR1) s r d register addr (R7-RO)

Parallel Instruction Set Summary

Table 2-3. Parallel Instruction Set Summary (Continued)

Mnemonlc Descrlptlon Operation

Parallel Arithmetic With Store lnstructlons (Concluded)

NEGF Negate floating point & s r d - dstl
11 STF 11 src3 -, dsf2

NEGl Negate integer 0 - src2 -, dstl
11 ST1 11 src3 -, dsf2

NOT
-

Complement srcl -r dsfl
11 ST1 (1 src3 -r dsiz

OR3 Bitwise logical OR srcl OR src2 -, dstl
11 ST1 11 src3 -, dsf2

STF Store floating point srcl -r dstl
I1 STF 11 src3 -, dsf2

ST1 Store integer srcl -, dstl
11 ST1 11 src3 -, dsf2

SUBF3 Subtract floating point srcl - src2 -+ dstl
11 STF 11 src3 -, dsf2

SUB13 Subtract integer srcl - src2 -, dstl
I I ST1 11 s r a -, ~ S Q

XOR3 Bitwise exclusive OR srcl XOR s r d + dsfl
II ST1 11 src3 3 dsi;!

Parallel Load lnstructlons

LDF Load floating point src2 -, dstl
II LDF 11 src4 -, dsiz

LDI Load integer src2 -, dsfl
11 LDI I(src4 -, dslz

Parallel Multiply And Add/Subtract Instructions

MPYF3 Multiply and add floating point opl xop2-,op3
11 ADDF3 11 0p4 + Op5 4 op6

MPYF3 Multiply and subtract floating point opt x op2 + op3 11 SUBF3 I(0p4 - 0p5 4 op6

MPY13 Multiply and add integer opl xop2-,op3
11 ADD13 (1 Op4 + Op5 -, op6

MPY13 Multiply and subtract integer opl x op2 + op3
11 SUB13)I Op4 - 0p5 -, op6

Legend: dsfl register addr (R7-RO) op3 register addr (RO or R1)
dst2 indirect addr (disp = 0, 1, IRO, IR1) op6 register addr (R2 or R3)
opl , op2,0p4, and op5 Any two of these srcl register addr (R7-RO)

operands must be specified using src2 indirect addr (disp = 0, 1, IRO, IR1)
register addr; the remaining two src3 register addr (R7-RO)
must be specified using indirect.

TMS320C3x Architecture 2-25

External Bus Operation

2.7 External Bus Operation

The TMS320C30 provides two external interfaces: the primary bus and the ex-
pansion bus. The TMS320C31 provides one external interface: the primary
bus. Both primary and expansion buses consist of a 32-bit data bus and a set
of control signals. The primary bus has a 24-bit address bus, whereas the ex-
pansion bus has a 13-bit address bus. Both buses can be used to address ex-
ternal programldata memory or I10 space. The buses also have an external -
RDY signal for wait-state generation. You can insert additional wait states un-
der software control. Refer to Chapter 7 for detailed information on external
bus operation.

2.7.1 External Interrupts

The TMS320C3x supports four external interrupts (W3-lNT0)), a number of
internal interrupts, and a nonmaskable external RESET signal. These can be
used to interrupt either the DMA or the CPU. When the CPU responds to the -
interrupt, the IACK pin can be used to signal an external interrupt acknowl-
edge. Section 6.5 (beginning on page 6-1 8) covers RESET and interrupt pro-
cessing.

2.7.2 Interlocked-Instruction Signaling

Two external I10 flags, XFO and XF1 , can be configured as input or output pins
under software control. These pins are also used by the interlocked operations
of the TMS320C3x. The interlocked-operations instruction group supports
multiprocessor communication (see Section 6.4 on page 6-1 2 for examples of
the use of interlocked instructions).

2.8 Peripherals

All TMS320C3x peripherals are controlled through memory-mapped registers
on a dedicated peripheral bus. This peripheral bus is composed of a32-bit data
bus and a 24-bit address bus. This peripheral bus permits straightforward
communication to the peripherals. The TMS320C3x peripherals include two
timers and two serial ports (only one serial port is available on the
TMS320C31). Figure 2-6 shows the peripherals with associated buses and
signals. Refer to Chapter 8 for detailed information on the peripherals.

Figure 2-6. Peripheral Modules

FSXO

DXO

CLKXO

FSRO

* DRO
Data Receive Register

-*--c CLKRO
L

FSXI

DX1

CLKX1

FSRI

DR1

c w 1

TCLKO

Available on TMS320C30

TMS320C3x Architecture 2-27

Peripherals

2.8.1 Timers

The two timer modules are general-purpose 32-bit timerlevent counters with
two signaling modes and internal or external docking. Each timer has an I10
pin that can be used as an input clock to the timer or as an output signal driven
by the timer. The pin can also be configured as a general-purpose I10 pin.

2.8.2 Serlal Ports

The two bidirectional serial ports are totally independent. They are identical to
a complementary set of control registers that control each port. Each serial
port can be configured to transfer 8, 16, 24, or 32 bits of data per word. The
clock for each serial port can originate either internally or externally. An inter-
nally generated divide-down clock is provided. The serial port pins are confi-
gurable as general-purpose 110 pins. The serial ports can also be configured
as timers. A special handshake mode allows TMS320C3xs to communicate
over their serial ports with guaranteed synchronization.

Direct Memory Access (DMA)

2.9 Direct Memory Access (DMA)

The on-chip DMA controller can read from or write to any location in the
memory map without interfering with the operation of the CPU. Therefore, the
TMS320C3x can interface to slow external memories and peripherals without
reducing throughput to the CPU. The DMA controller contains its own address
generators, source and destination registers, and transfer counter. Dedicated
DMA address and data buses minimize conflicts between the CPU and the
DMA controller. A DMA operation consists of a block or single-word transfer
to or from memory. Refer to Section 8.3 on page 8-43 for detailed information
on the DMA controller. Figure 2-7 shows the DMA controller with associated
buses.

Figure 2-7. DMA Controller

TMS320C3x Architecture 2-29

TMS320C30 and TMS320C3 1 Differences

2.10 TMS320C30 and TMS320C31 Differences

This section addresses the major memory access differences between the
TMS320C31 and the TMS320C30 devices. Observance of these consider-
ations is critical for achieving design goal success.

Table 2-4 shows these differences, which are detailed in the following subsec-
tions.

Table 24. Feature Set Comparison

Feature TMS320C31 TMS320C30

Datalprogram bus Primary bus: one bus composed of Two buses:
a 32-bit data and a 24-bit address Primary bus: a 32-bit data and a
bus 24-bit address

Expansion bus: a 32-bit data and
a 13-bit address

Serial I10 ports 1 serial port (SPO) 2 serial ports (SPO, SPI)

User programldata ROM Not available 4K words11 6K bytes

Program boot loader User selectable Not available

2.1 0.1 DataIProgram Bus Differences

The TMS320C31 uses only the primary bus and reserves the memory space
that was previously used for expansion bus operations.

2.1 0.2 Serial-Port Differences

Serial port 1 references in Section 8.2 are not applicable to the TMS320C31.
The memory locations identified for the associated control registers and buff-
ers are reserved.

2.1 0.3 Reserved Memory Locations

Table 2-5 identifies TMS320C31 reserved memory locations in addition to
those shown in Figure 3-8 on page 3-1 6.

TMS320C30 and TMS320C3 1 Differences

Table 2-5. TMS320C3 1 Reserved Memory Locations

Feature TMS320C31 TMS320C30

Ox000000-0~000FFF ~esewedt Microcomputer program/data ROM modet

0 ~ ~ x 8 0 1 FFF Reserved Expansion bus MSTRB space

O x 8 0 4 ~ x 8 0 5 F F F Resewed Expansion bus space

Ox808050 Resewed SP1 global-control register

0~808052-0~808056 Reserved SP1 local-control registers

0x808058 Reserved SP1 data-transmit buffer

Ox80805C Resewed SP1 receive-transmit buffer

0x808060 Reserved Expansion bus control register
7 Applies to the MCBL and MC modes only.

2.10.4 Effects on the IF and IE Interrupt Registers

The bits associated with serial port 1 in the IE (interrupt enable) register and
the IF (interrupt flag) register for the TMS320C30 are not applicable to the
TMS320C31. Write only logic 0 data to IE register bits 6,7,22, and 23 and to
IF register bits 6 and 7. Writing logic 1s to these bits produces unpredictable
results.

2.1 0.5 User ProgramlData ROM

The user prograrnldata ROM that is available for the TMS320C30 device does
not exist for the TMS320C31. Rather, the memory locations that were allo-
cated to support user programldata ROM operations have been reserved on
the TMS320C31 to support microcomputer/boot loader accessing. See
Chapter 3 for more information on using the microcomputer/bwt loader func-
tion.

2.1 0.6 Development Considerations

If you are developing application code using a TMS320C3x simulator, XDS,
or ASMILNK, TI recommends that you modify the .cfm and .cmd files by re-
moving these memory spaces from the tool's configured memory. This
ensures that your developed application performs as expected when the
TMS320C31 device is used.

TMS320C3x Architecture 2-31

System Integration

2.11 System lntegration

In summary, the TMS320C3x is a powerful DSP system that integrates an in-
novative, high-performance CPU, two external interface ports, large memo-
ries, and efficient buses to support its speed. A single chip contains this sys-
tem, along with peripherals such as a DMA controller, two serial ports, and two
timers. The TMS320C3x system is truly an affordable single-chip solution.

CPU Registers, Memory, and Cache

The central processing unit (CPU) register file contains 28 registers that can
be operated on by the multiplier and arithmetic logic unit (ALU). Included in the
register file are the auxiliary registers, extended-precision registers, and index
registers. The registers in the CPU register file support addressing, float-
ing-pointlinteger operations, stack management, processor status, block re-
peats, and interrupts.

The TMS320C3x provides a total memory space of 16M (million) 32-bit words
containing program, data, and I10 space. Two RAM blocks of 1 K x 32 bits each
and a ROM block of 4K x 32 bits (available only on the TMS320C30) permit
two CPU accesses in a single cycle. The memory maps for the microcomputer
and microprocessor modes are similar, except that the on-chip ROM is not
used in the microprocessor mode.

A 64- x 32-bit instruction cache stores often-repeated sections of code. This
greatly reduces the number of off-chip accesses and allows code to be stored
off-chip in slower, lower-cost memories. Three bits in the CPU status register
control the clear, enable, or freeze of the cache.

This chapter describes in detail each of the CPU registers, the memory maps,
and the instruction cache. Major topics are as follows:

Topic
- -

Page

CPU Register File

3.1 CPU Register File

The TMS320C3x provides 28 registers in a multipart register file that is tightly
coupled to the CPU. The program counter (PC) is not included in the 28 regis-
ters. All of these registers can be operated on by the multiplier and the ALU
and can be used as general-purpose 32-bit registers. However, the registers
also have some special functions for which they are particularly appropriate.
For example, the eight extended-precision registers are especially suited for
maintaining extended-precision floating-point results. The eight auxiliary reg-
isters support a variety of indirect addressing modes and can be used as gen-
eral-purpose 32-bit integer and logical registers. The remaining registers pro-
vide system functions, such as addressing, stack management, processor
status, interrupts, and block repeat. Refer to Chapter 5 for detailed information
and examples of the use of CPU registers in addressing.

Table 3-1 lists the registers names and assigned functions.

Table 3-1. CPU Registers

Register Asslgned Functlon Name
RO Extended-precision register 0
R1 Extended-precision register 1
R2 Extended-precision register 2
R3 Extended-precision register 3
R4 Extended-precision register 4
R5 Extended-precision register 5
R6 Extended-precision register 6
R7 Extended-precision register 7

ARO Auxiliary register 0
AR 1 Auxiliary register 1
AR2 Auxiliary register 2
AR3 Auxiliary register 3
AR4 Auxiliary register 4
AR5 Auxiliary register 5
AR6 Auxiliary register 6
AR7 Auxiliary register 7

D P Data-page pointer
IRO Index register 0
IR1 Index register 1
BK Block-size register
SP System stack pointer
ST Status register
IE CPUIDMA interrupt enable
IF CPU interrupt Rags

IOF I10 flags

RS Repeat start address
RE Repeat end address
RC Repeat counter

CPU Register File

3.1 .I Extended-Precision Registers (R740)

The eight extended-precision registers (R7-RO) are capable of storing and
supporting operations on 32-bit integer and 40-bit floating-point numbers.
These registers consist of two separate and distinct regions:

IJ bits 39-32: dedicated to storage of the exponent (e) of the floating-point
number.

bits 31-0: store the mantissa of the floating-point number:

bit 31 : sign bit (s)
bits 30-0: the fraction (9

Any instruction that assumes the operands are floating-point numbers uses
bits 39-0. Figure 3-1 illustrates the storage of 40-bit floating-point numbers
in the extended-precision registers.

Figure 3-1. Extended-Precision Register Floating-Point Format

39 32 31 30

For integer operations, bits 31-0 of the extended-precision registers contain
the integer (signed or unsigned). Any instruction that assumes the operands
are either signed or unsigned integers uses only bits 31-0. Bits 39-32 remain
unchanged. This is true for all shift operations. The storage of 32-bit integers
in the extended-precision registers is shown in Figure 3-2.

Figure 3-2. Extended-Precision Register Integer Format

39 32 31 0

I unchanged I signed or unsigned integer I

Auxiliary Registers (AR7-ARO)

The eight 32-bit auxiliary registers (AR7-ARO) can be accessed by the CPU
and modified by the two Auxiliary Register Arithmetic Units (ARAUs). The pri-
mary function of the auxiliary registers is the generation of 24-bit addresses.
However, they can also be used as loop counters in indirect addressing or as
32-bit general-purpose registers that can be modified by the multiplier and
ALU. Refer to Chapter 5 for detailed information and examples of the use of
auxiliary registers in addressing.

CPU Registers, Memory, and Cache 3-3

CPU Register File

3.1.3 Data-Page Pointer (DP)

The data-page pointer (DP) is a 32-bit register that is loaded using the LDP
instruction. The eight LSBs of the data-page pointer are used by the direct ad-
dressing mode as a pointer to the page of data being addressed. Data pages
are 64K words long, with a total of 256 pages. Bits 31-8 are reserved; you
should always keep these set to 0 (cleared).

3.1.4 index Registers (IRO, IR1)

The 32-bit index registers (IRO and IR1) are used by the ARAU for indexing
the address. Refer to Chapter 5 for detailed information and examples of the
use of index registers in addressing.

3.1.5 Block Size Register (BK)

The 32-bit block size register (BK) is used by the ARAU in circular addressing
to specify the data block size (see Section 5.3 on page 5-24).

3.1.6 System Stack Pointer (SP)

The system stack pointer (SP) is a 32-bit register that contains the address of
the top of the system stack. The SP always points to the last element pushed
onto the stack. The SP is manipulated by interrupts, traps, calls, returns, and
the PUSH, PUSHF, POP, and POPF instructions. Pushes and pops of the
stack perform preincrement and postdecrement, respectively, on all 32 bits of
the stack pointer. However, only the 24 LSBs are used as an address. Refer
to Section 5.5 on page 5-31 for information about system stack management.

3.1.7 Status Register (ST)

The status register (ST) contains global information relating to the state of the
CPU. Operations usually set the condition flags of the status register accord-
ing to whether the result is 0, negative, etc. This includes register load and
store operations as well as arithmetic and logical functions. When the status
register is loaded, however, the contents of the source operand replace the
current contents bit-for-bit, regardless of the state of any bits in the source op-
erand. Therefore, following a load, the contents of the status register are iden-
tically equal to the contents of the source operand. This allows the status regis-
ter to be saved easily and restored. At system reset, 0 is written to this register.

CPU Resister File

Figure 3-3 shows the format of the status register. Table 3-2 defines the sta-
tus register bits, their names, and their functions.

Figure 3-3. Status Register

Not#: 1) xx = resewed bit, read as 0
2) R=read,W=write

CPU Registers, Memory, and Cache

CPU Register File
I

Table 3 4 Status Register Bits Summary

Bit Name Reset Value Functlon
--

0t C 0 Carry flag

1 t V 0 Overflow flag

2t Z 0 Zero flag

3t N 0 Negative flag

4t UF 0 Floating-point underflow flag

5 t LV 0 Latched overflow flag

6t LU F 0 Latched floating-point underflow flag

7 OVM 0 Overflow mode flag. This flag affects only the integer operations. If OVM
= 0, the overflow mode is turned off; integer results that overflow are
treated in no special way. If OVM = 1,

a) integer results overflowing in the positive direction are set to the
most positive 32-bit twos-complement number (7FFFFFFFh), and

b) integer results overflowing in the negative direction are set to the
most negative 32-bit twos-complement number (80000000h).

Note that the function of V and LV is independent of the setting of OVM.

8 RM 0 Repeat mode flag. If RM = 1, the PC is being modified in either the
repeat-block or repeat-single mode.

9 Reserved 0 Read as 0

10 C F 0 Cache freeze. When CF = 1, the cache is frozen. If the cache is enabled
(CE = I) , fetches from the cache are allowed, but no modification of the
state of the cache is performed. This function can be used to save fre-
quently used code resident in the cache. At reset, 0 is written to this bit.
Cache clearing (CC = 1) is allowed when CF = 0.

0 Cache enable. CE = 1 enables the cache, allowing the cache to be used
according to the least recently used (LRU) cache algorithm. CE = 0 dis-
ables the cache; no update or modification of the cache can be per-
formed. No fetches are made from the cache. This function is useful for
system debugging. At system reset, 0 is written to this bit. Cache clear-
ing (CC = 1) is allowed when CE = 0.

12 CC 0 Cache clear. CC = 1 invalidates all entries in the cache. This bit is always
cleared after it is written to and thus always read as 0. At reset, 0 is writ-
ten to this bit.

13 GIE 0 Global interrupt enable. If GIE = 1, the CPU responds to an enabled in-
terrupt. If GIE = 0, the CPU does not respond to an enabled interrupt.

15-14 Reserved 0 Read as 0

31-1 6 Reserved 0-0 Value undefined

t The seven condition flags (ST bits 6 4) are defined in Section 10.2 on page 10-10.

3-6

CPU Reaister File

3.1.8 CPUIDMA interrupt Enable Register (IE)

The CPUIDMA interrupt enable register (IE) is a 32-bit register (see
Figure 3-4). The CPU interrupt enable bits are in locations 1 0 4 . The direct
memory access (DMA) interrupt enable bits are in locations 26-16. A 1 in a
CPUIDMA IE register bit enables the corresponding interrupt. A 0 disables the
corresponding interrupt. At reset, 0 is written to this register. Table 3-3 defines
the register bits, the bit names, and the bit functions.

Figure 3-4. CPU/DMA Interrupt Enable Register (IE)

EDlNT ETlNTl ETINTO ERINT1 EXINTI ERINTO EXINTO ElNT3
(DMA) (DMA) (DMA) (DMA) (DMA) (DMA) (DMA) (DMA)

Notes: 1) xx = reserved bit, read as 0

2) R = read, W = write

CPU Registers, Memory, and Cache 3-7

CPU Reaister File

Table 3-3. I€ Register Bits Summary

Blt Name Reset Value Functlon

0 ElNTO 0 Enable external interrupt 0 (CPU)

1 ElNTl 0 Enable external interrupt 1 (CPU)

2 El NT2 0 Enable external interrupt 2 (CPU)

3 EINT3 0 Enable external interrupt 3 (CPU)

4 EXINTO 0 Enable serial-port 0 transmit interrupt (CPU)

5 ERINTO 0 Enable serial-port 0 receive interrupt (CPU)

6 EX1 NTl 0 Enable serial-port 1 transmit interrupt (CPU)

7 ERINT1 0 Enable serial-port 1 receive interrupt (CPU)

8 ETINTO 0 Enable timer 0 interrupt (CPU)

9 ETlNTl 0 Enable timer 1 interrupt (CPU)

10 EDlNT 0 Enable DMA controller interrupt (CPU)

15-11 Resewed 0 Value undefined

16 ElNTO 0 Enable external interrupt 0 (DMA)

17 ElNTl 0 Enable external interrupt 1 (DMA)

18 EINT2 0 Enable external interrupt 2 (DMA)

19 El NT3 0 Enable external interrupt 3 (DMA)

20 EX1 NTO 0 Enable serial-port 0 transmit interrupt (DMA)

21 ERINTO 0 Enable serial-port 0 receive interrupt (DMA)

22 EXlNTl 0 Enable serial-port 1 transmit interrupt (DMA)

23 ERINT1 0 Enable serial-port 1 receive interrupt (DMA)

24 ETINTO 0 Enable timer 0 interrupt (DMA)

25 ETlNTl 0 Enable timer 1 interrupt (DMA)

26 EDlNT 0 Enable DMA controller interrupt (DMA)

31 -27 Resewed 0-0 Value undefined

CPU Reaister Flle

3.1.9 CPU Interrupt Flag Register (IF)

Figure 3-5 shows the 32-bit CPU interrupt flag register (IF). A 1 in a CPU IF
register bit indicates that the corresponding interrupt is set. The IF bits are set
to 1 when an interrupt occurs. They may also be set to 1 through software to
cause an interrupt. A 0 indicates that the corresponding interrupt is not set. If
a 0 is written to an IF register bit, the corresponding interrupt is cleared. At re-
set, 0 is written to this register. Table 3-4 lists the bit fields, bit-field names, and
bit-field functions of the CPU IF register.

Figure 3-5. CPU Interrupt- Flag Register (I9

Notes: 1) xx = resewed bit, read as 0

2) Rsread, W =write

Table 3-4. IF Register Bits Summary

Bit Name Reset Value Function

0 l NTO 0 External interrupt 0 flag

1 INTI 0 External interrupt 1 flag

2 I NT2 0 External interrupt 2 flag

3 I NT3 0 External interrupt 3 flag

4 XI NTO 0 Serial-port 0 transmit interrupt flag

5 RINTO 0 Serial-port 0 receive interrupt flag

6 XINTl t 0 Serial-port 1 transmit interrupt flag

7 RINTI t 0 Serial-port 1 receive interrupt flag

8 TI NTO 0 Timer 0 interrupt flag

9 TINT1 0 7mer 1 interrupt flag

10 DINT 0 DMA channel interrupt flag

31 -1 1 Reserved 0-0 Value undefined

t Reserved on TMS320C31

CPU Registers, Memory, and Cache 3-9

CPU Register File

3.1 .I 0 110 Flags Register (IOF)

The I10 flags register (IOF) is shown in Figure 3-6 and controls the function
of the dedicated external pins, XFO and XF1. These pins can be configured for
input or output. The pins can also be read from and written to. At reset, 0 is
written to this register. Table 3-5 shows the bit fields, bit-field names, and bit-
field functions.

Figure 3-6. I/O-Flag Register (100

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
~ x x ~ x x ~ x x ~ x x ~ x x ~ x x ~ x x ~ x x ~ lNXFl IOUTXFll iIOXF1 lxx l INXFO ~OUTXFO~ iIOXF0 Ixx]

Notes: 1) xx = reserved bit, read as 0

2) R = read, W =write

CPU Reaister File

Table 3-5. IOF Register Bits Summary

Blt Name Reset Value Functlon

0 Resewed 0 Read as 0

1 IIOXFO 0 If ~IOXFO = 0, XFO is configured as a general-purpose input pin.
If IIOXFO = 1, XFO is configured as a general-purpose output pin.

2 OUTXFO 0 Data output on XFO

3 INXFO 0 Data input on XFO. A wriie has no effect.

4 Reserved 0 Read as 0

5 IIOXFI 0 If 1 1 0 ~ ~ 1 = 0, XF1 is configured as a general-purpose input pin.
If IIOXF1 = 1, XF1 is configured as a general-purpose output pin.

6 OUTXFl 0 Data output on XF1

7 INXFI 0 Data input on XF1. A write has no effect.

31-8 Reserved 0-0 Read as 0

3.1 .I 1 Repeat-Count (RC) and Block-Repeat Registers (RS, RE)

The 32-bit repeat start address register (RS) contains the starting address of
the block of program memory to be repeated when the CPU is operating in the
repeat mode.

The 32-bit repeat end address register (RE) contains the ending address of
the block of program memory to be repeated when the CPU is operating in the
repeat mode.

I i

Note: RE < RS

If RE < RS, the block of program memory will not be repeated, and the code
will not loop backwards. However, the ST(RM) bit remains set to 1.

The repeat-count register (RC) is a 32-bit register used to specify the number
of times a block of code is to be repeated when a block repeat is performed.
If RC contains the number n, the loop is executed n + 1 times.

3.1.12 Program Counter (PC)

The PC is a 32-bit register containing the address of the next instruction to be
fetched. While the program counter register is not part of the CPU register file,
it can be modified by instructions that modify the program flow.

CPU Registers, Memory, and Cache 3-1 1

CPU Register File

3.1 -13 Resewed Bits and Compatibility

To retain compatibility with future members of the TMS320C3xfamily of micro-
processors, reserved bits that are read as 0 must be written as 0. A reserved
bit that has an undefined value must not have its current value modified. In oth-
er cases, you should maintain the reserved bits as specified.

Memory

3.2 Memory

The TMS320C3xSs total memory space of 16M (million) 32-bit words contains
program, data, and I10 space, allowing tables, coefficients, program code, or
data to be stored in either RAM or ROM. In this way, you can maximize memory
usage and allocate memory space as desired.

RAM blocks 0 and 1 are each 1 K x 32 bits. The ROM block is 4Kx 32 bits. Each
on-chip RAM and ROM block is capable of supporting two CPU accesses in
a single cycle. The separate program buses, data buses, and DMA buses al-
low for parallel program fetches, data readsbrites, and DMA operations.
Chapter 9 covers this in detail.

3.2.1 TMS320C3x Memory Maps

The memory map depends on whether the processor is running in micropro-
cessor mode (MCI~ or M C B U ~ = 0) or microcomputer mode (MCI~ or
MCBIJW = 1). The memory maps for these modes are similar (see
Figure 3-7). Locations 800000h through 801 FFFh are mapped to the expan-
sion bus. When this region, available only on the TMS320C30, is accessed,
MSTRB is active. Locations 802000h through 803FFFh are reserved. Loca-
tions 804000h through 805FFFh are mapped to the expansion bus. When this
region, available only on the TMS320C30, is accessed, is active. Lo-
cations 806000h through 807FFFh are reserved. All of the memory-mapped
peripheral registers are in locations 808000h through 8097FFh. In both
modes, RAM block 0 is located at addresses 809800h through 809BFFh, and
RAM block 1 is located at addresses 809C00h through 809FFFh. Memory lo-
cations 80A000h through OFFFFFFh are accessed over the primary external
memory port (m active).

In microprocessor mode, the 4K on-chip ROM (TMS320C30) or boot loader
(TMS320C31) is not mapped into the TMS320C3x memory map. As shown
in Figure 3-7, locations Oh through 03Fh consist of interrupt vector, trap vec-
tor, and reserved locations, all of which are accessed over the primary external
memory port (STRB active). Interrupt and trap vector locations are shown in
Figure 3-9. Locations 040h-7FFFFFh and 80AOOOL-FFFFFFh are also ac-
cessed over the primary external memory port.

CPU Registers, Memory, and Cache 3-13

Memory

In microcomputer mode, the 4K on-chip ROM (TMS320C30) or boot loader
(TMS320C31) is mapped into locations Oh through OFFFh. There are 192 lo-
cations (Oh through BFh) within this block for interrupt vectors, trap vectors,
and a reserved space. Locations 1000h-7FFFFFh are accessed over the pri-
mary external memory port (STRB active).

Figure 3-7. TMS320C30 Memory Maps

and Reserved Locations (64)
External ~c t i ve

040h

External
STRB Active

7FFFFFh

MSTRB Active

801 FFFh
802000h

I Reserved
(8K Words)

803FFFh

Expansion Bus
IOSTRB Active

805FFFh (8K Words)
806000h

(8K Words)
807FFFh
808000h

Peripheral Bus
Memory-Mapped

Registers
(6K Words Internal)

8097FFh

RAM Block 0
(1 K Word Internal)

809BFFh

RAM Block 1
(1 K Word Internal)

809FFFh
80A000h

External
STRB Active

OFFFFFFh

(a) Microprocessor Mode

Oh

OBFh
OCOh

OFFFh
1 OOOh

I Reset, Interrupt, Trap Vector,
and Reserved Locations (1 92) I r - y -1 (Internal)

External I m A c t t v e I
7FFFFFh

801 FFFh
802000h

(8K Words)
803FFFh

805FFFh
806000h

(8K Words)
807FFFh
808000h

Peripheral Bus
Memory-Mapped

Registers
(6K Words Internal)

8097FFh

RAM Block 0
(1 K Word Internal)

809BFFh
809C00h

RAM Block 1
(1 K Word Internal)

809FFFh
80A000h

External
STRB Active

OFFFFFFh

(b) Microcomputer Mode

CPU Registers, Memory, and Cache

Memory

Figure 3-8. TMS320C3 1 Memory Maps

Reset, Interrupt, Trap Vector,
and Reserved Locations (04)

(External STRB Active)

External -
STRB Active

Reserved
(32K Words)

Peripheral Bus
Memory-Mapped

Registers
(6K Words Internal)

RAM Block 0
(1 K Word Internal)

RAM Block 1
(1 K Word Internal)

External -
STRB Active

>

FFFh
1 m

Reserved for Boot
Loader Operations

Boot 1-3 locations are used by the boot-loader function. See Section 3.4 for
a complete description. All reserved memory locations are described in
Table 2-5 on page 2-31.

809FFFh
80A000h

FFFOOOh

FFFFFFh

(b) Microcomputer/Boot Loader Mode

809FFFh
80A000h

FFFFFFh

(a) Microprocessor Mode

Memory

3.2.2 TMS320C31 Memory Maps

Setting the TMS320C31 M C B U ~ pin determines the mode in which the
TMS320C31 can function:

0 Microprocessor mode (M C B U ~ = 0), or
0 Microcomputer/boot loader mode (M C B U ~ = 1)

The major difference between these two modes is their memory maps (see
Figure 3-8). The program boot load feature is enabled when the M c B U ~ pin
is driven high during reset.

Figure 3-8 shows the memory locations (internal and external) used by the
boot loader to load the source program.

3.2.3 ResetIlnterrupUrap Vector Map

The addresses for the reset, interrupt, and trap vectors are OOh-3FhI as shown
in Figure 3-9. The reset vector contains the address of the reset routine.

Microprocessor and Microcomputer Modes

In the microprocessor mode of the TMS320C30 and TMS320C31 and the
microcomputer mode of the TMS320C30, the interrupt and trap vectors stored
in locations OMFh are the addresses of the starts of the respective interrupt
and trap routines. For example, at reset, the content of memory location OOh
(reset vector) is loaded into the PC, and execution begins from that address.
See Figure 3-9.

Microcomputer/Boot Loader Mode

In the microwmputer/boot loader mode of the TMS320C31, the interrupt and
trap vectors stored in locations 809FC1 h-809FFFh are branch instructions to
the start of the respective interrupt and trap routines. See Figure 3-1 0.

CPU Registers, Memory, and Cache 3-1 7

Memory

Figure 3-9. Reset, Interrupt, and Trap-Vector Locations for the TMS320C30/TMS320C31
Microprocessor Mode

OOh

01h

02h

03h

04h

05h

06h

07h

08h

09h

0 Ah

OBh

OCh

1 Fh

20h

t Reserved on TMS320C31

I 1

Note: Traps 28-31

Traps 28-31 are reserved; do not use them.
I 1

Figure 3- 10. Interrupt and Trap Branch Instructions for the TMS320C3 1 Microcomputer
Mode

-
809FCl h INTO 1
809FC2h

-
INTI I

I 1

Note: Traps 28-31

809FC4h

809FC5h

809FC6h

809FC7h

809FC8h

809FC9h

809FCAh

809FCBh

809FCG
809FDFh

Traps 28-31 are reserved; do not use them.

-
INT3

I

XlNTO

RlNTO

XlNTl

RlNTl

TINT0

TINT1
I

DINT
I

RESERVED

CPU Registers, Memory, and Cache 3-1 9

Memorv

3.2.4 Peripheral Bus Map

The memory-mapped peripheral registers are located starting at address
808000h. The peripheral bus memory map is shown in Figure 3-1 1. Each pe-
ripheral occupies a l &word region of the memory map. Locations 808010h
through 80801 Fh and locations 808070h through 8097FFh are reserved.

Figure 3- 11. Peripheral Bus Memory Map

8097FFh

t Resewed on TMS320C31

DMA Controller Registers

(1 6)

Resewed

(1 6)

Timer 0 Registers

(16)

Timer 1 Registers

(1 6)

Serial-Port 0 Registers

(16)

Serial-Port 1 ~egisterst

(1 6)

Primary and Expansion Port
Registers (1 6)

Resewed

Instruction Cache

3.3 Instruction Cache

A 64 x 32-bit instruction cache facilitates maximum system performance by
storing sections of code that can be fetched when the device repeatedly ac-
cesses time-critical code. This reduces the number of off-chip accesses nec-
essary and allows code to be stored off-chip in slower, lower-cost memories.
The cache also frees external buses from program fetches so that they can be
used by the DMA or other system elements.

The cache can operate automatically, with no user intervention. Subsection
3.3.2 describes a form of the least recently used (LRU) cache update algo-
rithm.

3.3.1 Cache Architecture

The instruction cache (see Figure 3-1 2) contains 64 32-bit words of RAM; it
is divided into two 32-word segments. Associated with each segment is a
19-bit segment start address (SSA) register. For each word in the cache, there
is a corresponding single bit: present (P) flag.

CPU Registers, Memory, and Cache 3-21

Instruction Cache

Figure 3-72. lnstruction Cache Architecture

Segment Start P
Address Registers Flags Segment Words

LRU * * Stack
Most Recently Used
Segment Number

SSA Register 0

b--- 19 ----I Least Recently Used
Segment Number

Segment Word 30

Segment Word 31 I
SSA Register 1 1

1 Segment 1

When the CPU requests an instruction word from external memory, the cache
algorithm checks to determine whether the word is already contained in the
instruction cache. Figure 3-1 3 shows the partitioning of an instruction address
as used by the cache control algorithm. The algorithm uses the1 9 most signifi-
cant bits (MSBs) of the instruction address to select the segment; the five least
significant bits (LSBs) define the address of the instruction word within the per-
tinent segment. The algorithm compares the 19 MSBs of the instruction ad-
dress with the two SSA registers. If there is a match, the algorithm checks the
relevant P flag. The P flag indicates whether a word within a particular segment
is already present in cache memory.

Figure 3-73. Address Partitioning for Cache Control Algorithm

segment start address instruction word
(SSA) address within segment

If there is no match, one of the segments must be replaced by the new data.
The segment replaced in this circumstance is determined by the LRU algo-
rithm. The LRU stack (see Figure 3-12) is maintained for this purpose.

lnstmction Cache

The LRU stack determines which of the two segments qualifies as the least
recently used after each access to the cache; therefore, the stack contains ei-
ther 0,1 or 1 ,O. Each time a segment is accessed, its segment number is re-
moved from the LRU stack and pushed onto the top of the LRU stack. There-
fore, the number at the top of the stack is the most recently used segment num-
ber, and the number at the bottom of the stack is the least recently used seg-
ment number.

At system reset, the LRU stack is initialized with 0 at the top and 1 at the bot-
tom. All P flags in the instruction cache are cleared.

When a replacement is necessary, the least recently used segment is selected
for replacement. Also, the 32 P flags for the segment to be replaced are set
to 0, and the segment's SSA register is replaced with the 19 MSBs of the in-
struction address.

3.3.2 Cache Algorithm

When the TMS320C3x requests an instruction word from external memory,
one of two possible actions occurs: a cache hit or a cache miss.

Q Cache Hit. The cache contains the requested instruction, and the follow-
ing actions occur:

1) The instruction word is read from the cache.

2) The number of the segment containing the word is removed from the
LRU stack and pushed to the top of the LRU stack, thus moving the
other segment number to the bottom of the stack.

Q Cache Miss. The cache does not contain the instruction. Following are
the types of cache miss:

Word miss. The segment address register matches the instruction ad-
dress, but the relevant P flag is not set. The following actions occur in
parallel:

8 The instruction word is read from memory and copied into the
cache.

8 The number of the segment containing the word is removed from
the LRU stack and pushed to the top of the LRU stack, thus mov-
ing the other segment number to the bottom of the stack.

8 The relevant P flag is set.

CPU Registers, Memory, and Cache 3-23

Instruction Cache

Segment miss. Neither of the segment addresses matches the in-
struction address. The following actions occur in parallel:

The least recently used segment is selected for replacement. The
P flags for all 32 words are cleared.

The SSA register for the selected segment is loaded with the 19
MSBs of the address of the requested instruction word.

The instruction word is fetched and copied into the cache. It goes
into the appropriate word of the least recently used segment. The
P flag for that word is set to 1.

The number of the segment containing the instruction word is re-
moved from the LRU stack and pushed to the top of the LRU
stack, thus moving the other segment number to the bottom of the
stack.

Only instructions may be fetched from the program cache. All reads and writes
of data in memory bypass the cache. Program fetches from internal memory
do not modify the cache and do not generate cache hits or misses. The pro-
gram cache is a single-access memory block. Dummy program fetches (i.e.,
following a branch) are treated by the cache as valid program fetches and can
generate cache misses and cache updates.

Take care when using self-modifying code. If an instruction resides in cache
and the corresponding location in primary memory is modified, the copy of the
instruction in cache is not modified.

You can use the cache more efficiently by aligning program code on 32-word
address boundaries. Do this with the ALIGN directive when coding assembly
language.

3.3.3 Cache Control Bits
Three cache control bits are located in the CPU status register:

IJ Cache Clear Bit (CC). Writing a 1 to the cache clear bit (CC) invalidates
all entries in the cache. All P flags in the cache are cleared. The CC bit is
always cleared after the cache is cleared. It is therefore always read as a
0. At reset, the cache is cleared and 0 is written to this bit.

IJ Cache Enable Bit (CE). Writing a 1 to this bit enables the cache. When
enabled, the cache is used according to the previously described cache
algorithm. Writing a 0 to the cache enable bit disables the cache; no up-
dates or modification of the cache can be performed. Specifically, no SSA
register updates are performed, no P flags are modified (unless CC = I) ,
and the LRU stack is not modified. Writing a 1 to CC when the cache is
disabled clears the cache, and, thus, the P flags. No fetches are made
from the cache when the cache is disabled. At reset, 0 is written to this bit.

Instruction Cache

Cache Freeze Bit (CF). When CF = 1, the cache is frozen. If, in addition,
the cache is enabled, fetches from the cache are allowed, but no modifica-
tion of the state of the cache is performed. Specifically, no SSA register
updates are performed, no P flags are modified (unless CC = l), and the
LRU stack is not modified. You can use this function to keep frequently
used code resident in the cache. Writing a 1 to CC when the cache is fro-
zen clears the cache, and, thus, the P flags. At reset, 0 is written to this bit.

Table 3-6 defines the effect of the CE and CF bits used in combination.

Table 3-6. Combined Effect of the CE and CF Bits

CE CF Effect

0 0 Cache not enabled

0 1 Cache not enabled

1 0 Cache enabled and not frozen

1 1 Cache enabled and frozen

CPU Registers, Memory, and Cache 3-25

Using the TMS320C3 1 Boot Loader

3.4 Using the TMS320C31 Boot Loader

This section describes how to use the TMS320C31 microcomputer/boot load-
er (MCBUf@)function. This feature is unique to the TMS320C31 and is not
available on the TMS320C30 devices. The source code for the boot loader is
supplied in Appendix G.

3.4.1 Boot-Loader Operations

The boot loader lets you load and execute programs that are received from a
host processor, inexpensive EPROMs, or other standard memory devices.
The programs to be loaded either reside in one of three memory mapped areas
identified as Boot 1, Boot 2, and Boot 3 (see the shaded areas of Figure 3-8),
or they are received by means of the serial port.

User-definable byte, half-word, and word-data formats, as well as 32-bit fixed
burst loads from the TMS320C31 serial port, are supported. See Section 8.2
on page 8-13 for a detailed description of the serial-port operation.

3.4.2 Invoking the Boot Loader

The boot-loader function is selected by resetting the processor while driving
the MCBUW pin high. Use interrupt pins m- lNTd to set the mode of the
boot load operation. Figure 3-1 4 shows the flow of this operation, which de-
pends on the mode selected (external memory or serial boot). Figure 3-1 5
shows memory load operations; Figure 3-1 6 shows serial port load opera-
tions.

Using the TMS320C31 Boot Loader

Figure 3- 14. Boot-Loader-Mode Selection Flowchart

MCBUMP = 1

CPU Registers, Memory, and Cache 3-27

Using the TMS320C31 Boot Loader

Figure 3-1 5. Boot- Loader Memory-Load Flowchart

I Branch to Address
Boot 1. I

I Determine Mode
8, 16, or 321 I
Configuration
Control Word

Load Block Size I

Load Destination
Address

Block Size = O? +
Source to
Destination

Block Size -1 s'
I Branch to Destination

Address of First
Block Loaded I

4
Begin Program Execution

Using the TMS320C3 1 Boot Loader

Figure 3- 16. Boot- Loader Serial- Port Load- Mode Flowchart

I Set up Serial Port
for 32-Bit

Fixed Burst Mode I I
Wait for Serial / pm!nput / I

Load Block Size Ll
I Qlock Size = O ? w

I / Waitfor Serial /
Port lnput

Load Destination

lock Size = 01 +
Port lnput

+rial Port to
Degt~nation Addregs

+
Block Size -1

Load Block Size I I
Branch to Destination

Address of First
Block Loaded

+
Begin Program Execution

3.4.3 Mode Selection

After reset, the loader mode is determined by polling the status of the
INT3-INTO bits of the IF register. The bits are polled in the order described in
the flowchart in Figure 3-1 4 on page 3-27. Table 3-7 lists the mode options
and the interrupt that you can use to set the particular mode. The interrupt can
be driven any time after the RESET pin has been deasserted. Unless only one
interrupt flag bit is set (INTO, INTI, INT2, or INT3), the boot mode cannot be
guaranteed.

CPU Registers, Memory, and Cache 3-29

Using the TMS320C3 1 Boot Loader

Table 3-7. Loader Mode Selection

~ c t i v e Interrupt Loader Mode Memory Addresrer -
INTO External memory Boot 1 address 0x001 000
-
l NTl External memory Boot 2 address 0x400000
-
I NT2 External memory Boot 3 address OxFFFOOO
-
I NT3 32-bit serial Serial port 0

3.4.4 External Memory Loading

Table 3-8 shows and describes the information that you must specify to define
boot memory organization (8,16, or 32 bits), the code block size, the load des-
tination address, and memory access timing control for the boot memory. You
must specify this information before a source program can be externally
loaded.

This information must be specified in the first four locations of the Boot 1, Boot
2, or Boot 3 areas. The header is followed by the data or program code that
is the block size in length.

Table 3-8. External Memory Loader Header

Location Description Valid Data Entries

0 Boot memory type (8, 16, or 32) Ox8,0x10, or 0x20 specified as a 32-bit number

1 Boot memory configuration See Chapter 7 for valid bus-control register entries.
(defined # of wait states, etc.)

2 Program block size (blk) Any value 0 < blk < 224

3 Destination address Any valid TMS320C31 24-bit address

4 Program code starts here Any 32-bit data value or valid TMS320C3x instruction

The loader fetches 32 bits of data for each specified location, regardless of
what memory configuration width is specified. The data values must reside
within or be written to memory, beginning with the value of least significance
for each 32 bits of information.

3.4.5 Examples of External Memory Loads

Example 3-1, Example 3-2, and Example 3-3 show memory images for
byte-wide, 16-bit-wide, and 32-bit-wide configured memory.

Using the TMS320C31 Boot Loader

These examples assume the following:

0 An INT6 signal was detected after reset was deasserted (signifying an ex-
ternal memory load from Boot 1).

0 The loader header resides at memory location 0x1 000 and defines the fol-
lowing:

I Boot memory type EPROMs that require two wait states and SWW = 11,

A loader destination address at the beginning of the TMS320C31's in-
ternal RAM Block 1, and

A single block of memory that is 0x1 FF in length.

Example 3-1. Byte- Wide Configured Memory

Address Value Comments
- - - -p -- - --

0x08 Memory width = 8 bits

ox1 009

0x1 OOA

0x1 OOC

0x1 00D

0x1 00E

Ox00

0x58 Memory type = SWW = 11, WCNT = 2

OxFF Program code size = 0x1 FF

Ox00 Program load starting address = Ox809C00

Ox9C

CPU Registers, Memory, and Cache 3-31

Using the TMS320C3 1 Boot Loader

Example 3-2.16-Bit- Wide Configured Memory

Address Value Comments

0x1 0 Memory width = 16

Ox0000

Ox1 058 Memory type = SWW = 11, WCNT = 2

Ox0000

0x1 FF Program code size = 0x1 FF

0x0000

Ox9C00 Program load starting address = Ox809C00

0x0080

Example 3-3.32-Bit- Wide Configured Memory

Address Value Comments

0x1 000 Ox00000020 Memory width = 32

Ox1 001 0x00001 058 Memory type = SWW = 11, WCNT = 2

Ox1 002 0x000001 FF Program code size = 0x1 FF

0x1 003 Ox00809C00 Program load starting address = Ox809C00

After reading the header, the loader transfers blk, 32-bit words beginning at a
specified destination address. Code blocks require the same byte and half-
word ordering conventions. The loader can also load multiple code blocks at
different address destinations.

After loading all code blocks, the boot loader branches to the destination ad-
dress of the first block loaded and begins program execution. Consequently,
the first code block loaded should be a start-up routine to access the other
loaded programs.

Each code block has the following header:

BLK size 1st location
Destination address 2nd location

End the loader function and begin execution of the first code block by append-
ing the value of OxOOOOOOW to the last block.

Using the TMS320C31 Boot Loader

3.4.6 Serial-Port Loading

Boot loads, by way of the TMS320C31 serial port, are selected by driving the -
INT3 pin active (low) following reset. The loader automatically configures the
serial port for 32-bit fixed-burst-mode reads. It is interrupt-driven by the frame
synchronization receive (FSR) signal. You cannot change this mode for boot
loads. Your hardware must externally generate the serial-port clock and FSR.

As in parallel loading, a header must precede the actual program to be loaded.
However, you need only apply the block size and destination address because
the loader and your hardware have predefined serial-port speed and data for-
mat (i.e., skip data words 0 and 1 from Table 3-8).

The transferred data-bit order must begin with the MSB and end with the LSB.

3.4.7 interrupt and Trap-Vector Mapping

Unlike the microprocessor mode, the microcomputer/boot-loader (MCBL)
mode uses a dual-vectoring scheme to service interrupt and trap requests.
Dual vectoring was implemented to ensure code compatibility with future ver-
sions of TMS320C3x devices.

In a dual-vectoring scheme, branch instructions to an address, rather than di-
rect-interrupt vectoring, are used. The normal interrupt and trap vectors are
defined to vector to the last 63 locations in the on-chip RAM, starting at address
809FC1 h. When the loader is invoked, the last 63 locations in RAM Block 1 of
the TMS320C31 are assumed to contain branch instructions to the interrupt
source routines.

CPU Registers, Memory, and Cache 3-33

Using the TMS320C31 Boot Loader
L

Table 3-9 shows the M C B V ~ mode interrupt and trap instruction memory
maps.

Table 3-9. TMS320C3 1 Interrupt and Trap Memory Maps

Address Description -
809FC1 l NTO

809FC7 Reserved

Reserved

tlNTO
-
TI NTl -
DINT0

Reserved

TRAPO -
TRAP1

8 0 9 F F M F F F Reserved

Using the TMS32OC3 1 Boot Loader

3.4.8 Precautions

The boot loader builds a one-word-deep stack, starting at location 809801 h.

The interrupt flags are not reset by the boot-loader function. If pending inter-
rupts are to be avoided when interrupts are enabled, clear the IF register be-
fore enabling interrupts.

The MCBUMP pin should remain high during the entire boot-loader execution,
but it can be changed subsequently at any time. The TMS320C31 does not
need to be reset after the MCBUW pin is changed. During the change, the
TMS320C31 should not access addresses Oh-FFFh.

CPU Registers, Memory, and Cache 3-35

In the TMS320C3x architecture, data is organized into three fundamental
types: integer, unsigned-integer, and floating-point. The terms integer and
signed-integer are considered to be equivalent. The TMS320C3x supports
short and single-precision formats for signed and unsigned integers. It also
supports short, single-precision, and extended-precision formats for float-
ing-point data.

Floating-point operations make fast, trouble-free, accurate, and precise com-
putations. Specifically, the TMS320C3x implementation of floating-point arith-
metic facilitates floating-point operations at integer speeds while preventing
problems with overflow, operand alignment, and other burdensome tasks
common in integer operations.

This chapter discusses in detail the data formats and floating-point operations
supported in the TMS320C3x. Major topics in this section are as follows:

Topic Page

lnteger Formats

4.1 lnteger Formats

The TMS320C3x supports two integer formats: a 1 &bit short integer format
and a 32-bit single-precision integer format. When extended-precision regis-
ters are used as integer operands, only bits 31-0 are used; bits 39-32 remain
unchangedandunused.

4.1 .I Short-Integer Format

The short integer format is a 16-bit two's complement integer format for imme-
diate integer operands. For those instructions that assume integer operands,
this format is sign-extended to 32 bits (see Figure 4-1). The range of an
integer si, represented in the short integer format, is -215 s si s 215 - 1. In
Figure 4-1, s = signed bit.

Figure 4-1. Short lnteger Format and Sign Extension of Short Integers

I I
(a) Short lnteger Format

31 16 15 0

S S S S S S S S S S S S S S S S I
(b) Sign Extension of a Short lnteger

4.1.2 Single-Precision lnteger Format

In the single-precision integer format, the integer is represented in two's com-
plement notation. The range of an integer sp, represented in the single-preci-
sion integer format, is -231 s sp s 231 - 1. Figure 4-2 shows the single-preci-
sion integer format.

Figure 4-2. Single- Precision lnteger Format

Unsioned-lnteaer Formats

4.2 Unsigned-Integer Formats

The TMS320C3x supports two unsigned-integer formats: a 16-bit short format
and a 32-bit single-precision format. In extended-precision registers, the un-
signed-integer operands use only bits 31-0; bits 39-32 remain unchanged.

4.2.1 Short Unsigned-Integer Format

Figure 4-3 shows the1 6-bit, short, unsigned-integer format for immediate un-
signed-integer operands. For those instructions that assume
unsigned-integer operands, this format is zero-filled to 32 bits. In Figure 4-3,
x = most significant bit (MSB) (1 or 0).

Figure 4-3. Short Unsigned-Integer Format and Zero Fill

(a)Short Unsigned-Integer Format

(b) Zero Fill of a Short Unsigned Integer

4.2.2 Single-Precision Unsigned-Integer Format

In the single-precision unsigned-integer format, the number is represented as
a 32-bit value, as shown in Figure 4-4.

Figure 4-4. Single-Precision Unsigned-Integer Format

Data Formats and Floating-point Operation 4-3

Floating- Point Formats
L

4.3 Floating-Point Formats

All TMS320C3x floating-point formats consist of three fields: an exponent field
(e), a single-bit sign field (s), and a fraction field (f). These are stored as shown
in Figure 4-5. The exponent field is atwo's complement number. The sign field
and fraction field may be considered one unit and referred to as the mantissa
field (man). The two's complement fraction is combined with the sign bi and
the implied most significant bit to create the mantissa. The mantissa repre-
sents a normalized two's complement number. A normalized representation
implies a most significant nonsign bit, thus providing additional precision. The
value of a floating-point number x as a function of the fields e, s, and f is given as

x = 01 .f x 28 if s = 0, or if the leading 0 is the sign bit and the
1 is the implied most significant nonsign bit

10.f x 28 if s = 1, or if the leading 1 is the sign bit and the
0 is the implied most significant nonsign bit

0 if e = most negative two's complement
value of the specified exponent field width

Figure 4-5. Generic Floating-Point Format

Note: e = exponent field
s = single-bit sign field
f = fraction field

Three floating-point formats are supported on the TMS320C3x. The first is a
short floating-point format for immediate floating-point operands, consisting of
a 4-bit exponent, a sign bit, and an 11 -bit fraction. The second is a single-preci-
sion format consisting of an &bit exponent, asign bit, and a 23-bit fraction. The
third is an extended-precision format consisting of an &bit exponent, a sign
bit, and a 31 -bit fraction.

4.3.1 Short Floating-Point Format

In the short floating-point format, floating-point numbers are represented by
a two's complement 4-bit exponent field (e) and a two's complement 12-bit
mantissa field (man) with an implied most significant nonsign bit. See
Figure 4-6.

Fl~atin~-Point Formats

Figure 4-6. Short Floating-Point Format

Operations are performed with an implied binary point between bits 11 and 10.
When the implied most significant nonsign bit is made explicit, it is located to
the immediate left of the binary point. The floating-point two's complement
number x in the short floating-point format is given by the following:

You must use the following reserved values to represent 0 in the short float-
ing-point format:

e = - 8

The following examples illustrate the range and precision of the short float-
ing-point format:

Most Positive: x = (2 - 2-11) x 27 = 2.5594 x 102
Least Positive: x = 1 x2-7=7.8125x 10-3
Least Negative: x = (-1-2-11) x 2-7 = -7.81 63 x 1 0-3
Most Negative: x=-2x27=-2.5600~ 102

Data Formats and Floating-Point Operation 4-5

Floating-Point Formats

4.3.2 Single-Precision Floating-Point Format

In the single-precision format, the floating-point number is represented by an
8-bit exponent field (e) and a two's complement 24-bit mantissa field (man)
with an implied most significant nonsign bit. See Figure 4-7.

Figure 4-7. Single- Precision Floating- Point Format

Operations are performed with an implied binary point between bits 23 and 22.
When the implied most significant nonsign bit is made explicit, it is located to
the immediate left of the binary point. The floating-point number xis given by
the following:

You must use the following reserved values to represent 0 in the single-preci-
sion floating-point format:

The following examples illustrate the range and precision of the single-preci-
sion floating-point format.

Most Positive: x = (2 - 2-23) x 2127 = 3.4028234 x 1038

Least Positive: x = 1 x 2-127 = 5.8774717 x l e g

Least Negative: x = (-1-2-23) x 2-127 = - 5.8774724 x 1 6 9

Most Negative: x = -2 x 2127 = -3.4028236 x 1038

4.3.3 Extended-Precision Floating-Point Format

In the extended-precision format, the floating-point number is represented by
an 8-bit exponent field (e) and a 32-bit mantissa field (man) with an implied
most significant nonsign bit. See Figure 4-8.

Floatinn-Point Formats

Figure 4-8. Extended-Precision Floating-Point Format

Operations are performed with an implied binary point between bits 31 and 30.
When the implied most significant nonsign bit is made explicit, it is located to
the immediate left of the binary point. The floating-point number x is given by
the following:

You must use the following reserved values to represent 0 in the extended-pre-
cision floating-point format:

e = -128

The following examples illustrate the range and precision of the extended-pre-
cision floating-point format:

Most Positive: x = (2 - 2-23) x 2127 = 3.4028234 x 1038

Least Positive: x = 1 x 2-127 = 5.8774717541 x 1038
Least Negative: x = (-1-231) x 2-127 = - 5.877471 7569 x 10-39

Most Negative: x = -2 x 2127 = -3.4028236691 x 1038

Data Formats and Floating-Point Operation 4-7

Floetino-Point Formats

4.3.4 Conversion Between Floating-Point Formats

Floating-point operations assume several different formats for inputs and out-
puts. These formats often require conversion from one floating-point format to
another (e.g., short floating-point format to extended-precision floating-point
format). Format conversions occur automatically in hardware, with no over-
head, as a part of the floating-point operations. Examples of the four conver-
sions are shown in Figure 4-9, Figure 4-1 0, Figure 4-1 1, and Figure 4-1 2.
When a floating-point format 0 is converted to a greater-precision format, it is
always converted to a valid representation of 0 in that format. In Figure 4-9,
Figure 4-1 0, Figure 4-1 1 , and Figure 4-1 2, s = sign bit of the exponent,

Figure 4-9. Converting From Short Floating-Point Format to Single-Precision
Floating- Point Format

(a) Short Floating-Point Format

31 27 24 23 22 12 11 0

s S s S X X X X 0

(b) Single-Precision Floating-Point Format

In this format, the exponent field is sign-extended, and the fraction field is filled
with 0s.

Figure 4- 10. Converting From Short Floating- Point Format to Extended- Precision
Floating- Point Format

(a) Short Floating-Point Format

(b) Extended-Precision Floating-Point Format

The exponent field in this format is sign-extended, and the fraction field is filled
with 0s.

Floating- Point Formats

Figure 4 - 1 1. Converting From Single-Precision Floating-Point Format to
Extended-Precision Floating-Point Format

(a) Single-Precision Floating-Point Format

(b) Extended-Precision Floating-Point Format

The fraction field is filled with 0s.

Figure 4- 12, Converting From Extended- Precision Floating-Point Format to
Single- Precision Floating- Point Format

(a) Extended-Precision Floating-Point Format

(b) Single-Precision Floating-Point Format

The fraction field is truncated.

Data Formats and Floating-Point Operation

Floating- Point Multiplication

4.4 Floating-Point Multiplication

A floating-point number a can be written in floating-point format as in the fol-
lowing formula:

where:
a(man) is the mantissa and a(exp) is the exponent.

The product of a and b is c, defined as:

where:
c(man) = a(man) x b(man), and
c(exp) = a(exp) + b(exp)

During floating-point multiplication, source operands are always assumed to
be in the single-precision floating-point format. If the source of the operands
is in short floating-point format, it is extended to the single-precision float-
ing-point format. If the source of the operands is in extended-precision float-
ing-point format, it is truncated to single-precision format. These conversions
occur automatically in hardware with no overhead. All results of floating-point
multiplications are in the extended-precision format. These multiplications oc-
cur in a single cycle.

A flowchart for floating-point multiplication is shown in Figure 4-1 3. In step 1,
the 24-bit source operand mantissas are multiplied, producing a 50-bit result
c(man). (Note that input and output data are always represented as normal-
ized numbers.) In step 2, the exponents are added, yielding c(exp). Steps 3
through 6 check for special cases. Step 3 checks for whether c(man) in exten-
ded-precision format is equal to 0. If c(man) is 0, step 7 sets c(exp) to -128,
thus yielding the representation for 0.

Steps 4 and 5 normalize the result. If a right shift of 1 is necessary, then in step
8, c(man) is right-shifted 1 bit, thus adding 1 to c(exp). If a right shift of 2 is nec-
essary, then in step 9, c(man) is right-shifted 2 bits, thus adding 2 to c(exp).
Step 6 occurs when the result is normalized.

In step 10, c(man) is set in the extended-precision floating-point format. Steps
11 through 16 check for special cases of c(exp). If c(exp) has overflowed (step
11) in the positive direction, then step 14 sets c(exp) to the most positive exten-
ded-precision format value. If c(exp) has overflowed in the negative direction,
then step 14 sets c(exp) to the most negative extended-precision format value.
If c(exp) has underflowed (step 12), then step 15 sets c to 0; that is, c(man)
= 0 and c(exp) = -1 28.

Floating-Point Multiplication

Figure 4- 13. Flowchart for Floating- Point Multiplication

Multiply mantissas Add exponents

I Test for soecial casea of clman) I

(3)
c(man) = 0

(4)
Right-shift 1

(5)
Right-shii 2

to normalize to normalize to normalize

and c(exp) P

c(exp) + 1

Dispose of extra b i i

Put c(man) in extended
precieion floating-point

I Test for special cases of c(exp) I
(1 2)

c(exp) overflow c(exp) underflow c(exp) in range

H c(man) > 0,
set c(exp) to most
positive value

If c(man) < 0,
set c(exp) to moat

Set c to final result ,-, (1.1

Data Formats and Floating-Point Operation

Floating-Point Multiplication

Example 4-1, Example 4-2, Example 4-3, Example 4-4, and Example 4-5
illustrate how floating-point multiplication is performed on the TMS320C3x.
For these examples, the implied most significant nonsign bit is made explicit.

Example 4-1. Floating-Point Multiply (Both Mantissas = -2.0)

Let:
a = -2.0 x W(~XP) = 1 0.00000000000000000000000 x 2a(ex~)

b = -2.0 x 2b(exp) = 10.00000000000000000000000 x 2b(ex~)

where:

a and b are both represented in binary form according to the normalized sing-
le-precision floating-point format.

Then:

To place this number in the proper normalized format, it is necessary to shift
the mantissa two places to the right and add 2 to the exponent. This yields:

In floating-point multiplication, the exponent of the result may overflow. This
can occur when the exponents are initially added or when the exponent is mo-
dified during normalization.

Example 4-2. Floating- Point Multiply (Both Mantissas = 1.5)

Let:

where a and b are both represented in binary form according to the single-pre-
cision floating-point format. Then:

Floating-Point Multiplicxition

To place this number in the proper normalized format, it is necessary to shift
the mantissa one place to the right and add 1 to the exponent. This yields:

Example 4-3. Floating-Point Multiply (Both Mantissas = 1 .O)

Let:
a = 1.0 x 2a(exp) = 01 .0000000000000000000OOOO x 2a(exP)

b = 1.0 x 2b(exP) = 01 .0000000000000000000OOOO x 2b(exp)

where a and b are both represented in binary form according to the single-pre-
cision floating-point format. Then:

This number is in the proper normalized format. Therefore, no shift of the man-
tissa or modification of the exponent is necessary.

These examples have shown cases where the product of two normalized num-
bers can be normalized with a shift of O,1, or 2. For all normalized inputs with
the floating-point format used by the TMS320C3x, a normalized result can be
produced by a shift of 0, 1, or 2.

Example 4-4. Floating-Point Multiply Between Positive and Negative Numbers

Let:
a = 1 -0 x 2a(exp) = 01 .0000000000000000000OOOO x 2a(ex~)

b = -2.0 x 2b(exp) = 10.00000000000000000000000 x 2b(exp)

Then:

01.00000000000000000000000 x 2a(exp)
x 10.00000000000000000000000 x 2b(exp)

1 1 1 0.00 x 2 (a(exp) + b(exp))

The result is c = -2.0 x 2(a(ex~) + b(ex~))

Example 4-5. Floating-Point Multiply by 0

All multiplications by a floating-point 0 yield a result of 0 (f = 0, s = 0, and exp
= -128).

Data Formats and Floating-Point Operation 4-1 3

Floating-Point Addition and Subtraction
I

4.5 Floating-Point Addition and Subtraction

In floating-point addition and subtraction, two floating-point numbers a and b
can be defined as:

The sum (or difference) of a and b can be defined as:

The flowchart for floating-point addition is shown in Figure 4-1 4. Since this
flowchart assumes signed data, it is also appropriate for floating-point subtrac-
tion. In this figure, it is assumed that a(exp) s b(exp). In step 1, the source ex-
ponents are compared, and c(exp) is set equal to the largest of the two source
exponents. In step 2, d is set to the difference of the two exponents. In step 3,
the mantissa with the smallest exponent, in this case a(man), is right-shifted
d bits to align the mantissas. After the mantissas have been aligned, they are
added (step 4).

Steps 5 through 7 check for a special case of c(man). If c(man) is 0 (step 5),
then c(exp) is set to its most negative value (step 8) to yield the correct repre-
sentation of 0. If c(man) has overflowed c (step 6), then c(man) is right-shifted
one bit, and 1 is added to c(exp). Otherwise, step 10 normalizes c by left-shift-
ing c(man) and subtracting c(exp) by the number of leading non-significant
sign bits (step 7). Steps 11 through 13 check for special cases of c(exp). If
c(exp) has overflowed (step 11) in the positive direction, then step 14 sets
c(exp) to the most positive extended-precision format value. If c(exp) has over-
flowed (step 11) in the negative direction, then step 14 sets c(exp) to the most
negative extended-precision format value. If c(exp) has underflowed (step 12),
then step 15 sets c to 0; that is, c(man) = 0 and c(exp) = -1 28.

Floating- Point Addition and Subtraction

Figure 4- 14. Flowchart for Floating- Point Addition

1 k (1)
Compare exponents

If a(exp) < = b(exp)

r r (3) c(exp) = b(exp)
else

Align mantissas c(exp) = a(ex~)
a(man) = a(man) > > d (Assume for simplicity

that a(exp) < = b(exp))
Discard LSBs to keep
a(man) in extended- 1 4
precision floating- Subtract exponents
point format d = b(exp) - a(exp)

I I
Add m a n t i i

c (man) = a(man) + b(man)

I Test for special cases of c(man)
(5) (6) m

k = IY of leading I c(man) = o Overflow of c(man) non-significant I
c(man) = c(man) > > 1
c(exp) = c(exp) + 1
D i d LSBI to keep in
extended-precision
floating-point format

c(man) < < k
C(~XP) = -1 28

A

I Test for special cases of c(exp)

(11) (1 2) (1 31
(c(exp) overflow c(exp) undernow c(expj in'range 1

I I

(1 4) m r ~ (l 5) set positive c to most value c(exp) = -1 28 1 If c(man) < 0, c(man) = 0

set c to most I negativevalue I I I

Data Formats and Floating-Point Operation

Floating-Point Addition and Subtraction

Example 4-6, Example 4-7, Example 4-8, and Example 4-9 describe the
floating-point addition and subtraction operations. It is assumed that the data
is in the extended-precision floating-point format.

Example 4-6. Floating- Point Addition

In the case of two normalized numbers to be summed, let

It is necessary to shift b to the right by 1 so that a and b have the same expo-
nent. This yields:

b = 0.5 = 00.1 000000000000000000000000000000 x 20

Then:

As in the case of multiplication, it is necessary to shift the binary point one place
to the left and add 1 to the exponent. This yields:

Example 4-7. Floating-Point Subtraction

A subtraction is performed in this example. Let

The operation to be performed is a-b. The mantissas are alread aligned be-

lation of the upper bits, as shown below.
Y cause the two numbers have the same exponent. The result is a arge cancel-

Floating-Point Addition and Subtraction

The result must be normalized. In this case, a left-shift of 31 is required. The
exponent of the result is modified accordingly. The result is:

Example 4-8. Floating- Point Addition With a 32- Bit Shift

This example illustrates a situation where a full 32-bit shift is necessary to nor-
malize the result. Let

The operation to be performed is a + b.

Normalizing the result requires a left-shift of 32 and a subtraction of 32 from
the exponent. The result is:

Example 4-9. Floating-Point Addition/Subtraction With Floating-Point 0

When floating-point addition and subtraction are performed with a float-
ing-point 0, the following identities are satisfied:

Data Formats and Floating-Point Operation 4-1 7

Normalization Using the NORM lnstruction
C

4.6 Normalization Using the NORM lnstruction

The NORM instruction normalizes an extended-precision floating-point num-
ber that is assumed to be unnormalized. See Example 4-1 0. Since the num-
ber is assumed to be unnormalized, no implied most significant nonsign bit is
assumed. The NORM instruction:

1) Locates the most significant nonsign bit of the floating-point number,
2) Left-shifts to normalize the number, and
3) Adjusts the exponent.

Example 4- 10. NORM Instruction

Assume that an extended-precision register contains the value

When the normalization is performed on a number assumed to be unnormal-
ized, the binary point is assumed to be:

man = 0.0000000000000000001 000000000001, exp = 0

This number is then sign-extended one bit so that the mantissa contains 33
bits.

man = 00.0000000000000000001 000000000001, exp = 0

The intermediate result after the most significant nonsign bit is located and the
shift performed is:

man = 01.000000000001 0000000000000000000, exp = -1 9

The final 32-bit value output after removing the redundant bit is:

man = 0000000000001 0000000000000000000, exp = -1 9

The NORM instruction is useful for counting the number of leading 0s or lead-
ing 1 s in a 32-bit field. If the exponent is initially 0, the absolute value of the final
value of the exponent is the number of leading I s or 0s. This instruction is also
useful for manipulating unnormalized floating-point numbers.

Given the extended-precision floating-point value a to be normalized, the nor-
malization, norm (), is performed as shown in Figure 4-1 5.

Normalization Using the NORM Instruction

Figure 4-15. Flowchart for NORM Instruction Operation

w

I Test for special cases of c (man) 1
I (1)

a (man) = 0
(2)

Leading nonsignificant
sian bits I

k = # of leading 1 n o n s i ~ n h n t

I I c (man) = a(man) < < k I

I Remove most signiRcant nonsign bit 1 (5)
I

c (exp) in
underflow k-11 No change to c (man)

(9) I
+ 4

Set c to final result
I I

Data Formats and Floating-Point Operation

Rounding: The RND lnstnrction

4.7 Rounding: The RND Instruction

The RND instruction rounds a number from the extended-precision float-
ing-point format to the single-precision floating-point format. Rounding is simi-
lar to floating-point addition. Given the number a to be rounded, the following
operation is performed first.

c = a(man) x 2a(exP) + (1 x 2a(ex~)-24)

Next, a conversion from extended-precision floating-point to single-precision
floating-point format is performed. Given the extended-precision floating-point
value, the rounding, rnd(), is performed as shown in Figure 4-16.

Rounding: The RND lnstruction

Figure 4-1 6. Flowchart for Floating-Point Rounding by the RND Instruction

I Add a(man) and 112 of LSB I

&
I Test for special cases of c(man) 1

c (man) = 0 Overflow of c (man) No special case
I I I

- - - - 1 I Test for special cases of ~ (e x ~)]
c (exp) overflow c (exp) in range

I I
4

L

If c (man) > 0,
set c to most positive
single-precision value

If c (man) < 0,
set c to most negative
single-precision value

w w w

I Set 8 LSBs of c(man) to 0

c = md(a)

Data Formats and Floating-Point Operation 4-2 1

Floating-Point-to-Integer Conversion

4.8 Floating-Point-to-Integer Conversion

Floating-point to integer conversion, using the FIX instructions, allows exten-
ded-precision floating-point numbers to be converted to single-precision inte-
gers in a single cycle. The floating-point to integer conversion of the value x
is referred to here as fix(x). The conversion does not overflow if a, the number
to be converted, is in the range

-231 s a s 231 - 1

First, you must be certain that

If these bounds are not met, an overflow occurs. If an overflow occurs in the
positive direction, the output is the most positive integer. If an overflow occurs
in the negative direction, the output is the most negative integer. If a(exp) is
within the valid range, then a(man), with implied bit included, is sign-extended
and right-shifted (rs) by the amount

This right-shift (rs) shifts out those bits corresponding to the fractional part of
the mantissa. For example:

If 0 s x < 1, then fix(x) = 0.
If -1 s x c 0, then fix(x) = -1.

The flowchart for the floating-point-to-integer conversion is shown in
Figure 4-1 7.

Floating-Point-to-Integer Conversion

Figure 4-1 7. Flowchart for Floating-Point-to-Integer Conversion by FIX Instructions

Test for special cases of a(exp)

a(exp) > 30 a(exp) in range
rs = 31 - a(exp)

If a(man) > 0,
c = most positive integer

If a(man) c 0,
c = most negative integer

Set c to final result i---LI

Data Formats and Floating-point Operation 4-23

Integer-to- Floating- Point Conversion

4.9 Integer-to-Floating-point Conversion

Integer to floating-point conversion, using the FLOAT instruction, allows sing-
le-precision integers to be converted to extended-precision floating-point
numbers. The flowchart for this conversion is shown in Figure 4-1 8.

Figure 4-18. Flowchart for Integer-to-Floating-Point Conversion by FLOAT Instructions

c (man) = a
c (exp) = 30

Test for special cases of c (man)

Leading nonsignificant
c (man) = 0 sign bits

k = # leading
nonsignificant
sign bits

c (exp) = -1 28 c (man) = c (man) < < k
c (exp) = 30 - k

*
I Remove most significant nonsign bit

Set c to final result s +
c = float (a)

Addressing

The TMS320C3x supports five groups of powerful addressing modes. Six
types of addressing may be used within the groups, which allow access of data
from memory, registers, and the instruction word. This chapter details the op-
eration, encoding, and implementation of the addressing modes. It also dis-
cusses the management of system stacks, queues, and dequeue8 in memory.

These are the major topics in this chapter:

Page

Types of Addressing

Types of Addressing

Six types of addressing allow access of data from memory, registers, and the
instruction word:

Register
a Direct

Indirect
a Short-immediate
0 Long-immediate

PC-relative

Some types of addressing are appropriate for some instructions but not others.
For this reason, the types of addressing are used in the five groups of address-
ing modes as follows:

General addressing modes (G):

Register
Direct
Indirect
Short-immediate

a Three-operand addressing modes (T):

Register
lndirect

a Parallel addressing modes (P):

Register
lndirect

a Conditional-branch addressing modes (B):

Register
PC-relative

The six types of addressing are discussed first, followed by the five groups of
addressing modes.

Types of Addressing

5.1 .I Register Addressing

In register addressing, a CPU register contains the operand, as shown in this
example:

ABSF R 1 ; R1 = (~ 1 1

The syntax for the CPU registers, the assembler syntax, and the assigned
function for those registers are listed in Table 5-1.

Table 5-1. CPU Register Address/Assembler Syntax and Function

Auembler A u i g nod
CPU Register Address Syntax Function

OOh
Olh
02h
03h
04h
05h
06h
07h

08h
09h
OAh
OBh
OCh
ODh
OEh
OFH

1 Oh
l l h
12h
13h
14h

ARO
AR 1
AR2
AR3
AR4
AR5
AR6
AR7

DP
IRO
IR1
BK
SP

Extended-precision register
Extended-precision register
Extended-precision register
Extended-precision register
Extended-precision register
Extended-precision register
Extended-precision register
Extended-precision register

Auxiliary register
Auxiliary register
Auxiliary register
Auxiliary register
Auxiliary register
Auxiliary register
Auxiliary register
Auxiliary register

Data-page pointer
Index register 0
index register 1
Block-size register
Active stack pointer

Status register
CPUIDMA interrupt enable
CPU interrupt flags
110 flags

Repeat start address
Repeat end address
Repeat counter

Addressing 5-3

Types of Addressing

5.1.2 Direct Addressing

In direct addressing, the data address is formed by the concatenation of the
eight least significant bits of the data page pointer (DP) with the 16 least signifi-
cant bits of the instruction word (expr). This results in 256 pages (64K words per
page), giving the programmer a large address space without requiring a change
of the page pointer. The syntax and operation for direct addressing are:

Syntax: @expr

Operation: address = DP concatenated with expr

Figure 5-1 shows the formation of the data address. Example 5-1 is an
instruction example with data before and after instruction execution.

Figure 5- 1. Direct Addressing

3 1 16 15 0
Instruction

Word I expr I
1

31 8 7 0

X . . . X X Page

Page Pointer)
31 24 23 (I 0

0 O . . . O 0 address I
3 1 A 0

I operand I
Example 5- 1. Direct Addressing

ADD1 @ OBCDEh , R7

Before Instruction: After Instruction:

Data at 8ABCDEh = 12345678h Data at 8ABCDEh = 1 2345678h

Types of Addressing

5.1.3 lndirect Addressing

lndirect addressing is used to specify the address of an operand in memory
through the contents of an auxiliary register, optional displacements, and in-
dex registers. Only the 24 least significant bits of the auxiliary registers and in-
dex registers are used in indirect addressing. This arithmetic is performed by
the auxiliary register arithmetic units (ARAUs) on these lower 24 bits and is un-
signed. The upper eight bits are unmodified.

The flexibility of indirect addressing is possible because the ARAUs on the
TMS320C3x modify auxiliary registers in parallel with operations within the
main CPU. lndirect addressing is specified by a five-bit field in the instruction
word, referred to as the mod field. A displacement is either an explicit unsigned
eight-bit integer contained in the instruction word or an implicit displacement
of one. Two index registers, IRO and IR1, can also be used in indirect address-
ing. In some cases, an optional addressing scheme using circular or bit-rev-
ersed addressing can be used. The mechanism for generating addresses in
circular addressing is discussed in Section 5.3 on page 5-24; bit-reversed is
discussed in Section 5.4 on page 5-29.
1 1

Note: Auxiliary Register

The auxiliary register (ARn) to be used is encoded in the instruction word ac-
cording to its binary representation n (for example, AR3 is encoded as 11 2),
not its register machine address (shown in Table 5-1).

I 1

Example 5-2.Auxiliary Register lndirect

An auxiliary register (ARn) contains the address of the operand to be fetched.
Operation: operand address = ARn
Assembler Syntax: *ARn
Modification Field: 11000

ARn

31 24 23 0

x x address

I operand I

Table 5-2 lists the various kinds of indirect addressing, along with the value
of the modification (mod) field, assembler syntax, operation, and function for
each. The succeeding 17 examples show the operation for each kind of indi-
rect addressing. Figure 5-2 shows the format in the instruction encoding.

Addressing 5-5

Types of Addressing

Table 5-2. lndirect Addressing

Mod Field Syntax Operation Description

Indirect Addressing wlth Displacement

00000 *+ARn(disp) addr = ARn + disp Wih predisplacement add

00001 *-ARn(disp) addr = ARn - disp With predisplacement subtract

00010 *++ARn(disp) addr = ARn + disp With predisplacement add and modify
ARn = ARn + disp

00011 "-ARn(disp) addr = ARn - disp With predispiacement subtract and modify
ARn = ARn - disp

001 00 *ARn++(disp) addr = ARn With postdisplacement add and modify
ARn = ARn + disp

001 01 *ARn-- (disp) addr = ARn With postdisplacement subtract and modify
ARn = ARn - disp

001 10 *ARn++(disp)% addr = ARn With postdisplacement add and circular modify
ARn = circ(ARn + disp)

001 11 *ARn-- (disp)% addr = ARn Wrth postdiphcement subtract and circular
ARn = circ(ARn - disp) modify

Indirect Addresslng wlth Index Register IRO

01 000 *+ARn(lRO) addr = ARn + IRO With preindex (IRO) add

01 001 tARn(lR0) addr = ARn - IRO With preindex (IRO) subtract

01010 *++ARn(lRO) addr = ARn + IRO With preindex (IRO) add and modify
ARn = ARn + IRO

01011 *--ARn(lRO) addr = ARn - IRO With preindex (IRO) subtract and modify
ARn = ARn - IRO

01 100 *ARn++ (IRO) addr = ARn With postindex (IRO) add and modify
ARn = ARn + IRO

011 01 *ARn--(IRO) addr= ARn With postindex (IRO) subtract and modify
ARn = ARn - IRO

01110 *ARn++(lRO)% addr = ARn With postindex (IRO) add and circular
ARn = circ(ARn + IRO) modify

01111 *ARn-- (IRO)% addr = ARn With postindex (IRO) subtract and circular
ARn = circ(ARn) - IRO modify

Legend: addr memory address ++ add and modify
ARn auxiliary register ARO-AR7 -- subtract and modify
circ() address in circular addressing % where circular addressing is performed
disp displacement

Types of Addressing

Table 5-2. Indirect Addressing (Continued)

Mod Fleld Svntax O~eratlon Descrl~t lon

lndirect Addressing with index Reglster IR1

10000 *+ARn(lRl) addr = ARn + IR1 Wih preindex (IR1) add

10001 *-ARn(lR1) addr = ARn - IR1 With preindex (IR1) subtract

10010 *++ARn(lRl) addr = ARn + IR1 Wih preindex (IR1) add
ARn = ARn + lR1 and modify

10011 *--ARn(lR1) addr = ARn - IR1 Wih preindex (IR1) subtract
ARn = ARn - IR1 and modify

101 00 *ARn ++ (lR1) addr = ARn With postindex (IR1) add
ARn = ARn + lR1 and modify

10101 *ARn--(IRl) addr = ARn With postindex (IR1) subtract
ARn = ARn - IR1 and modify

10110 * A h + + (IRl)% addr = ARn Wih postindex (IR1) add
ARn = circ(ARn + IR1) and circular modify

10111 *ARn--(IRl)% addr = ARn With postindex (IR1) subtract
ARn = circ(ARn - IR1) and circular modify

Indirect Addressing (Speclal Cases)

addr = ARn Indirect

11001 *ARn++ (lR0)B addr = ARn With postindex (IRO) add
ARn = B(ARn + IRO) and bit-reversed modify

Legend: addr memory address circ() address in circular addressing
ARn auxiliary register ARO-AR7 ++ add and modify
B where bit-reversed addressing is performed % where circular addressing is performed

Example 5-3, Example 5 4 , Example 5-5, Example 5-6, Example 5-7,
Example 5-8, Example 5-9, Example 5-1 0, Example 5-1 1, Example 5-1 2,
Example 5-1 3, Example 5-1 4, Example 5-1 5, Example 5-1 6,
Example 5-1 7, Example 5-1 8, and Example 5-1 9 exemplify indirect addres-
sing in Table 5-2.

Figure 5-2. Instruction Encoding Format

Most Significant Bit Least Significant Bit

5 Bits 3 Bits 0, 5, or 8 Bits
t disp field may not exist in some instructions

Addressing 5-7

Types of Addressing
L

Example 5-3. lndirect With Predisplacement Add

The address of the operand to be fetched is the sum of an auxiliary register
(ARn) and the displacement (disp). The displacement is either an eight-bit un-
signed integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn + disp
Assembler Syntax: *+ ARn(disp)
Modification Field: 00000

3 1 24 23 0

ARn x x address I
1

3 1 & 0

I operand I
Example 5-4. lndirect With Predisplacement Subtract

The address of the operand to be fetched is the contents of an auxiliary register
(ARn) minus the displacement (disp). The displacement is either an eight-bit
unsigned integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn - disp
Assembler Syntax: *- ARn(disp)
Modification Field: 00001

ARn 4 x X I address I

31 & 0

I operand I

TLpes of Addressing

Example 5-5. lndirect With Predisplacement Add and Modify

The address of the operand to be fetched is the sum of an auxiliary register
(ARn) and the displacement (disp). The displacement is either an eight-bit
unsigned integer contained in the instruction word or an implied value of 1.
After the data is fetched, the auxiliary register is updated with the address gen-
erated.

Operation: operand address = ARn t disp
ARn = ARn t disp

Assembler Syntax: *+t ARn (disp)
Modification Field: 0001 0

3 1 24 23 0

ARn x x addreas J
I m

31 0

I operand I
Example 5-6. Indirect With Predisplacement Subtract and Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn) minus the displacement (disp). The displacement is either an eight-bii
unsigned integer contained in the instruction word or an implied value of 1. Af-
ter the data is fetched, the auxiliary register is updated with the address gener-
ated.

Operation: operand address = ARn - disp
ARn = ARn - disp

Assembler Syntax: *-- ARn(disp)
Modification Field: 0001 1

3 1 24 23 0

ARn x x address 1
I 7

3 1 1 0

I operand I
Addressing 5-9

Types of Addressing

Example 5-7. Indirect With Postdisplacement Add and Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the displacement (disp) is added to the
auxiliary register. The displacement is either an eight-bit unsigned integer con-
tained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = ARn + disp

Assembler Syntax: *ARn ++ (disp)
Modification Field: 001 00

31 24 23 0

ARn x x address

t
I

31 0

I operand 1

Example 5-8. lndirect With Postdisplacement Subtract and Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the displacement (disp) is subtracted from
the auxiliary register. The displacement is either an eight-bit unsigned integer
contained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = ARn - disp

Assembler Syntax: *ARn -- (disp)
Modification Field: 001 01

3 1 24 23 0

ARn x x address I
9 I

31 0

I operand I

Types of Addressing

Example 5-9. Indirect With Postdisplacement Add and Circular Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the displacement (disp) is added to the
contents of the auxiliary register using circular addressing. This result is used
to update the auxiliary register. The displacement is either an eight-bit un-
signed integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = circ(ARn + disp)

Assembler Syntax: *ARn ++ (disp)%
Modification Field: 00110

ARn x x address I
T I

31 0

I operand I

Example 5- 10. lndirect With Postdisplacement Subtract and Circular Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the displacement (disp) is subtracted from
the contents of the auxiliary register using circular addressing. This result is
used to update the auxiliary register. The displacement is either an eight-bit
unsigned integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = circ(ARn - disp)

Assembler Syntax: *ARn -- (disp)%
Modification Field: 001 11

31 24 23 0

ARn x x address

?

3 1 0

operand

Addressing 5-1 1

Types of Addressing

Example 5- 1 1. Indirect With Preindex Add

The address of the operand to be fetched is the sum of an auxiliary register
(ARn) and an index register (IRO or IR1).

Operation: operand address = ARn + IRm
Assembler Syntax: *+ ARn(1Rm)

Modification Field:

3 1 24 23 0

ARn x x address I
I

31 0

I operand 1
Example 5- 12. lndirect With Preindex Subtract

The address of the operand to be fetched is the difference of an auxiliary regis-
ter (ARn) and an index register (IRO or IR1).

Operation: operand address = ARn - IRm

Assembler Syntax: *- ARn(lRm)

Modification Field: 01001 i f m = O
10001 i f m = 1

31 24 23 0

ARn x x address I
1

3 1 24 23 0 I
(-1

31 0

I operand J

Types of Addressing

Example 5-1 3. lndirect With Preindex Add and Modify

The address of the operand to be fetched is the sum of an auxiliary register
(ARn) and an index register (IRO or IR1). After the data is fetched, the auxiliary
register is updated with the address generated.

Operation: operand address = ARn t IRm
ARn = ARn t IRm

Assembler Syntax: *t+ ARn(lRm)
Modification Field: 01010 i f m = O

10010 i f m = 1

31 24 23 0

ARn x x address

31 24 23 0

IRm x x index

31 0

operand

Example 5- 14. Indirect With Preindex Subtract and Modify

The address of the operand to be fetched is the difference between an auxiliary
register (ARn) and an index register (IRO or IR1). The resulting address be-
comes the new contents of the auxiliary register.

Operatlon: operand address = ARn - IRm
ARn = ARn - IRm

Assembler Syntax: *--ARn(lRm)
Modification Field: 01011 i fm=O

10011 i f m = 1

3 1 24 23 0

IRm x x index

31 0

I operand I

Addressing 5-1 3

Types of Addressing

Example 5- 15. Indirect With Postindex Add and Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the index register (IRO or IR1) is added
to the auxiliary register.

Operation: operand address = ARn
ARn = ARn t IRm

Assembler Syntax: *ARn tt (IRm)
Modification Field: 01100 i fm = 0

10100 i fm = 1

3 1 24 23 0

ARn x x address
t I

3 1 24 23 0

X index

31 1 0

operand

Example 5-1 6. lndirect With Postindex Subtract and Modij/

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the index register (IRO or IR1) is sub-
tracted from the auxiliary register.

Operation: operand address = ARn
ARn = ARn - IRm

Assembler Syntax: *ARn -- (IRm)
Modification Fleld: 01101 i f m = O

10101 i f m = 1

31 24 23 0

ARn x x address

IRm x x index

3 1 0

operand

Tyws of Addressing

Example 5 - 1 7. Indirect With Postindex Add and Circular Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the index register (IRO or IR1) is added
to the auxiliary register. This value is evaluated using circular addressing and
replaces the contents of the auxiliary register.

Operation: operand address = ARn
ARn = circ(ARn + IRm)

Assembler Syntax: *ARn ++ (IRm)%
Modification Field: 01110 if m = 0

10110 i fm = 1

31 24 23 0

ARn x x address

7 I
31 24 23 0

IRm x x index

31

operand

Example 5 - 1 8. lndirect With Postindex Subtract and Circular Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the index register (IRO or IR1) is sub-
tracted from the auxiliary register. This result is evaluated using circular ad-
dressing and replaces the contents of the auxiliary register.

Operation: operand address = ARn
ARn = circ(ARn - IRm)

Assembler Syntax: *ARn -- (IRm)%
Modification Field: 01111 if m = 0

10111 if m = 1

3 1 24 23 0

ARn x x address
I

31 24 23 0

IRm x x index (-1 -----t. 4
31 1 0

operand

Addressing 5-1 5

Types of Addressing

Example 5-1 9. Indirect With Postindex Add and Bit-Reversed Modjfy

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the index register (IRO) is added to the
auxiliary register. This addition is performed with a reverse-carry propagation
and can be used to yield a bit-reversed (B) address. This value replaces the
contents of the auxiliary register.

Operation: operand address = ARn
ARn = B(ARn + IRO)

Assembler Syntax: *ARn ++ (IR0)B
Modification Field: 1 1 001

3 1 24 23 0

ARn x x address I
T

31 24 23 0

IRm x x index

3 1

I operand I
5.1.4 Short-Immediate Addressing

In short-immediate addressing, the operand is a 16-bit immediate value con-
tained in the 16 least significant bits of the instruction word (expr). Depending
on the data types assumed for the instruction, the short-immediate operand
can be a two's complement integer, an unsigned integer, or a floating-point
number. This is the syntax for this mode:

Syntax: expr

Types of Addressing

Example 5-20 illustrates before- and after-instruction data.

Example 5-20. Short-Immediate Addressing

SUB1 1,RO

Before Instructlon:

RO = Oh

After Instruction:

RO = OFFFFFFFFh

5.1.5 Long-Immediate Addressing

In long-immediate addressing, the operand is a 24-bit immediate value wn-
tained in the 24 least significant bits of the instruction word (expr). This is the
syntax for this mode:

Syntax: expr

Example 5-21 illustrates before- and after-instruction data.

Example 5-2 1. Long-Immediate Addressing

BR 8000h

Before Instruction: After Instruction:

PC = 8000h

5.1.6 PC-Relative Addressing

Program counter (PC)-relative addressing is used for branching. It adds the
contents of the 16 or 24 least significant bits of the instruction word to the PC
register. The assembler takes the src (a label or address) specified by the user
and generates a displacement. If the branch is a standard branch, this dis-
placement is equal to [label - (instruction address +I)]. If the branch is a
delayed branch, this displacement is equal to [label - (instruction ad-
dress+ 3)].

The displacement is stored as a 16-bit or 24-bit signed integer in the least sig-
nificant bits of the instruction word. The displacement is added to the PC during
the pipeline decode phase. Notice that because the PC is incremented by 1
in the fetch phase, the displacement is added to this incremented PC value.

Syntax: expr (src)

Example 5-22 illustrates before- and after-instruction data.

Addressing 5-1 7

Types of Addressing

Example 5-22. PC-Relative Addressing

BU NEWPC; pc=1001h, NEWPC label = 1005h, displacement = 3

Before lnstruction
decode phase:

After lnstruction
execution phase:

The 24-bit addressing mode encodes the program control instructions (for ex-
ample, BR, BRD, CALL, RPTB, and RPTBD). Depending on the instruction,
the new PC value is derived by adding a 24-bit signed value in the instruction
word with the present PC value. Bit 24 determines the type of branch (D = 0
for a standard branch or D = 1 for a delayed branch). Some of the instructions
are encoded in Figure 5-3.

Figure 5-3. Encoding for 24-Bit PC-Relative Addressing Mode

(a) BR, BRD: unconditional branches (standard and delayed)

0 1 1 0 0 0 0101 displacement I
(b) CALL: unconditional subroutine call

0 1 1 0 0 0 1 1 0 1 displacement I
(c) RPTB: repeat block

31 25 24 23 0

0 1 1 0 0 1 O)O(displacement i

Groups of Addressing Modes

5.2 Groups of Addressing Modes

Six types of addressing (covered in Section 5.1, beginning on page 5-2) form
these four groups of addressing modes:

Q General addressing modes (G)
Q Three-operand addressing modes (T)
a Parallel addressing modes (P)
Q Conditional-branch addressing modes (B)

5.2.1 General Addressing Modes

Instructions that use the general addressing modes are general-purpose in-
structions, such as ADDI, MPYF, and LSH. Such instructions usually have this
form:

dst operation src -. dst

where the destination operand is signified by dst and the source operand by
src, operation defines an operation to be performed on the operands using the
general addressing modes. Bits 31 -29 are 0, indicating general addressing
mode instructions. Bits 22 and 21 specify the general addressing mode (G)
field, which defines how bits 15-0 are to be interpreted for addressing the src
operand.

Options for bits 22 and 21 (G field) are as follows:

0 0 register (all CPU registers unless specified otherwise)
0 1 direct
1 0 indirect
1 1 immediate

If the src and dstfields contain register specifications, the value in these fields
contains the CPU register addresses as defined by Table 5-1 on page 5-3.
For the general addressing modes, the following values of ARn are valid:

Figure 5-4 shows the encoding for the general addressing modes. The nota-
tion mod indicates the modification field that goes with the ARn field. Refer to
Table 5-2 on page 5-6 for further information.

Addressing 5-1 9

Groups of Addressing Modes

Figure 5-4. Encoding for General Addressing Modes

31 29 28 2322 21 20 1615 1110 8 7 5 4 0

I I I G I Destination 1 Source Operands I

5.2.2 Three-Operand Addressing Modes

0 0 0 0 0 0 0 0 0 0 0

direct

modn ARn disp

immediate

Instructions that use the three-operand addressing modes, such as
ADD13, LSH3, CMPF3. or XOR3, usually have this form:

0 0 0

0 0 0

0 0 0

0 0 0

SRC1 operation SRC2 -. dst

0 0

0 1

1 0

1 1

operation

operation

operation

operation

where the destination operand is signified by dstand the source operands by
SRC1 and SRC2; operation defines an operation to be performed. Note that
the 3 can be omitted from three-operand instructions.

dst

dst

dst

dst

Bits 31-29 are set to the value of 001, indicating three-operand addressing
mode instructions. Bits 22 and 21 specify the three-operand addressing mode
(T) field, which defines how bits 15-0 are to be interpreted for addressing the
SRC operands. Bits 1 5 8 define the SRCl address; bits 7-0 define the SRC2
address. Options for bits 22 and 21 (T) are as follows:

0 0 register register
0 1 indirect register
1 0 register indirect
1 1 indirect indirect

Figure 5-5 shows the encoding for three-operand addressing. If the SRCl
and SRC2 fields use the same auxiliary register, both addresses are correctly
generated. However, only the value created by the SRC1 field is saved in the
auxiliary register specified. The assembler issues a warning if you specify this
condition.

The following values of ARn and ARm are valid:

Groups of Addressing Modes

The notation modm or modn indicates that the modification field goes with the
ARm or ARn field, respectively. Refer to Table 5-2 on page 5-6 for further
information.

In indirect addressing of the three-operand addressing mode, displacements
(if used) are allowed to be 0 or 1, and the index registers (IRO and IR1) can be
used. The displacement of 1 is implied and is not explicitly coded in the instruc-
tion word.

Figure 5-5. Encoding for Three-Operand Addressing Modes

0 0 1 operation 0 0 dst 0 0 0 srcl 0 0 0 src2

0 0 1 operation 0 1 dst rnodn ARn 0 0 0 src2
I

0 0 1 operation 1 0 dst 0 0 0 srcl modn ARn

0 0 1 operation 1 1 dst rnodn I ARn modm ARrn

5.2.3 Parallel Addressing Modes

Instructions that use parallel addressing, indicated by 11 (two vertical bars), al-
low the most parallelism possible. The destination operands are indicated as
d l and d2, signifying dsfl and dst2, respectively (see Figure 5-6). The source
operands, signified by srcl and src2, use the extended-precision registers.
Operation refers to the parallel operation to be performed.

Figure 5-6. Encoding for Parallel Addressing Modes

1 0 1 operation I P I d l I d2 I srcl I src2 I rnodn I ARn 1 modm I ARrn

Addressing 5-21

Groups of Addressing Modes

The parallel addressing mode (P) field specifies how the operands are to be
used, that is, whether they are source or destination. The specific relationship
between the P field and the operands is detailed in the description of the indi-
vidual parallel instructions (see Chapter 10). However, the operands are al-
ways encoded in the same way. Bits 31 and 30 are set to the value of 10, indi-
cating parallel addressing mode instructions. Bits 25 and 24 specify the paral-
lel addressing mode (P) field, which defines how bits 21-0 are to be interpreted
for addressing the src operands. Bits 21-19 define the srcl address, bits
18-1 6 define the src2 address, bits 15-8 the src3 address, and bits 7-0 the
src4 address. The notations modn and modm indicate which modification field
goes with which ARn or ARm (auxiliary register) field, respectively. Following
is a list of the parallel addressing operands:

0 srcl 0 s srcl s 7 (extended-precision registers RO-R7)
IJ src2 0 s src2 s 7 (extended-precision registers R&R7)
IJ d l If 0, dsn is RO. If 1, dsfl is R1.
IJ d2 If 0, dst2 is R2. If 1, dsf2 is R3.
0 p 0 s P s 3
0 src3 indirect (disp = 0, 1, IRO, IR1)
0 src4 indirect (disp = 0, 1, IRO, IR1)

As in the three-operand addressing mode, indirect addressing in the parallel
addressing mode allows for displacements of 0 or 1 and the use of the index
registers (IRO and IR1). The displacement of 1 is implied and is not explicitly
coded in the instruction word.

In the encoding shown for this mode in Figure 5-6 on page 5-21, if the src3
and src4 fields use the same auxiliary register, both addresses are correctly
generated, but only the value created by the src3 field is saved in the auxiliary
register specified. The assembler issues a warning if you specify this condi-
tion.

G r o u ~ s ofAddressina Modes

5.2.4 Conditional-Branch Addresslng Modes

Instructions using the conditional-branch addressing modes (Bcond, BcondD,
CALLcond, DBcond, and DBconuD) can perform avariety of conditional oper-
ations. Bits 31-27 are set to the value of 011 01, indicating conditional-branch
addressing mode instructions. Bit 26 is set to 0 or 1 ; 0 selects DBcond, 1 se-
lects Bcond. Selection of bit 25 determines the conditional-branch addressing
mode (B). If B = 0, register addressing is used; if B = 1, PC-relative addressing
is used. Selection of bit 21 sets the type of branch: D = 0 for a standard branch
or D = 1 for a delayed branch. The condition field(conu) specifies the condition
checked to determine what action to take, that is, whether to branch (see
Chapter 10 for a list of condition codes). Figure 5-7 shows the encoding for
conditional-branch addressing.

Figure 5-7. Encoding for Conditional-Branch Addressing Modes

DB cond (D):

0 1 1 0 1 1 B ARn D cond 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 1 1 B ARn D cond immediate (PC relative)

Bcond (D):

CALLcond:

31 27 26 25 24 22 21 20 16 15

h

0 1 1 0 1 0 B 0 0 0 D

Addressing 5-23

O 1 1 1 O O B O O O O

0 1 1 1 0 0 B

0 1 1 0 1 0 B 0 0 0 D cond immediate (PC relative) .
cond 0 0 0 0 0 0 0 0 0 0 0 ~ src reg

I

0 0 0 0

cond

cond

0 0 0 0 0 0 0 0 0 0 0) src reg

immediate (PC relative)

Circular Addressing

5.3 Clrcular Addressing

Many algorithms, such as convolution and correlation, require the implemen-
tation of acircular buffer in memory. In convolution and correlation, the circular
buffer is used to implement a sliding window that contains the most recent data
to be processed. As new data is brought in, the new data overwrites the oldest
data. Key to the implementation of a circular buffer is the implementation of a
circular addressing mode. This section describes the circular addressing
mode of the TMS320C3x.

The block size register (BK) specifies the size of the circular buffer. By labeling
the most significant 1 of the BK register as bit N, with N s 15, you can find the
address immediately following the bottom of the circular buffer by concatenat-
ing bits 31 through N + 1 of a user-selected register (ARn) with bits N through
0 of the BK register. The address of the top of the buffer is referred to as the
effective base (EB) and can be found by concatenating bits 31 through N + 1
of ARn, with bits N through 0 of EB being 0.

Figure 5-8 illustrates the relationships between the block size register (BK),
the auxiliary registers (ARn), the bottom of the circular buffer, the top of the cir-
cular buffer, and the index into the circular buffer.

A circular buffer of size R must start on a K-bit boundary (that is, the K LSBs
of the starting address of the circular buffer must be 0), where K is an integer
that satisfies 2K> R. Since the value R must be loaded into the BK register,
K r N + 1. For example, a 31-word circular buffer must start at an address
whose five LSBs are 0 (that is, 9-,
and the value 31 must be loaded into the BK register.

Circular Addressing

Figure 5-8. Flowchart for Circular Addressing
Most significant 1 at location N, where N s 15

31 N t 1 N 0

I
3, N + l J N 0

1 (N LSB8
BK 0 . . . 0

of BK)

0

0 . . . o H. . . H
1 (N LSB8

of BK)
Top of Bufter + 1

Bottom of Buffer t 1

Legend: ARn auxiliary register n
EB effectivebase
L low-order bits
LSB least significant bit

BK blocksize register
H high-order bits
L' new low-order bits
N bit value

Addressing

Circular Addressina

In circular addressing, index refers to the N LSBs of the auxiliary register se-
lected, and step is the quantity being added to or subtracted from the auxiliary
register. Follow these two rules when you use circular addressing:

0 The step used must be less than or equal to the block size. The step size
is treated as an unsigned integer.

a The first time the circular queue is addressed, the auxiliary register must
be pointing to an element in the circular queue.

The algorithm for circular addressing is as follows:

If 0 5 index t step < BK:
index = index t step.

Else if index t step r BK:
index = index t step - BK.

Else if index t step < 0:
index = index t step t BK.

Figure 5-9 shows how the circular buffer is implemented and illustrates the re-
lationship of the quantities generated and the elements in the circular buffer.

Figure 5-9. Circular Buffer Implementation

Addreor Data

31 N t 1 N 0

Effective Base (EB) O . . . O I
MSBs of ARn

Top of Circular Buffer

Element 1

Auxiliary Register (ARn) L . . . L 1
MSBsofARn LSBsofARn

3 1 N + l N 0

H . . . H LSBs BK Last Element + 1

MSBs of ARn

-.. Element (N LSBs of ARn)

Cirwhr Addressing

Example 5-23 shows circular addressing operation. Assuming that all ARs
are four bits, let ARO = 0000, and BK = 01 1 0 (block size of 6). Example 5-23
shows a sequence of modifications and the resulting value of ARO.
Example 5-23 also shows how the pointer steps through the circular queue
with a variety of step sizes (both incrementing and decrementing).

Example 5-23. Circular Addressing

*ARO++ (5)% ; ARO = 0 (Othvalue)
*ARO + + (2)% ; ARO = 5 (1st value)
*ARO- - (3)% ; ARO = 1 (2nd value)
*AR0++(6)% ; ARO = 4 (3rd value)
*ARO- -% ; ARO = 4 (4th value)
*ARO ; ARO = 3 (5th value)

Value

0th -
2nd +

Element 0

Element 1

Element 2

Element 3
1

Element 4

Element 5 (Last Element)

Last Element t 1

Addressing 5-27

Circular Addressing

Circular addressing is especially useful for the implementation of FIR filters.
Figure 5-1 0 shows one possible data structure for FIR filters. Note that the ini-
tial value of ARO points to h(N-I), and the initial value of AR1 points to x(0).
Circular addressing is used in the TMS320C3x code for the FIR filter shown
in Example 5-24.

Figure 5- 10. Data Structure for FIR Filters

Impulse Response

+ ARl

Example 5-24. FIR Filter Code Using Circular Addressing
* Initialization
*

LDI NIBK
LDI HIARO
LDI XIAR1

*

; Load block size.
; Load pointer to impulse response.
;Load pointer to bottom of input
; sample buffer .

TOP LDF IN, R3 ;Read input sample.
STF R3, *ARl++% ;Store with other samples,

;and point to top of buffer.
LDF 0,RO ;Initialize RO.
LDF O,R2 ;Initialize R2.

*
* Filter
*

RPTS N-1 ;Repeat next instruction.
MPYF3 *ARO++%,*AR1++%IRO

1 1 ADDF3 ROlR2,R2 ;Multiply and accumulate.
ADDF R01R2 ;Last product accumulated.

*
STF R2 ,Y ;Save result.
B TOP ;Repeat.

Bit-Reversed Addressing

5.4 Bit-Reversed Addressing

Bit-reversed addressing on the TMS320C3x enhances execution speed and
program memory for FFT algorithms that use a variety of radices. The base
address of bit-reversed addressing must be located on a boundary of the size
of the table. For example, if IRO = 2 ~ 1 , the n LSBs of the base address must
be 0. The base address of the data in memory must be on a 2" boundary. One
auxiliary register points to the physical location of a data value. IRO specifies
one-half the size of the FFT; that is, the value contained in IRO must be equal
to 2 ~ 1 , where n is an integer and the FFT size is 2". When you add IRO to the
auxiliary register by using bit-reversed addressing, addresses are generated
in a bit-reversed fashion.

To illustrate this kind of addressing, assume eight-bit auxiliary registers. Let
AR2 contain the value 01 10 0000 (96). This is the base address of the data in
memory. Let IRO contain the value 0000 1000 (8). Example 5-25 shows a se-
quence of modifications of AR2 and the resulting values of AR2.

Example 5-25. Bit-Reversed Addressing

; AR2 = 0110 0000 (0th value)
; AR2 = 0110 1000 (let value)
; AR2 = 0110 0100 (2nd value)
; AR2 = 0110 1100 (3rd value)
; AR2 = 0110 0010 (4th value)
; AR2 = 0110 1010 (5th value)
; AR2 = 0110 0110 (6th value)
; AR2 = 0110 1110 (7th value)

Table 53 shows the relationship of the index steps and the four LSBs of AR2.
You can find the four LSBs by reversing the bit pattern of the steps.

Addressing 5-29

Bit-Reversed Addressing

Table 5-3. Index Steps and Bit-Reversed Addressing

Step Bit Pattern Bit-Reversed Pattern Bit-Reversed Step

System and User Stack Management

5.5 System and User Stack Management
The TMS320C3x provides a dedicated system stack pointer (SP) for building
stacks in memory. The auxiliary registers can also be used to build a variety
of more general linear lists. This section discusses the implementation of the
following types of linear lists:

IJ Stack

The stack is a linear list for which all insertions and deletions are made at
one end of the list.

Queue

The queue is a linear list for which all insertions are made at one end of the
list and all deletions are made at the other end.

IJ Dequeue

The dequeue is a double-ended queue linear list for which insertions and
deletions are made at either end of the list.

5.5.1 System Stack Pointer

The system stack pointer (SP) is a 32-bit register that contains the address of
the top of the system stack. The system stack fills from low-memory address
to high-memory address (see Figure 5-11). The SP always points to the last
element pushed onto the stack. A push performs a preincrement, and a pop
performs a postdecrement of the system stack pointer.

The program counter is pushed onto the system stack on subroutine calls,
traps, and interrupts. It is popped from the system stack on returns. The sys-
tem stack can be pushed and popped using the PUSH, POP, PUSHF, and
POPF instructions.

Figure 5-1 1. System Stack Configuration

Low Memory

Bottom of Stack

Top of Stack

Pee) -
SP +

High Memory

Addressing 5-31

System and User Stack Management

5.5.2 Stacks

Stacks can be built from low to high memory or high to low memory. Two cases
for each type of stack are shown. Stacks can be built using the preincrementl
decrement and postincrementldecrement modes of modifying the auxiliary
registers (AR). Stack growth from high-to-low memory can be implemented in
two ways:

CASE 1 : Stores to memory using *--ARn to push data onto the stack and
reads from memory using *ARn ++ to pop data off the stack.

CASE 2: Stores to memory using *ARn--to push data onto the stack and
reads from memory using * ++ARn to pop data off the stack.

Figure 5-12 illustrates these two cases. The only difference is that in case 1,
the AR always points to the top of the stack, and in case 2, the AR always points
to the next free location on the stack.

Figure 5- 12. implementations of High-to-Low Memory Stacks

ARn -
Case 1

Low Memory

ARn -
Case 2

Low Memory

High Memory High Memory

Stack growth from low-to-high memory can be implemented in two ways:

CASE 3: Stores to memory using *++ARn to push data onto the stack and
reads from memory using *ARn--to pop data off the stack.

CASE 4: Stores to memory using *ARn ++ to push data onto the stack and
reads from memory using *--ARn to pop data off the stack.

Figure 5 1 3 shows these two cases. In case 3, the AR always points to the top
of the stack. In case 4, the AR always points to the next free location on the
stack.

Svstem and User Stack Manaaement

Figure 5-1 3. implementations of Low-to-High Memory Stacks

Case 3 c a w 4
Low Memory Low Memory

Bottom of Stack

ARn - Top of Stack

(Free) ARn -

Bottom of Stack

To of Stack

(FM)

High Memory High Memory

5.5.3 Queues

A queue is like a FIFO. The implementation of queues is based on the manipu-
lation of auxiliary registers. Two auxiliary registers are used: one to mark the
front of the queue from which data is popped (or dequeued) and the other to
mark the rear of the queue where data is pushed. With proper management
of the auxiliary registers, the queue can also be circular. (A queue is circular
when the rear pointer is allowed to point to the beginning of the queue memory
after it has pointed to the end of the queue memory.)

Addressing 5-33

Program Flow Control

The TMS320C3x provides a complete set of constructs that facilitate software
and hardware control of the program flow. Software control includes repeats,
branches, calls, traps, and returns. Hardware control includes operations,
reset, and interrupts. Because programming includes a variety of constructs,
you can select the one suited for your particular application.

Several interlocked operations instructions provide flexible multiprocessor
support and, through the use of external signals, a powerful means of
synchronization. They also guarantee the integrity of the communication and
result in a high-speed operation.

The TMS320C3x supports a nonmaskable external reset signal and a number
of internal and external interrupts. These functions can be programmed for a
particular application.

This chapter discusses the following major topics:

Topic Page

Repeat Modes

6.1 Repeat Modes

The repeat modes of the TMS320C3x can implement zero-overhead looping.
For many algorithms, most execution time is spent in an inner kernel of code.
Using the repeat modes allows these time-critical sections of code to be ex-
ecuted in the shortest possible time.

The TMS320C3x provides two instructions to support zero-overhead looping:

RPTB (repeat a block of code). RPTB repeats execution of a block of code
a specified number of times.

0 RPTS (repeat a single instruction). RPTS fetches a single instruction once
and then repeats its execution a number of times. Since the instruction is
fetched only once, bus traffic is minimized.

RPTB and RPTS are four-cycle instructions. These four cycles of overhead
occur during the initial execution of the loop. All subsequent executions of the
loop have no overhead (zero cycle).

Three registers (RS, RE, and RC) are associated with the updating of the pro-
gram counter (PC) when it is updated in a repeat mode. Table 6-1 describes
these registers.

Table 6 1 . Repeat-Mode Registers

Reglster Functlon

RS Repeat Start Address Register. Holds the address of the first instruc-
tion of the block of code to be repeated.

RE Repeat End Address Register. Holds the address of the last instruc-
tion of the block of code to be repeated.

RC Repeat Count Register. Contains one less than the number of times
the block remains to be repeated. For example, to execute a block
N times, load N-1 into RC.

-- -- -- -- - - - --

For correct operation of the repeat modes, you must correctly initialize all of
the above-mentioned registers.

Repeat Modes

6.1.1 Repeat-Mode Control Bits

Two bits are important to the operation of RPTB and RPTS:

IJ RM bit. The repeat-mode flag (RM) bit in the status register specifies
whether the processor is running in the repeat mode.

RM = 0 indicates standard instruction fetching mode.
RM = 1 indicates repeat-mode instruction fetches.

IJ S bit. The S bit is internal to the processor and cannot be programmed,
but this bit is necessary to fully describe the operation of RPTB and RPTS.

S = 0 indicates standard instruction fetches.
S = 1 and RM = 1 indicates repeat-single instruction fetches.

6.1.2 Repeat-Mode Operation

Information in the repeat-mode registers and associated control bits controls
the modification of the PC during repeat-mode fetches. The repeat modes
compare the contents of the RE register (repeat end address register) with the
PC after the execution of each instruction. If they match and the repeat counter
(RC) is nonnegative, the RC is decremented, the PC is loaded with the repeat
start address, and the processing continues. The fetches and appropriate sta-
tus bits are modified as necessary. Note that the RC is never modified when
the RM flag is 0.

The repeat counter should be loaded with a value one less than the number
of times to execute the block; for example, an RC value of 4 would execute the
block five times. The detailed algorithm for the update of the PC is shown in
Example 6-1.

Note: Maximum Number of Repeats

The maximum number of repeats occurs when RC = 8000 0000h. This re-
sults in 8000 0001 h repetitions. The minimum number of repeats occurs
when RC = 0. This results in one repetition.

RE should be greater than or equal to RS (RE a RS). Otherwise, the code
will not repeat even though the RM bit remains set to 1.

By writing a 0 into the repeat counter or writing 0 into the RM bit of the status
register, you can stop the repeating of the loop before completion.

Program Flow Control 6-3

Re~eat Modes

Example 6- 1. Repeat-Mode Control Algorithm

if RM == 1
if S == 1
if first time through
fetch instruction from memory

else
fetch instruction from IR

RC - 1 - RC
if RC < 0

0 - ST(RM)
0 - S
PC + 1 - PC
else if S == 0
fetch instruction from memory

if PC == RE
RC - 1 4 RC

if RC r 0
RS - PC

else if RC < 0
0 - ST(RM)
0 - S
PC + 1 - PC

; If in repeat mode (RPTB or RPTS)
; If RPTS
; 1f this is the first fetch
; Fetch instruction from memory
: If not the first fetch
; Fetch instruction from IR
; Decrement RC
; If RC is negative
; Repeat single mode completed
; Turn off repeat-mode bit
; Clear S
; Increment PC
; If RPTB
; Fetch instruction from memory
; If this is the end of the block
; Decrement RC
; If RC is not negative
; Set PC to start of block
; If RC is negative
; Turn off repeat mode bits
; Clear S
; Increment PC

6.1.3 RPTB Instruction

The RPTB instruction repeats a block of code a specified number of times.

The number of times to repeat the block is the RC (repeat count) register value
plus one. Because the execution of RPTB does not load the RC, you must load
this register yourself. The RC register must be loaded before the RPTB instruc-
tion is executed. A typical setup of the block repeat operation is shown in
Example 6-2.

Example 6-2. RPTB Operation
LDI 15,RC ; Load repeat counter with 15
RPTB ENDLOOP ; Execute the block of code

STLOOP ; from STLOOP to ENDLOOP 16 times

ENDLOOP

Repeat Modes

Using the repeat-block mode of modifying the PC facilitates analysis of what
would happen in the case of branches within the block. Assume that the next
value of the PC will be either PC + 1 or the contents of the RS register. It is thus
apparent that this method of block repeat allows much branching within the
repeated block. Execution can go anywhere within the user's code via inter-
rupts, subroutine calls, etc. For proper modification of the loop counter, the last
instruction of the loop must be fetched. You can stop the repeating of the loop
prior to completion by writing a 0 to the repeat counter or writing a 0 to the RM
bit of the status register.

6.1.4 RPTS Instruction

An RPTS src instruction repeats the instruction following the RPTS src + 1
times. Repeats of a single instruction initiated by RPTS are not interruptible,
because the RPTS fetches the instruction word only once and then keeps it
in the instruction register for reuse. An interrupt would cause the instruction
word to be lost. Refetching the instruction word from the instruction register
reduces memory accesses and, in effect, acts as a one-word program cache.
If you need a single instruction that is repeatable and interruptible, you can use
the RPTB instruction.

When RPTS src is executed, the following sequence of operations occurs:

1) PC+l- .RS
2) PC+1 -.RE
3) 1 -. RM status register bit
4) 1 -. S bit
5) src -. RC (repeat count register)

The RPTS instruction loads all registers and mode bits necessary for the oper-
ation of the single-instruction repeat mode. Step 1 loads the start address of
the block into RS. Step 2 loads the end address into the RE (end address of
the block). Since this is a repeat of a single instruction, the start address and
the end address are the same. Step 3 sets the status register to indicate the
repeat mode of operation. Step 4 indicates that this is the repeat single-instruc-
tion mode of operation. Step 5 loads src into RC.

Program Flow Control 6-5

Re~eat Modes

6.1.5 Repeat-Mode Restrictions

Since the block repeat modes modify the program counter, other instructions
cannot modify the program counter at the same time. There are two restric-
tions:

IJ The last instruction in the block (or the only instruction in a block of
size 1) cannot be a Bcond, BR, DBcond, CALL, CALLcond, TRAPcond,
RETlcond, RETScond, IDLE, RPTB, or RPTS. Example 6-3 shows an in-
correctly placed standard branch.

IJ None of the last four instructions from the bottom of the block (or the only
instruction in a block of size 1) can be a BconoD, BRD, or DBconoD.
Example 6-4 shows an incorrectly placed delayed branch.

I 1

Note: Rule Violation

If either of these rules is violated, the PC will be undefined.
1 I

Example 6-3. lncorrectly Placed Standard Branch
L D I 15,RC ; Load repeat counter w i t h 15
RPTB ENDLOOP ; Execute the block of code

STLOOP ; f r o m STLOOP t o ENDLOOP 1 6 t imes

ENDLOOP BR OOPS ; This branch violates ru le 1

Example 6-4. lncorrectly Placed Delayed Branch
L D I 15,RC ; Load repeat counter w i t h 15
RPTB ENDLOOP ; Execute block o f code

STLOOP ; from STLOOP t o ENDLOOP 1 6 t imes

BRD OOPS ; This branch violates ru le 2
ADDF
MPYF

ENDLOOP SUBF

6.1.6 RC Register Value After Repeat Mode Completes

For the RPTB instruction, the RC register normally decrements to 0000 OOOOh
unless the block size is 1 ; in that case, it decrements to FFFF FFFFh. However,
if the RPTB instruction using a block size of 1 has a pipeline conflict in the
instruction being executed, the RC register decrements to 0000 0000h.
Example 6-5 illustrates a pipeline conflict. Refer to Chapter 9 for pipeline in-
formation.

Repeat Modes

RPTS normally decrements the RC register to FFFF FFFFh. However, if the
RPTS has a pipeline conflict on the last cycle, the RC register decrements to
0000 0000h.

r

Note: Number of Repetitions

In any case, the number of repetitions is always RC + 1.
I 1

Example 6-5. Pipeline Conflict in an RPTB Instruction
EDC .word40000000h;

LDP EDC
LDI @EDC,ARO
LDI 15,RC i
RPTB ENDLOOP ;

ENDLOOPLDI *ARO, RO ;
I

i
i
i

The program ia located in 4000000Fh

Load repeat counter with 15
Execute block of code
The *ARO read conflicts with
the instruction fetching
Then RC decrements to 0
If cache is enabled, RC decrements
to FFFF FFFFh

6.1.7 Nested Block Repeats

Block repeats (RPTB) can be nested. Since the registers RS, RE, RC, and ST
control the repeat-mode status, these registers must be saved and restored
in order to nest block repeats. For example, if you write an interrupt service
routine that requires the use of RPTB, it is possible that the interrupt asso-
ciated with the routine may occur during repeated execution of a block. The
interrupt service routine can check the RM bit to determine whether the block
repeat mode is active. If this RM is set, the interrupt routine should save ST,
RS, RE, and RC, in that order. The interrupt routine can then perform a block
repeat. Before returning to the interrupted routine, the interrupt routine should
restore RC, RE, RS, and ST, in that order. If the RM bit is not set, you don't need
to save and restore these registers.

The order in which the registers are savedlrestored is important to guarantee
correct operation. The ST register should be restored last, after the RC, RE,
and RS registers. ST should be restored after restoring RC, because the RM
bit cannot be set to 1 if the RC register is 0 or-1. For this reason, if you execute
a POP ST instruction (with ST (RM bit) = 1) while RC = 0, the POP instruction
recovers all the ST register bits but not the RM bit that stays at 0 (repeat mode
disabled). Also, RS and RE should be correctly set before you activate the re-
peat mode.

The RPTS instruction can be used in a block repeat loop if the proper registers
are saved.

Program Flow Control 6-7

Delayed Branches

6.2 Delayed Branches

The TMS320C3x offers three main types of branching: standard, delayed, and
conditional delayed.

Standard branches empty the pipeline before performing the branch; this
guarantees correct management of the program counter and results in a
TMS320C3x branch taking four cycles. Included in this class are repeats,
calls, returns, and traps.

Delayed branches on the TMS320C3x do not empty the pipeline, but rather
guarantee that the next three instructions will execute before the program
counter is modified by the branch. The result is a branch that requires only a
single cycle, thus making the speed of the delayed branch very close to that
of the optimal block repeat modes of the TMS320C3x. However, unlike block
repeat modes, delayed branches may be used in situations other than looping.
Every delayed branch has a standard branch counterpart that is used when
a delayed branch cannot be used. The delayed branches of the TMS320C3x
are BcondD, BRD, and DBcondD.

Conditional delayed branches use the conditions that exist at the end of the
instruction immediately preceding the delayed branch. They do not depend on
the instructions following the delayed branch. The condition flags are set by
a previous instruction only when the destination register is one of the exten-
ded-precision registers (RO-R7) or when one of the compare instructions
(CMPF, CMPF3, CMPI, CMP13, TSTB, or TSTB3) is executed. Delayed
branches guarantee that the next three instructions will execute, regardless
of other pipeline conflicts.

When a delayed branch is fetched, it remains pending until the three subse-
quent instructions are executed. None of the three instructions that follow a
delayed branch can be any of the following (see Example 6-6):

Bcond DBcondD

BcondD IDLE

BR RETl cond

BRD RETScond

CALL RPTB

CALLcond RPTS

DBcond TRAPcond

Delayed branches disable interrupts until the three instructions following the
delayed branch are completed. This is independent of whether the branch is
taken.

Delayed Branches

8 1

Note: Incorrect Use of Delayed Branches

If delayed branches are used incorrectly, the PC will be undefined.
I 1

Example 6-6. Incorrectly Placed Delayed Branches
B1: BD L1

NOP
NOP

B2 : B L2
NOP
NOP
NOP

; Thie branch ie incorrectly placed.

Program Flow Control

Calls, Traps, and Returns

6.3 Calls, Traps, and Returns

Calls and traps provide a means of executing a subroutine or function while
providing a return to the calling routine.

The CALL, CALLcond, and TRAPcond instructions store the value of the PC
on the stack before changing the PC's contents. The stack thus provides a re-
turn using either the RETScond or RETlcond instruction.

IJ The CALL instruction places the next PC value on the stack and places
the src (source) operand into the PC. The srcis a 24-bit immediate value.
Figure 6-1 shows CALL response timing.

The CALLcond instruction is similar to the CALL instruction (above) ex-
cept for the following:

It executes only if a specific condition is true (the 20 conditionmn-
cluding unconditional-are listed in Table 10-9 on page 10-13).

The src is either a PC-relative displacement or is in register-addres-
sing mode.

The condition flags are set by a previous instruction only when the destina-
tion register is one of the extended-precision registers (RGR7) or when
one of the compare instructions (CMPF, CMPF3, CMPI, CMP13, TSTB, or
TSTB3) is executed.

IJ TheTRAPcondinstruction also executes only if a specific condition is true
(same conditions as for the CALLcond instruction). When executing, the
following actions occur:

1) Interrupts are disabled with 0 written to bit GIE of the ST.

2) The next PC value is stored on the stack.

3) A vector is retrieved from one of the addresses 20h to 3Fh and is
loaded into the PC.

The particular address is identified by a trap number in the instruction.
Using the RETlcond to return re-enables interrupts.

0 RETScond returns execution from any of the above three instructions by
popping the top of the stack to the PC. To execute, the specified condition
must be true. Conditions are the same as for the CALLcond instruction.

IJ RETlcond returns from traps or calls like the RETScond (above) with the
addition that RETlcond also sets the GIE bit of the status register, which
enables all interrupts whose enabling bit is set to 1. Conditions are the
same as for the CALLcond instruction.

Calls, Traps, and Refurns

Calls and traps accomplish the same functional task (that is, a subfunction is
called and executed, and control is then returned to the calling function). Traps
offer several advantages. Among them are the following:

Interrupts are automatically disabled when a trap is executed. This allows
critical code to execute without risk of being interrupted. Thus, traps are
generally terminated with a RETlcond instruction to re-enable interrupts.

0 You can use traps to indirectly call functions. This is particularly beneficial
when a kernel of code contains the basic subfunctions to be used by appli-
cations. In this case, the functions in the kernel can be modified and relo-
cated without the need to recompile each application.

Figure 6- 1. CALL Response Timing

Fetch CALL Decode CALL Read CALL Execute CALL Fetch First

H3

ADDR Vector Address

Data

Program Flow Control 6-1 1

Interlocked Operations

6.4 lnterlocked Operations

Among the most common multiprocessing configurations is the sharing of
global memory by multiple processors. In order for multiple processors to ac-
cess this global memory and share data in a coherent manner, some sort of
arbitration or handshaking is necessary. This requirement for arbitration is the
purpose of the TMS320C3x interlocked operations.

The TMS320C3x provides a flexible means of multiprocessor support with five
instructions, referred to as interlocked operations. Through the use of external
signals, these instructions provide powerful synchronization mechanisms.
They also guarantee the integrity of the communication and result in a high-
speed operation. The interlocked-operation instruction group is listed in
Table 6-2.

Table 6-2. lnterlocked Operations

Mnemonic Description operation

LDFl Load floating-point value into a register, Signal interlocked
interlocked src -., dst

LDll Load integer into a register, interlocked Signal interlocked
src -, dst

SlGl Signal, interlocked Signal interlocked
Clear interlock

STFI Store floating-point value to memory, src - dst
interlocked Clear interlock

STll Store integer to memory, interlocked src -, dst
Clear interlock

The interlocked operations use the two external flag pins, XFO and XF1. XFO
must be configured as an output pin; XF1 is an input pin. When configured in
this manner, XFO signals an interlock operation request, and XF1 acts as an
acknowledge signal for the requested interlocked operation. In this mode, XFO
and XF1 are treated as active-low signals.

The external timing for the interlocked loads and stores is the same as for stan-
dard loads and stores. The interlocked loads and stores may be extended like -
standard accesses by using the appropriate ready signal (RDYint or XRDYint). -
(RDYint and XRDYint are a combination of external ready input and software
wait states. Refer to Chapter 7, External Bus Operation, for more information
on ready generation.)

Interlocked Operations

The LDFl and LDll instructions perform the following actions:

1) Simultaneously set XFO to 0 and begin a read cycle. The timing of XFO is
similar to that of the address bus during a read cycle.

2) Execute an LDF or LDI instruction and extend the read cycle until XF1 is - -
set to 0 and a ready (RDYint or XRDYid is signaled.

3) Leave XFO set to 0 and end the read cycle.

The readlwrite operation is identical to any other readlwrite cycle except for
the special use of XFO and XF1. The src operand for LDFl and Loll is always
a direct or indirect memory address. XFO is set to 0 only if the src is located --
off-chip; that is, STRB, MSTRB, or IOSTRB is active, or the src is one of the
on-chip peripherals. If on-chip memory is accessed, then XFO is not asserted,
and the operation is as an LDF or LDI from internal memory.

The STFl and STll instructions perform the following operations:

1) Simultaneously set XFO to 1 and begin a write cycle. The timing of XFO is
similar to that of the address bus during a write cycle.

2) Execute an STF or ST1 instruction and extend the write cycle until a ready
(m i n t or m i n t) is signaled.

As in the case for LDFl and LDII, the dstof STFl and STll affects XFO. If dst
is located off-chip (m, m, or is active) or the dst is one of
the on-chip peripherals, XFO is set to 1. If on-chip memory is accessed, then
XFO is not asserted and the operations are as an STF or ST1 to internal
memory.

The SlGl instruction functions as follows:

1) Sets XFO to 0.
2) Idles until XF1 is set to 0.
3) Sets XFO to 1 and ends the operation.

While the LDFI, LDII, and SlGl instructions are waiting for XF1 to be set to 0, -
you can interrupt them. LDFl and LDll require a ready signal (RDYint or'
XRDYint) in order to be interrupted. Because interrupts are taken on bus cycle
boundaries (see Section 6.6), an interrupt may be taken any time after a valid
ready. This allows you to implement protection mechanisms against deadlock
conditions by interrupting an interlocked load that has taken too long. Upon re-
turn from the interrupt, the next instruction is executed. The STFl and STll
instructions are not interruptible. Since the STFl and STll instructions com-
plete when ready is signaled, the delay until an interrupt can occur is the same
as for any other instruction.

Program Flow Control 6-1 3

Interlocked Operations

Interlocked operations can be used to implement a busy-waiting loop, to
manipulate a multiprocessor counter, to implement a simple semaphore
mechanism, or to perform synchronization between two TMS320C3xs. The
following examples illustrate the usefulness of the interlocked operations in-
structions.

Example 6-7 shows the implementation of a busy-waiting loop. If location
LOCK is the interlock for a critical section of code, and a nonzero means the
lock is busy, the algorithm for a busy-waiting loop can be used as shown.

Example 6-7. Busy- Waiting Loop

L D I 1,RO ; Pu t 1 i n t o RO

L1: L D I I @LOCKIR1 ; In ter locked operation begun
; Contents o f LOCK - R 1

ST11 R o t @LOCK ; P u t RO (= 1) i n t o LOCK, XFO = 1
; Inter locked operation ended

BNZ L1 ; Keep t r y ing u n t i l LOCK = 0

Example 6-8 shows how a location COUNT may contain a count of the num-
ber of times a particular operation needs to be performed. This operation may
be performed by any processor in the system. If the count is 0, the processor
waits until it is nonzero before beginning processing. The example also shows
the algorithm for modifying COUNT correctly.

Example 6-8. Multiprocessor Counter Manipulation

C T : O R 4, IOF i

i
L D I I @COUNT,Rl i

i
BZ CT i

SUB1 1 , R l I

ST11 R l , @COUNT ;

i

XFO = 1
Interlocked operation ended
I ~ ~ t e r l o c k e d operation begun
Contents of COUNT -, R 1

If COUNT = 0, keep t r y ing
Decrement R 1 (= COUNT)

Update COUNT, XFO = 1
Interlocked operation ended

Figure 6-2 illustrates multiple TMS320C3xs sharing global memory and using
the interlocked instructions as in Example 6-9, Example 6-10, and
Example 6-1 1 .

Interlocked Operations

Figure 6-2. Multiple TMS320C3xs Sharing Global Memory

Global Memory

TMS320C3x #I

It might sometimes be necessary for several processors to access some
shared data or other common resources. The portion of code that must access
the shared data is called a critical section.

To ease the programming of critical sections, semaphores may be used.
Semaphores are variables that can take only non-negative integer values.
Two primitive, indivisible operations are defined on semaphores (with S being
a semaphore):

P (S) : P: if (S == 0) , go t o P

else S - 1 -' S

Indivisibility of V(S) and P(S) means that when these processes access and
modify the semaphore S, they are the only processes accessing and modify-
ing S.

To enter a critical section, a P operation is performed on a common sema-
phore, say S (S is initialized to 1). The first processor performing P(S) will be
able to enter its critical section. All other processors are blocked because S
has become 0. After leaving its critical section, the processor performs aV(S),
thus allowing another processor to execute P(S) successfully.

Program Flow Control 6-1 5

Interlocked Operations

The TMS320C3x code for V(S) is shown in Example 6-9; code for P(S) is
shown in Example 6-1 0. Compare the code in Example 6-10 to the code in
Example fj-8.

Example 69. lmplementation of V(S)

V: LDII @S,RO ; Interlocked read of S begins (XFO = 0)
; Contents of S - RO

ADD1 1,RO ; Increment RO (= S)
ST11 RO,@S ; Update S, end interlock (XFO = 0)

Example 6 1 0. Implementation of P(S)

P: OR 4,IOF ; End interlock (XFO = 1)
NOP ; Avoid potential pipeline conflicts when

; executing out of cache, on-chip memory
; or zero wait-state memory

LDII @S,RO ; Interlocked read of S begins
; Contents of S + RO

BZ P ; If S = 0, go to P and try again
SUB1 1,RO ; Decrement RO (= S)
ST11 RO,@S ; Update S, end interlock (XFO = 1)

The SlGl operation can synchronize, at an instruction level, multiple
TMS320C3xs. Consider two processors connected as shown in Figure 6-3.
The code for the two processors is shown in Example 6-1 1.

Figure 6-3. Zero-Logic Interconnect of TMS320C3xs
TMS320C3x #I TMS320C3x #2

XFO ----, XF1

Processor #I runs until it executes the SIGI. It then waits until processor #2
executes a SIGI. At this point, the two processors have synchronized and con-
tinue execution.

Interlocked Operations

Example 6-1 1. Code to Synchronize Two TMS320C3xs at the Software Level

Tme Code for TMS320C3x U1 Code for TMS320C3x U2

a

SlGl

I
(WAIT

I
Synchronization Occurs - SlGl

Program Flow Control

Reset Operation

6.5 Reset Operation

The TMS320C3x supports a nonmaskable external reset signal (RESET),
which is used to perform system reset. This section discusses the reset opera-
tion.

At powerup, the state of the TMS320C3x processor is undefined. You can use
the RESET signal to place the processor in a known state. This signal must
be asserted low for ten or more H I clock cycles to guarantee a system reset.
H I is an output clock signal generated by the TMS320C3x (see Chapter 13
for more information).

Reset affects the other pins on the device in either asynchronous or asynchro-
nous manner. The synchronous reset is gated by the TMS320C3x's internal
clocks. The asynchronous reset directly affects the pins and is faster than the
synchronous reset. Table 6-3 shows the state of the TMS320C3x's pins after
RESET = 0. Each pin is described according to whether the pin is reset syn-
chronously or asynchronously.

Reset Operation

Table 6-3. Pin Operation at Reset

Slgnal # Plnr Operation at Reset

Prlmary Interface (61 Plns)

D31 -DO 32 Synchronous reset; placed in high-impedance state

A23-A0 24 Synchronous reset; placed in high-impedance state

Rrn 1 Synchronous reset; deasserted by going to a high level

STRB 1 Synchronous reset; deasserted by going to a high level

RDY

HOLD

HOLDA

1 Reset has no effect.

1 Reset has no effect.

1 Reset has no effect.

Expansion lnterface (49 ~ i n s) t

XD31 -XDO 32 Synchronous reset; placed in high-impedance state

XA12-XAO 13 Synchronous reset; placed in high-impedance state

X R ~ 1 Synchronous reset; placed in high-impedance state

MSTRB 1 Synchronous reset; deasserted by going to a high level

IOSTRB 1 Synchronous reset; deasserted by going to a high level

XRDY 1 Reset has no effect.

Control Signals (9 Pins)

RESET 1 Reset input pin

INT3-INTO 4 Reset has no effect.

IACK 1 Synchronous reset; deasserted by going to a high level

M C I ~ or 1 Reset has no effect.
MCBUW

XF1-XFO 2 Asynchronous reset; placed in high-impedance state

'f Present only on TMS320C30

Program Flow Control 6-1 9

Reset O~eration

Table 6-3. Pin Operation at Reset (Continued)

Signal # Plns Operation at Reset

Serial Port 0 Signals (6 Pins)

CLKXO 1 Asynchronous reset; placed in high-impedance state

DXO 1 Asynchronous reset; placed in high-impedance state

FSXO 1 Asynchronous reset; placed in high-impedance state

CLKRO 1 Asynchronous reset; placed in high-impedance state

DRO 1 Asynchronous reset; placed in high-impedance state

FSRO 1 Asynchronous reset; placed in high-impedance state

Serlai Port 1 Signals (6 Pins) t

CLKXl 1 Asynchronous reset; placed in high-impedance state

DX1 1 Asynchronous reset; placed in high-impedance state

FSX1 1 Asynchronous reset; placed in high-impedance state

CLKR1 1 Asynchronous reset; placed in high-impedance state

DR1 1 Asynchronous reset; placed in high-impedance state

FSR1 1 Asynchronous reset; placed in high-impedance state

Timer 0 Signal (1 Pin)

TCLKO 1 Asynchronous reset; placed in high-impedance state

Timer 1 Signal (1 Pin)

TCLKl 1 Asynchronous reset; placed in high-impedance state

Supply and Oscillator Signals (29 Pins)

VDD (3-0) 4 Reset has no effect.

IODVDD (1,O) 2 Reset has no effect.

ADVDD (loo) 2 Reset has no effect.

PDVDD 1 Reset has no effect.

DDVDD (1 $0) 2 Reset has no effect.

MDVDD 1 Reset has no effect.

vss (3-0) 4 Reset has no effect.

t Present only on TMS320C30

Reset O~eration

Table W. Pin Operation at Reset (Continued)

Slgnal # Plns Operation at Reset

Dvss (3-0) 2 Reset has no effect.

cvss (1 $0) 2 Reset has no effect.

~VSS 1 Reset has no effect.

VEEP 1 Reset has no effect.

SUBS 1 Reset has no effect.

X i 1 Reset has no effect.

X2lCLKI N 1 Reset has no effect.

HI 1 Synchronous reset. Will go to its initial state when makes a 1 to 0
transition. See Chapter 13.

H3 1 Synchronous reset. Will go to its initial state when RESEf makes a 1 to 0
transition. See Chapter 13.

Emulation, Test, and Reserved (18 Pins)

EMU0 1 Undefined

EMU1 1 Undefined

EMU2 1 Undefined

EMU3 1 Undefined

 EMU^/^ 1 Undefined

EMU$ 1 Undefined

 EMU^^ 1 Undefined

RSVO~ 1 Undefined

RSVl t 1 Undefined

R S V ~ ~ 1 Undefined

R S V ~ ~ 1 Undefined

RSV4t 1 Undefined

RSVB~ 1 Undefined

RSV6t 1 Undefined

R S V ~ ~ 1 Undefined

R S V ~ ~ 1 Undefined

RSVS~ 1 Undefined

RSVl0t 1 Undefined

t Present only on TMS320C30

Program Flow Control 6-21

Reset Operation

At system reset, the following additional operations are performed:

a The peripherals are reset. This is asynchronous operation. The peripheral
reset is described in Chapter 8.

The external bus control registers are reset. The reset values of the control
registers are described in Chapter 7.

The following CPU registers are loaded with 0:

ST (CPU status register)
IE (CPUIDMA interrupt enable flags)
IF (CPU interrupt flags)
IOF (110 flags)

a The reset vector is read from memory location Oh and loaded into the PC.
This vector contains the start address of the system reset routine.

Execution begins. Refer to Example 11 -1 on page 11 -3 for an illustration
of a processor initialization routine.

Multiple TMS320C3xs driven by the same system clock may be reset and syn-
chronized. When the 1 to 0 transition of -occurs, the processor is placed
on a well-defined internal phase, and all of the TMS320C3xs will come up on
the same internal phase.

Unless otherwise specified, all registers are undefined after reset.

Interrupts

6.6 lnterrupts

The TMS320C3x supports multiple internal and external interrupts, which can
be used for a variety of applications. This section discusses the operation of
these interrupts.

A functional diagram of the logic used to implement the external interrupt
inputs is shown in Figure 6-4; the logic for internal interrupts is similar. Addi-
tional information regarding internal interrupts can be found in Chapter 8.

Figure 6 4 . lnterrupt Logic Functional Diagram

Internal lnterrupt
Set Signal EINTn(CPU)

lnterrupt
Flag (n)

Set a

r RESET.
lnternal lnterrupt

Clear/Acknowledge
Signal

EINTn(DMA)

To
Control
Section

External interrupts are synchronized internally, as illustrated by the three flip-
flops clocked by HI and H3. Once synchronized, the interrupt input will set the
corresponding interrupt flag register (IF) bit if the interrupt is active.

External interrupts are latched internally on the falling edge of HI (see Chapter
13 for timing information). An external interrupt must be held low for at least
one H1/H3 cycle to be recognized by the TMS320C3x. lnterrupts should be
held low for only one or two H1 falling edges. If the interrupt is held low for three
or more HI falling edges, multiple interrupts may be recognized.

6.6.1 lnterrupt Vector Table

Table 6-4 and Table 6-5 contain the interrupt vectors. In the microprocessor
mode of the TMS320C30 and the TMS320C31 (Table 6-4) and the microcom-
puter mode of the TMS320C31 (Table 6-S), the interrupt vectors contain the
addresses of interrupt service routines that should start executing when an in-
terrupt occurs. On the other hand, in the microcomputer/boot loader mode of
the TMS320C31, the interrupt vector contains a branch instruction to the start
of the interrupt service routine.

Program Flow Control 6-23

Table 6 4 . Reset, Interrupt, and Trap-Vector Locations for the TMS320C30/TMS320C3 1
Microprocessor Mode

Address Routine

OOh

01 h

02h

03h

04h

05h

06h

07h

08h

09h

OAh

OBh

OCh

1 Fh

RESET

l NTO

INTI

I NT2

I NT3

XI NTO

RlNTO

XI NTI t

RINTI t

TINT0

TINT1

DINT

Reserved

20h TRAP 0

3Bh TRAP 27

3Ch TRAP 28 (Reserved)

3Dh TRAP 29 (Reserved)

3Eh TRAP 30 (Reserved)

3Fh TRAP 31 (Reserved)

Reserved on TMS320C31

Table 6-5. Reset, Interrupt, and Trap Vector Locations for the TMS320C3 1 Microcomputer
Boot Mode

Address Deocrlptlon -
809FC1 l NTO

809FC7 Reserved

809FC8 Reserved
-

809FC9 TINT0

809FCA TINT1

809FCB DINT0

809FCC809FDF Reserved

809FEO imm
809FE1 mxm

809FFB TRAP27

809FFG809FFF Reserved

6.6.2 Interrupt Prioritization

When two interrupts occur in the same clock cycle or when two previously
received interrupts are waiting to be serviced, one interrupt will be serviced be-
fore the other. The CPU handles this prioritization by servicing the interrupt
with the least priority. Table 6-6 shows the priorities assigned to the reset and
interrupt vectors.

The CPU controls all prioritization of interrupts (see Table &6 for reset and in-
terrupt vector locations and priorities).

Program Flow Control 6-25

Interrupts

Table 6-6. Reset and lnterrupt Vector Priorities

Reset or Vector
lnterrupt Location Priority Function

RESET Oh 0 External reset signal input on the RESET pin
-
l NTO l h 1 External interrupt on the INTO pin
-
INTl 2h 2 External interrupt on the lNTl pin
-
INT2 3h 3 External interrupt on the INT2 pin
-
I NT3 4h 4 External interrupt on the INT3 pin

XINTO 5h 5 Internal interrupt generated when serial-port 0 transmit buffer is empty

RlNTO 6h 6 Internal interrupt generated when serial-port 0 receive buffer is full

X I N T ~ ~ 7h 7 Internal interrupt generated when serial-port 1 transmit buffer is empty

RINTI~ 8h 8 Internal interrupt generated when serial-port 1 receive buffer is full

TINTO 9h 9 Internal interrupt generated by timer 0

TINT1 OAh 10 Internal interrupt generated by timer 1

DINT OBh 11 Internal interrupt generated by DMA controller 0

t Reserved on TMS320C31

6.6.3 lnterrupt Control Bits

Four CPU registers contain bits used to control interrupt operation:

C] Status Register (ST)

The CPU global interrupt enable bit (GIE) located in the CPU status regis-
ter (ST) controls all maskable CPU interrupts. When this bit is set to 1, the
CPU responds to an enabled interrupt. When this bit is cleared to 0, all
CPU interrupts are disabled. Refer to subsection 3.1.7 on page 3-4 for
more information.

CPUIDMA lnterrupt Enable Register (IE)

This register individually enablesldisables CPU and DMA (external, serial
port, and timer) interrupts. Refer to subsection 3.1.8 on page 3-7 for more
information.

IJ CPU lnterrupt Flag Register (IF)

This register contains interrupt flag bits that indicate the corresponding in-
terrupt is set. Refer to subsection 3.1.9 on page 3-9 for more information.

0 DMA Global Control Register

Interrupts to the DMA are controlled by the synchronization bits of the
DMA global control register. DMA interrupts are independent of the ST
(GIE) bit.

lnterrupt Flag Register Behavior

When an external interrupt occurs, the corresponding bit of the IF register is
set to 1. When the CPU or DMA controller processes this interrupt, the corre-
sponding interrupt flag bit is cleared by the internal interrupt acknowledge sig-
nal. It should be noted, however, that if lNTn is still low when the interrupt ac-
knowledge signal occurs, the interrupt flag bit will be cleared for only one cycle -
and then set again because lNTn is still low. Accordingly, it is theoretically pos-
sible that, depending on when the IF register is read, this bit may be 0 even
though lNTn is 0. When the TMS320C3x is reset, 0 is written to the interrupt
flag register, thereby clearing all pending interrupts.

The interrupt flag register bits may be read and written under software control.
Writing a 1 to an IF register bit sets the associated interrupt flag to 1. Similarly,
writing a 0 resets the corresponding interrupt flag to 0. In this way, all interrupts
may be triggered andlor cleared through software. Since the interrupt flags
may be read, the interrupt pins may be polled in software when an interrupt-dri-
ven interface is not required.

Internal interrupts operate in a similar manner. In the IF register, the bit corre-
sponding to an internal interrupt may be read and written through software.
Writing a 1 sets the interrupt latch; writing a 0 clears it. All internal interrupts
are one H11H3 cycle in length.

The CPU global interrupt enable bit (GIE), located in the CPU status register
(ST), controls all CPU interrupts. All DMA interrupts are controlled by the DMA
global interrupt enable bit, which is not dependent on ST(GIE) and is local to
the DMA. The DMA global interrupt enable bit is dependent, in part, on the
state of the DMA SYNC bits. It is not directly accessible through software (see
Chapter 8). The AND of the interrupt flag bit and the interrupt enables is then
connected to the interrupt processor.

6.6.4 lnterrupt Processing

The 'C3x allows the CPU and DMA coprocessor to respond to and process in-
terrupts in parallel. Figure 6-5 on page 6-28 shows interrupt processing flow;
for exact sequence, refer to Table 6-7 on page 6-29.

Program Flow Control 6-27

lnterrupts
L

Figure 6-5. lnterrupt Processing

Yes

lnterrupt Is

Disable lnterrupts
GlE+ 0

Clear lnterrupt Flag c
I Complete All Fetched Instructions /

1 PC + lnterrupt Vector I

lnterrupt Is
a DMA lnterrupt

Clear lnterrupt Flag e
DMA Continues Y

CPU Starts Executing ISR Routine s
I 1

Note: CPU and DMA Interrupts

CPU and DMA interrupts are acknowledged (responded to by the CPU) on
instruction fetch boundaries only. If instruction fetches are halted because
of pipeline conflicts or execution of RPTS loops, CPU and DMA interrupts are
not acknowledged until instruction fetching continues.

I 1

Table 6-7. Interrupt Latency

Cycle Description Fetch Decoda Read Exocute

1 Recognize interrupt in single-cycle fetched prog prog a prog a-1 prog a-2
(prog a + 1) instruction. a t 1

2 Temporarily disable interrupt until GIE is cleared. - interrupt prog a prog a-1

3 Read the interrupt vector table. - - interrupt prog a

4 Clear Interrupt flag; clear GIE bit; store return address - - - interrupt
to stack.

5 Pipeline begins to fill with ISR instruction. isrl - - -
6 Pipeline continues to fill with ISR instruction. isr2 isrl - -

7 Pipeline continues to fill with ISR instruction. isr3 isr2 isrl -
8 Execute first instruction of interrupt service routine, isr4 isr3 isr2 isrl

In the CPU interrupt processing cycle (left side of Figure 6-5), the correspond-
ing interrupt flag in the IF register is cleared, and interrupts are globally dis-
abled (GIE = 0). The CPU completes all fetched instructions. The current PC
is pushed to the top of the stack. The interrupt vector is fetched and loaded into
the PC, and the CPU starts executing the first instruction in the interrupt ser-
vice routine (ISR).

If you wish to make the interrupt service routine interruptible, you can set the
GIE bit to 1 after entering the ISR.

The DMA interrupt processing cycle (right side of Figure 6-5) is similar to that
of the CPU. After the pertinent interrupt flag is cleared, the DMA coprocessor
proceeds according to the status of the SYNC bits in the DMA coprocessor
global control register.

The interrupt acknowledge (IACK) instruction can be used to signal externally
that an interrupt has been serviced. If external memory is specified in the oper-
and, IACK drives the lACK pin and performs a dummy read. The read is per-
formed from the address specified by the IACK instruction operand. IACK is
typically placed in the early portion of an interrupt service routine. However,
it may be better suited at the end of the interrupt service routine or be totally
unnecessary.

Note the following:

Interrupts are disabled during an RPTS and during a delayed branch (until
the three instructions following a delayed branch are completed). Inter-
rupts are held until after the branch.

Program Flow Control 6-29

Q When an interrupt occurs, instructions currently in the decode and read
phases continue regular execution. This is not the case for an instruction
in the fetch phase:

If the interrupt occurs in the first cycle of the fetch of an instruction, the
fetched instruction is discarded (not executed), and the address of
that instruction is pushed to the top of the system stack.

If the interrupt occurs after first cycle of the fetch (in the case of a multi-
cycle fetch due to wait states), that instruction is executed, and the ad-
dress of the next instruction to be fetched is pushed to the top of the
system stack.

6.6.5 CPU Interrupt Latency

CPU interrupt latency, defined as the time from the acknowledgement of the
interrupt to the execution of the first interrupt service routine (ISR) instruction,
is at least eight cycles. This is explained in Table 6-7 on page 6-29, where the
interrupt is treated as an instruction. It assumed that all of the instructions are
single-cycle instructions.

6.6.6 CPUIDMA Interaction

If the DMA is not using interrupts for synchronization of transfers, it will not be
affected by the processing of the CPU interrupts. Detected interrupts are re-
sponded to by the CPU and DMA on instruction fetch boundaries only. Since
instruction fetches are halted due to pipeline conflicts or when executing
instructions in an RPTS loop, interrupts will not be responded to until instruc-
tion fetching continues. It is therefore possible to interrupt the CPU and DMA
simultaneously with the same or different interrupts and, in effect, synchronize
their activities. For example, it may be necessary to cause a high-priority DMA
transfer that avoids bus conflicts with the CPU (that is, that makes the DMA
higher priority than the CPU). This may be accomplished by using an interrupt
that causes the CPU to trap to an interrupt routine that contains an IDLE
instruction. Then if the same interrupt is used to synchronize DMA transfers,
the DMA transfer counter can be used to generate an interrupt and thus return
control to the CPU following the DMA transfer.

Since the DMA and CPU share the same set of interrupt flags, the DMA may
clear an interrupt flag before the CPU can respond to it. For example, if the
CPU interrupts are disabled, the DMAcan respond to interrupts and thus clear
the associated interrupt flags.

6.6.7 TMS320C3x interrupt Considerations

Give careful consideration to TMS320C3x interrupts, especially if you make
modifications to the status register when the global interrupt enable (GIE) bit
is set. This can result in the GIE bit being erroneously set or reset as described
in the following paragraphs.

The GIE bit is set to 0 by an interrupt. This can cause a processing error if any
code following within two cycles of the interrupt recognition attempts to read
or modify the status register. For example, if the status register is being pushed
onto the stack, it will be stored incorrectly if an interrupt was acknowledged two
cycles before the store instruction.

When an interrupt signal is recognized, the TMS320C3x continues executing
the instructions already in the readand decode phases in the pipeline. Howev-
er, because the interrupt is acknowledged, the GIE bit is reset to 0, and the
store instruction already in the pipeline will store the wrong status register
value.

For example, if the program is like this:

. . .
NOP

interrupt recognized ->LDI @V-ADDR, AR1
MPYI *ARl, RO
PUSH ST . . .
POP ST

the PUSH ST instruction will save the ST contents in memory, which includes
GIE = 0. Since the device is expected to have GIE = 1, the POP ST instruction
will put the wrong status register value into the ST.

A similar situation may occur if the GIE bit = 1 and an instruction executes that
is intended to modify the other status bits and leave the GIE bit set. In the
above example, this erroneous setting would occur if the interrupt were recog-
nized two cycles before the POP ST instruction. In that case, the interrupt
would clear the GIE bit, but the execution of the POP instruction would set the
GIE bit. Since the interrupt has been recognized, the interrupt service routine
will be entered with interrupts enabled, rather than disabled as expected.

One solution is to use traps. For example, you can use TRAP 0 to reset GIE
and use TRAP 1 to set GIE. This is accomplished by making TRAP 0 and
TRAP 1 be the instructions RETS and RETI, respectively.

Program Flow Control 6-31

Interrupts

Another alternative incorporates the following code fragment, which protects
against modifying or saving of the status register by disabling interrupts
through the interrupt enable register:

PUSH I E i
LDI 0, I E ;
NOP ;
NOP ;
AND ODFFFh, S T ;
POP I E ;

;
;
;

save IE register Added instructions to
C l e a r IE register avoid pipeline problems

2 NOPs or useful instructions

S e t GIE = 0 Instruction that reads or
writes to ST register.
Added instruction
to avoid pipeline
problems.

6.6.8 TMS320C30 Interrupt Considerations

The TMS320C30 has two unique exceptions to the interrupt operation.

0 The status register global interrupt enable (GIE) bit may be erroneously
reset to 0 (disabled setting) if all of the following conditions are true:

H A conditional trap instruction (TRAPcond) has been fetched,
H The condition for the trap is false, and
H A pipeline conflict has occurred, resulting in a delay in the decode or

read phases of the instruction.

During the decode phase of a conditional trap, interrupts are temporarily
disabled to ensure that the trap will execute before a subsequent interrupt.
If a pipeline conflict occurs and causes a delay in execution of the condi-
tional trap, the interrupt disabled condition may become the last known
condition of the GIE bit. In the case that the trap condition is false, inter-
rupts will be permanently disabled until the GIE bit is intentionally set. The
condition does not present itself when the trap condition is true, because
normal operation of the instruction causes the GIE to be reset, and stan-
dard coding practice will set the GIE to 1 before the trap routine is exited.
Several instruction sequences that can cause pipeline conflicts have been
found:

LDI mem, SP

TRAPcond n

LDI mem, SP

NOP

TRAPcond n

Interrupts

ST1 SP , mem
TRAPcond n
ST1 - I * M Y
LDI I RY

I 1 LD1 *ARz , Rw
TRAPcond n

Other similar conditions may also cause a delay in the execution. There-
fore, the following solution is recommended to avoid or rectify the problem.

Insert two NOP instructions immediately prior to the TRAPcond instruc-
tion. One NOP is insufficient in some cases, as illustrated in the second
bulleted item, above. This eliminates the opportunity for any pipeline con-
flicts in the immediately preceding instructions and enables the conditional
trap instruction to execute without delays.

0 Asynchronous accesses to the interrupt flag register (IF) can cause the
TMS320C3x to fail to recognize and service an interrupt. This may occur
when an interrupt is generated and is ready to be latched into the IF regis-
ter on the same cycle that the IF is being written to by the CPU. Note that
logic operations (AND, OR, XOR) may write to the IF register.

The logic currently gives the CPU write priority; consequently, the as-
serted interrupt might be lost. This is particularly true if the asserted inter-
rupt has been generated internally (for example, a direct memory access
(DMA) interrupt). This situation can arise as a result of a decision to poll
certain interrupts or a desire to clear pending interrupts due to a long pulse
width. In the case of a long pulse width, the interrupt may be generated
after the CPU responds to the interrupt and attempts to automatically clear
it by the interrupt vector process.

The recommended solution is not to use the interrupt polling technique but
to design the external interrupt inputs to have pulse widths of between 1
and 2 instruction cycles. The alternative to strict polling is to periodically
enable and disable the interrupts that would be polled, thereby allowing
the normal interrupt vectoring to take place; that automatically clears the
interrupt flag without affecting other interrupts. If you need to clear a pend-
ing interrupt, it is recommended that you use a memory location to indicate
that the interrupt is invalid. Then the interrupt service routine can read that
location, clear it (if the pending interrupt is invalid), and return immediately.
The following code fragments show how a dummy interrupt due to a long
interrupt pulse might be handled:

ISR-n : PUSH ST
PUSH DP
PUSH RO
LDI OI DP

i
; Save registers
;
; Clear Data Page Pointer

Program Flow Control 6-33

Interrupts

LDI @DUMMY-INT, RO ; If DUMMY-INT is 0 or positive,
BNN ISR-n-START ; go to ISR-n-START
ST1 DP, @DUMMY-INT ; Set DUMMY-INT 0
POP RO ;
POP DP i
POP ST ; Housekeeping, return from interrupt
RETI ,

ISR-n-START:

LDI INT-Fn, RO
AND IF, RO
BZ ISR-n-END
LDI 0, DP
LDI OFFFFh, RO
ST1 RO, @DUMMY-INT

ISR-n-END:
POP RO
POP DP
POP ST
RETI

; Normal interrupt service routine
; Code goes here
I

; If ones in IF reg match
; INT-Fn, exit ISR
; Otherwise clear
; DP and set
; DUMMY-INT negative & exit

;
; Exit ISR

6.6.9 Prioritization and Control

The CPU controls all prioritization of interrupts (see Table 6-8 for reset and in-
terrupt vector locations and priorities). If the DMA is not using interrupts for
synchronization of transfers, it will not be affected by the processing of the
CPU interrupts. Detected interrupts are responded to by the CPU and DMA
on instruction fetch boundaries only. If instruction fetches are halted due to
pipeline conflicts or when executing instructions in an RPTS loop, interrupts
will not be responded to until instruction fetching continues. It is therefore pos-
sible to interrupt the CPU and DMA simultaneously with the same or different
interrupts and, in effect, synchronize their activities. For example, it may be
necessary to cause a high-priority DMA transfer that avoids bus conflicts with
the CPU, that is, make the DMA higher priority than the CPU. This may be ac-
complished by using an interrupt that causes the CPU to trap to an interrupt
routine that contains an IDLE instruction. Then if the same interrupt is used to
synchronize DMA transfers, the DMA transfer counter can be used to generate
an interrupt, thereby returning control to the CPU following the DMA transfer.

Since the DMA and CPU share the same set of interrupt flags, the DMA can
clear an interrupt flag before the CPU can respond to it. For example, if the
CPU interrupts are disabled, the DMA can respond to interrupts and thus clear
the associated interrupt flags.

Table 6-8. Reset and Interrupt Vector Locations

Reset or Vector
Interrupt Location Priority Function

RESET Oh 0 External reset signal input on the RESET pin
- -
I NTO l h 1 External interrupt input on the INTO pin
- -
INTI 2h 2 External interrupt input on the INTI pin
-
I NT2 3h 3 External interrupt input on the pin
- -
I NT3 4h 4 External interrupt input on the INT3 pin

Rl NTO

XlNTl t

5h 5 Internal interrupt generated when serial-port 0 transmit
buffer is empty

6h 6 Internal interrupt generated when serial-port 0 receive
buffer is full

7h 7 Internal interrupt generated when serial-port 1 transmit
buffer is empty

8h 8 Internal interrupt generated when serial-port 1 receive
buffer is full

TI NTO 9h 9 Internal interrupt generated by timer 0

TINT1 OAh 10 Internal interrupt generated by timer 1

DINT OBh 11 Internal interrupt generated by DMA controller 0

3 Resewed on TMS320C31

Program Flow Control 6-35

TMS320LC31 Power Management Modes

6.7 TMS320LC31 Power Management Modes

The TMS320LC31 CPU has been enhanced by the addition of two power man-
agement modes:

0 IDLE2, and
LOPOWER.

The H I instruction clock is held high until one of the four external interrupts is
asserted. In IDLE2 mode, the TMS320C31 behaves as follows:

0 No instructions are executed.

Q The CPU, peripherals, and internal memory retain their previous states.

0 The primary bus output pins are idle:

The address lines remain in their previous states,
The data lines are in the high-impedance state, and
The output control signals are inactive.

Q When the device is in the functional (non-emulation) mode, the clocksstop
with H1 high and H3 low (see Figure 6-6).

Q The 'C31 will remain in IDLE2 until one of the four external interrupts
(INT3-INTO) is asserted for at least one H I cycle. When one of the four
interrupts is asserted, the clocks start after a delay of one H I cycle. When
the clocks restart, they may be in the opposite phase (that is, H I may be
high if H3 was high before the clocks were stopped; H3 may be high if H1
was previously high). The H I and H3 clocks will remain 180" out of phase
with each other (see Figure 6-7).

0 For one of the four external interrupts to be recognized and serviced by
the CPU during the IDLE2 operation, the interrupt must be asserted for
less than three cycles but more than two cycles.

The instruction following the IDLE2 instruction will not be executed until
after the return from interrupt instruction (RETI) is executed.

When the device is in emulation mode, the H i and H3 clocks will continue
to run normally and the CPU will operate as if an IDLE instruction had been
executed. The clocks continue to run for correct operation of the emulator.

TMS320C3 1 Power Manaoement Modes

Figure 6-6. IDLE2 Timing

CLKlN

Idle 2 Execution

ADDR

Data

Figure 6-7. Interrupt Response Timing After IDLE2 Operation

I I Interrupt Vector I
I Clocks Driven I Read I

Fetch 1st
Instr,of

I Servtce
I Routing

CLKlN

I

INT3 to I I 1

l NTO I I I I

I

ADDR I I I I)(Vector Address ; ! X 1st Addr
I I ,

Data
I I
I I

Program Flow Control 6-37

TMS320C3 1 Power Management Modes

6.7.2 LOPOWER

In the LOPOWER (low power) mode, the CPU continues to execute instruc-
tions, and the DMA can continue to perform transfers, but at a reduced clock
rate of CLKlN frequency

16

A TMS320C31 with a CLKIN frequency of 32 MHz will perform identically to
a 2 MHz TMS320C31 with an instruction cycle time of 1,000 ns.

Figure 6-8. LOP0 WER Timing

During the read phase of the. . .
LOPOWER instruction (Figure 6-8)

MAXSPEED instruction (Figure 6-9)

CLKIN
LOPOWER Read

The TMS320C31 . . .
slows to 111 6 of full-speed operation.

resumes full-speed operation. -

1 32 CLKlN w

Figure &9. MAXSPEED Timing

CLKIN

MAXSPEED Read

H3

- 32 CLKIN --------------+)

External Bus Operation

Memories and external peripheral devices are accessible through two external
interfaces on the TMS320C30:

0 the primary bus, and
a the expansion bus.

On the TMS320C31, one bus, the primary bus, is available to access external
memories and peripheral devices. You can control wait-state generation, per-
mitting access to slower memories and peripherals, by manipulating
memory-mapped control registers associated with the interfaces and by using
an external input signal.

Major topics discussed in this chapter are listed below.

Topic Page

Exfernal Interface Control Registers
L

7.1 External Interface Control Registers
The TMS320C30 provides two external interfaces: the primary bus and the ex-
pansion bus. The TMS320C31 provides one external interface: the primary
bus. The primary bus consists of a 32-bit data bus, a 24-bit address bus, and
a set of control signals. The expansion bus consists of a 32-bit data bus, a
13-bit address bus, and a set of control signals. Both buses support soft-
ware-controlled wait states and an external ready input signal, and both buses
are useful for data, program, and 110 accesses.

Access is determined by an active strobe signal (m, m, or IOSTRB).
When a primary bus access is performed, STRB is low. The expansion bus of
the TMS320C30 supports two types of accesses:

0 Memory access signalled by MSTRB low. The timing for an MSTRB ac-
cess is the same as that of the STRB access on the primary bus.

0 External peripheral device access is signaled by IOSTRB low.

Each of the buses (primary and expansion) has an associated control register.
These registers are memory-mapped as shown in Figure 7-1.

Figure 7- 1. Memory- Mapped External Interface Control Registers
Peripheral
Address

808060h

808061 h

t Resewed on the TMS320C31

External Interface Control Registers

7.1 .I Primary-Bus Control Register

The primary bus control register is a 32-bit register that contains the control
bits for the primary bus (see Figure 7-2). Table 7-1 lists the register bits with
the bit names and functions.

Figure 7-2, Primary-Bus Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x x x x x x BNKCMP WTCNT SWW HI2 NOHOL

W w W w R M I W W W W W W W W W w R M I R I W W w WW R

NOTE: xx = resewed bit, read as 0.
R = read, W = write.

External Bus Operation 7-3

External Interface Control Resisters

Table 7-1. Primary-Bus Control Register Bits Summary

Blt Name Reset Value Function

0 HOLDST x t Hold status bit. This bit signals whether the port is being held
(HOLDST = 1) or is not being held (HOLDST = 0). This status bii is valid
whether the port has been held via hardware or software.

1 NOHOLD 0 Port hold signal. NOHOLD allows or disallows the port to be held by an
external HOLD signal. When NOHOLD = 1, the TMS320C3x takes over
the external bus and controls it, regardless of serviced or ending re-
quests b external devices. No hold acknowledge (H LDA) is asserted Y6 4
when a H LD is received. However, it is asserted if an internal hold is
generated (HI2 = 1). NOHOLD is set to 0 at reset.

4-3 SWW

7-5 WTCNT

0 Internal hold. When set (HIZ = I), the port is put in hold mode. This is
equivalent to the external HOLD signal. By forcing a high-impedance
condition, the TMS320C3x can relinquish the external memory port
through software. HOLDA goes low when the port is placed in the
high-impedance state. HI2 is set to 0 at reset.

11 Software wait mode. In conjunction with WTCNT, this two-bit field de-
fines the mode of wait-state generation. It is set to 1 1 at reset.

11 1 Software wait mode. This three-bit field specifies the number of cycles
to use when in software wait mode for the generation of internal wait
states. The range is 0 (WTCNT = 0 0 0) to 7 (WTCNT= 1 1 1) H1/H3
cycles. It is set to 1 1 1 at reset.

1 2-8 10000 Bank compare. This five-bit field specifies the number of MSBs of the
BNKCMP address to be used to define the bank size. It is set to 1 0 0 0 0 at reset.

31 -1 3 Reserved 0-0 Read as 0.

External Interface Control Registers

7.1.2 Expansion-Bus Control Register

The expansion-bus control register is a 32-bit register that contains control bits
for the expansion bus (see Figure 7-3 and Table 7-2).

Figure 7-3. fipansion-Bus Control Register

NOTE: xx = reserved bit, read as 0.
R = read, W r mite.

Table 7-2. Expansion-Bus Control Register Bits Summary

Reset
Blt Name Value

2-0 Reserved 000 Read as 0.

4-3 SWW 11 Software wait-state generation. In conjunction with the WTCNT, this
two-bit field defines the mode of wait-state generation. It is set to 1 1
at reset.

7-5 WTCNT 111 Software wait mode. This three-bit field specifies the number of cycles
to use when in software wait mode for the generation of internal wait
states. The range is 0 (WTCNT = 0 0 0) to 7 (WTCNT = 1 1 1) HlIH3
clock cycles. It is set to 1 1 1 at reset.

31-8 Reserved 0-0 Read as 0.

External Bus Operation 7-5

External Interface Timing

7.2 External Interface Timing

This section discusses functional timing of operations on the primary bus and
the expansion bus, the TMS320C3x's two independent parallel buses.
Detailed timing specifications for all TMS320C3x signals are contained in Sec-
tion 13.6 on page 13-31.

The parallel buses implement three mutually exclusive address spaces distin- --
guished through the use of three separate control signals: STRB, MSTRB, and
IOSTRB. The STRB signal controls accesses on the primary bus, and the
MSTRB and IOSTRB control accesses on the expansion bus. Since the two
buses are independent, you can make two accesses in parallel.

With the exception of bank switching and the external HOLD function (dis-
cussed later in this section), timing of primary bus cycles and MSTRB expan-
sion bus cycles are identical and are discussed collectively. The acronym
(M)STRB is used in references that pertain equally to STRB and m. Sim-
ilarly, (x) R ~ , (X)A, ()OD, and are used to symbolize the equivalent
primary and expansion bus signals. The IOSTRB expansion bus cycles are
timed differently and are discussed independently.

7.2.1 Primary-Bus Cycles

All bus cycles comprise integral numbers of H I clock cycles. One H I cycle is
defined to be from one falling edge of H I to the next falling edge of HI. For
full-speed (zero wait-state) accesses, writes require two HI cycles and reads
one cycle; however, if the read follows a write, the read requires two
cycles.This applies to both the primary bus and the MSTRB expansion bus ac-
cess. Recall that, internally (from the perspective of the CPU and DMA), writes
require only one cycle if no accesses to that interface are in progress. The fol-
lowing discussions pertain to zero wait-state accesses unless otherwise spe-
cified.

The (M)STRB signal is low for the active portion of both reads and writes. The
active portion lasts one H I cycle. Additionally, before and after the active por-
tion ((M)STRB low) of writes only, there is a transition cycle of HI. This transi-
tion cycle consists of the following sequence:

1) (M)STRB is high.

2) If required, (x)R/W changes state on HI rising.

3) If required, address changes on HI rising if the previous HI cycle was the
active portion of a write. If the previous HI cycle was a read, address
changes on H I falling.

External Interface Timing

Figure 7-4 illustrates a read-read-write sequence for (M)STRB active and no
wait states. The data is read as late in the cycle as possible to allow maximum
access time from address valid. Note that although external writes require two
cycles, internally (from the perspective of the CPU and DMA) they require only
one cycle if no accesses to that interface are in progress. In the typical timing
for all external interfaces, the (x)R/W strobe does not change until (M)STRB
or IOSTRB goes inactive.

Figure 7-4. Read-Read-Write for (M)STRB = 0

I 1

Note: Back-to-Back Read Operations

(M)STRB will remain low during back-to-back read operations.
I 8

External Bus Operation

External Interface Timina

Figure 7-5 illustrates a write-write-read sequence for (M)STRB active and no
wait states. The address and data written are held valid approximately
one-half cycle after (M)STRB changes.

Figure 7-5. Write- Write-Read for (M)STRB = 0

External Interface Timing

Figure 7 4 illustrates a read cycle with one wait state. Since (X)RDY = 1, the
read cycle is extended. (M)STRB, (x)R/W, and (X)A are also extended one
cycle. The next time (X)RDY is sampled, it is 0.

Figure 7-6. Use of Wait States for Read for (M)STRB = 0

,
I 6 , t

xm ; I , 0 , I

I I I 8 I

I ,
I

I , I
I 0 I ,

M A x 0

I I I

Write Data

External Bus Operation

External Interface Timing

Figure 7-7 illustrates a write cycle with one wait state. Since initially (X)RDY =
1, the write cycle is extended. (M)STRB, (x) R ~ , and (X)A are extended one
cycle. The next time (X)RDY is sampled, it is 0.

Figure 7-7. Use of Wait States for Write for (M)STRB = 0

I I

Write Data Write Data

~ G r a
8

Cycle

External Interface Timing

7.2.2 Expansion-Bus I10 Cycles

In contrast to primary bus and MSTRB cycles, IOSTRB reads and writes are
both two cycles in duration (with no wait states) and exhibit the same timing.
During these cycles, address always changes on the falling edge of HI , and
IOSTRB is low from the rising edge of the first H I cycle to the rising edge of
the second HI cycle. The IOSTRB signal always goes inactive (high) between
cycles, and X R ~ is high for reads and low for writes.

Figure 7-8 illustrates read and write cycles when IOSTRB is active and there
are no wait states. For IOSTRB accesses, reads and writes require a minimum
of two cycles. Some off-chip peripherals might change their status bits when
read or written to. Therefore, it is important to maintain valid addresses when
communicating with these peripherals. For reads and writes when IOSTRB is
active, IOSTRB is completely framed by the address.

Figure 7-8. Read and Write for IOSTRB = 0

, -
IOSTRB

I

I

XA
0 I

XD Write Data
I I I

External Bus Operation

External Interface Timing

Figure 7-9 illustrates a read with one wait state when IOSTRB is active, and
Figure 7-1 0 illustrates a write with one wait state when IOSTRB is active. For
each wait state added, IOSTRB, X R ~ , and XA are extended one clock cycle.
Writes hold the data on the bus one additional cycle. The sampling of XRDY
is repeated each cycle.

Figure 7-9. Read With One Wait State for IOSTRB = 0

4 t I
I I

IOSTRB I 8 I

,
I

I
I , I I

I

I I

8 I I 8 I

, I

XRDY

External Interface Timing

Figure 7-10. Write With One Wait State for IOSTRB = 0

, I

XD Write Data

, I 0 , I I

XRDY
I

Extra 4
Cycle

External Bus Operation

External Interface liming

Figure 7-1 1, Figure 7-1 2, Figure 7-1 3, Figure 7-1 4, Figure 7-1 5,
Figure 7-16, Figure 7-17, Figure 7-1 8, Figure 7-1 9, Figure 7-20, and
Figure 7-21 illustrate the various transitions between memory reads and
writes, and I/O writes over the expansion bus.

Figure 7-1 1. Memory Read and 170 Write for Expansion Bus

I I
I I , I I

I I
I I ,

XA Memory Address I10 Address
I #

8 0 , I
I I

110 Write
, ,

I 8
I I I I

External Interface Timing

Figure 7-12. Memory Read and I/O Read for Expansion Bus

I

MSTRB t 8 I I

8

Memory XA Address 110 Address

External Bus Operation

External Interface Timing

Figure 7-1 3. Memory Write and I/O Write for Expansion Bus

I 8 8 I

I I I
I 8

I I MSTRB I I
I 0

I I I I
0

I I

Memory Address XA 110 Address

, l
I

XD I10 Write :
4

External Interface Timing

Figure 7-1 4. Memory Write and I/O Read for Expansion Bus

0 I I
I

MSTRB I , , a I
0 , I , I I ,

8
8

I I

X4 Memory Address I10 Address

-
XRDY

External Bus Operation

External Interface Timing
L

Figure 7-15. 1/O Write and Memory Write for Expansion Bus

MSTRB

XA 110 Address Memory Address

XD I/O Write Memory Write

-
XRDY

External Interface Timing

Figure 7-16. 1/O Write and Memory Read for Expansion Bus

I I
I I I I I I I

I
I I I I

I I MSTRB I
I I I I

I I

I I I I I
I I

I I I I
I

I
I

I I I I I 1 I
I

I 1
I I IOSTRB I

I
I I I

I
I I I I I

I

I I I I I I

I I I I I I I I
I

I I I

xm I I I I I I I

I I I I I I I
I I I I

I I I I I I I 1 I
1 I

XA I10 Address Memory Address

I I
I I I 0

External Bus Operation

External Interface Timino

Figure 7-1 7. 1/O Read and Memory Write for Expansion Bus

MSTRB 0 6 1 I 0

I I I I ,
1 , 0 0

I , , I I 0 I

I10 Address Memory Address
1

I 1 I I 0 0 6 I 1
,

External Interface Timing

Figure 7-18. 1/O Read and Memory Read for Expansion Bus

8 , I

XA I/O Address Memory Address

External Bus Operation

External Interface Timing

Figure 7-19. 1/O Write and I/O Read for Expansion Bus

I 0 I 0 I I , I I

I I I I , I I I I

MSTRB
I , I 0 I 8
I I I 0 4 I I , , I I I I I
I 0 I I , I I

, 0 I I I 0 8 0

External lntetiace Timing

Figure 7-20. 170 Write and 170 Write for Expansion Bus
, 0 , 0 # I

t I I t I I I 0 I

I I I , I I 1 I I

MSTRB
0 I , 0 , 0 I I I

I
0 I 8 a I I I I

I I a I I I I 0 I

I I
I

I I I I I
I

I
I , I 0 I I

,

External Bus Operation 7-23

External Interface Timing

Figure 7-21. 1/O Read and I/O Read for Expansion Bus
, 0 I 4 , I

I I 8 6 I 1 I t

I , I I I I I I

-
MSTRB

I , , I I

8

XRDY

External Interface l7ming

Figure 7-22 and Figure 7-23 illustrate the signal states when a bus is inactive
(after an IOSTRB or (M)STRB access, respectively). The strobes (m ,
MSTRB and m) and go to 1. The address is undefined, and the
ready signal &m or m) is ignored.

Figure 7-22. Inactive Bus States for WB

I
I

I I I 0

IOSTRB # o 0 0
I

I

I I a I I
I

I
8 I I , , I 0 I I

I
0 I I

I t 0 I I xm 0 8

I I I I I I I I I

I I I I I

a 8 I I I I I I I
I

1

I

XA I
I

L- Bur inactive -4

External Bus Operation

External Interface Timing

Figure 7-23. Inactive Bus States for WB and MSTRB

M A

Write Data

External Interface Timina

Figure 7-24 illustrates the timing for and m. is an external
asynchronous input. There is a minimum of one cycle delay from the time when
the processor recognizes = 0 until = 0. When HOLDA = 0, the
address, data buses, and associated strobes are placed in a high-impedance
state. All accesses occurring over an interface are complete before a hold is
acknowledged.

Figure 7-24. HOLD and HOLDA Timing

I

HOLDA t I 6 a
I

I
I ,

0
, I

8 I
0 I

I 8 #

I -
STRB

I

, , I

w ;
I I I I I I

0

A

I
I I I I t I

I , I
I

D Write Data
I

, ,
I I I

t- Bus -4
Inactive

External Bus Operation 7-27

Proarammable Wait States

7.3 Programmable Wait States

You can control wait-state generation by manipulating memory-mapped con-
trol registers associated with both the primary and expansion interfaces. Use
the WTCNTfield to load an internal timer, and use the SWW field to select one
of the following four modes of wait-state generation:

0 External RDY
WTCNT-generated m w t c n t

a Logical-AND of RDY and m w t c n t
IJ Logical-OR of RDY and m w t c n t

-
The four modes are used to generate the internal ready signal, RDYint, that -
controls accesses. As long as RDYint = 1, the current external access is -
delayed. When RDYint = 0, the current access completes. Since the use of
programmable wait states for both external interfaces is identical, only the pri-
mary bus interface is described in the following paragraphs.
-
RDYwcnt is an internally generated ready signal. When an external access is
begun, the value in WTCNT is loaded into acounter. WTCNT can be any value
from 0 through 7. The counter is decremented every HUH3 clock cycle until
it becomes 0. Once the counter is set to 0, it remains set to 0 until the next ac- -
cess. While the counter is nonzero, RDYMcnt = 1. While the counter is 0, -
RDYMcnt = 0.

Programmable Wait States

- --
When SWW = 0 0, RDYint depends only on RDY. RDYMCnt is ignored.
Table 7-3 is the truth table for this mode.

Table 7-3. Wait-State Generation When S WW = 0 0
- -

RDY RDYwtcnt RDYint

- - -
When SWW = 0 1, RDYint depends only on RDYMcnt. RDY is ignored.
Table 7-4 is the truth table for this mode.

Table 7-4. Wait-State Generation When SWW = 0 I
- -

RDY RDYwtcnt RDYint

When SWW = 1 0, mint is the logical-OR (electrical-AND, since these sig- - -
rials are low true) of RDY and RDYwcnt (see Table 7-5).

Table 7-5. Wait-State Generation When SWW = I 0
- -

RDY RDYwtcnt RDYint

-
When SWW = 1 1, RDYint is the logical-AND (electrical-OR, since these sig- - -
rials are low true) of RDY and RDYwcnt. The truth table for this mode is
Table 7-6.

Table 7-6. Wait-State Generation When SWW = 1 1

External Bus Operation 7-29

Programmable Bank Switching

7.4 Programmable Bank Switching

Programmable bank switching allows you to switch between external memory
banks without externally inserting wait states due to memories that require
several cycles to turn off. Bank switching is implemented on the primary bus
and not on the expansion bus.

The size of a bank is determined by the number of bits specified to be ex-
amined on the BNKCMP field of the primary bus control register (see
Table 7-1 on page 7-4). For example (see Figure 7-25), if BNKCMP = 16,
the 16 MSBs of the address are used to define a bank. Since addresses are
24 bits, the bank size is specified by the eight LSBs, yielding a bank size of 256
words. If BNKCMP a 16, only the 16 MSBs are compared. Bank sizes from 28
= 256 to 224 = 16M are allowed. Table 7-7 summarizes the relationship be-
tween BNKCMP, the address bits used to define a bank, and the resulting bank
size.

Figure 7-25. BNKCMP Example

b- 24-bit address 1

b-, Number of bits to compare --* Defines bank size 4

Table 7-7. BNKCMP and Bank Size

BNKCMP MSBs Defining a Bank Bank Size (32-Bit Words)

00000 None 224= 16M
00001 23 223=8M
0001 0 23-22 222=4M
0001 1 23-2 1 2z1 = 2M
001 00 23-20 2% 1 M
001 01 23-1 9 21% 512K
001 10 23--18 2l8= 256K
001 11 23-1 7 217= 128K
01 000 23-1 6 216=64K
01 001 23-1 5 215=32K
01 01 0 23- 1 4 214= 16K
01 01 1 23-1 3 213=8K
01100 23-22 212=4K
01101 23- 1 1 211=2K
01110 23-1 2 2 1 0 ~ 1 K
01111 23-9 29 =512
10000 23--8 28 = 256
10000-1 11 11 Reserved Undefined

Programmable Bank Switching

The TMS320C3x has an internal register that contains the MSBs (as defined
by the BNKCMP field) of the last address used for a read or write over the pri-
mary interface. At reset, the register bits are set to 0. If the MSBs of the address
being used for the current primary interface read do not match those contained
in this internal register, a read cycle is not asserted for one HlIH3 clock cycle.
During this extra clock cycle, the address bus switches over to the new ad-
dress, but STRB is inactive (high). The contents of the internal register are re-
placed with the MSBs being used for the current read of the current address.
If the MSBs of the address being used for the current read match the bits in
the register, a normal read cycle takes place.

If repeated reads are performed from the same memory bank, no extra cycles
are inserted. When a read is performed from adifferent memory bank, memory
conflicts are avoided by the insertion of an extra cycle. This feature can be dis-
abled by setting BNKCMP to 0. The insertion of the extra cycle occurs only
when a read is performed. The changing of the MSBs in the internal register
occurs for all reads and writes over the primary interface.

Figure 7-26 illustrates the addition of an inactive cycle when switches be-
tween banks of memory occur.

Figure 7-26, Bank-Switching Example

I I I I -
STRB I I I I

4 0 I

, , I I

I
8 -

RDY 6

External Bus Operation 7-31

Peripherals

The TMS320C3x features two timers, two serial ports (one on the
TMS320C31), and an on-chip direct memory access (DMA) controller. These
peripheral modules are controlled through memory-mapped registers located
on the dedicated peripheral bus.

The DMA controller is used to perform input/output operations without interfer-
ing with the operation of the CPU. Therefore, it is possible to interface the
TMS320C3x to slow external memories and peripherals (ADS, serial ports,
etc.) without reducing the computational throughput of the CPU. The result is
improved system performance and decreased system cost.

Major topics discussed in this chapter on peripherals are listed below.

Topic Page

Timers

8.1 Timers

The TMS320C3x timer modules are general-purpose, 32-bit, timerlevent
counters, with two signaling modes and internal or external clocking (see
Figure 8-1). You can use the timer modules to signal to the TMS320C3xor the
external world at specified intervals or to count external events. With an inter-
nal clock, you can use the timer to signal an external A/D converter to start a
conversion, or it can interrupt the TMS320C3x DMA controller to begin a data
transfer. The timer interrupt is one of the internal interrupts. With an external
clock, the timer can count external events and interrupt the CPU after a speci-
fied number of events. Each timer has an I10 pin that you can use as an input
clock to the timer, an output clock signal, or a general-purpose I10 pin.

Figure 8-1. Timer Block Diagram

7 Internal ClocklP
Counter (32-bit) I r n a l Cloct

f d

I Period Register (31-0) Counter Register I
Comparator

Period = Counter

Pulse Generator n

*
Timer Out

Three memory-mapped registers are used by each timer:

IJ Global-Control Register

The global-control register determines the operating mode of the timer,
monitors the timer status, and controls the function of the 110 pin of the timer.

C] Period Register

The period register specifies the timer's signaling frequency.

Timers

IJ Counter Register

The counter register contains the current value of the incrementing count-
er. You can increment the timer on the rising edge or the falling edge of the
input clock. The counter is zeroed and can cause an internal interrupt
whenever its value equals that in the period register. The pulse generator
generates two types of external clock signals: pulse or clock. The memory
map for the timer modules is shown in Figure 8-2.

Figure 8-2. Memory-Mapped Timer Locations

8.1.1 Tlmer Global-Control Register

Perlpheml A d d n u

Tlmer 0 Tlmer 1

808020h 808030h

The timer global control register is a 32-bit register that contains the global and
port control bits for the timer module. Table 8-1 defines this register's bits,
names, and functions. Bits 3-0 are the port control bits; bits 11 -6 are the tim-
er global control bits. Figure 8-3 shows the 32-bit register. Note that at reset,
all bits are set to 0 except for DATIN (which is set to the value read on TCLK).

Peripherals 8-3

Timers

Figure 8-3. Timer Global-Control Register

R = Read, W = Write, xx = reserved bit, read as 0

Table 8-1. Timer Global-Control Register Bits Summary

Bits Name Reset Value Function

0 FUNC 0

2 DATOUT 0

3 DATl N x t

5-4 Reserved 0-0

6 GO 0

FUNC controls the function of TCLK. If FUNC = 0, TCLK is confi-
gured as a general-purpose digital I10 port. If FUNC = 1, TCLK is
configured as a timer pin (see Figure 8-4 for a description of the
relationship between FUNC and CLKSRC).

If FUNC = 0 and CLKSRC = 0, TCLK is configured as a general-
purpose I10 pin. In this case,-if I/O = 0, TCLK is configured as a
general-purpose input pin. If I10 = 1, TCLK is configured as a gen-
eral-purpose output pin.

DATOUT drives TCLK when the TMS320C3x is in 110 port mode.
You can use DATOUT as an input to the timer.

Data input on TCLK or DATOUT. A write has no effect.

Read as 0.

The GO bit resets and starts the timer counter. When GO = 1 and
the timer is not held, the counter is zeroed and begins increment-
ing on the next rising edge of the timer input clock. The GO bit is
cleared on the same rising edge. GO = 0 has no effect on the
timer.

Counter hold signal. When this bit is 0, the counter is disabled and
held in its current state. If the timer is driving TCLK, the state of
TCLK is also held. The internal divide-by-two counter i s s o held
so that the counter can continue where it left off when HLD is set to
1. You can read and modify the timerregisters while the timer is
being held. RESET has priorityover HLD. Table 6-2 shows the
effect of writing to GO and HLD.

ClocklPulse mode control. When c/F = 1, clock mode is chosen,
and the signaling of the TSTAT flag and external output will have a
50 percent duty cycle. When C/P = 0, the status flag and external
output will be active for one H I cycle during each timer period (see
Figure 8-5 on page 8-7).

Timers

Table 8-1. Timer Global-Control Register Bits Summary (Continued)

Bits Name Reset Value Function

9 CLKSRC 0 Specifies the source of the timer clock. When CLKSRC = 1, an inter-
nal clock with frequency equal to one-half of the H I frequency is
used to increment the counter. The INV bit has no effect on the inter-
nal clock source. When CLKSRC = 0, you can use an external signal
from the TCLK pin to increment the counter. The external clock is
synchronized internally, thus allowing external asynchronous clock
sources that do not exceed the specified maximum allowable exter-
nal clock frequency. This will be less than f(H1)/2. (See Figure 8-4
for a description of the relationship between FUNC and CLKSRC).

Inverter control bit. If an external clock source is used and INV = 1, the
external clock is inverted as it goes into the counter. If the output of the
pulse generator is routed to TCLK and INV = 1, the output is inverted
before it goes to TCLK (see Figure 8-1). If INV = 0, no Inversion is
performed on the input or output of the timer. The INV bi has no effect,
regardless of its value, when TCLK is used in I10 port mode.

11 TSTAT 0 This bit indicates the status of the timer. It tracks the output of the
uninverted TCLK pin. This flag sets a CPU interrupt on a transition from
0 to 1. A write has no effect.

31-1 2 Resewed 0-0 Read as 0.

t x = 0 o r 1

Peripherals 8-5

Timers
. . ..

Figure 8 4 . Timer Modes as Defined by CLKSRC and FUNC

lnternal 1
Timer I

lnternal I

TSTAT
Control

External

-b TCLK

Timer
lnternal I External

I

I lnternal i
Timer In Clock I

I Timer~utJ+ 7 / TCLK

1 1 I
TSTAT DATlN

CLKSRC = 1 (Internal)
FUNC = 0 (I10 Pin)

(a)

CLKSRC = 1 (Internal)
FUNC = 1 (Timer Pin)

(b)

Timer Internal I External Timer Internal 1 External ITCL ~ W T C L K
Timer Out Timer Out

TSTAT

CLKSRC = 0 (External)
FUNC = 0 (110 Pin)

(4

4
TSTAT

4
DATlN

CLKSRC = 0 (External)
FUNC = 1 (Timer Pin)

(4

Timers

Figure 8-5. Timer Timing

I(=I period register/f(CLKSRC)

t t t
TINT TINT TINT

(a) TSTAT and timer output (INV = 0) when C/F = 0 (pulse mode)

I. 4 period register/f(CLKSRC) I - 2 x period register/f(CLKSRC) -Y

TINT TINT
(b) TSTAT and timer output (INV = 0) when C/p = 1 (clock mode)

The rate of timer signaling is determined by the frequency of the timer input
clock and the period register. The following equations are valid with either an
internal or an external timer clock:

f(pu1se mode) = f(timer clock) / period register

f(clock mode) = f(timer clock) / (2 x period register)

Note: Period Register

If the period register equals 0, refer to Section 8.1.2.

Table 8-2 shows the result of a write using specified values of the GO and
bits in the global control register.

Peripherals

Timers

Table 8-2. Result of a Write of Specified Values of GO and TD
-

GO HLD Result

0 0 All timer operations are held. No reset is performed. (Reset value)

0 1 Timer proceeds from state before write.

1 0 All timer operations are held, including zeroing of the counter. The
GO bit is not cleared until the timer is taken out of hold.

1 1 Timer resets and starts.

8.1.2 Timer Period and Counter Registers

The 32-bit timer period register is used to specify the frequency of the timer
signaling. The timer counter register is a 32-bit register, which is reset to 0
whenever it increments to the value of the period register. Both registers are
set to 0 at reset.

Certain boundary conditions affect timer operation. These conditions are listed
below:

When the period and counter registers are 0, the operation of the timer is
dependent upon the CIF mode selected. In pulse mode (CIF = 0), TSTAT
is set and remains set. In clock mode (Clp = I) , the width of the cycle is
2/f(H I) , and the external clocks are ignored.

0 When the counter register is not 0 and the period register = 0, the counter
will count, roll over to 0, and then behave as described above.

IJ When the counter register is set to avalue greater than the period register,
the counter may overflow when being incrernented. Once the counter
reaches its maximum 32-bit value (OFFFFFFFFh), it simply clocks over to
0 and continues.

Writes from the peripheral bus override register updates from the counter and
new status updates to the control register.

8.1.3 Timer Pulse Generation

The timer pulse generator (see Figure 8-1 on page 8-2) can generate sever-
al external signals. You can invert these signals with the INV bit. The two basic
modes are pulse mode and clock mode, as shown in Figure 8-5 on page 8-7.
In both modes, an internal clock source f (timer clock) has a frequency of
f(H1)/2, and an externally generated clock source f (timer clock) can have a
maximum frequency of f(H1)/2.6. Refer to timer timing in subsection 13.5.16
on page 13-66. In pulse mode (CI~ = O), the width of the pulse is llf(H1).

Timers

Figure 8-6 provides some examples of the TCLKx output when the period reg-
ister is set to various values and clock or pulse mode is selected.

Figure 8-6. Timer Output Generation Examples

(a) INV = 0, C p = 0 (Pulse Mode)
Timer Period = 1
Also,
INV = 0, C F = 1 (Clock Mode)
Timer Period = 0

(b) INV = 0, C p = 0 (Pulse Mode)
Timer Period = 2

(c) INV = 0, C p = 0 (Pulse Mode)
Timer Period = 3

(d) INV = 0, C p = 1 (Clock Mode)
Timer Period = 1

(e) INV = 0, C p = 1 (Clock Mode)
Timer Period = 2

(f) INV = 0, C p = 1 (Clock Mode)
Timer Period = 3

Peripherals

8.1.4 Timer Operation Modes

The timer can receive its input and send its output in several different modes,
depending upon the setting of CLKSRC, FUNC, and il0. The four timer modes
of operation are defined as follows:

a If CLKSRC = 1 and FUNC = 0, the timer input comes from the internal
clock. The internal clock is not affected by the INV bit. In this mode, TCLK
is connected to the 110 port control, and you use TCLK as a general-pur-
pose 110 pin (see Figure 8-7). lf 510 = 0, TCLK is configured as a general-
purpose input pin whose state you can read in DATIN. DATOUT has no
effect on TCLK or DATIN. If i / 0 = 1, TCLK is configured as a
general-purpose output pin. DATOUT is placed on TCLK and can be read
in DATIN.

Figure 8-7. Timer I/O Port Configurations

Internal
I I External

I
DATOUT (NC) - TCLK

DATIN
110 = 0

(a)

Internal
I I External

I
DATOUT 7 DATlN TcLK

it0 = 1
(b)

If CLKSRC = 1 and FUNC = 1, the timer input comes from the internal
clock, and the timer output goes to TCLK. This value can be inverted using
INV, and you can read in DATIN the value output on TCLK.

IJ If CLKSRC = 0 and FUNC = 0, the timer is driven according to the status
of the 510 bit. If TI0 = 0, the timer input comes from TCLK. This value can
be inverted using INV, and you can read in DATIN the value of TCLK. lf 110
= 1, TCLK is an output pin. Then, TCLK and the timer are both driven by
DATOUT. All 040-1 transitions of DATOUT increment the counter. INV has
no effect on DATOUT. You can read in DATIN the value of DATOUT.

a If CLKSRC = 0 and FUNC = 1, TCLK drives the timer. If INV = 0, all 040-1
transitions of TCLK increment the counter. If INV = 1, all 1 -to-0 transitions
of TCLK increment the counter. You can read in DATIN the value of TCLK.

Timers

Figure 8-4 on page 8-6 shows the four timer modes of operation.

8.1.5 Timer Interrupts

A timer interrupt is generated whenever the TSTAT bit of the timer control reg-
ister changes from a 0 to a 1. The frequency of timer interrupts depends on
whether the timer is set up in pulse mode or clock mode.

a In pulse mode, the interrupt frequency is determined by the following
equation:

f(timer clock) , where
f(interru~t) = period register

f(interrupt) = timer frequency
f(timer clock) = interrupt frequency

In clock mode, the interruptfrequency is determined by the following equa-
tion:

f(timer clock) where
f(interru~t) = 2 x period register '

f(interrupt) = timer frequency
f(timer clock) = interrupt frequency

The timer counter is automatically reset to 0 whenever it is equal to the value
in the timer period register. You can use the timer interrupt for either the CPU
or the DMA. Interrupt enable control for each timer, for either the CPU or the
DMA, is found in the CPUIDMA interrupt enable register. Refer to subsection
3.1.8 on page 3-7 for more information on the CPU/DMA interrupt enable
register.

When a timer interrupt occurs, a change in the state of the corresponding
TCLK pin will be observed if FUNC = 1 and CLKSRC = 1 in the timer global-
control register. The exact change in the state depends on the state of the
c/F bit.

Peripherals 8-1 1

Timers

8.1.6 Timer Inltialization/Reconfiguratlon

The timers are controlled through memory-mapped registers located on the
dedicated peripheral bus. Following is the general procedure for initializing
and/or reconfiguring the timers:

1) ~ a l t the timer by clearing the G O M ~ bits of the timer global-control regis-
ter. To do this, write a 0 to the timer global-control register. Note that the
timers are halted on RESET.

-
2) Configure the timer via the timer global-control register (with GO = HLD

= 0), the timer counter register, and timer period register, if necessary.

3) Start the timer by setting the GO/^ bits of the timer global-control
register.

Serial Ports

8.2 Serial Ports

The TMS320C30 has two totally independent bidirectional serial ports. Both
serial ports are identical, and there is a complementary set of control registers
in each one. Only one serial port is available on the TMS320C31. You can con-
figure each serial port to transfer 8,16,24, or 32 bits of data per word simulta-
neously in both directions. The clock for each serial port can originate either
internally, via the serial port timer and period registers, or externally, via a
supplied clock. An internally generated clock is a divide-down of the clockout
frequency, f(H1). A continuous transfer mode is available, which allows the se-
rial port to transmit and receive any number of words without new synchroniza-
tion pulses.

Eight memory-mapped registers are provided for each serial port:

0 Global-control register
Q Two control registers for the six serial I10 pins
0 Three receiveltransmit timer registers
0 Data-transmit register
0 Data-receive register

The global-control register controls the global functions of the serial port and
determines the serial-port operating mode. Two port control registers control
the functions of the six serial port pins. The transmit buffer contains the next
complete word to be transmitted. The receive buffer contains the last complete
word received. Three additional registers are associated with the transmivre-
ceive sections of the serial-port timer. A serial-port block diagram is shown in
Figure 8-8 on page 8-1 4, and the memory map of the serial ports is shown in
Figure 8-9 on page 8-1 5.

Peripherals 8-1 3

Serial Ports

Figure 8-8, Serial-Port Block Diagram

Receive Section

Timer (1 6)

Bit Counter
(811 6/24/32)

RSR
(32)

L

t t
DR DR

r- Transmit Section 1

Bit Counter
(811 6/24/32)

Serial Ports

Figure 8-9. Memory-Mapped Locations for the Serial Ports

Sorlrl SerlaI
Port 0 Port 1 t

808040h 808050h

808041 h 808051 h

t Resewed locations on the TMS320C31

8.2.1 Serial-Port Global-Control Reglster
The serial-port global-control register is a 32-bit register that contains the glob-
al control bits for the serial port. Table 8 4 defines the register bits, bit names,
and bit functions. The register is shown in Figure 8-1 0.

Table 8-3. Serial-Port Global-Control Register Bits Summary

Blt Name Reset Value Function

0 RRDY 0 If RRDY = 1, the receive buffer has new data and is ready to be read. A
three H1N3 cycle delay occurs from the loading of DRR to RRDY = 1. The
rising edge of this signal sets RINT. If RRDY= 0 at reset, the receive buffer
does not have new data since the last read. RRDY = 0 at reset and after
the receive buffer is read.

1 XRDY 1 If XRDY = 1, the transmit buffer has written the last bit of data to the shifter
and is ready for a new word. A three Hl/H3 cycle delay occurs from the
loading of the transmit shifter until XRDY is set to 1. The rising edge of this
signal sets XINT. If XRDY=O, the transmit buffer has not written the last
bit of data to the transmit shifter and is not ready for a new word. XRDY =
1 at reset.

2 FSXOUT 0 This bit configures the FSX pin as an input (FSXOUT = 0) or an output
(FSXOUT = 1).

Peripherals 8-15

Serial Ports

Table 8-3. Serial-Port Global-Control Register Bits Summary (Continued)

Bit Name Reset Value Function

3 XSREMPTY 0

4 RSRFULL 0

5 HS

6 XCLKSRCE

7 RCLKSRCE

8 XVAREN

9 RVAREN

10 XFSM

11 RFSM

12 CLKXP 0

If XSREMPTY = 0, the transmit shift register is empty. If XSREMPTY = 1,
the transmit shift register is not empty. Reset or XRESET causes this bit
to = 0.

If RSRFULL = 1, an overrun of the receiver has occurred. In continuous
mode, RSRFULLis set to 1 when both RSR and DRR are full. In noncontin-
uous mode, RSRFULL is set to 1 when RSR and DRR are full and a new
FSR is received. A read causes this bit to be set to 0. This bit can be set
to 0 only by a system reset, a serial-port receive reset (RRESET = I), or
a read. When the receiver tries to set RSRFULL to 1 at the same time that
the global register is read, the receiver will dominate, and RSRFULL is set
to 1. If RSRFULL = 0, no overrun of the receiver has occurred.

If HS = 1, the handshake mode is enabled. If HS = 0, the handshake mode
is disabled.

If XCLKSRCE = 1, the internal transmit clock is used. If XCLKSRCE = 0,
the external transmit clock is used.

If RCLKSRCE = 1, the internal receive clock is used. If RCLKSRCE = 0,
the external receive clock is used.

This bit specifies fixed (XVAREN = 0) or variable (XVAREN = 1) data rate
signaling when transmitting. With afixed data rate, FSX is active for at least
one XCLK cycle and then goes inactive before transmission begins. With
variable data rate, FSX is active while all bits are being transmitted. When
you use an external FSX and variable data rate signaling, the DX pin Is driv-
en by the transmitter when FSX is held active or when a word is being
shifted out.

This bit specifies fixed (RVAREN = 0) or variable (RVAREN = 1) data rate
signaling when receiving. With a fixed data rate, FSR is active for at least
one RCLK cycle and then goes inactive before the reception begins. With
variable data rate, FSR is active while all bits are being received.

Transmit frame sync mode. Configures the port for continuous mode oper-
ation(XFSM = 1) or standard mode (XFSM = 0). In continuous mode, only
the first word of a block generates a sync pulse, and the rest are simply
transmitted continuously to the end of the block. In standard mode, each
word has an associated sync pulse.

Receive frame sync mode. Configures the port for continuous mode
(RFSM =1) or standard mode (RFSM = 0) operation. In continuous mode,
only the first word of a block generates a sync pulse, and the rest are simply
received continuously without expectation of another sync pulse. In stan-
dard mode, each word received has an associated sync pulse.

CLKX polarity. If CLKXP = 0, CLKX is active high. If CLKXP = 1, CLKX is
active low.

Serial Ports

Table 8-3. Serial-Port Global-Control Register Bits Summary (Continued)

Blt Name Reset Value Functlon

CLKRP CLKR polarity. If CLKRP = 0, CLKR is active (high). If CLKRP =1, CLKR
is active (low).

DX polarity. If DXP = 0, DX is active (high). If DXP = 1, DX is active (low). DXP

DRP

FSXP

DR polarity. If DRP = 0, DR is active (high). If DRP = 1, DR is active (low).

FSX polarity. If FSXP = 0, FSX is active (high). If FSXP = 1, FSX Is
active (low).

FSRP FSR polarity. If FSRP = 0, FSR is active (high). If FSRP = 1, FSR is
active (low).

These two bits define the word length of serial data transmitted. All data
is assumed to be right-justified in the transmit buffer when fewer than 32
bits are specified.

0 0 - - - 8 bib 1 0 - - 2 4 b b
0 1 --- 16 bib 1 1 --- 32 bits

XLEN

RLEN These two bits define the word length of serial data received. All data is
right-justified in the receive buffer.

0 0 --- 8 bits 1 0 --- 24 bits
0 1 --- 16 bits 1 1 --- 32 b b

Transmit timer interrupt enable. If XTlNT = 0, the transmit timer interrupt
is disabled. If XTlNT = 1, the transmit timer interrupt is enabled.

Transmit interrupt enable. If XINT = 0, the transmit interrupt is disabled. If
XINT= 1, the transmit interrupt is enabled. Note that the CPU receive flag
XINT and the serial port-to-DMA interrupt (EXINTO in the IE register) is the
OR of the enabled transmit timer interrupt and the enabled transmit inter-
rupt.

RTl NT

RlNT

Receive timer interrupt enable. If RTINT = 0, the receive timer interrupt is
disabled. If RTlNT = 1, the receive timer interrupt is enabled.

Receive interrupt enable. If RlNT = 0, the receive interrupt is disabled. If
RINT= 1, the receive interrupt is enabled. Note that the CPU receive flag
RINTand the serial-port-to-DMA interrupt (ERINTO in the IE register) is the
OR of the enabled receive timer interrupt and the enabled receive inter-
rupt.

XRESET Transmit reset. If XRESET = 0, the transmit side of the serial port is reset.
To take the transmit side of the serial port out of reset, set XRESET to 1.
However, do not set XRESET to 1 until at least three cycles after XRESET
goes inactive. This applies only to system reset. Setting XRESET to 0 does
not change the contents of any of the serial-port control registers. It places
the transmitter in a state corresponding to the beginning of aframe of data.
Resetting the transmitter generates a transmit interrupt. Reset this bit dur-
ing the time the mode of the transmitter is set. You can toggle XFSM with-
out resetting the global-control register.

Peripherals 8-1 7

Serial Ports

Table 8-3. Serial-Port Global-Control Register Bits Summary (Concluded)

Bit Name Reset Value Function

27 RRESET 0 Receive reset. If RRESET = 0, the receive side of the serial port is reset.
To take the receive side of the serial port out of reset, set RRESET to 1.
Setting RRESET to 0 does not change the contents of any of the serial-
port control registers. It places the receiver in a state corresponding to the
beginning of aframe of data. Reset this bit at the same time that the mode
of the receiver is set. RFSM can be toggled without resetting the global-
control register.

31 -28 Reserved 0 4 Read as 0.

Figure S- 10. Serial-Port Global-Control Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

xx xx ac xx RRRSE EESET RIN RTINT XINT XTlNT RLEN XLEN FSRP FSXP I
w w w w w w w w w w w w

R = Read, W = Write, xx = reserved bit, read as 0

8.2.2 FSX/DX/CLKX Port-Control Register

This 32-bit port control register controls the function of the serial port FSX, DX,
and CLKX pins. At reset, all bits are set to 0. Table 8-4 defines the register bits,
bit names, and functions. Figure 8-1 1 shows this port control register.

Serial Ports

Table 8 4 . FSWDWCLKX Port-Control Register Bits Summary

Bit Name Reset Value Function

0 CLKXFUNC

2 CLKXDATOUT

3 CLKXDATIN

4 DXFUNC

6 DXDATOUT

7 DXDATIN

8 FSXFUNC

10 FSXDATOUT

11 FSXDATIN

31 -1 2 Reserved

CLKXFUNC controls the function of CLKX. If CLKXFUNC = 0,
CLKX is configured as a general-purpose digital I10 port. If
CLKXFUNC = 1, CLKX is a serial port pin.

If CLKX i10 _= 0, CLKX is configured as a general-purpose input
pin. If CLKX I10 = 1, CLKX is configured as a general-purpose out-
put pin.

Data output on CLKX.

Data input on CLKX. A write has no effect.

DXFUNC controls the function of DX. If DXFUNC = 0, DX is config-
ured as a general-purpose digital 110 port. If DXFUNC = 1, DX is
a serial port pin.

If DX TI0 = 0, DX is configured as a general-purpose input pin. If
DX I10 = 1, DX is configured as a general-purpose output pin.

Data output on DX.

Data input on DX. A write has no effect.

FSXFUNC controls the function of FSX. If FSXFUNC = 0, FSX is
configured as a general-purpose digital I10 port. If FSXFUNC = 1,
FSX is a serial port pin.

If FSXJIO = 0, FSX is configured as a general-purpose input pin.
If FSX I10 = 1, FSX is configured as a general-purpose output pin.

Data output on FSX.

Data input on FSX. A write has no effect.

Read as 0.

Figure 8- 1 1. FSWDWCLKX Port-Control Register

. . . -

FSX fSX FSX DX DX DX DX CUOC CLKX C - W CUO(
X X a c X X X X DATOUT VO FUNC DATlN DATOUT VO FUNC DATlN DATOUT I10 FUNC

R F W W W R w W F W R F W F W F W

R = Read, W = Write, xx = resewed bit, read as 0

Peripherals 8-1 9

Serial Ports

8.2.3 FSR/DR/CLKR Port-Control Register

This 32-bit port control register is controlled by the function of the serial port
FSR, DR, and CLKR pins. At reset, all bits are set to 0. Table 8-5 defines the
register bits, the bit names, and functions. Figure 8-1 2 illustrates this port con-
trol register.

Table 8-5. FSR/DR/CLKR Port-Control Register Bits Summary

Bit Name Reset Value Function
0 CLKRFUNC 0 CLKRFUNC controls the function of CLKR. If CLKRFUNC=O,

CLKR is configured as a general-purpose digital I10 port. If
CLKRFUNC = 1, CLKR is a serial port pin.

1 CLKR~IO 0 If CLKR~IO = 0, CLKR is configured as a general-purpose input pin.
If CLKRIIO = 1, CLKR is configured as ageneral-purpose output pin.

2 CLKRDATOUT 0 Data output on CLKR.

3 CLKRDATIN x Data input on CLKR. A write has no effect.

4 DRFUNC 0 DRFUNC controls the function of DR. If DRFUNC = 0, DR is
configured as ageneral-purpose digital I10 port. If DRFUNC = 1, DR
is a serial port pin.

5 D R ~ I O 0 If ~ ~ 1 1 0 =o, DR is configured as a general-purpose input pin.
If DRIIO = 1, DR is configured as a general-purpose output pin.

6 DRDATOUT 0 Data output on DR

7 DRDATIN x t Data input on DR. A write has no effect.

8 FSRFUNC 0 FSRFUNC controls the function of FSR. If FSRFUNC = 0, FSR is
configured as a general-purpose digital I10 port. If
FSRFUNC= 1, FSR is a serial port pin.

9 FSRi10 0 If FSR ~/O=O, FSR is configured as a general-purpose input pin. If
FSR I10 = 1, FSR is configured as a general-purpose output pin.

10 FSRDATOUT 0 Data output on FSR

11 FSRDATIN x Data input on FSR. A write has no effect.

31-1 2 Reserved 0-0 Read as 0.

Figure 8-1 2. FSR/DR/CL KR Port-Control Register

CLKR cU(R c-U(R CLKR
DATlN DATOUT I10 FUNC

R = Read, W = Write, xx = resewed bit, read as 0

Serial Ports

8.2.4 Recelverrransmit Timer-Control Register

A 32-bit receivehransmit timer control register contains the control bits for the
timer module. At reset, all bits are set to 0. Table 8-6 lists the register bits, bit
names, and functions. Bits 5-0 control the transmitter timer. Bits 11 -6 control
the receiver timer. Figure 8-13 shows the register. The serial port receive1
transmit timer function is similar to timer module operation. It can be consid-
ered a 16-bit-wide timer. Refer to Section 8.1 on page 8-2 for more informa-
tion on timers.

Table 8-6. Receive/Transmit Timer-Control Register

Blt Name Reset Value

0 XGO 0

1 XHLD

3 XCLKSRC 0

4 Reserved 0

5 XTSTAT 0

6 RGO 0

7 RHLD 0

Functlon

The XGO bit resets and starts the transmit timer counter. When XGO
is set to 1 and the timer is not held, the counter is zeroed and begins
incrementing on the next rising edge of the timer input clock. The XGO
bit is cleared on the same rising edge. Writing 0 to XGO has no effect
on the transmit timer.

Transmit counter hold signal. When this bit is set to 0, the counter is dis-
abled and held in its current state. The internal divide-by-two co-
is also held so that the counter will continue where it left off when XHLD
is set to 1. You can read and modify the timer registers while the timer
is being held. RESET has priority over XHLD.

XClock/Pulse mode control. When XC/F= I, the clock mode is chosen.
The signaling of the status flag and external output has a 50 percent
duty cycle. When XCIP = 0, the status flag and external output are ac-
tive for one CLKOUT cycle during each timer period.

This bit specifies the source of the transmit timer clock. When
XCLKSRC = 1, an internal clock with frequency equal to one-half the
CLKOUT frequency is used to increment the counter. When XCLKSRC
= 0, you can use an external signal from the CLKX pin to increment the
counter. The external clock source is synchronized internally, thus al-
lowing for external asynchronous clock sources that do not exceed the
specified maximum allowable external clock frequency, that is, less
than f(H1)/2.6.

Read as zero.

This bit indicates the status of the transmit timer. It tracks what would
be the output of the uninverted CLKX pin. This flag sets a CPU interrupt
on a transition from 0 to 1. A write has no effect.

The RGO bit resets and starts the receive timer counter. When RGO
is set to 1 and the timer is not held, the counter is zeroed and begins
incrementing on the next rising edge of the timer input clock. The RGO
bit is cleared on the same rising edge. Writing 0 to RGO has no effect
on the receive timer.

Receive counter hold signal. When this bit is set to 0, the counter is dis-
abled and held in its current state. The internal divide-by-two counter
is also held so that the counter will continue where it left off when RHLD
is set to 1. You can read and modify the timer registers while the timer
is being held. RESET has priority over RHLD.

Peripherals 8-21

Serial Ports
--

Table 8-6. Receive/Tansmit Timer-Control Register (Concluded)

9 RCLKSRC

Bit Name Reset Value Function
8 RC/P 0 RClock/Pulse mode control. When RCIP = 1, the clock mode is cho-

sen. The signaling of the status flag and external output has a 50 per-
cent duty cycle. When RCIP = 0, the status flag and external output
are active for one CLKOUT cycle during each timer period.

This bit specifies the source of the receive timer clock. When
RCLKSRC = 1, an internal clock with frequency equal to one-half the
CLKOUT frequency is used to increment the counter. When
RCLKSRC = 0, you can use an external signal from the CLKR pin to
increment the counter. The external clock source is synchronized in-
ternally, thus allowing for external asynchronous clock sources that
do not exceed the specified maximum allowable external clock fre-
quency, that is, less than f(H1)/2.6.

10 Reserved

11 RTSTAT

Read as zero.

This bit indicates the status of the receive timer. It tracks what would
be the output of the uninverted CLKR pin. This flag sets a CPU inter-
rupt on a transition from 0 to 1. A write has no effect.

31-12 Reserved 0-0 Read as 0.

Figure 8-1 3. Receive/Transmit Timer-Control Register
31 30 28 28 27 26 25 24 23 22 21 20 19 18 17 16

a t x x x x o t a c ac XX XX XX XX YX XX XX XX X X Y X Y X

R = Read, W = Write, xx= resewed bit, read as 0

8.2.5 Receiverrransmit Timer-Counter Register

The receivehransmit timer counter register is a 32-bit register (see
Figure 8-1 4). Bits 15-0 are the transmit timer counter, and bits 31 -1 6 are the
receive timer counter. Each counter is cleared to 0 whenever it increments to
the value of the period register (see Section 8.2.6). It is also set to 0 at reset.

Figure 8-74. Receiveflransmit Timer Counter Register
3 1 16

I Receive Counter I

Transmit Counter

NOTE: All bits are readtwrite.

Serial Ports

8.2.6 Receive/Transmit Timer-Period Register

The receivehransmit timer period register is a 32-bit register (see
Figure 8-1 5). Bits 15-0 are the timer transmit period, and bits 31 -1 6 are the
receive period. Each register is used to specify the period of the timer. It is also
cleared to 0 at reset.

Figure 8-1 5. Receivenransmit Timer-Period Register
31 16

Receive Period

15 0

I Transmit Period I
Note: All bits are readlwrite,

8.2.7 Data-Transmit Register

When the data-transmit register (DXR) is loaded, the transmitter loads the
word into the transmit shift register (XSR), and the bits are shifted out. The
delay from a write to DXR until an FSX occurs (or can be accepted) is two
CLKX cycles. The word is not loaded into the shift register until the shifter is
empty. When DXR is loaded into XSR, the XRDY bit is set, specifying that the
buffer is available to receive the next word. Four tap points within the transmit
shift register are used to transmit the word. These tap points correspond to the
four data word sizes and are illustrated in Figure 8-1 6. The shift is a left-shift
(LSB to MSB) with the data shifted out of the MSB corresponding to the appro-
priate tap point.

Figure 8-1 6. Transmit Buffer Shift Operation

.- Shift Direction +

32-bit 24-bit 16-bit 8-bit
word tap word tap word tap word tap

Peripherals 8-23

Serial Ports

8.2.8 Data-Receive Register

When serial data is input, the receiver shifts the bits into the receive shift regis-
ter (RSR). When the specified number of bits are shifted in, the data-receive
register (DRR) is loaded from RSR, and the RRDY status bit is set. The receiv-
er is double-buffered. If the DRR has not been read and the RSR is full, the
receiver is frozen. New data coming into the DR pin is ignored. The receive
shifter will not write over the DRR. The DRR must be read to allow new data
in the RSR to be transferred to the DRR. When a write to DRR occurs at the
same time that an RSR to DRR transfer takes place, the RSR to DRR transfer
has priority.

Data is shifted to the left (LSB to MSB). Figure 8-1 7 illustrates what happens
when words less than 32 bits are shifted into the serial port. In this figure, it is
assumed that an &bit word is being received and that the upper three bytes
of the receive buffer are originally undefined. In the first portion of the figure,
byte a has been shifted in. When byte b is shifted in, byte a is shifted to the left.
When the data receive register is read, both bytes a and b are read.

Figure 8-1 7. Receive Buffer Shift Operation

.- Shift Direction -

After Byte b

3 1 24 23 16 15 8 7 0

8.2.9 Serial-Port Operation Configurations

Several configurations are provided for the operation of the serial port clocks
and timer. The clocks for each serial port can originate either internally or exter-
nally. Figure 8-1 8 shows serial port clocking in the I10 mode (CLKRFUNC =
0) when CLKX is either an input or an output. Figure a1 9 shows clocking in
the serial-port mode (CLKRFUNC=l). Both figures use a transmit section for
an example. The same relationship holds for a receive section.

After Byte a X X X a

Serial Ports

Figure 8-78. Serial-Port Clocking in I/O Mode

Internal External I
T S T A T lfltel'Ilal I

D A T O U T I
DATlN

CLKRFUNC = 0 (I10 Mode)
CLKXIIO = 1 (CLKX, an Output)
XCLKSRC = 1 (Internal CLK for Timer)

(a)

Internal 1 External
TSTAT internal I +rimer in*Clock I

DATOuT DATlN (NCz-J

CLKRFUNC = 0 (I10 Mode)
CLKXIIO = 0 (C W , an Input)
XCLKSRC = 1 (Internal CLK for Timer)

(c)

lnternal External I

nmer in

DATAOUT
DATlN

CLKRFUNC r 0 (110 Mode)
c ~ l l o s 1 (CLKX, an Output)
XCLKSRC s 0 (External CLK for Timer)

lnternal 1 External

DATOuT DATlN (NC)-

CLKRFUNC = 0 (I10 Mode)
CLKXItO = 0 (CLKX, an Input)
XCLKSRC = 0 (External CLK for Timer)

(dl

Peripherals 8-25

Serial Ports

Figure 8- 19. Serial- Port Clocking in Serial- Port Mode

Internal, External . ..

TSTAT I
I

DATOUT (NC) 7 1 INV
DATlN

Internal External
I
I
I

DATlN
DATOUT (NC) -4

CLKRFUNC = 1 (Serial-Port Mode) CLKRFUNC = 1 (Serial-Port Mode)
XCLKSRCE = 1 (Output Serial-Port CLK) XCLKSRCE = 0 (Input Serial-Port CLK)
XCLKSRC = 0 or 1 XCLKSRC = 1 (Internal CLK for Timer)

(a) (b)

Internal I External

TSTAT I ++ ~ i r n e r h I

L p p CLW
DATOUT (NC) -

FUNC = 1 (Serial-Port Mode)
XCLKSRCE = 0 (Input Serial-Port CLK)
XCLKSRC = 0 (External CLK for Timer)

(4

8.2.1 0 Serial-Port Timing

The forrrula for calculating the frequency of the serial-port clock with an inter-
nally generated clock is dependent upon the operation mode of the serial-port
timers, defined as

f (pulse mode) = f (timer clock)lperiod register

f (clock mode) = f (timer clock)/(2 x period register)

An internally generated clock source f(timer clock) has a maximum frequency
of f(H1)/2. An externally generated serial-port clock f (timer clock) (CLKX or
CLKR) has a maximum frequency of less than f(H1)/2.6. See serial port timing
in Table 13-27 on page 13-58. Also, see subsection 8.1.3 on page 8-8 for in-
formation on timer pulse/clock generation.

Serial Ports

Transmit data is clocked out on the rising edge of the selected serial-port clock.
Receive data is latched into the receive shift register on the falling edge of the
serial-port clock. All data is transmitted and loaded MSB first and right-justi-
fied. If fewer than 32 bits are transferred, the data are right-justified in the 32-bit
transmit and receive buffers. Therefore, the LSBs of the transmit buffer are
the bits that are transmitted.

The transmit ready (XRDY) signal specifies that the data-transmit register
(DXR) is available to be loaded with new data. XRDY goes active as soon as
the data is loaded into the transmit shift register (XSR). The last word may still
be shifting out when XRDY goes active. If DXR is loaded before the last word
has completed transmission, the data bits transmitted are consecutive; that is,
the LSB of the first word immediately precedes the MSB of the second, with
all signaling valid as in two separate transmits. XRDY goes inactive when DXR
is loaded and remains inactive until the data is loaded into the shifter.

The receive ready (RRDY) signal is active as long as a new word of data is
loaded into the data receive register and has not been read. As soon as the
data is read, the RRDY bit is turned off.

When FSX is specified as an output, the activity of the signal is determined
solely by the internal state of the serial port. If afixed data rate is specified, FSX
goes active when DXR is loaded into XSR to be transmitted out. One serial-
clock cycle later, FSX turns inactive, and data transmission begins. If avariable
data rate is specified, the FSX pin is activated when the data transmission be-
gins and remains active during the entire transmission of the word. Again, the
data is transmitted one clock cycle after it is loaded into the data transmit
register.

An input FSX in the fixed data rate mode should go active for at least one serial
clock cycle and then inactive to initiate the data transfer. The transmitter then
sends the number of bits specified by the LEN bits. In the variable data-rate
mode, the transmitter begins sending from the time FSX goes active until the
number of specified bits has been shifted out. In the variable data-rate mode,
when the FSX status changes prior to all the data bits being shifted out, the
transmission completes, and the DX pin is placed in a high-impedance state.
An FSR input is exactly complementary to the FSX.

When using an external FSX, if DXR and XSR are empty, a write to DXR results
in a DXR-to-XSR transfer. This data is held in the XSR until an FSX occurs.
When the external FSX is received, the XSR begins shifting the data. If XSR
is waiting for the external FSX, a write to DXR will change DXR, but a DXR-to-
XSR transfer will not occur. XSR begins shifting when the external FSX is re-
ceived, or when it is reset using XRESET.

Peripherals 8-27

Serial Ports

Continuous Transmit and Receive Modes

When continuous mode is chosen, consecutive writes do not generate or ex-
pect new sync pulse signaling. Only the first word of a block begins with an ac-
tive synchronization. Thereafter, data continues to be transmitted as long as
new data is loaded into DXR before the last word has been transmitted. As
soon as TXRDY is active and all of the data has been transmitted out of the
shift register, the DXpin is placed in a high-impedance state, and asubsequent
write to DXR initiates a new block and a new FSX.

Similarly with FSR, the receiver continues shifting in new data and loading
DRR. If the data-receive buffer is not read before the next word is shifted in,
you will lose subsequent incoming data. You can use the RFSM bit to terminate
the receive-continuous mode.

Handshake Mode

The handshake mode (HS = 1) allows for direct connection between proces-
sors. In this mode, all data words are transmitted with a leading 1 (see
Figure 8-20). For example, if an eight-bit word is to be transmitted, the first bit
sent is a 1, followed by the eight-bit data word.

In this mode, once the serial port transmits a word, it will not transmit another
word until it receives a separately transmitted zero bit. Therefore, the 1 bit that
precedes every data word is, in effect, a request bit.

Figure 8-20. Data Word Format in Handshake Mode
7- Data Word (8 Bits) -7
I I

leading 1

After a serial port receives a word (with the leading 1) and that word has been
read from the DRR, the receiving serial port sends a single 0 to the transmitting
serial port. Thus, the single 0 bit acts as an acknowledge bit (see Figure 8-21).
This single acknowledge bit is sent every time the DRR is read, even if the DRR
does not contain new data.

Figure 8-2 1. Single Zero Sent as an Acknowledge Bit

Dx ? single 0

Serial Ports

When the serial port is placed in the handshake mode, the insertion and dele-
tion of a leading 1 for transmitted data, the sending of a 0 for acknowledgement
of received data, and the waiting for this acknowledge bit are all performed au-
tomatically. Using this scheme, it is simple to connect processors with no exter-
nal hardware and to guarantee secure communication. Figure 8-22 is a typi-
cal configuration.

In the handshake mode, FSX is automatically configured as an output. Contin-
uous mode is automatically disabled. After a system reset or XRESET, the
transmitter is always permitted to transmit. The transmitter and receiver must
be reset when entering the handshake mode.

Figure 8-22, Direct Connection Using Handshake Mode

8.2.11 Serial-Port Interrupt Sources

A serial port has the following interrupt sources:

0 The transmit timer interrupt: The rising edge of XTSTAT causes a sing-
le-cycle interrupt pulse to occur. When XTlNT is 0, this interrupt pulse is
disabled.

rn The receive timer interrupt: The rising edge of RTSTAT causes a single-
cycle interrupt pulse to occur. When RTINT is 0, this interrupt pulse is dis-
abled.

The transmitter interrupt: Occurs immediately following a DXR-to-XSR
transfer. The transmitter interrupt is a single-cycle pulse. When the
serial-port global-control register bit XINT is 0, this interrupt pulse is dis-
abled.

0 The receiver interrupt: Occurs immediately following an RSR to DRR
transfer. The receiver interrupt is a single-cycle pulse. When the
serial-port global-control register bit RINT is 0, this interrupt pulse is
disabled.

The transmit timer interrupt pulse is ORed with the transmitter interrupt pulse to create
the CPU transmit interrupt flag XINT. The receive timer interrupt pulse is ORed with the
receiver interrupt pulse to create the CPU receive interrupt flag RINT.

Peripherals 8-29

Serial Ports

8.2.1 2 Serial-Port Functional Operation

The following paragraphs and figures illustrate the functional timing of the vari-
ous serial-port modes of operation. The timing descriptions are presented with
the assumption that all signal polarities are configured to be positive, that is,
CLKXP = CLKRP = DXP = DRP = FSXP = FSRP = 0. Logical timing, in situa-
tions where one or more of these polarities are inverted, is the same except
with respect to the opposite polarity reference points, that is, rising vs. falling
edges, etc.

These discussions pertain to the numerous operating modes and configura-
tions of the serial-port logic. When it is necessary to switch operating modes
or change configurations of the serial port, you should do so only when
XRESET or RRESET are asserted (low), as appropriate. Therefore, when
transmit configurations are modified, XRESET should be low, and when re-
ceive configurations are modified, RRESET should be low. When you use
handshake mode, however, since the transmitter and receiver are interrelated,
you should make any configuration changes with XRESET and RRESET both
low.

All of the serial-port operating configurations can be broadly classified in two
categories: fixed data-rate timing and variable data-rate timing. The following
paragraphs discuss fixed and variable data-rate operation and all of their vari-
ations.

Fixed Data-Rate Timing Operation

Fixed data-rate serial-port transfers can occur in two varieties: burst mode and
continuous mode. In burst mode, transfers of single words are separated by
periods of inactivity on the serial port. In continuous mode, there are no gaps
between successive word transfers; the first bit of a new word is transferred
on the next CLWR pulse following the last bit of the previous word. This oc-
curs continuously until the process is terminated.

In burst mode with fixed data-rate timing, FSWFSR pulses initiate transfers,
and each transfer involves a single word. With an internally generated FSX
(see Figure 8-23), transmission is initiated by loading DXR. In this mode,
there is a delay of approximately 2.5 CLKX cycles (depending on CLKX and
H I frequencies) from the time DXR is loaded until FSX occurs. With an exter-
nal FSX, the FSX pulse initiates the transfer, and the 2.5-cycle delay effectively
becomes a setup requirement for loading DXR with respect to FSX. Therefore,
in this case, you must load DXR no later than three CLKX cycles before FSX
occurs. Once the XSR is loaded from the DXR, an XlNT is generated.

Serial Ports

Figure 8-23. Fixed Burst Mode

C L W ~ m
FSWFSX (External)

FSX (Internal) I 1

DXR Loaded XlNT RlNT

In receive operations, once a transfer is initiated, FSR is ignored until the last
bit. For burst-mode transfers, FSR must be low during the last bit, or another
transfer will be initiated. After a full word has been received and transferred to
the DRR, an RlNT is generated.

In fixed data-rate mode, you can perform continuous transfers even if R/XFSM
= 0, as long as properly timed frame synchronization is provided, or as long
as DXR is reloaded each cycle with an internally generated FSX (see
Figure 8-24).

Figure 8-24. Fixed Continuous Mode With Frame Sync

CLWR

FSX (Internal) 1

DRDX ----------- x X AN X 81 x :/ X BN X C I X

T
DXR Loaded XlNT

DXR Loaded Load DXR Load DXR
Read DRR Read DRR

Peripherals 8-31

Serial Ports

For receive operations and with externally generated FSX, once transfers
have begun, frame sync pulses are required only during the last bit transferred
to initiate another contiguous transfer. Otherwise, frame sync inputs are ig-
nored. Therefore, continuous transfers will occur if frame sync is held high.
With an internally generated FSX, there is a delay of approximately 2.5 CLKX
cycles from the time DXR is loaded until FSX occurs. This delay occurs each
time DXR is loaded; therefore, during continuous transmission, the instruction
that loads DXR must be executed by the N-3 bit for an Kbit transmission.
Since delays due to pipelining may vary, you should incorporate a conserva-
tive margin of safety in allowing for this delay.

Once the process begins, an XlNT and an RlNT are generated at the begin-
ning of each transfer. The XlNT indicates that the XSR has been loaded from
DXR and can be used to cause DXR to be reloaded. To maintain continuous
transmission in fixed rate mode with frame sync, especially with an internally
generated FSX, DXR must be reloaded early in the ongoing transfer.

The RlNT indicates that afull word has been received and transferred into the
DRR. RlNT is therefore commonly used to indicate an appropriate time to read
DRR.

Continuous transfers are terminated by discontinuing frame sync pulses or, in
the case of internally generated FSX, not reloading DXR.

You can accomplish continuous serial-port transfers without the use of frame
sync pulses if RKFSM are set to 1. In this mode, operation of the serial port
is similar to continuous operation with frame sync, except that a frame sync
pulse is involved only in the first word transferred, and no further frame sync
pulses are used. Following the first word transferred (see Figure 8-25), no in-
ternal frame sync pulses are generated, and frame sync inputs are ignored.
Additionally, you should set RKFSM prior to or during the first word trans-
ferred; you must set RKFSM no later than the transfer of the N-1 bit of the first
word, except for transmit operations. For transmit operations in the fixed data-
rate mode, XFSM must be set no later than the N-2 bit. You must clear
RKFSM no later than the N-1 bit to be recognized in the current cycle.

Serial Ports

Figure 8-25. Fixed Continuous Mode Without Frame Sync

CLWR w--
FSWFSX (External)

FSX (Internal) 1-7
DWDX ,,,,---,,,,)(AN X 01 x i X BN X C1 X ,,

DXR Loaded

t t t
XlNT
RINT I XlNT

RlNT

I
DXR Loaded

I
Load DXR

I
Load DXR

Read DRR Read DRR

Timing of RlNT and XlNT and data transfers to and from DXR and DRR, re-
spectively, are the same as in fixed data-rate continuous mode with frame
sync. This mode of operation also exhibits the same delay of 2.5 CLKX cycles
after DXR is loaded before an internal FSX is generated. As in the case of wn-
tinuous operation in fixed data-rate mode with frame sync, you must reload
DXR no later than transmission of the I\C3 bit.

When you use continuous operation in fixed data-rate mode, WXFSM can be
set and cleared as desired, even during active transfers, to enable or disable
the use of frame sync pulses as dictated by system requirements. Under most
conditions, the effect of changing the state of WXFSM occurs during the trans-
fer in which the WXFSM change was made, provided the change was made
early enough in the transfer. For transmit operations with internal FSX in fixed
data-rate mode, however, a one-word delay occurs before frame sync pulse
generation resumes when clearing XFSM to 0 (see Figure 8-26). Therefore,
in this case, one additional word is transferred before the next FSX pulse is
generated. Also note that, as discussed previously, the clearing of XFSM is
recognized during the transmission of the word currently being transmitted as
long as XFSM is cleared no later than the N-1 bit. The setting of XFSM is rec-
ognized as long as XFSM is set no later than the N-2 bit.

Peripherals 8-33

Figure 8-26. Exiting Fixed Continuous Mode Without Frame Sync, FSX Internal

I I I I I I I 1st Word I 2nd Word I 3rd Word I 4th Word I 5th Word I
I

CLKX ,mmqv*****m
FSX I I I I

(Internal) I I

LOAD DXR SET XFSM RESET XFSM

Variable Data-Rate Timing Operation

Variable data-rate timing also supports operation in either burst or continuous
mode. Burst-mode operation with variable data-rate timing is similar to burst-
mode operation with fixed data-rate timing. With variable data-rate timing (see
Figure 8-27), however, FSWR and data timing differ slightly at the beginning
and end of transfers. Specifically, there are three major differences between
fixed and variable data-rate timing:

FSWR pulses typically last for the entire transfer interval, although FSR
and external FSX are ignored after the first bit transferred. FSWR pulses
in fixed data-rate mode typically last only one C L W R cycle but can last
longer.

Q Data transfer begins during the C L W R cycle in which FSWR occurs,
rather than the C L W R cycle following FSWR, as is the case with fixed
data-rate timing.

With variable data-rate timing, frame sync inputs are ignored until the end
of the last bit transferred, rather than the beginning of the last bit trans-
ferred, as is the case with fixed data-rate timing.

Serial Ports

Figure 8-27. Variable Burst Mode

FSWFSX (External) 1--W1
FSX (Internal) I--

D m R ------------ +a X AU

DXR Loaded XlNT RlNT

When you transmit continuously in variable data-rate mode with frame sync,
timing is the same as for fixed data-rate mode, except for the differences be-
tween these two modes as described under Variable Data-Rate Timing Opera-
tion. The only other exception is that you must reload DXR no later than the
N-4 bit to maintain continuous operation of the variable data-rate mode (see
Figure 8-28); you must reload DXR no later than the N3 bit to maintain con-
tinuous operation of the fixed data-rate mode.

Figure 8-28. Variable Continuous Mode With Frame Sync

CLWR w w
FSWFSX (External)

FSX (Internal) I

t
DXR Loaded XlNT XlNT

RlNT I RlNT I
Load
DXR Load DXR Load DXR

Read DRR Read DRR

Continuous operation in variable data-rate mode without frame sync (see
Figure 8-29) is also similar to continuous operation without frame sync in fixed
data-rate mode. As with variable data-rate mode continuous operation with
frame sync, you must reload DXR no later than the lU-4 bit to maintain continu-
ous operation. Additionally, when R/XFSM is set or cleared in the variable da-
ta-rate mode, you must make the modification no later than the N-1 bit for the
result to be affected in the current transfer,

Peripherals 8-35

Serial Ports

Figure 8-29. Variable Continuous Mode Without Frame Sync

FSRIFSX (External)

FSX (Internal)

I Load DXR Load DXR
DXR Loaded Read DRR Read DRR

8.2.1 3 Serial-Port Initialization/Reconfiguration

The serial ports are controlled through memory-mapped registers on the dedi-
cated peripheral bus. Following is a general procedure for initializing andlor
reconfiguring the serial ports.

1) Halt the serial port by clearing theXRESETand/or RRESET bits of theser-
ial-port global-control register. To do this, write a 0 to the serial-port global-
control register. Note that the serial ports are halted on RESET.

2) Configure the serial port via the serial-port global-control register (with
XRESET = RRESET = 0) and the FSWDWCLKX and FSRIDWCLKR port-
control registers. If necessary, configure the receivehransmit registers: --
timer control (with XHLD = RHLD = 0), timer counter, and timer period. Re-
fer to subsection 8.2.1 4 for more information.

3) Start the serial port operation by setting the XRESET and RRESET bits -
of the serial-port global-control register and the XHLD and RHLD bits of
the serial-port receivehransmit timer-control register, if necessary.

8.2.1 4 TMS320C3x Serial-Port Interface Examples

In addition to the examples presented in this section, DMA/serial port initializa-
tion examples can be found in Example 8-6 and Example 8-7 on pages 8-59
and 8-61, respectively.

Serial Ports

8.2.14.1 Handshake Mode Example

When handshake mode is used, the transmit (FSWDSICLKX) and receive
(FSRIDRICLKR) signals transmit and receive data, respectively. In other
words, even if the TMS320C3x serial port is receiving data only with hand-
shake mode, the transmit signals are still needed to transmit the acknowledge
signal. This is the serial port register setup for the TMS320C3x serial port
handshake communication, as shown in Figure 8-22 on page 8-29:

Global control = 0 1 1 x0x0xxxx00000000xx0 1 1 00 1 00b
Transmit port control = 01 11 h
Receive port control = 01 11 h
S p r t timer control = OFh
S g r t timer count = Oh
S p r t timer period z 01 h (if two C3xs have the same

system clock)

x = user-configurabie

Since the FSX is set as an output and continuous mode is disabled when hand-
shake mode is selected, you should set the XFSM and RFSM bits to 0 and the
FSXOUT bit to 1 in the global control register. You should set the XRESET,
RRESET, and HS bits to 1 in order to start the handshake communication. You
should set the polarity of the serial port pins active (high) for simplification. Al-
though the CLWCLKR can be set as either input or output, you should set
the CLKX as output and the CLKR as input. The rest of the bits are user-confi-
gurable as long as both serial ports have consistent setup.

You need the serial port timer only if the CLKX or CLKR is configured as an
output. Since only the CLKX is configured as an output, you should set the tim-
er control register to OFh. When the serial port timer is used, you should also
set the serial timer register to the proper value for the clock speed. The serial
port timer clock speed setup is similar to the TMS320C3x timer. Refer to Sec-
tion 8.1 on page 8-2 for detailed information on timer clock generation.

The maximum clock frequency for serial transfers is F(CLKIN)/4 if the internal
clock is used and F(CLKIN)15.2 if an external clock is used. Therefore, if two
TMS320C3xs have the same system clock, the timer period register should
be set equal to or greater than 1, which makes the clock frequency equal to
F(CLKIN)/8.

Example 8-1 and Example 8-2 are serial port register setups for the above
case. (Assume two TMS320C3xs have the same system clock.)

Peripherals 8-37

Serial Ports

Example 8- 1. Serial-Port Register Setup # 1

Global control = OEBC0064h; 32 bits, fixed data rate, burst mode,
~ransmit port control = Olllh ; FSX (output), CLKX (output) = F(CLKIN)/B
Receive port control = Olllh ; CLKR (input), handshake mode, transmit
Sgort timer control = OFh; and receive interrupt is enabled.
Sgort timer count = Oh
Sqort timer period r Olh

Example 8-2. Serial-Port Register Setup #2

Global control = OC000364h; 8 bits, variable data rate, burst mode,
Transmit port control = Olllh; FSX (output), CLKX (output) = f(CLKIN)/24
Receive port control = Olllh ; CLKR (input), handshake mode, transmit
Sgort timer control = OFh; and receive interrupt is disabled.
Sgort timer count = Oh
Sgort timer period r Olh

Since the data has a leading 1 and the acknowledge signal is a 0 in the hand-
shake mode, the TMS320C3x serial port can distinguish between the data and
the acknowledge signal. Therefore, even if the TMS320C3x serial port re-
ceives the data before the acknowledge signal, the data will not be misinter-
preted as the acknowledge signal and be lost. In addition, the acknowledge
signal is not generated until the data is read from the data receive register
(DRR). Therefore, the TMS320C3x will not transmit the data and the acknowl-
edge signal simultaneously.

8.2.14.2 CPU Transfer With Serial-Port Transmit Polling Method

Example 8-3 sets up the CPU to transfer data (1 28 words) from an array buffer
to the serial port 0 output register when the previous value stored in the serial
port output register has been sent. Serial port 0 is initialized to transmit 32-bit
data words with an internally generated frame sync and a bit-transfer rate of
8H1 cycles/bit.

Serial Ports

Example 8-3. CPU Transfer With Serial-Port Transmit Polling Method

TITLE: CPU TRANSFER WITH SERIAL-PORT TRANSMIT POLLING METHOD
*

.GLOBAL START . DATA
SOURCE .WORD -ARRAY

.BSS -ARRAY,128 ; DATA ARRAY LOCATED IN .BSS SECTION
; THE UNDERSCORE USED IS JUST TO MAKE IT
; ACCESSIBLE FROM C (OPTIONAL)

SPORT .WORD 808040H ; SERIAL-PORT GLOBAL CONTROL REG ADDRESS
SPRESET .WORD 008C0044 ; SERIAL-PORT RESET
SGCCTRL .WORD 048C0044H ; SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION
SXCTRL .WORD lllH ; SERIAL-PORT TX PORT CONTROL REG INITIALIZATION
STCTRL .WORD OOFH ; SERIAL-PORT TIMER CONTROL REG INITIALIZATION
STPERIOD .WORD OOOOOOO2h ; SERIAL-PORT TIMER PERIOD
RESET .WORD OH ; SERIAL-PORT TIMER RESET VALUE

.TEXT
START LDP RESET ; LOAD DATA PAGE POINTER

ANDN 10HIIE ; DISABLE SERIAL-PORT TRANSMIT INTERRUPT TO CPU

* SERIAL PORT INITIALIZATION
LDI @SPORT,ARl
LDI @RESET,RO
LDI 4,IRO
ST1 RO,*+ARl(IRO) ; SERIAL-PORT TIMER RESET
LDI @SPRESET,RO
ST1 RO, *AR1 ; SERIAL-PORT RESET
LDI @SXCTRL,RO ; SERIAL-PORT TX CONTROL REG INITIALIZATON
ST1 RO,*+AR1(3)
LDI @STPERIOD,RO ; SERIALPORT TIMER PERIOD INITIALIZATION
ST1 RO,*+AR1(6)
LDI @STCTRL,RO ; SERIAL-PORT TIMER CONTROL REG INITIALIZATION
ST1 RO,*+AR1(4)
LDI @SGCCTRLIRO ; SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION
ST1 RO, *AR1

* CPU WRITES THE FIRST WORD

LDI @SOURCE,ARO
LDI *ARO++,Rl
ST1 Rl,*+AR1(8)

* CPU WRITES 127 WORDS TO THE SERIAL PORT OUTPUT REG

LDI 8, IRO
LDI 2,RO
LDI 126,RC
RPTB LOOP

WAIT AND *ARl,RO,R2
BZ WAIT

LOOP ST1 Rl,*+ARl(IRO)
I I LDI *++ARO(l),Rl

BU $
.END

; WAIT UNTIL XRDY BIT = 1

Peripherals 8-39

Serial Ports

8.2.14.3 Serial AIC Interface Example

The TLC320C4x analog interface chips (AIC) from Texas Instruments offer a
zero-glue-logic interface to the TMS320C3x family of DSPs. The interface is
shown in Figure 8-30 as an example of the TMS320C3x serial-port configura-
tion and operation.

Figure 8-30. TMS320C3x Zero-Glue- Logic lnterface to TLC3204x Example

TMS320C3x

XFO
CLKRO
CLKXO

FSRO
DRO

FSXO
DXO

TCLKO

- VCC
TMS320C4x

= RESET WORD
SCLK

OUT+ --b Analog
Out 4

4 .
4 +-- Analog

a In

FSR OUT-
DR
FSX IN+
DX IN-
MCLK

The TMS320C3x resets the AIC through the external pin XFO. It also gener-
ates the master clock for the AIC through the timer 0 output pin, TCLKO. (Pre-
cise selection of a sample rate may require the use of an external oscillator
rather than the TCLKO output to drive the AIC MCLK input.) In turn, the AIC
generates the CLKRO and CLKXO shift clocks as well as the FSRO and FSXO
frame synchronization signals.

A typical use of the AIC requires an 8-kHz sample rate of the analog signal.
If the clock input frequency to the TMS320C3x device is 30 MHz, you should
load the following values into the serial port and timer registers.

Serial Port:
Port global control register: OE970300h
FSWDWCLKX port control register 000001 11 h
FSR/DR/CLKR port control register 000001 11 h

Timer:
Timer global control register
Timer period register

8.2.14.4 Serial A/D and D/A lnterface Example

The DSP201/2 and DSP101/2 family of D/As and AIDS from Burr Brown also
offer a zero-glue-logic interface to the TMS320C3x family of DSPs. The inter-
face is shown in Example 8-4. This interface is used as an example of the
TMS320C3x serial-port configuration and operation.

Serial Ports

Example 8-4. TMS320C3x Zero-Glue-Logic Interface to Burr Brown N D and D/A

The DSPI 02 AID is interfaced to the TMS320C3x serial port receive side; the
DSP202 D/A is interfaced to the transmit side. The AIDS and DIAs are hard-
wired to run in cascade mode. In this mode, when the TMS320C3x initiates a
convert command to the AID via the TCLKO pin, both analog inputs are con-
verted into two 16-bit words, which are concatenated to form one 32-bit word.
The AID signals the TMS320C3x via the AID'S SYNC signal (connected to the
TMS320C3x FSRO pin) that serial data is to be transmitted. The 32-bit word
is then serially transmitted, MSB first, out the SOUTAserial pin of the DSPl02
to the DRO pin of the TMS320C3x serial port. The TMS320C3x is programmed
to drive the analog interface bit clock from the CLKXO pin of the TMS320C3x.
The bit clock drives both the AID'S and DIA's XCLK input. The TMS320C3x
transmit clock also acts as the input clock on the receive side of the
TMS320C3x serial port. Since the receive clock is synchronous to the internal
clock of the TMS320C3x, the receive clock can run at full speed (that is,
f(H1)/2).

Burr Brown DSPlO2 N D Burr Brown DSP202 DIA

Peripherals 8-41

i2 .75 V -b

t 2.75 V -+

CASC

XCLK

SOUTA
VlNA

SYNC

VINE

OSCO
SSF

,- OSCl

1 MOhm CONV

- t 5 V t 5 V - CASC

TMS320C3x

12.29 MHz
t

4-o-b

b

b

- +5V

TCLKO

CLKRO CLKXO e b XCLK

DRO DXO
VOUTA

+5V -
t 5 V -

FSRO
FSXO

SSF
SWL

CONV

4 SYNC 'OUTB ----*

Serial Ports

Similarly, on receiving a convert command, the pipelined DIA converts the last
word received from the TMS320C3x and signals the TMS320C3x via the
SYNC signal (connected to the TMS320C3x FSXO pin) to begin transmitting
a 32-bit word representing the two channels of data to be converted. The data
transmitted from the TMS320C3x DXO pin is input to both the SlNA and SlNB
inputs of the DIA as shown in the figure.

The TMS320C3x is set up to transfer bits at the maximum rate of about eight
Mbps, with a dual-channel sample rate of about 44.1 kHz. Assuming a32-MHz
CLKIN, you can configure this standard-mode fixed-data-rate signaling inter-
face by setting the registers as described below:

Serial Port:
Port global-control register: OEBC0040h
FSWDWCLKX port-control register 000001 1 1 h
FSR/DR/CLKR port-control register 00000111 h
Receivehransmit timer-control register OOOOOOOFh

Timer:
Timer global-control register
Timer period register

DMA Controller

8.3 DMA Controller

The TMS320C3x has an on-chip direct memory access (DMA) controller that
reduces the need for the CPU to perform inputloutput functions. The DMA con-
troller can perform inputloutput operations without interfering with the opera-
tion of the CPU. Therefore, it is possible to interface the TMS320C3x to slow
external memories and peripherals (A/Ds, serial ports, etc.) without reducing
the computational throughput of the CPU. The result is improved system per-
formance and decreased system cost.

A DMA transfer consists of two operations: a read from a memory location and
a write to a memory location. The DMA controller can read from and write to
any location in the TMS320C3x memory map. This includes all
memory-mapped peripherals. The operation of the DMA is controlled with the
following set of memory-mapped registers:

a DMA global-control register
IJ DMA source-address register
a DMA destination-address register
0 DMA transfer-counter register

Table 8-7 shows these registers, their memory-mapped addresses, and their
functions. Each of these DMA registers is discussed in the succeeding subsec-
tions.

Peripherals 8-43

DMA Controller

Table 8-7. Memory-Mapped Locations for a DMA Channel

Peripheral
Register Addreaa

DMA Global Control (See Table 8-8)

Reserved

Resewed

Reserved 808003h

DMA Source Address (see subsection 8.3.2)

Reserved

DMA Destination Address (see subsection 8.3.2) 808006 h

Reserved 808007h

DMA Transfer Counter (see subsection 8.3.3) 808008 h

Reserved 808009h

Reserved

Reserved

Reserved 80800C h

Resewed

Resewed

Reserved 80800Fh

DMA Controller

Table 8-8. DMA Global-Control Register Bits

Bit Name Reset Value Function

START These bits control the state in which the DMA starts and stops. The
DMA may be stopped without any loss of data (see Table 8-9).

These bits indicate the status of the DMA and change every cycle
(see Table 8-1 0).

STAT

INCSRC

DECSRC

If INCSRC = 1, the source address is incremented after every read.

If DECSRC = 1, the source address is decremented after every
read. If INCSRC = DECSRC, the source address is not modified
after a read.

INCDST

DECDST

If INCDST = 1, the destination address is incremented after every
write.

If DECDST = 1, the destination address is decremented after every
write. If INCDST = DECDST, the destination address is not modified
after a write.

SYNC The SYNC bits determine the timing synchronization between the
events initiating the source and the destination transfers. The inter-
pretation of the SYNC bits is shown in Table 8-11.

The TC bit affects the operation of the transfer counter. If TC = 0,
transfers are not terminated when the transfer counter becomes 0.
If TC = 1, transfers are terminated when the transfer counter be-
comes 0.

TClNT If TClNT = 1, the DMA interrupt is set when the transfer counter
makes a transition to 0. If TClNT = 0, the DMA interrupt is not set
when the transfer counter makes a transition to 0.

Reserved Read as 0.

Note: When the DMA completes a transfer, the START bits remain in 11 (base 2). The DMAstarts when the START b i are set
to 11 and one of the following conditions applies:

0 The transfer counter is set to a value different from 0x0, or
a The TC bit is set to 0.

Peripherals 8-45

DMA Controller

Table 8-9. START Bits and Operation of the DMA (Bits 0-1)

START Function

0 0 DMA read or write cycles in progress will be completed; any data read will
be ignored. Any pending read or write will be cancelled. The DMA is reset
so that when it starts a new transaction begins; that is, a read is per-
formed. (Reset value)

0 1 If a read or write has begun, it is completed before it stops. If a read or
write has not begun, no read or write is started.

1 0 If a DMA transfer has begun, the entire transfer is completed (including
both read and write operations) before stopping. If a transfer has not be-
gun, none is started.

1 1 DMA starts from reset or restarts from the previous state.

Table 8-1 0. STAT Bits and Status of the DMA (Bits 2-3)

STAT Function
-

0 0 DMA is being held between DMA transfer (between a write and read).
This is the value at reset. (Reset value)

0 1 DMA is being held in the middle of a DMA transfer, that is, between a read
and a write.

1 0 Reserved.

1 1 DMA busy; that is, DMA is performing a read or write or waiting for a
source or destination synchronization interrupt.

Table 8-1 1. SYNC Bits and Synchronization of the DMA (Bits 8-9)

SYNC Function
-

0 0 No synchronization. Enabled interrupts are ignored. (Reset value)

0 1 Source synchronization. A read is performed when an enabled interrupt
occurs.

1 0 Destination synchronization. A write is performed when an enabled inter-
rupt occurs.

1 1 Source and destination synchronization. A read is performed when an
enabled interrupt occurs. A write is then performed when the next en-
abled interrupt occurs.

DMA Controller

8.3.1 DMA Global-Control Register

The global-control register controls the state in which the DMA controller oper-
ates. This register also indicates the status of the DMA, which changes every
cycle. Source and destination addresses can be incremented, decremented,
or synchronized using specified global-control register bits. At system reset,
all bits in the DMA control register are cleared to 0. Table 8-8 on page 8-45
lists the register bits, names, and functions. Figure 8-31 shows the bit config-
uration of the global-control register.

Figure 8-3 1. DMA Global-Control Register

R = Read, W = Write, xx = reserved bit, read as 0

8.3.2 Destination- and Source-Address Registers

The DMA destination-and-source address registers are 24-bit registers whose
contents specify destination and source addresses. As specified by control
bits DECSRC, INCSRC, DECDST, and INCDST of the DMA global-control
register, these registers are incremented and decremented at the end of the
corresponding memory access, that is, the source register for a read and the
destination register for a write. On system reset, 0 is written to these registers.

8.3.3 Transfer-Counter Register

The transfer-counter register is a 24-bit register, controlled by a 24-bit counter
that counts down. The counter decrements at the beginning of a DMA memory
write. In this way, it can control the size of a block of data transferred. The trans-
fer counter register is set to 0 at system reset. When the TClNT bit of DMA
global-control register is set, the transfer-counter register will cause a DMA in-
terrupt flag to be set upon count down to 0.

8.3.4 CPUIDMA Interrupt-Enable Register

The CPUIDMA interrupt enable register (IE) is a 32-bit register located in the
CPU register file. The CPU interrupt enable bits are in locations 10-1. The
DMA interrupt-enable bits are in locations 26-1 6. A 1 in a CPUIDMA interrupt-
enable register bit enables the corresponding interrupt. A 0 disables the corre-
sponding interrupt. At reset, 0 is written to this register.

Peripherals 8-47

DMA Controller

Table 8-1 2 lists the bits, names, and functions of the CPUIDMA interrupt en-
able register. Figure 8-32 shows the IE register. The priorii and decoding
schemes of CPU and DMA interrupts are identical. Note that when the DMA
receives an interrupt, this interrupt is acted upon according to the SYNC field
of the DMA control register. Also note that an interrupt can affect the DMA but
not the CPU and can affect the CPU but not the DMA. Refer to subsection 3.1.8
on page 3-7 and to Chapter 6.

Table 8-12, CPU/DMA Interrupt-Enable Register Bits

Blt Name

0 ElNTO

1 EINT1

2 EINT2

3 EINT3

4 EXINTO

5 ERINTO

6 EXlNTl

7 ERINT1

8 ETINTO

9 ETlNTl

10 EDlNT

15-11 Reserved

16 ElNTO

17 ElNTl

18 ElNT2

19 EINT3

20 EX1 NTO

2 1 ERINTO

22 EXlNTl

23 ERlNTl

24 ETINTO

25 ETlNTl

26 EDlNT

31-27 Reserved

Functlon

Enable external interrupt 0 (CPU)
Enable external interrupt 1 (CPU)

Enable external interrupt 2 (CPU)
Enable external interrupt 3 (CPU)

Enable serial-port 0 transmit interrupt (CPU)
Enable serial-port 0 receive interrupt (CPU)

Enable serial-port 1 transmit interrupt (CPU)

Enable serial-port 1 receive interrupt (CPU)
Enable timer 0 interrupt (CPU)
Enable timer 1 interrupt (CPU)
Enable DMA controller interrupt (CPU)

Read as 0

Enable external interrupt 0 (DMA)
Enable external interrupt 1 (DMA)
Enable external interrupt 2 (DMA)

Enable external interrupt 3 (DMA)

Enable serial-port 0 transmit interrupt (DMA)

Enable serial-port 0 receive interrupt (DMA)

Enable serial-port 1 transmit interrupt (DMA)

Enable serial-port 1 receive interrupt (DMA)

Enable timer 0 interrupt (DMA)
Enable timer 1 interrupt (DMA)
Enable DMA controller interrupt (DMA)

Read as 0

DMA Controller

Figure 8-32. CPU/DMA Interrupt-Enable Register

xxxxna txx EDINT n - 1 ~ 1 ~ N T O ERINTI EXINTI ERINTO EXINTO € 1 ~ ~ 3 EINTZ € 1 ~ 1 1 EINTO
(CPU) (CPU) (CPU) (CPU) (CPU) (CW) (CW) (Cw) (CW) (Cf'u) (CPU)

Note: xx = Reserved bii, read as 0
R = read, W = write

8.3.5 DMA Memory Transfer Operation

Each DMA memory transfer consists of two parts:

0 Read data from the address specified by the DMA source register

0 Write data that has been read to the address specified by the DMA desti-
nation register

A transfer is complete only when the read and wriie are complete. You can stop
a transfer by setting the START bits to the desired value. When the DMA is re-
started (START = 1 I), it completes any pending transfer.

At the end of a DMA read, the source address is modified as specified by the
SRCINC and SRCDEC bits of the DMA global-control register. At the end of
a DMA write, the destination address is modified as specified by the DSTINC
and DSTDEC bits of the DMA global control register. At the end of every DMA
write, the DMA transfer counter is decremented.

DMA on-chip reads and writes (reads and writes from on-chip memory and pe-
ripherals) are single-cycle. DMA off-chip reads are two cycles. The first cycle
is the external read, and the second cycle loads the DMA register. The external
read cycle is identical to a CPU read cycle. DMA off-chip writes are identical
to CPU off-chip writes. If the DMA has been started and is transferring data
over either external bus, you should not modify the bus-control register asso-
ciated with that bus. If you must modify the bus-control register (see Chapter
7), stop the DMA, make the modification, and then restart the DMA. Failure to
do this may produce an unexpected zero-wait-state bus access.

Peripherals 8-49

DMA Controller

Through the 24-bit source and destination registers, the DMA is capable of ac-
cessing any memory-mapped location in the TMS320C3x memory map.
Table 8-13, Table 8-14, and Table 8-15 show the number of cycles a DMA
transfer requires, depending on whether the source and destination are on-
chip memory and peripherals, the external port, or the I10 port. T represents
the number of transfers to be performed, Cr represents the number of wait-
states for the source read, and C, represents the number of wait-states for the
destination write. Each entry in the table represents the total cycles required
to do the T transfers, assuming that there are no pipeline conflicts.

Accompanying each table is afigure illustrating the timing of the DMA transfer.
IRI and IW(represent single-cycle reads and writes, respectively. JR.RJ and
IW.WI represent multicycle reads and writes. ICrI and IC,I show the number
of wait cycles for a read and write.

Table 8-13. DMA Timing When Destination Is On-Chip

- --

Source Destination On-Chlp

-- -

Expansion Bus (2 + C, + 1) T

Legend:
T = Number of transfers
Cr = Source-read wait states
C, = Destination-write wait states
JRI = Single-cycle reads
IWJ = Single-cycle writes
IR.RI = Multicycle reads
IW.WI = Multicycle writes
I I I = Internal register cycle

19 12 17

Source On-Chip

Destination On-Chip

Source Primary BUS

Destination On-Chip

Source Expansion Bus

Destination On-Chip

18 5

R I I R (1 R I : : : : : : : : : : : : :
I w I I w I I w I : : : : : : : : : : : :

R . F (. R : 1 1 I R . R . R : I I 1 R . R . R : I J : : : :
I C r) : :) G I : :) C r) : : : : : , Iw/ : : : IwI : : : IwI : : :

R . R . R : 1 1 I R . R . R : I (I R . R . R : I ~ : : : :
: (C r (: (C r) : :) C r l : : : : :

: : : (w (: : : J w J J w J : :

Cycles (HI) 13 6 10 1 14 11 7 2 15 8 16 9 3 4

DMA Controller

Table 8- 14. DMA Timing When Destination Is a Primary Bus

Source Destlnatlon P r l m a ~ Bus

Cycles (HI)

Source on-chip

Destination Primary Bus

Source Primary BUS

Destination Primary Bus

Source Expansion Bus

Destination Primary Bus
-

On-Chip 1 + (2 + Cw) T

Primary (2 + Cr + 2 + &) T
Bus

Expansion (2 + Cr + 2 + Cw)
BUS + (2 + &+max(l,Cr - Cw+

l))(T- 1)

1 2 3

Legend:

T = Number of transfers
Cr = Source-read wait states
C,,, = Destination-write wait states
IRI = Single-cycle reads
IWI = Singlecycle writes
IR.RJ = Multicycle reads
(W.WI = Multicycle writes
1 I (= Internal register cycle

R I I R I : : I R I
lw.w.w,w)w.w.w.w~w.w.w.w(: : : : :
: : I % [: [& I : I & (: : : : :

R . R . R : I I : : : .R .R .R : 1 1 : : : : : : .
I C r I : : : : : I C r I : : : : : :
: : : (w,w.w.wI : : : Iw.w.w.wl : :
: : : : : I & I : : : : : (C , I : :

R . R . R : I] 1 R . R . R : I1 1 R . R .R : I (: : : :
I %] : : I C r I : : 1 C r 1 : : : : :
: : : (w.w.w.wI Iw.w.w.wI Iw.w.w.wI
: : : : : I c w l 1 : : I & I

-- -- - -

4

Peripherals 8-51

5 6 7 1 0 1 1 1 2 1 3 1 4 1 5 1 8 9

DMA Controller

Table 8-7 5. D MA Timing When Destination Is an Expansion Bus

Destination Expansion Bus

Source Expansion Bus

Destination Expansion Bus

Source Primary Bus

Destination Expansion Bus

18

: : : IC,.,~ :) c W I : : : : :

R . R . R I I (1 R . R . R : I I 1 R - R . R : I (: : : :
l C r l : : l c r l : : (C r I : : : : :

Legend:

14 19

Source On-Chip

- -

Source Destination Expansion Bus

On-Chip 1 + (2 + &)T

Primary (2 + G + 2 + &)
Bus +(2+C,+max(l ,G-C,+

l))(T- 1)

Expansion (2 + G + 2 + &) T
Bus

R I 1 R I : : I R) : : : : : : : : : : :
.
(w ,w,w,w(w~w.w.w~w.w.w.wJ : : : : :

Number of transfers
Source-read wait states
Destination-write wait states
Single-cycle reads
Single-cycle writes
Multicycle reads
Multicycle writes
Internal register cycle

13 11 8 Cycles (HI) 17 15 12 4 16 9 10 5 3 1 2 6 7

DMA Controller

Table 8-1 6 shows the maximum DMA transfer rates, assuming that there are
no wait states (Cr = C, = 0). Table 8-17 shows the maximum DMA transfer
rates, assuming there is one wait state for the read (Cr = 1) and no wait states
for the write (C, = 0). Table 8-18 shows the maximum DMA transfer rates,
assuming there is one wait state for the read (Cr = 1) and one wait state for the
write (& = 1).

In each table, the time for the complete transfer (the read and the write) is con-
sidered. Since one bus access is required for the read and another for the
write, internal bus transfer rates will be twice the DMA transfer rate. It is also
assumed that no conflicts with the CPU exist. Rates are listed in Mwordslsec.
A word is 32 bits (4 bytes).

Table 8-76. Maximum DMA Transfer Rates When C, = C, = 0

Internal 8.33 Mwordslsec 8.33 Mwordslsec 8.33 Mwordslsec

Primary 5.56 Mwordslsec 4.1 7 Mwordslsec 5.56 Mwordslsec

Expansion 5.56 Mwordslsec 5.56 Mwordslsec 4.1 7 Mwordslsec

Source

Table 8-1 7.Maximum DMA Transfer Rates When Cr = 1, & = 0

Destination

internal Primary Expansion

Internal 8.33 Mwordslsec 8.33 Mwordslsec 8.33 Mwordslsec

Primary 4.1 7 Mwordslsec 3.33 Mwordslsec 4.1 7 Mwordslsec

Expansion 4.1 7 Mwordslsec 4.1 7 Mwordslsec 3.33 Mwordslsec

Source

Table 8-1 8. Maximum DMA Transfer Rates When Cr = 1, C, = 7

Destination

Internal Primary Expansion

Internal 8.33 Mwordslsec 5.56 Mwordslsec 5.56 Mwordslsec

Primary 4.1 7 Mwordslsec 2.78 Mwordslsec 4.1 7 Mwordslsec

Expansion 4.1 7 Mwordslsec 4.1 7 Mwordslsec 2.78 Mwordslsec

Source

Peripherals

Destination

internal Prlmary Expansion

DMA Confroller

8.3.6 Synchronization of DMA Channels

You can synchronize a DMA channel with interrupts. Refer to Table 8-1 1 on
page 8-46 for the relationship between the SYNC bits of the DMA global wn-
trol register and the synchronization performed. This section describes the fol-
lowing four synchronization mechanisms:

IJ No synchronization (SYNC = 0 0)
0 Source synchronization (SYNC = 0 1)
Q Destination synchronization (SYNC = 1 0)
Q Source and destination synchronization (SYNC = 1 1)

No Synchronization

When SYNC = 0 0, no synchronization is performed. The DMA performs reads
and writes whenever there are no conflicts. All interrupts are ignored and
therefore are considered to be globally disabled. However, no bits in the DMA
interrupt-enable register are changed. Figure 8-33 shows the
synchronization mechanism when SYNC = 0 0.

Figure 8-33. No DMA Synchronization

A
Disable DMA Interrupts

I
&

DMA Channel Performs a Read 1
I

DMA Channel Performs a Wriie c
Source Synchronization

When SYNC=O 1, the DMA is synchronized to the source (see Figure 8-34).
A read will not be performed until an interrupt is received by the DMA. Then
all DMA interrupts are disabled globally. However, no bits in the DMA interrupt
enable register are changed.

D M Controller

Figure 8-34. DMA Source Synchronization

DMA Channel Performs a Read
I
A

Enable DMA Interrupts Globally

DMA Channel Performs a Write *
Destination Synchronization

When SYNC= 1 0, the DMA is synchronized to the destination. First, all inter-
rupts are ignored until the read is complete. Though the DMA interrupts are
considered globally disabled, no bits in the DMA interrupt-enable register are
changed. A write will not be performed until an interrupt is received by the
DMA. Figure 8-35 shows the synchronization mechanism when SYNC= 1 0.

Figure 8-35, DMA Destination Synchronization

A

I DMA Channel Performs a Read
I +

I ldle Until Enabled Interrupt Is Received 1
&

Disable DMA Interrupts Globally
I
&

DMA Channel Performs a Write
I +

DMA Interrupts Are Enabled Globally
I

Source and Destinatlon Synchronization

When SYNC = 1 1, the DMA is synchronized to both the source and destina-
tion. A read is performed when an interrupt is received. A write is performed
on the following interrupt. Source and destination synchronization when
SYNC = 1 1 is shown in Figure 8-36.

Peripherals 8-55

DMA Controller

Figure 8-36. DMA Source and Destination Synchronization

&
ldle Until Enabled Interrupt is Received

I
&

Disable DMA lnterrupts Globally
I
&

DMA Channel Performs a Read
I
&

Enable DMA lnterrupts Globally
I
& I ldle Until Enabled Interrupt Is Received 1
I

I Disable DMA lnterrupts Globally I
1

DMA Channel Performs a Write

1 I Enable DMA lnterrupts Globally 1

8.3.7 DMA lnterrupts

You can generate a DMA interrupt to the CPU whenever the transfer count
reaches 0, indicating that the last transfer has taken place. The TCINT bit in
the DMAglobal control register determines whether the interrupt will be gener-
ated. If TCINT = 1, the DMA interrupt is generated. If TCINT = 0, the DMA inter-
rupt is not generated. If the DMA interrupt is generated, the EDlNT bit, bit 10
in the interrupt enable register, must also be set to enable the CPU to be inter-
rupted by the DMA.

A second bit in the DMA global control register, the TC bit, is also generally
associated with the state of the TCINT bit and the interrupt operation. The TC
bit determines whether transfers are terminated when the transfer counter be-
comes 0 or whether they are allowed to continue. If TC = 1, transfers are termi-
nated when the transfer count becomes 0. If TC = 0, transfers are not termi-
nated when the transfer count becomes 0.

In general, if TCINT is 0, TC should also be cleared to 0. Otherwise, the DMA
transfer will terminate, and the CPU will not be notified. If TCINT is 1, TC should
also be 1 in most cases. In this case, the CPU will be notified when the transfer
completes, and the DMA will be halted and ready to start a new transfer.

DMA Controller

8.3.8 DMA Initialization/Reconfiguration

You can control the DMA through memory-mapped registers located on the
dedicated peripheral bus. Following is the general procedure for initializing
and/or reconfiguring the DMA:

1) Halt the DMA by clearing the START bits of the DMA global-control regis-
ter. You can do this by wriiing a 0 to the DMA global-control register. Note
that the DMA is halted on

2) Configure the DMA via the DMA global-control register (with START = OO),
as well as the DMA source, destination, and transfer-counter registers, if
necessary. Refer to subsection 8.3.1 0 on page 8-58 for more information.

3) Start the DMA by setting the START bits of the DMA global-control register
as necessary.

8.3.9 Hlnts for DMA Programming

The following hints help you improve your DMA programming and avoid unex-
pected results:

Q Reset the DMA register before starting it. This clears any previously
latched interrupt that may no longer exist.

[] In the event of a CPU-DMA access conflict, the CPU always prevails.
Carefully allocate the different sections of the program in memory for fast-
er execution. If a CPU program access conflicts with a DMAaccess, enab-
ling the cache helps if the program is located in external memory. DMAon-
chip access happens during the H3 phase. Refer to Chapter 9 for details
on CPU accesses.

Note: Expansion and Peripheral Buses

The expansion and peripheral buses cannot be accessed simultaneously
because they are multiplexed into a common port (see Figure 2-1 on page
2-3). This might increase CPU-DMA access conflicts.

Ensure that each interrupt is received when you use interrupt synchroniza-
tion; otherwise, the DMA will never complete the block transfer.

Use readlwrite synchronization when reading from or writing to serial ports
to guarantee data validity.

The following are indications that the DMA has finished a set of transfers:

C;) The DINT bit in the IIF register is set to 1 (interrupt polling). This requires
that the TClNT bit in the DMA control register be set first. This interrupt-
polling method does not cause any additional CPU-DMA access conflict.

Peripherals 8-57

DMA Controller

The transfer counter has a zero value. However, notice that the transfer
counter is decremented after the DMA read operation finishes (not after
the write operation). Nevertheless, a transfer counter with a 0 value can
be used as an indication of a transfer completion.

The STAT bits in the DMA channel control register are set to 002. You can
poll the DMA channel control register for thisvalue. However, because the
DMA registers are memory-mapped into the peripheral bus address
space, this option can cause further CPU-DMA access conflicts.

8.3.10 DMA Programming Examples

Example 8-5, Example 8-6, and Example 8-7 illustrate initialization proce-
dures for the DMA.

When linking the examples, you should allocate section memory addresses
carefully to avoid CPU-DMA conflict. In the ' C ~ X , the CPU always prevails in
cases of conflict. In the event of a CPU program-DMA data conflict, the enab-
ling of the cache helps if the .text section is in external memory. For example,
when linking the code in Example 8-5, Example 8-6, and Example 8-7, the
.text section can be allocated into RAMO, .data into RAM1, and .bss into
RAM1, where RAMO and RAM1 correspond to on-chip RAM block 0 and block
1, respectively.

In Example 8-5, the DMA initializes a 128-element array to 0. The DMA sends
an interrupt to the CPU after the transfer is completed. This program assumes
previous initialization of the CPU interrupt vector table (specifically the DMA-
to-CPU interrupt). The program initializes the ST and IE registers for interrupt
processing.

Example 8-5, Array Initialization With DMA

* TITLE: ARRAY INITIALIZATION WITH DMA
*

.GLOBAL START . DATA
DMA .WORD 808000H ; DMA GLOBAL CONTROL REG ADDRESS
RESET .WORD OC40H ; DMA GLOBAL CONTROL REG RESET VALUE
CONTROL .WORD OC43H ; DMA GLOBAL CONTROL REG IN IT IAL IZAT ION
SOURCE .WORD ZERO ; DATA SOURCE ADDRESS
DESTIN .WORD -ARRAY ; DATA DESTINATION ADDRESS
COUNT .WORD 128 ; NUMBER OF WORDS TO TRANSFER
ZERO .FLOAT 0.0 ; ARRAY IN IT IAL IZAT ION VALUE 0.0 = 0x80000000

.BSS -ARRAY,128 ; DATA ARRAY LOCATED I N .BSS SECTION
.TEXT

DMA Controller

START LDP DMA
LDI @DMA,ARO
LDI @RESET,RO
ST1 RO,*ARO
LDI @SOURCE,RO
ST1 RO,*+AR0(4)
LDI @DESTIN,RO
ST1 RO,*+AR0(6)
LDI @COUNT,RO
ST1 RO,*+AR0(8)
OR 400H,IE
OR 2000H,ST
LDI @CONTROL,RO
ST1 RO, *ARO
BU $
.END

; LOAD DATA PAGE POINTER
; POINT TO DMA GLOBAL CONTROL REGISTER
; RESET DMA

; INITIALIZE DMA SOURCE ADDRESS REGISTER

; INITIALIZE DMA DESTINATION ADDRESS REGISTER

; INITIALIZE DMA TRANSFER COUNTER REGISTER

; ENABLE INTERRUPT FROM DMA TO CPU
; ENABLE CPU INTERRUPTS GLOBALLY
; INITIALIZE DMA GLOBAL CONTROL REGISTER
; START DMA TRANSFER

Example 8-6 sets up the DMA to transfer data (1 28 words) from the serial port
0 input register to an array buffer with serial port receive interrupt (RINTO). The
DMA sends an interrupt to the CPU when the data transfer completes.

Serial port 0 is initialized to receive 32-bit data words with an internally gener-
ated receive-bit clock and a bit-transfer rate of 8H1 cyclesbit.

This program assumes previous initialization of the CPU interrupt vector table
(specifically the DMA-to-CPU interrupt). The serial port interrupt directly af-
fects only the DMA; therefore, no CPU serial port interrupt vector setting is re-
quired.

Example 8-6. DMA Transfer With Serial-Port Receive Interrupt
* TITLE DMA TRANSFER WITH SERIAL PORT RECEIVE INTERRUPT
*

.GLOBAL START . DATA
DMA .WORD 808000H ; DMA GLOBAL CONTROL REG ADDRESS
CONTROL .WORD OD43H ; DMA GLOBAL CONTROL REG INITIALIZATION
SOURCE .WORD 80804CH ; DATA SOURCE ADDRESS: SERIAL PORT INPUT REG
DESTIN .WORD ARRAY ; DATA DESTINATION ADDRESS
COUNT .WORD i28 ; NUMBER OF WORDS TO TRANSFER
IEVAL .WORD 00200400H ; IE REGISTER VALUE
RESET1 .WORD OD40H ; DMA RESET

.BSS -ARRAY,l28 ; DATA ARRAY LOCATED IN .BSS SECTION
; THE UNDERSCORE USED IS JUST TO MAKE IT
; ACCESSIBLE FROM C (OPTIONAL)

SPORT .WORD 808040H ; SERIAL PORT GLOBAL CONTROL REG ADDRESS
SGCCTRL .WORD OA300080H ; SERIAL PORT GLOBAL CONTROL REG INITIALIZATION
SRCTRL .WORD lllH ; SERIAL PORT RX PORT CONTROL REG INITIALIZATION
STCTRL .WORD 3COH ; SERIAL PORT TIMER CONTROL REG INITIALIZATION
STPERIOD .WORD 00020000H ; SERIAL PORT TIMER PERIOD
SPRESET .WORD 01300080H ; SERIAL PORT RESET
RESET .WORD OH ; SERIAL-PORT TIMER RESET

.TEXT

START LDP DMA ; LOAD DATA PAGE POINTER

Peripherals 8-59

DMA Controller
1

* DMA INITIALIZATION
LDI @DMA,ARO ; POINT TO DMA GLOBAL CONTROL REGISTER
LDI @SPORT,ARl
LDI @RESET,RO
ST1 RO,*+AR1(4) ; RESET SPORT TIMER
LDI @RESETl, RO
ST1 ROI*ARO ; RESET DMA
LDI @SPRESET,RO
ST1 ROI*AR1 ; RESET SPORT
LDI @SOURCE,RO ; INITIALIZE DMA SOURCE ADDRESS REGISTER
ST1 RO,*+ARO(4)
LDI @DESTIN,RO ; INITIALIZE DMA DESTINATION ADDRESS REGISTER
ST1 ROI*+AR0(6)
LDI @COUNT,RO ; INITIALIZE DMA TRANSFER COUNTER REGISTER
ST1 RO,*+AR0(8)
OR @IEVAL,IE ; ENABLE INTERRUPTS
OR 2000H,ST ; ENABLE CPU INTERRUPTS GLOBALLY
LDI @CONTROL,RO ; INITIALIZE DMA GLOBAL CONTROL REGISTER
ST1 RO, *ARO ; START DMA TRANSFER

* SERIAL PORT INITIALIZATION
LDI @SRCTRL,RO ; SERIAL-PORT RECEIVE CONTROL REG INITIALIZATION
ST1 RO,*+AR1(3)
LDI @STPERIOD,RO ; SERIAL-PORT TIMER PERIOD INITIALIZATION
ST1 RO,*+AR1(6)
LDI @STCTRL,RO ; SERIAL-PORT TIMER CONTROL REG INITIALIZATION
ST1 RO,*+AR1(4)
LDI @SGCCTRL,RO ; SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION
ST1 RO,*ARl
BU $. END

Example 8-7 sets up the DMA to transfer data (1 28 words) from an array buff-
er to the serial port 0 output register with serial port transmit interrupt XINTO.
The DMA sends an interrupt to the CPU when the data transfer completes.

Serial port 0 is initialized to transmit 32-bit data words with an internally gener-
ated frame sync and a bit-transfer rate of 8H1 cycleslbit. The receive-bit clock
is internally generated and equal in frequency to one-half of the 'C3x HI fre-
quency.

This program assumes previous initialization of the CPU interrupt vector table
(specifically the DMA-to-CPU interrupt). The serial port interrupt directly af-
fects only the DMA; therefore, no CPU serial port interrupt vector setting is re-
quired.
I i

Note: Serial Port Transmit Synchronization

The DMA uses serial port transmit interrupt XINTO to synchronize transfers.
Because the XINTO is generated when the transmit buffer has written the last
bit of data to the shifter, an initial CPU write to the serial port is required to
trigger XINTO to enable the first DMA transfer.

I I

DMA Controller

Example 8-7. DMA Transfer With Serial-Port Transmit Interrupt
* TITLE: DMA TRANSFER WITH SERIAL PORT TRANSMIT INTERRUPT
* .GLOBAL START . DATA
DMA .WORD 808000H ; DMA GLOBAL CONTROL REG ADDRESS
CONTROL .WORD OE13H ; DMA GLOBAL CONTROL REG INITIALIZATION
SOURCE .WORD (-ARRAY+l) ; DATA SOURCE ADDRESS
DESTIN .WORD 80804CH ; DATA DESTIN ADDRESS: SERIAL-PORT OUTPUT REG
COUNT .WORD 127 ; NUMBER OF WORDS TO TRANSFER =(MSG LENGHT-1)
IEVAL .WORD 00100400H ; IE REGISTER VALUE

.BSS -ARRAY,128 ; DATA ARRAY LOCATED IN .BSS SECTION
; THE UNDERSCORE USED IS JUST TO MAKE IT
; ACCESSIBLE FROM C (OPTIONAL)

RESET1 .WORD OElOH ; DMA RESET
SPORT .WORD 8080408 ; SERIAL-PORT GLOBAL CONTROL REG ADDRESS
SGCCTRL .WORD 048800448 ; SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION
SXCTRL .WORD lllH ; SERIAL-PORT TX PORT CONTROL REG INITIALIZATION
STCTRL .WORD OOFH ; SERIAL-PORT TIMER CONTROL REG INITIALIZATION
STPERIOD .WORD 00000002H ; SERIAL-PORT TIMER PERIOD
SPRESET .WORD 00880044H ; SERIAL-PORT RESET
RESET .WORD OH ; SERIAL-PORT TIMER RESET

.TEXT
START LDP DMA ; LOAD DATA PAGE POINTER

DMA INITIALIZATION

LDI @DMA,ARO ; POINT TO DMA GLOBAL CONTROL REGISTER
LDI @SPORT,ARl
LDI @RESET,RO
STIRO,*+AR1(4) ; RESET SPORT TIMER
ST1 RO, *ARO ; RESET DMA
ST1 RO, *AR1 ; RESET SPORT
LDI @SOURCE, RO ; INITIALIZE DMA SOURCE ADDRESS REGISTER
STIRO,*+AR0(4)
LDI @DESTIN, RO ; INITIALIZE DMA DESTINATION ADDRESS REGISTER
STIRO,*+AR0(6)
LDI @COUNT, RO ; INITIALIZE DMA TRANSFER COUNTER REGISTER
STIRO,*+AR0(8)
OR @IEVAL,IE ; ENABLE INTERRUPT FROM DMA TO CPU
OR 2000H,ST ; ENABLE CPU INTERRUPTS GLOBALLY
LDI @CONTROL,RO ; INITIALIZE DMA GLOBAL CONTROL REGISTER
ST1 RO, *ARO ; START DMA TRANSFER

Peripherals 8-61

DMA Controller

* SERIAL PORT IN IT IAL IZAT ION

L D I @ SXCTRL , RO ; SERIAL-PORT TX CONTROL REG INITIALIZATION
STIRO, *+AR1(2)
LDI@STPERIOD,RO ; SERIALPORT TIMER PERIOD INITIALIZATION
STIRO,*+ARl(C)
L D I @ STCTRL , RO ; SERIAL-PORT TIMER CONTROL REG IN IT IAL IZAT ION
ST1 RO, *+AR1(4)
L D I @SGCCTRL,RO ; SERIAL-PORT GLOBAL CONTROL REG IN IT IAL IZAT ION
ST1 RO, *ARl

* CPU WRITES THE FIRST WORD (TRIGGERING EVENT -> XINT I S GENERATED)

L D I @SOURCE, ARO
L D I *-ARO(1) ,RO
STIRO,*+AR1(8)
BU $
.END

Other examples are as follows:

Transfer a 256-word block of data from off-chip memory to on-chip
memory and generate an interrupt on completion. The order of memory
is to be maintained.

DMA source address: 800000h
DMA destination address: 809800h
DMA transfer counter: 000001 00h
DMA global control: 00000C53h
CPU/DMA interrupt enable (IE): 00000400h

a Transfer a 128-word block of data from on-chip memory to off-chip
memory and generate an interrupt on completion. The order of memory
is to be inverted; that is, the highest addressed member of the block is to
become the lowest addressed member.

DMA source address: 809800h
DMA destination address: 800000h
DMA transfer counter: 00000080h
DMA global control: 00000C93h
CPUIDMA interrupt enable (IE): 00000400h

Transfer a 200-word block of data from the serial-port-0 receive register
to on-chip memory and generate an interrupt on completion. The transfer
is to be synchronized with the serial-port-0 receive interrupt.

DMA source address: 80804Ch
DMA destination address: 809C00h
DMA transfer counter: 000000C8h
DMA global control: 00000D43h
CPUIDMA interrupt enable (IE): 00200400h

DMA Controller

0 Transfer a 200-word block of data from off-chip memory to the serial-port-0
transmit register and generate an interrupt on completion. The transfer is
to be synchronized with the serial-port-0 transmit interrupt.

DMA source address: 809C00h
DMA destination address: 808048h
DMA transfer counter: 000000C8h
DMA global control: 00000E13h
CPUIDMA interrupt enable (IE): 00400400h

Q Transfer data continuously between the serial-port-0 receive register and
the serial-port-0 transmit register to create a digital loop back. The transfer
is to be synchronized with the serial-port-0 receive and transmit interrupts.

DMA source address: 80804Ch
DMA destination address: 808048h
DMA transfer counter: OOOOOOOOh
DMA global control: 00000303h
CPUJDMA interrupt enable (IE): 00300000h

Peripherals 8-63

Pipeline Operation

Two characteristics of the TMS320C3x that contribute to its high performance
are:

Pipelining, and
0 Concurrent I10 and CPU operation.

Five functional units control TMS320C3x operation:

Fetch
0 Decode
0 Read
0 Execute
0 Direct memory access (DMA)

Pipelining is the overlapping or parallel operations of the fetch, decode, read,
and execute levels of a basic instruction.

By performing inputJoutput operations, the DMA controller reduces the need
for the CPU to do so, thereby decreasing pipeline interference and enhancing
the CPU's computational throughput.

Major topics discussed in this chapter are as follows:

Topic Page

Pipeline Structure

9.1 Pipeline Structure

The five major units of the TMS320C3x pipeline structure and their functions
are as follows:

Q Fetch Unit (F)

This unit fetches the instruction words from memory and updates the pro-
gram counter (PC).

Q Decode Unit (D)

This unit decodes the instruction word and performs address generation.
The unit also controls any modifications to the auxiliary registers and the
stack pointer.

Q Read Unit (R)

This unit, if required, reads the operands from memory.

Q Execute Unit (E)

This unit, if required, reads the operands from the register file, performs
any necessary operation, and writes results to the register file. If required,
the unit writes results of previous operations to memory.

0 DMA Channel (DMA)

The DMA channel reads and writes to memory.

A basic instruction has four levels:

Q Fetch
0 Decode
Q Read

Execute

Figure 9-1 illustrates these four levels of the pipeline structure. The levels are
indexed according to instruction and execution cycle. The perfect overlap in
the pipeline, where all four units operate in parallel, occurs at cycle (m). Those
levels about to be executed are at m + 1, and those just executed are at m - 1.
The TMS320C3x pipeline control allows a high-speed execution rate of one
execution per cycle. It also manages pipeline conflicts so that they are trans-
parent to the user. You do not need to take any special precautions to guaran-
tee correct operation.

Pipeline Structure

Figure 9- 1. TMS320C3x Pipeline Structure

CYCLE

m- 3

m-P

m - 1

m

m + l

m + 2

m + 3

l F I D I R I E l
W - - -
X W - -
Y X W -
z Y x w Perfect overlap
- Z Y X

- - e Y

D = Decode, E = Execute, F = Fetch, R = Read; W. X, X Z = Instruction Representations

Priorities from highest to lowest have been assigned to each of the functional
units as follows:

1) Execute (highest)
2) Read
3) Decode
4) Fetch
5) DMA (lowest)

When the processing of an instruction is ready to pass to the next higher pipe-
line level, but that level is not ready to accept a new input, a pipeline conflict
occurs. In this case, the lower-priority unit waits until the higher-priority unit
completes its currently executing function.

Despite the DMA controller's low priority, you can minimize or even eliminate
conflicts with the CPU through suitable datastructuring because the DMA con-
troller has its own data and address buses.

Pipeline Operation 9-3

Pipeline Conflicts

9.2 Pipeline Conflicts

The pipeline conflicts of the TMS320C3x can be grouped into the following
categories:

!J Branch Conflicts

Branch conflicts involve most of those instructions or operations that read
and/or modify the PC.

Register Conflicts

Register conflicts involve delays that can occur when reading from or writ-
ing to registers that are used for address generation.

Memory Conflicts

Memory conflicts occur when the internal units of the TMS320C3x wm-
pete for memory resources.

Each of these three categories is discussed in the following sections. Exam-
ples are included. Note that in these examples, when data is refetched or an
operation is repeated, the symbol representing the stage of the pipeline is ap-
pended with a number. For example, if a fetch is performed again, the instruc-
tion mnemonic is repeated. When an access is detained for multiple cycles be-
cause of not ready, the symbols RDY and RDY are used to indicate not ready
and ready, respectively.

9.2.1 Branch Conflicts

The first class of pipeline conflicts occurs with standard (nondelayed)
branches, that is, BR, Bcond, DBcond, CALL, IDLE, RPTB, RPTS, RETlcond,
RETScond, interrupts, and reset. Conflicts arise with these instructions and
operations because during their execution, the pipeline is used only for the
completion of the operation; other information fetched into the pipeline is dis-
carded or refetched, or the pipeline is inactive. This is referred to as flushing
the pipeline. Flushing the pipeline is necessary in these cases to guarantee
that portions of succeeding instructions do not inadvertently get partially ex-
ecuted. TRAPcond and CALLcond are classified differently from the other
types of branches and are considered later.

Example 9-1 shows the code and pipeline operation for a standard branch.

1 1

Note: Dummy Fetch

One dummy fetch (an MPYF instruction) is performed, which affects the
cache. After the branch address is available, a new fetch (an OR instruction)
is performed.

1 I

Pipeline Conflicts

Example 9-1. Standard Branch

BR THREE ; Unconditional branch
MPYF ; Not executed
ADD ; Not executed
SUBF ; Not executed
AND ; Not executed

THREE OR ; Fetched after BR ia fetched

PIPELINE OPERATION

n + l (~ O P I 1 (nap) (nap 1 BR

THREE OR (n a p) (nap) (nap)

THREE -. PC Fetch held tor
new PC valw

D .: Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter

RPTS and RPTB both flush the pipeline, ailowing the RS, RE, and RC registers
to be loaded at the proper time relative to the flow of the pipeline. If these regis-
ters are loaded without the use of RPTS or RPTB, no flushing of the pipeline
occurs. If you are not using any of the repeat modes, then you can use RS, RE,
and RC as general-purpose 32-bit registers and not cause any pipeline wn-
flicts. In cases such as the nesting of RPTB due to nested interrupts, it might
be necessary to load and store these registers directly while using the repeat
modes. Since up to four instructions can be fetched before entering the repeat
mode, you should follow loads by a branch to flush the pipeline. If the RC is
changing when an instruction is loading it, the direct load takes priority over
the modification made by the repeat mode logic.

Pipeline Operation 8-5

Pipeline Conflicts

Delayed branches are implemented to guarantee the fetching of the next three
instructions. The delayed branches include BRD, BconoD, and DBconoD.
Example 9-2 shows the code and pipeline operation for a delayed branch.

Example 9-2. Delayed Branch
BRD THREE ; Unconditional delayed branch
MPYF ; Executed
ADD ; Executed
SUBF ; Executed
AND ; Not executed

THREE MPYF ; Fetched a f t e r SUBF i s fetched

PIPELINE OPERATION

PC l F I D I R I E l

n BRD - - -

n + 1 MPYF BRD - - No execute delay

n t 2 ADDF MPYF BRD -
n t 3 SUBF ADDF MPYF BRD

THREE
f

MPYF SUBF ADDF MPYF

THREE -, PC

D = Decode, E = Execute, F = Fetch, R I Read, PC = Program Counter

Pimline Conflicts

9.2.2 Register Conflicts

Register conflicts involve reading or writing registers used for addressing.
These conflicts occur when the pertinent register is not ready to be used. Some
conditions under which you can avoid register conflicts are discussed in Sec-
tion 9.3 on page 9-1 8.

The registers comprise the following three functional groups:

a Group 1

This group includes auxiliary registers (AR&AR7), index registers (IRO,
IRl), and block size register (BK).

Group 2

This group includes the data page pointer (DP).

Group 3

This group includes the system stack pointer (SP).

If an instruction writes to one of these three groups, the decode unit cannot use
any register within that particular group until the write is complete, that is, in-
struction execution is completed. In Example 9-3, an auxiliary register is
loaded, and a different auxiliary register is used on the next instruction. Since
the decode stage needs the result of the write to the auxiliary register, the de-
code of this second instruction is delayed two cycles. Every time the decode
is delayed, a refetch of the program word is performed; that is, the ADDF is
fetched three times. Since these are actual refetches, they can cause not only
conflicts with the DMA controller but also cache hits and misses.

Pipeline Operation 9-7

Pipeline Conflicts

Example 93. Write to an AR Followed by an AR for Address Generation
LDI 7,ARl ; 7 -OAR1

NEXT MPYF *AR2,RO ; Decode delayed 2 cycle8
ADDF
FLOAT

PIPELINE OPERATION

n LDI - - -

n + l MPYF LDI - -

n t 2 ADD? MPYF LDI -

n + 2 ADDF MPYF (nop) LDI7,ARl

n + 2 ADDF MPYF (nap) (nap

n t 3 FLOAT ADDF MPY F (nap)

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter

The case for reads of these groups is similar to the case for writes. If an
instruction must read a member of one of these groups, the use of that particu-
lar group by the decode for the following instruction is delayed until the read
is complete. The registers are read at the start of the execute cycle and there-
fore require only a one-cycle delay of the following decode. For four registers
(IRO, IR1, BK, or DP), there is no delay. For all other registers, including the
SP, the delay occurs.

In Example 9-4, two auxiliary registers are added together, with the result go-
ing to an extended-precision register. The next instruction uses a different aux-
iliary register as an address register.

Pipeline Conflicts

Example 9-4.A Read of ARs Followed by ARs for Address Generation

ADDI ARO,ARl,Rl ; ARO + A R 1 * R 1
NEXT MPYF *++ARZ,RO ; Decode delayed one cycle

ADDF
FLOAT

PIPELINE OPERATION

n ADDI - - -

n + l MPYF ADD1 - -

n t 2 ADDF MPYF ADD1 -

n + 2 ADDF MPYF (nop) ADD1 AR0,ARl RO

n + 3 FLOAT ADDF MPYF (nop)

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter

Loop counter auxiliary registers for the decrement and branch (DBR)) instruc-
tion are regarded in the same way as they are for addressing. Therefore, the
operation shown in Example 9-3 and Example 9-4 can also occur for this in-
struction.

Pipeline Operation 9-9

Pipeline Conflicts

9.2.3 Memory Conflicts

Memory conflicts can occur when the memory bandwidth of a physical
memory space is exceeded. For example, RAM blocks 0 and 1 and the ROM
block can support only two accesses per cycle. The external interface can sup-
port only one access per cycle. Section 9.4 on page 9-21 contains some condi-
tions under which you can avoid memory conflicts.

Memory pipeline conflicts consist of the following four types:

0 Program wait

A program fetch is prevented from beginning.

D Program fetch incomplete

A program fetch has begun but is not yet complete.

Q Execute only

An instruction sequence requires three CPU data accesses in a single
cycle.

a Hold everything

A primary or expansion bus operation must complete before another one
can proceed.

These four types of memory conflicts are illustrated in examples and dis-
cussed in the paragraphs that follow.

Program Wait

Two conditions can prevent the program fetch from beginning:

0 The start of a CPU data access when:

W Two CPU data accesses are made to an internal RAM or ROM block,
and a program fetch from the same block is necessary.

One of the external ports is starting a CPU data access, and a program
fetch from the same port is necessary.

A multicycle CPU data access or DMA data access over the external bus
is needed.

Pipeline Conflicts

Example 9-5 illustrates a program wait until a CPU data access completes.
In this case, *ARO and *AR1 are both pointing to data in RAM block 0, and the
MPYF instruction will be fetched from RAM block 0. This results in the conflict
shown in Example 9-5. Since no more than two accesses can be made to
RAM block 0 in a single cycle, the program fetch cannot begin and must wait
until the CPU data accesses are complete.

Example 9-5. Program Wait Until CPU Data Access Completes
ADDF3 *ARO , *ARl, RO
F I X
MPYF
ADDF3
NEGB

PIPELINE OPERATION

n + 1 FIX ADDF3 - -

n t 2 (WAIT) FIX ADDP3 -

n + 2 W Y F (nop) FIX A D D F ~ *ARO,AR~,RO

n t 3 ADDF3 MPYF (nop) FIX

n t 4 NEGB ADDF3 MPYF (nop)

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter

Example 9-6 shows a program wait due to a multicycle data-data access or
a multicycle DMA access. The ADDF, MPYF, and SUBF are fetched from a
portion of memory other than the external port that the DMA requires. The
DMA begins a multicycle access. The program fetch corresponding to the
CALL is made to the same external port that the DMA is using.

Either of two cases may produce this situation:

Q One of the following two memory boundaries is crossed:

From 7F FFFFh to 80 OOOOh, or
From 80 9FFFh to 80 A000h.

a Code that has been cached is executed, and the instruction prior to the
ADDF is one of the following (conditional or unconditional):

a delayed branch instruction, or
a delayed decrement and branch instruction.

Pipeline Operation 9-1 1

Pipeline Conflicts

Even though the DMA has the lowest priority, multicycle access cannot be
aborted. The program fetch must therefore wait until the DMA access com-
pletes.

Example 9-6. Program Wait Due to Multicycle Access

PIPELINE OPERATION

n ADDF - - -

n + l MPYF ADDF - -

n + 2 SUBF MPYF ADDF -

n + 3 (WAIT) SUBF MPYF ADDF

n + 3 CALL (n o p) SUBF MPYF

n + 4 - CALL (n o p) SUBF

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter

Program Fetch Incomplete

A program fetch incomplete occurs when a program fetch requires more than
one cycle to complete due to wait states. In Example 9-7, the MPYF and
ADDF are fetched from memory that supports single-cycle accesses. The
SUBF is fetched from memory, which requires one wait state. One example
that demonstrates this conflict is a fetch across a bank boundary on the
primary port. See Section 7.4 on page 7-30.

Example 9-7. Multicycle Program Memory Fetches

PIPELINE OPERATION

n MPYF - - -
n + l ADDF MPYF - -
n + 2 R D V SUBF ADDF MPYF -
n + 2 R D Y SUBF (nop) ADDF MPYF

n + 3 ADDI SUBF (n o p) ADDF

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter

Piwline Conflicts

Execute Only

The execute only type of memory pipeline conflict occurs when performing an
interlocked load or when a sequence of instructions requires three CPU data
accesses in a single cycle. There are three cases in which this occurs:

0 An instruction performs a store and is followed by an instruction that does
two memory reads.

Q An instruction performs two stores and is followed by an instruction that
performs at least one memory read.

0 An interlocked load (LDII or LDFI) instruction is performed, and XF1= 1.

The first case is shown in Example 9-8. Since this sequence requires three
data memory accesses and only two are available, only the execute phase of
the pipeline is allowed to proceed. The dual reads required by the LDF)I LDF
are delayed one cycle. Note that a refetch of the next instruction can occur.

Example 9-8. Single Store Followed by Two Reads

STF RO, *AR1 ; RO + *AR1
LDF *AR2,R1 ; *AR2 +R1 in parallel with

I I LDF *AR3,R2 ; *AR3 + R2

PIPELINE OPERATION

n STF - - -

n t 1 LDF 1) LDF STF - -

n t 2 W LDF (1 LDF STF -

n t 3 x w LDF I (LDF STF

n t 4 X W LDF I I LDF (nop)

n t 4 Y x w LDF 1 1 LDF *ARS ,RI and * A R ~ ,R2

D = Decode, E = Execute, F = Fetch, R = Read, PC=Program Counter, W,X, Y= Instruction Representations

Pipeline Operation 9-1 3

Pipeline Conflicts

Example 9-9 shows a parallel store followed by a single load or read. Since
the two parallel stores are required, the next CPU data memory read must wait
a cycle before beginning. One program memory refetch can occur.

Example 9-9. Parallel Store Followed by Single Read
STF RO,*ARO ; RO -+*ARO in parallel with

I I STF R2,*AR1 ; RZ -+ *AR1
ADDF @SUM,Rl ; R1 + @SUM +R1
IACK
ASH

PIPELINE OPERATION

n STF (1 STF - - -
n + 1 ADDF STF (1 STF - -
n + 2 IACK ADDF STF I (STF -
n + 3 ASH IACK ADDF STF 1 1 STF

n + 4 ASH IACK ADDF (nap)

n + 4 - ASH IACK ADDF

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter

The final case involves an interlocked load (LDII or LDFI) instruction and XF1
= 1. Since the interlocked loads use the XF1 pin as an acknowledge that the
read can complete, the loads might need to extend the read cycle, as shown
in Example 9-1 0. Note that a program refetch can occur.

Example 9- 10. Interlocked Load

NOT R1, RO
LDII 300h,AR2
ADD1 *AR2, R2
CMPI RO , R2

PIPELINE OPERATION

n NOT - - -

n + 1 LDII NOT - -

n + 2 ADD1 LDII NOT -

n + 3 CMPI ADD1 LDII NOT

n + 3 - CMPI ADD1 LDXI

n + 4 - CMPI ADD1 LO1 I

D = Decode, E = Execute, F = Fetch, R I Read, PC = Program Counter

Hold Everything

Three situations result in hold-everything memory pipeline conflicts:

A CPU data load or store cannot be performed because an external port is
busy.

Q An external load takes more than one cycle.

Q Conditional calls and traps are processed.

Pipeline Operation 9-1 5

Pipeline Conflicts

The first type of hold everything conflict occurs when one of the external ports
is busy due to an access that has started but is not complete. In Example 9-1 1,
the first store is a two-cycle store. The CPU writes the data to an external port.
The port control then takes two cycles to complete the data-data write. The
LDF is a read over the same external port. Since the store is not complete, the
CPU continues to attempt LDF until the port is available.

Example 9-1 1. Busy External Port
STF RO , @ D M 1
LDF @ D M 2 ,RO

PIPELINE OPERATION

PC l F I D I R I E l
n STF - - -

n t l LDF STF - -

n + 2 W LDF STF -
n t 2 W LDF (n o p) STF

n + 3 x w LDF (n o p)

n + 4 Y x w LDF

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter, W, X, Y = Instruction Representations

Pipeline Conflicts

The second type of hold everything conflict involves multicycle data reads. The
read has begun and continues until completed. In Example 9 1 2, the LDF is
performed from an external memory that requires several cycles to complete.

Example 9 - 1 2. Multicycle Data Reads
LDF @DMA,RO

PIPELINE OPERATION

PC I F I D I R I E I

n LDF - - -
n + l I LDF - -
n + ? J I LDP -
n + 3 K , (~ - Y) I LDF -
n + 3 K2 J I LDF

D Decode, E = Execute, F = Fetch, R = Read, PC- Program Counter, 1, J, KI 1- R-

The final type of hold everything conflict involves conditional calls and traps,
which are different from the other branch instructions. Whereas the other
branch instructions are conditional loads, the conditional calls and traps are
conditional stores, which require one cycle more than a conditional branch
(see Example 9-1 3). The added cycle is used to push the return address after
the call condition is evaluated.

Example 9 - 1 3. Conditional Calls and Traps

PIPELINE OPERATION

PC l F I D I R I E l

n9 CALLcond - - -
n t l I CALLcond - -
n + l (nap 1 (n a p) CALLcond -

n t l (nap) (nap (nop) CALLcond

n + l (nap) (nap 1 (n o p) CALLcond

n + 2 1 CALLaddr I (nap 1 (nap (nap 1

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter, I, = Instruction Repmsemtation

Pipeline Operation 9-1 7

Resolving Register Conflicts

9.3 Resolving Register Conflicts

If the auxiliary registers (AR7-ARO), the index registers (IR1-IRO), data page
pointer (DP), or stack pointer (SP) are accessed for any reason other than ad-
dress generation, pipeline conflicts associated with the next memory access
can occur. The pipeline conflicts and delays are presented in subsection 9.2
on page 9-4.

Example 9-1 4, Example 9-1 5, and Example S 1 6 demonstrate either some
common uses of these registers that do not produce a conflict or ways that you
can avoid the conflict.

Example 9-1 4. Address Generation Update of an AR Followed by an AR for Address
Generation

LDF 7 . 0 , R O ; 7 . 0 + R O
MPYF * + + A R O (I R l) , R O
ADDF *AR2,RO
F I X
MPYF
ADDF

PIPELINE OPERATION

n LDF - - -

n + l MPYF LDF - -

n + 2 ADDF HPY F LDF -

n + 3 FIX ADDF MPYF LDF

n t 4 MPY F F I X ADDF MPYF

n + 5 ADDF MPYF F I X ADDF

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter, W, X, Y; Z= Instruction Representations

Resolving Register Conflicts

Example 9-15. Write to an AR Followed by an AR for Address Generation Without a
Pipeline Conflict

LDI @TABLE ,AR2
MPYF @VALUE,Rl
ADDF R2,Rl
MPYF *AR2++, R1
SUBF
STF

PIPELINE OPERATION

n + l MPY F LDI - -
n + 2 ADDF MPYF LDI -
n + 3 MPYF ADDF MPYF LDI 7 ,

ARZ

n + 4 SUBF MPYF ADDF MPYF

n + 5 STF SUBF MPYF ADDF

D = Decode, E = Execute, F = Fetch, R I Read, PC = Prqram Counter

Pipeline Operation 9-1 9

Resolving Register Conflicts

Example 9-16. Write to DP Followed by a Direct Memory Read Without a Pipeline Confljct
LDP TABLE-ADDR
POP RO
LDF *-AR3 (2) , R1
LDI @TABLE-ADDR,ARO
PUSHF R6
PUSH R4

PIPELINE OPERATION

n LDP - - -

n t l POP LDP - -

n + 2 LDF POP LDP -

n t 3 LDI LDF POP LDP

n t 4 PUSHF LDI LDF POP

n t 5 PUSH PUSHF LDI LDF

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter

Resolving Memory Conflicts

9.4 Resolving Memory Conflicts

If program fetches and data accesses are performed in such a manner that the
resources being used cannot provide the necessary bandwidth, the program
fetch is delayed until the data access is complete. Certain configurations of
program fetch and data accesses yield conditions under which the
TMS320C3x can achieve maximum throughput.

Table 9-1 shows how many accesses can be performed from the different
memory spaces when it is necessary to do a program fetch and a single data
access and still achieve maximum performance (one cycle). As shown in
Table 9-1, four cases achieve one-cycle maximization.

Table 9-1. One Program Fetch and One Data Access for Maximum Performance

Acceroos From Expansion Bust
Primary Bus Dual-Access Or Porlphoral

Case # Accesses internal Memory Accesses
1 1 1 -
2 1 - 1

2 from any
3 - com bination -

of internal memory
4 - 1 1

t he expansion bus is available only on the TMS320C30.

Pipeline Operation 9-21

Resolving Memory Conflicts
I

Table 9-2 shows how many accesses can be performed from the different
memory spaces when it is necessary to do a program fetch and two data ac-
cesses and still achieve maximum performance (one cycle). Six conditions
achieve this maximization.

Table 9-2. One Program Fetch and Two Data Accesses for Maximum Performance

Accesses From ~xpanriont Or
Primary Bus Dual-Access Perlpherai Bus

Case # Accesses Internal Memory Accesses

1 2 from any -
combination

of internal memory

2t 1 Program 1 Data 1 Data

3t 1 Data 1 Data 1 Program
- 2 from same internal -

memory block and
1 from a different
internal memory

block
- 3 from different -

internal memory
blocks

6 - 2 from any 1
combination

of internal memory
t The expansion bus is available only on the TMS320C30.

Clocking of Memory Accesses

9.5 Clocking of Memory Accesses

This section uses the relationships between internal clock phases (HI and H3)
to memory accesses to illustrate how the TMS320C3x handles multiple
memory accesses. Whereas the previous section discusses the interaction
between sequences of instructions, this section discusses the flow of data on
an individual instruction basis.

Each major clock period of 60 ns is composed of two minor clock periods of
30 ns, labeled H3 and HI. The active clock period for H3 and HI is the time
when that signal is high.

1 Major Clock Period

The precise operation of memory reads and writes can be defined according
to these minor clock periods. The types of memory operations that can occur
are program fetches, data loads and stores, and DMA accesses.

9.5.1 Program Fetches

Internal program fetches are always performed during H3 unless a single data
store must occur at the same time due to another instruction in the pipeline.
In this case, the program fetch occurs during H l , and the data store during H3.

External program fetches always start at the beginning of H3, with the address
being presented on the external bus. At the end of HI, they are completed with
the latching of the instruction word.

Pipeline Operation 9-23

Clocking of Memory Accesses

9.5.2 Data Loads and Stores

Four types of instructions perform loads, memory reads, and stores:

IJ Two-operand instructions,
iJ Three-operand instructions,
IJ MultiplierIALU operation with store instructions, and
IJ Parallel multiply and add instructions.

See Chapter 5 for detailed information on addressing modes.

As discussed in Chapter 7, the number of bus cycles for external memory
accesses differs in some cases from the number of CPU execution cycles. For
external reads, the number of bus cycles and CPU execution cycles is identi-
cal. For external writes, there are always at least two bus cycles, but unless
there is a port access conflict, there is only one CPU execution cycle. In the
following examples, any difference in the number of bus cycles and CPU
cycles is noted.

Two-Operand Instruction Memory Accesses

Two-operand instructions include all instructions whose bits 31-29 are 000 or
010 (see Figure 9-2). In the case of a data read, bits 15-0 represent the src
operand. Internal data reads are always performed during HI. External data
reads always start at the beginning of H3, with the address being presented
on the external bus; they complete with the latching of the data word at the end
of HI.

Figure 9-2. Two-Operand Instruction Word

In the case of a data store, bits 15-0 represent the dst operand. lnternal data
stores are performed during H3. External data stores always start at the begin-
ning of H3, with the address and data being presented on the external bus.

Three-Operand lnstruction Memory Reads

Three-operand instructions include all instructions whose bits 31-29 are 001
(see Figure 9-3). The source operands, src1 and src2, come from either regis-
ters or memory. When one or more of the source operands are from memory,
these instructions are always memory reads.

Clocking of Memory Accesses

Figure 9-3. Three-Operand Instruction Word

31 24 23 16 15 8 7 0
1 1 1 1 1 l l l r l l l 1 1 1 1 1 1 1

Operation srcl sf&
b

If only one of the source operands is from memory (either srcl or srcZ) and is
located in internal memory, the data is read during HI. If the single memory
source operand is in external memory, the read starts at the beginning of H3,
with the address being presented on the external bus, and completes with the
latching of the data word at the end of HI.

If both source operands are to be fetched from memory, several cases occur.
If both operands are located in internal memory, the srcl read is performed
during H3 and the src2 read during HI, thus completing two memory reads in
a single cycle.

If srcl is in internal memory and src2 is in external memory, the src2 access
begins at the start of H3 and latches at the end of HI. At the same time, the
srcl access to internal memory is performed during H3. Again, two memory
reads are completed in a single cycle.

If src1 is in external memory and src2is in internal memory, two cycles are nec-
essary to complete the two reads. In the first cycle, both operands are ad-
dressed. Since srcl takes an entire cycle to be read and latched from external
memory, the internal operation on src2 cannot be completed until the second
cycle. Ordering the operands so that srcl is located internally is necessary to
achieve single-cycle execution.

If srcl and src2are both from external memory, two cycles are required to com-
plete the two reads. In the first cycle, the srcl access is performed and loaded
on the next H3; in the second cycle, the src2access is performed and loaded
on that cycle's HI.

If src2 is in external memory and srcl is in on-chip or external memory and is
immediately preceded by a single store instruction to external memory, a
dummy src2read can occur between the execution of the store instruction and -
the src2 read, regardless of which memory space is accessed (STRB,
MSTRB, or IOSTRB). The dummy read can cause an externally interfaced
FIFO address pointer to be incremented prematurely, thereby causing the loss
of FlFO data. Example 9-17 illustrates how the dummy read can occur.
Example 4-1 8 offers an alternative code segment that suppresses the dummy
read. In the alternative code segment, the dummy read is eliminated by swap-
ping the order of the source operands.

Pipeline Operation 9-25

Clocking of Memory Accesses

Example 9-1 7. Dummy src2 Read
ST1 RO,*AR6 ; AR6 points to MSTRB space
ADD13 *AR3,*ARl,RO ; AR3 points to on-chip RAM

; AR1 points to MSTRB apace

PIPELINE OPERATION

PC I F I D l R E l

- ST1 ROI*AR6

The read of src2 cannot start
- - until the store ie complete.

n + 5 ADD13 - dummy load of arc2

n + 6 - - second cycle of dummy load

n + 7 ADD13 - actual read of erc2 and srcl

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter

Two cycles are required for the MSTRB store. Two other cycles are required for the
dummy MSTRB read of *AR3 (because the read follows a write). One cycle is required
for an actual MSTRB read of *AR3.

Clocking of Memory Accesses

Example 9-18. Operand Swapping Alternative

Switch the operands of the three-operand instruction so that the internal read
is performed first.

ST1 RO,*AR6 ;AR6 points to MSTRB space
ADD13 *ARlt*AR3,R0 ;AR3 points to on-chip RAM

;AR1 points to MSTRB space

PIPELINE OPERATION
PC I F l D l R l E

n + 3 - STI RO, * A R ~

- - The read of src2 cannot start

until the store ie complete.

ADD13 - actual read of ere2 and ercl

n + 6 - - eecond cycle of arc2 read

n + 7 - ADD13 *ARl,*AR3,RO

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter

Operations with Parallel Stores

The next class of instructions includes every instruction that has a store in par-
allel with another instruction. Bits 31 and 30 for these instructions are equal
to 1 1.

The instruction word format for those operations that perform a multiply or ALU
operation in parallel with a store is shown in Figure 9-4. If the store operation
to dst2 is external or internal, it is performed during H3. Two bus cycles are
required for external stores, but only one CPU cycle is necessary to complete
the write.

If the memory read operation is external, it starts at the beginning of H3 and
latches at the end of HI. If the memory read operation is internal, it is per-

Pipeline Operation 9-27

Clocking of Memory Accesses

formed during HI. Note that memory reads are performed by the CPU during
the read (R) phase of the pipeline, and stores are performed during the ex-
ecute (E) phase.

Figure 9-4. Multiply or CPU Operation With a Parallel Store

The instruction word format for those instructions that have parallel stores to
memory is shown in Figure S5. If both destination operands, dstl and dst2,
are located in internal memory, dstl is stored during H3 and dst2 during H1,
thus completing two memory stores in a single cycle.

If dstl is in external memory and dst2 is in internal memory, the dstl store be-
gins at the start of H3. The dst2store to internal memory is performed during
HI. Two bus cycles are required for the external store, but only one CPU cycle
is necessary to complete the write. Again, two memory stores are completed
in a single cycle.

If dstl is in internal memory and dst2 is in external memory, an additional bus
cycle is necessary to complete the dst2 store. Only one CPU cycle is neces-
sary to complete the write, but the port access requires three bus cycles. In the
first cycle, the internal dstl store is performed during H3, and dst2 is written
to the port during HI. During the next cycle, the dst2store is performed on the
external bus, beginning in H3, and executes as normal through the following
cycle.

If dstl and dst2are both written to external memory, a single CPU cycle is still
all that is necessary to complete the stores. In this case, four bus cycles are
required.

1) In the first cycle, both dstl and dst2are written to the port, and the external
bus access for dstl begins.

2) The store for dstl is completed on the second cycle, and the store for dst2
begins on the third external bus cycle.

3) Finally, the store for dst2 is completed on the fourth external bus cycle.

Clocking of Memory Accesses

Figure 9-5. Two Parallel Stores

Parallel Multiplies and Adds

Memory addressing for parallel multiplies and adds is similar to that for three-
operand instructions. The parallel multiplies and adds include all instructions
whose bits 31-30 = 10 (see Figure 9-6).

For these operations, src3 and src4 are both located in memory. If both oper-
ands are located in internal memory, src3 is performed during H3, and src4 is
performed during HI, thus completing two memory reads in a single cycle.

If src3 is in internal memory and src4 is in external memory, the src4 access
begins at the start of H3 and latches at the end of HI. At the same time, the
src3 access to internal memory is performed during H3. Again, two memory
reads are completed in one cycle.

If src3 is in external memory and src4 is in internal memory, two cycles are nec-
essary to complete the two reads. In the first cycle, the internal src4 access
is performed. During the H3 of the next cycle, the src3 access is performed.

If src3 and src4 are both from external memory, two cycles are necessary to
complete the two reads. In the first cycle, the src3 access is performed; in the
second cycle, the src4 access is performed.

Figure 9-6. Parallel Multiplies and Adds

Pipeline Operation 9-29

Assembly Language Instructions

The TMS320C3x assembly language instruction set supports numeric-inten-
sive, signal-processing, and general-purpose applications. The instructions
are organized into major groups consisting of load-and-store, two- or three-op-
erand arithmetic/logical, parallel, program-control, and interlocked operations
instructions. The addressing modes used with the instructions are described
in Chapter 5.

The TMS320C3x instruction set can also use one of 20 condition codes with
any of the 10 conditional instructions, such as LDFcond. This chapter defines
the condition codes and flags.

The assembler allows optional syntax forms to simplify the assembly language
for special-case instructions. These optional forms are listed and explained.

Each of the individual instructions is described and listed in alphabetical order
(see subsection 10.3.2 on page 10-1 6). Example instructions demonstrate the
special format and explain its content.

This chapter discusses the following major topics:

Topic Page

Instruction Set

10.1 lnstruction Set

All of the instructions in the TMS320C3x instruction set are one machine word
long. Most require one cycle to execute. All instructions are a single machine
word long, and most instructions require one cycle to execute. In addition to
multiply and accumulate instructions, the TMS320C3x possesses a full com-
plement of general-purpose instructions.

The instruction set contains 11 3 instructions organized into the following func-
tional groups:

IJ Load-and-store
Q Two-operand arithmeticJlogical
Q Three-operand arithmeticJlogical
Q Program control
Q Interlocked operations
C] Parallel operations

Each of these groups is discussed in the succeeding subsections.

10.1 .I Load-andostore Instructions

The TMS320C3x supports 12 load-and-store instructions (see Table 10-1).
These instructions can:

Q Load a word from memory into a register,
[I Store a word from a register into memory, or
Q Manipulate data on the system stack.

Two of these instructions can load data conditionally. This is useful for locating
the maximum or minimum value in a data set. See Section 10.2 on page 10-1 0
for detailed information on condition codes.

Table 10-1. Load-and-Store Instructions

LDF Load floating-point value 11 POPF Pop floating-point value from stack

Instruction Description

LDE Load floating-point exponent

LDFcond Load floating-point value II Push integer on stack
conditionally

Instruction Description

POP Pop integer from stack

LDI Load integer 11 PUSHF Push floating-point value on stack

LDl cond Load integer conditionally II STF
Store floating-point value

LDM Load floating-point mantissa II ST^
Store integer

LDP Load data page pointer II

Instruction Set

10.1.2 Two-Operand lnstructlons

The TMS320C3x supports 35 two-operand arithmetic and logical instructions.
The two operands are the source and destination. The source operand can be
a memory word, a register, or a part of the instruction word. The destination
operand is always a register.

As shown in Table 10-2, these instructions provide integer, floating-point, or
logical operations, and multiprecision arithmetic.

Table 10-2. Two-Operand Instructions

ABSl Absolute value of an integer

ADDC~ Add integers with carry

ADDF~ Add floating-point values

Instruction Description

ABSF Absolute value of a floating-
point number

ADDI~ Add integers

 AND^ Bitwise logical-AND

ANDN~ Bitwise logical-AND with
complement

 ASH^ Arithmetic shift

CMPF~ Compare floating-point values

Instruction Descrlptlon

NORM Normalize floating-point value

NOT Bitwise logical-complement

OR7 Bitwise logical-OR

RND Round floating-point value

ROL Rotate left

ROLC Rotate left through carry

ROR Rotate right

RORC Rotate right through carry

SUBB~ Subtract integers with borrow

CMPI~ Compare integers 11 SUBC Subtract integers conditionally

FIX Convert floating-point value to
integer

FLOAT Convert integer to floating-point
value

L S H ~ Logical shift

MPYF~ Multiply floating-point values

MPYI~ Multiply integers

NEGB Negate integer with borrow

ll sUBF

Subtract floating-point values

a suBl

Subtract integer

I1 SUBFIB

Subtract reverse integer with
borrow

SUBRF Subtract reverse floating-point
value

I

SUBRl Subtract reverse integer

TSTB~ Test bit fields

NEGF Negate floating-point value 11 x O R ~ Bitwise exclusive-OR

NEGl Negate integer II
't Two- and three-operand versions

Assembly Language Instructions 1 0-3

Instruction Set

10.1.3 Three-Operand lnstructions

Most instructions have only two operands; however, some arithmetic and log-
ical instructions have three-operand versions. The 17 three-operand instruc-
tions allow the TMS320C3x to read two operands from memory or the CPU
register file in a single cycle and store the results in a register. The following
factors differentiate the two- and three-operand instructions:

Two-operand instructions have a single source operand (or shift count)
and a destination operand.

IJ Three-operand instructions can have two source operands (or one source
operand and a count operand) and a destination operand. A source oper-
and can be a memory word or a register. The destination of a three-oper-
and instruction is always a register.

Table 10-3 lists the instructions that have three-operand versions. Note that
you can omit the 3 in the mnemonic from three-operand instructions (see sub-
section 10.3.2 on page 10-1 6).

ADDF3 Add floating-point values 11 MPY13 Multiply integers

Table 1 0 3 . Three-Operand Instructions

ADD13 Add integers II 0 ~ 3
Bitwise IogicaCOR

instruction Description

ADDC3 Add with carry

AND3 Bitwise logical-AND 11 SUBB3 Subtract integers with borrow

instruction Description

MPYF3 Multiply floating-point values

ANDN3 Bitwse logical-AND with complement 1) SUBF3 Subtract floating-point values

ASH3 Arithmetic shift 11 SUB13 Subtract integers

CMPF3 Compare floating-point values Test bit fields

CMP13 Compare integers 11 XOR3 Bitwise exclusive-OR

LSH3 Logical shift

Instruction Set

10.1.4 Program-Control lnstructlons

The program-control instruction group consists of all of those instructions (1 7)
that affect program flow. The repeat mode allows repetition of a block of code
(RPTB) or of a single line of code (RPTS). Both standard and delayed
(single-cycle) branching are supported. Several of the program control instruc-
tions are capable of conditional operations (see Section 11 -2 on page 11 -6
for detailed information on condition codes). Table 10-4 lists the program con-
trol instructions.

Table 10-4. Program Control lnstructions

10.1.5 Low-Power Control lnstructions

lnstructlon Descrlptlon

Bcond Branch conditionally (standard)

BconoD Branch conditionally (delayed)

BR Branch unconditionally (standard)

BRD Branch unconditionally (delayed)

CALL Call subroutine

CALLcond Call subroutine conditionally

DBcond Decrement and branch
conditionally (standard)

DBconaD Decrement and branch
conditionally (delayed)

IACK Interrupt acknowledge

The low-power control instruction group consists of three instructions that af-
fect the low-power modes. The low-power idle (IDLE2) instruction allows ex-
tremely low-power mode. The divide-clock-by-1 6 (LOPOWER) instruction re-
duces the rate of the input clock frequency. The restore-clock-to-regular-
speed (MAXSPEED) instruction causes the resumption of full-speed opera-
tion. Table 10-5 lists the low-power control instructions.

lnstructlon Descrlptlon

IDLE Idle until interrupt

NOP No operation

RETlcond Return from interrupt conditionally

RETScond Return from subroutine
conditionally

RPTB Repeat block of instructions

RPTS Repeat single instruction

SWI Software interrupt

TRAPcond Trap conditionally

Table 10-5, Low-Power Control lnstructions

Assembly Language Instructions 10-5

Instruction Descrlptlon

IDLE2 Low-power idle

LOPOWER Divide clock by 16

Instruction Descrlptlon

MAXSPEED Restore clock to regular speed

Instruction Set

Table 10-7. Parallel Instructions (Continued)

Mnemonlc Descrlption

Parallel Arlthmetlc wlth Store lnotructlons (Concluded)

NEGF
II STF
NEGl
II ST1
NOT
I I ST1

Negate floating-point value and store floating-point value

Negate integer and store integer

Complement value and store integer

Bitwise logical-OR value and store integer

STF Store floating-point values
II STF

Store integers

Subtract floating-point value and store floating-point value

SUB13 Subtract integer and store integer
II ST1
XOR3 Bitwise exclusive-OR values and store integer
II ST1

LDF
II LDF
LDI
I I LDI

Parallel Load lnstructlons

Load floating-point

Load integer

Parallel Multiply and AddISubtract Instructions

Multiply and add floating-point

Multiply and subtract floating-point

Multiply and add integer

Multiply and subtract integer

Instruction Set

10.1.8 Illegal Instructions

The TMS320C3x has no illegal instruction-detection mechanism. Fetching an
illegal (undefined) opcode can cause the execution of an undefined operation.
Proper use of the TI TMS320 floating-point software tools will not generate an
illegal opcode. Only the following can cause the generation of an illegal op-
code:

Misuse of the tools
a An error in the ROM code

Defective RAM

Assembly Language lnstnrctions 10-0

Condition Codes and Flags

10.2 Condition Codes and Flags
The TMS320C3x provides 20 condition codes (00000-10100, excluding
01 01 1) that you can place in the condfield of any of the conditional instructions,
such as RETScond or LDFcond. The conditions include signed and unsigned
comparisons, comparisons to 0, and comparisons based on the status of indi-
vidual condition flags. Note that all conditional instructions can accept the suf-
fix U to indicate unconditional operation.

Seven condition flags provide information about properties of the result of
arithmetic and logical instructions. The condition flags are stored in the status
register (ST) and are affected by an instruction only when either of the follow-
ing two cases occurs:

,g The destination register is one of the extended-precision registers
(R7-RO). (This allows for modification of the registers used for addressing
but does not affect the condition flags during computation.)

[] The instruction is one of the compare instructions (CMPF, CMPF3, CMPI,
CMP13, TSTB, or TSTB3). (This makes it possible to set the condition flags
according to the contents of any of the CPU registers.)

The condition flags can be modified by most instructions when either of the
preceding conditions is established and either of the following two cases oc-
curs:

Q A result is generated when the specified operation is performed to infinite
precision. This is appropriate for compare and test instructions that do not
store results in a register. It is also appropriate for arithmetic instructions
that produce underflow or overflow.

The output is written to the destination register, as shown in Table 10-8.
This is appropriate for other instructions that modify the condition flags.

Table 10-8. Output Value Formats

Type Of Operation Output Format

Floating-point 8-bit exponent, one sign bit, 31-bit fraction

Integer 32-bit integer

Logical 32-bit unsigned integer

Figure 1 &1 on page 10-1 1 shows the condition flags in the low-order bits of
the status register. Following the figure is a list of status register condition flags
and descriptions of how the flags are set by most instructions. For specific de-
tails of the effect of a particular instruction on the condition flags, see the de-
scription of that instruction in subsection 10.3.3 on page 10-1 8.

Condition Codes and Flags

Figure 1 &I. Status Register

NOTE: xx = reserved bii
R = read, W = wrke

LUF

LV

Latched Floating-point Underflow Condition Fiag

LUF is set whenever UF (floating-point underflow flag) is set. LUF can be
cleared only by a processor reset or by modifying it in the status register (ST).

Latched Overflow Condition Flag

LV is set whenever V (overflow condition flag) is set. Otherwise, it is un-
changed. LV can be cleared only by a processor reset or by modifying it in the
status register (ST).

Floating-Point Underflow Condition Flag

A floating-point underflow occurs whenever the exponent of the result is less
than or equal to -1 28. If a floating-point underflow occurs, UF is set, and the
output value is set to 0. UF is cleared if a floating-point underflow does not oc-
cur.

Negative Condition Flag

Logical operations assign N the state of the MSB of the output value. For inte-
ger and floating-point operations, N is set if the result is negative, and cleared
otherwise. Zero is positive.

Zero Condition Fiag

For logical, integer, and floating-point operations, Z is set if the output is 0 and
cleared otherwise.

Assembly Language Instructions 10-11

Condition Codes and Flags

V Overflow Conditlon Flag

For integer operations, V is set if the result does not fit into the format specified
for the destination (that is, -2 32 r result s 2 32 - 1). Otherwise, V is cleared.
For floating-point operations, V is set if the exponent of the result is greater
than 127; otherwise,V is cleared. Logical operations always clear V.

C Carry Flag

When an integer addition is performed, C is set if a carry occurs out of the bit
corresponding to the MSB of the output. When an integer subtraction is per-
formed, C is set if a borrow occurs into the bit corresponding to the MSB of the
output. Otherwise, for integer operations, C is cleared. The carry flag is unaf-
fected by floating-point and logical operations. For shift instructions, this flag
is set to the final value shifted out; for a 0 shift count, this is set to 0.

Table 10-9 lists the condition mnemonic, code, description, and flag for each
of the 20 condition codes.

Condition Codes and Flaas

Table 10-9. Condition Codes and Flags

Condltlon Code Descrlptlon Flagt

Uncondltlonal Compares

U 00000 Unconditional

Unsigned Compares

00001 Lower than
0001 0 Lower than or same as
0001 1 Higher than
001 00 Higher than or same as
001 01 Equal to
00110 Not equal to

Signed Compares

LT 001 11 Less than
LE 01 000 Less than or equal to
GT 01 001 Greater than
GE 01010 Greater than or equal to
EQ 001 01 Equal to
N E 001 1 0 Not equal to

Don't care

C
C O R Z
-C AND -Z
-C
z
-z

N
N O R Z
-N AND -Z
-N

Compare to Zero

Z 001 01 Zero Z
NZ 001 10 Not zero -Z
P 01 001 Positive -N AND -Z
N 00111 Negative N
N N 01 01 0 Nonnegative -N

Compare to Conditlon Flags

N N 01 01 0 Nonnegative -N
N 00111 Negative N
NZ 001 10 Nonzero -Z
Z 001 01 Zero Z
NV 01100 No overflow -V
V 01 101 Overflow V
NUF 01110 No underflow -UF
UF 01111 Underflow U F
NC 001 00 No carry -C
C 00001 Carry C
N LV 10000 No latched overflow -LV
LV 10001 Latched overflow LV
NLUF 10010 No latched floating-point underflow -LUF
LU F 10011 Latched floating-point underflow LU F
ZU F 101 00 Zero or floating-point underflow Z OR UF

t - = logical complement (not-true condition)

Assembly Language Instructions 10-1 3

Individual Instructions

10.3 Individual Instructions

This section contains the individual assembly language instructions for the
TMS320C3x. The instructions are listed in alphabetical order. Information for
each instruction includes assembler syntax, operation, operands, encoding,
description, cycles, status bits, mode bit, and examples.

Definitions of the symbols and abbreviations, as well as optional syntax forms
allowed by the assembler, precede the individual instruction description sec-
tion. Also, an example instruction shows the special format used and explains
its content.

A functional grouping of the instructions, as well as a complete instruction set
summary, can be found in Section 10.1 on page 10-2. Appendix A lists the
opcodes for all of the instructions. Refer to Chapter 5 for information on
memory addressing. Code examples using many of the instructions are pro-
vided in Chapter 11.

10.3.1 Symbols and Abbreviations

Table 10-1 0 lists the symbols and abbreviations used in the individual instruc-
tion descriptions.

Individual Instructions

Table 10- 10. Instruction Symbols

Symbol Meaning

src Source operand
srcl Source operand 1
src2 Source operand 2
src3 Source operand 3
src4 Source operand 4

dst Destination operand
dsfl Destination operand 1
dsi2 Destination operand 2
disp Displacement
cond Condition
count Shift count

General addressing modes
Three-operand addressing modes
Parallel addressing modes
Conditional-branch addressing modes

1x1 Absolute value of x
X + Y Assign the value of x to destination y
x(man) Mantissa field (sign + fraction) of x
X(~XP) Exponent field of x

Operation 1 performed in parallel with operation 2

xANDy Bitwise logical-AND of x and y
x OR y Bitwise logical-OR of x and y
x XOR y Bitwise logical-XOR of x and y
-x Bitwise logical-complement of x

x << y Shift x to the lefty bits
x >> y Shift x to the right y bits
*++SP Increment SP and use incremented SP as address
*SP- - Use SP as address and decrement SP

ARn
I Rn
Rn
RC
RE
RS
ST

C
GIE
N
PC
RM
SP

Auxiliary register n
Index register n
Register address n
Repeat count register
Repeat end address register
Repeat start address register
Status register

Carry bit
Global interrupt enable bit
Trap vector
Program counter
Repeat mode flag
System stack pointer

Assembly Language Instructions 1 0-1 5

Individual lnstructions

10.3.2 Optional Assembler Syntax

The assembler allows a relaxed syntax form for some instructions. These op-
tional forms simplify the assembly language so that special-case syntax can
be ignored. Following is a list of these optional syntax forms.

0 You can omit the destination register on unary arithmetic and logical oper-
ations when the same register is used as a source. For example,

ABSl R0,RO can be written as ABSl RO.

lnstructions affected: ABSI, ABSF, FIX, FLOAT, NEGB, NEGF, NEGI,
NORM, NOT, RND

You can write all three-operand instructions without the 3. For example,

ADD13 RO,R1 ,R2 can be written as ADD1 RO,R1 ,R2.

lnstructions affected: ADDC3, ADDF3, ADD13, AND3, ANDN3, ASH3,
LSH3, MPYF3, MPY13, OR3, SUBB3, SUBF3, SUB13, XOR3

This also applies to all of the pertinent parallel instructions.

You can write all three-operand comparison instructions without the 3. For
example,

CMP13 RO,*ARO can be written as CMPl RO,*ARO.

lnstructions affected: CMP13, CMPF3, TSTB3

a Indirect operands with an explicit 0 displacement are allowed. In three-op-
erand or parallel instructions, operands with 0 displacement are automati-
cally converted to no-displacement mode. For example:

LDI *+ARO(O),Rl is legal.

Also

ADD13 *+ARO(O),Rl ,R2 is equivalent to ADD13 *ARO,R1 ,R2.

You can write indirect operands with no displacement, in which case a dis-
placement of 1 is assumed. For example,

LDI *ARO++(l),RO can be written as LDI *ARO++,RO.

All conditional instructions accept the suffix U to indicate unconditional op-
eration. Also, you can omit the U from unconditional short branch instruc-
tions. For example:

BU label can be written as B label,

You can write labels with or without a trailing colon. For example:

labelo: NOP
label 1 NOP
label2: (Label assembles to next source line.)

Individual Instructions

Empty expressions are not allowed for the displacement in indirect mode:

LDI *+AROO ,RO is not legal.

Q You can precede long immediate mode operands (destination of BR and
CALL) with an @ sign:

BR label can be written as BR @label.

!J You can use the LDP pseudo-op to load a register (usually DP) with the
eight MSBs of a relocatable address:

LDP addr,REG or LDP @addr,REG

The @ sign is optional.

If the destination REG is the DP, you can omit the DP in the operand. LDP
generates an LDI instruction with an immediate operand and a special re-
location type.

You can write parallel instructions in either order. For example:

can be written as ST1
11 ADDI.

a You can write the parallel bars indicating part2 of a parallel instruction any-
where on the line from column 0 to the mnemonic. For example:

can be written as ADD1
11 STI.

If the second operand of a parallel instruction is the same as the third (des-
tination register) operand, you can omit the third operand. This allows you
to write three-operand parallel instructions that look like normal two-oper-
and instructions. For example,

ADD1 *AROIR2,R2 can be written as ADD *ARO,R2
I / MPYl *AR1 ,RO,RO 11 MPYl *AR1 ,RO.

lnstructions (applies to all parallel instructions that have a register second
operand) affected: ADDI, ADDF, AND, MPYI, MPYF, OR, SUBI, SUBF,
and XOR.

a You can write all commutative operations in parallel instructions in either
order. For example, you can write the ADD1 part of a parallel instruction in
either of two ways:

lnstructions affected: parallel instructions containing any of ADDI, ADDF,
MPYI, MPYF, AND, OR, and XOR.

Assembly Language Instructions 10-17

Individual lnstrvctions
L

0 Use the syntax in Table 10-11 to designate CPU registers in operands.
Note the alternate notation Rn, 0 5 n s 27, which is used to designate
any CPU register.

Table 10-1 1. CPU Register Syntax

Assemblers Alternate
Syntax Register Syntax Assigned Functlon

RO RO Extended-precision register
R1 R1 Extended-precision register
R2 R2 Extended-precision register
R3 R3 Extended-precision register
R4 R4 Extended-precision register
R5 R5 Extended-precision register
R6 R6 Extended-precision register
R7 R7 Extended-precision register

ARO
AR 1
AR2
AR3
AR4
AR5
AR6
AR7

DP
IRO
IR1
BK
SP

ST
I E
IF
IOF

Auxiliary register
Auxiliary register
Auxiliary register
Auxiliary register
Auxiliary register
auxiliary register
Auxiliary register
Auxiliary register

Data-page pointer
Index register 0
Index register 1
Block-size register
Active stack pointer

Status register
CPUIDMA interrupt enable
CPU interrupt flags
I10 flags

Repeat start address
Repeat end address
Repeat counter

10.3.3 Individual Instruction Descriptions

Each assembly language instruction for the TMS320C3x is described in
this section in alphabetical order. The description includes the assembler syn-
tax, operation, operands, encoding, description, cycles, status bits, mode bit,
and examples.

Example Instruction U(AM PLE

Syntax iNST src, dst

iNSTl src2, dstl
I(INST2 src3, dst2

Each instruction begins with an assembler syntax expression. You can place
labels either before the command (instruction mnemonic) on the same line or
on the preceding line in the first column. The optional comment field that con-
cludes the syntax is not included in the syntax expression. Space(s) are
required between each field (label, command, operand, and comment fields).

The syntax examples illustrate the common one-line syntax and the two-line
syntax used in parallel addressing. Note that the two vertical bars 11 that indi-
cate a parallel addressing pair can be placed anywhere before the mnemonic
on the second line. The first instruction in the pair can have a label, but the sec-
ond instruction cannot have a label.

Operation

Operands

lsrc I -. dst

Isrc2 I -. dst 1
I I src3 -. dst2

The instruction operation sequence describes the processing that occurs
when the instruction is executed. For parallel instructions, the operation se-
quence is performed in parallel. Conditional effects of status register specified
modes are listed for such conditional instructions as Bcond.

src general addressing modes (G):
0 0 register (Rn, 0 s n s 27)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 s n s 27)

src2 indirect (disp = 0, 1, IRO, IR1)
dstl register (Rnl , 0 s n l 5 7)
src3 register (Rn2, 0 s n2 s 7)
dst2 indirect (disp = 0, 1, IRO, iR1)

Operands are defined according to the addressing mode andlor the type of ad-
dressing used. Note that indirect addressing uses displacements and the in-
dex registers. Refer to Chapter 5 for detailed information on addressing.

Assembly Language Instructions 10-19

EXAMPLE Example Instruction

Encoding

3 1
I I I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

INST src

Encoding examples are shown using general addressing and parallel addres-
sing. The instruction pair for the parallel addressing example consists of
INST1 and INST2.

Description Instruction execution and its effect on the rest of the processor or memory con-
tents is described. Any constraints on the operands imposed by the processor
or the assembler are discussed. The description parallels and supplements
the information given by the operation block.

Cycles 1

The digit specifies the number of cycles required to execute the instruction.

Status Bits LUF Latched Floating-Point Underflow Condition Flag. 1 if a
floating-point underflow occurs; unchanged otherwise.

LV Latched Overflow Condition Flag. 1 if an integer or floating-point
overflow occurs; unchanged otherwise.

UF Floating-Point Underflow Condition Flag. 1 if a floating-point un-
derflow occurs; 0 otherwise.

N Negative Condition Flag. 1 if a negative result is generated; 0 other-
wise. In some instructions, this flag is the MSB of the output.

Z Zero Condition Flag. 1 if a 0 result is generated; 0 otherwise. For log-
ical and shift instructions, 1 if a 0 output is generated; 0 otherwise.

V Overflow Condition Flag. 1 if an integer or floating-point overflowoc-
curs; 0 otherwise.

C Carry Flag. 1 if a carry or borrow occurs; 0 otherwise. For shift instruc-
tions, this flag is set to the value of the last bit shifted out; 0 for a shift
count of 0.

The seven condition flags stored in the status register (ST) are modified by the
majority of instructions only if the destination register is R7-RO. The flags pro-
vide information about the properties of the result or the output of arithmetic
or logical operations.

Example Instruction EXAMPLE

Mode Bit

Example

OVM Overflow Mode Flag. In general, integer operations are affected by the
OVM bit value (described in Table 3-2 on page 3-6).

Before Instructlon:

DP = 80h
R5=0766900000h=2.30562500e+02
Memory at 8098AEh = 5CDFh = 1.000011 078 + 00
L U F L V U F N Z V C = O O O 0 0 0 0

After Instructlon:

DP = 80h
R5 = 0066900000h = 1.801 269538 + 00
Memory at 8098AEh = 5CDFh = 1.00001 1078 + 00
L U F L V U F N Z V C = O 0 0 0 0 0 0

The sample code presented in the above format shows the effect of the code
on system pointers (for example, DP or SP), registers (for example, R1 or R5),
memory at specific locations, and the seven status bits. The values given for
the registers include the leading 0s to show the exponent in floating-point oper-
ations. Decimal conversions are provided for all register and memory loca-
tions. The seven status bits are listed in the order in which they appear In the
assembler and simulator (see Section 10.2 on page 10-1 0 and Table 10-9 on
page 10-1 3 for further information on these seven status bits).

Assembly Language Instructions 10-21

ABSF Absolute Value of Floating-Point

Syntax ABSF src, dst

Operation lsrcl + dst

Operands src general addressing modes (G):
0 0 register (Rn, 0 s n r 7)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, r 0 n s 7)

Encoding

Description The absolute value of the src operand is loaded into the dst register. The src
and dst operands are assumed to be floating-point numbers.

An overflow occurs if src (man) = 80000000h and src (exp) = 7Fh. The result
is dst (man) = 7FFFFFFFh and dst (exp) = 7Fh.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 0
N 0
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

Mode Bit

Example

OVM Operation is not affected by OVM bit value.

ABSF R4,R7

Before Instruction:

After Instruction:

Parallel ABSF and S F ABSFllSTF

Syntax ABSF src2, dstl
11 STF src3, dst2

Operation Isrc2 I -+ dst 1
)I src3 + dst2

Operands src2 indirect (disp = 0, 1, IRO, IR1)
dstl register (Rnl, 0 s n l s 7)
src3 register (Rn2, 0 s n2 s 7)
dst2 indirect (disp = 0, 1, IRO, IR1)

Encoding

Description A floating-point absolute value and a floating-point store are performed in par-
allel. All registers are read at the beginning and loaded at the end of the ex-
ecute cycle. This means that if one of the parallel operations (STF) reads from
a register and the operation being performed in parallel (ABSF) writes to the
same register, STF accepts as input the contents of the register before it is mo-
dified by the ABSF.

If src2and dst2point to the same location, src2is read before the write to dsg.
If src3and dstl point to the same register, src3is read before the write to dstl.

An overflow occurs if src (man) = 80000000h and src (exp) = 7Fh. The result
is dst (man) = 7FFFFFFFh and dst (exp) = 7Fh.

Cycles

Status Bits

Mode Bit

Example

LUF Unaffected
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 0
N 0
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.

ABSF *++AR3(IRl) ,R4
1 1 STF R4,*-AR7(1)

Assembly Language Instructions 10-23

ABSFl lSTF Parallel ABSF and STF I

Before Instruction:

AR3 = 809800h
IR1 = OAFh
R4 = 733C00000h = 1,797508 + 02
AR7 = 8098C5h
Data at 8098AFh = 58B4000h = - 6.11 87508 + 01
Data at 8098C4h = Oh
LUFLV UF N Z V C = O 0 0 0 0 0 0

After Instruction:

AR3 = 8098AFh
IR1 = OAFh
R4 = 574C00000h = 6,1187508 + 01
AR7 = 8098C5h
Data at 8098AFh = 58B4000h = -6.11 87508 + 01
Data at 8098C4h = 733C000h = 1,797508 + 02
L U F L V U F N Z V C = O O O 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Absolute Value of Integer ABSI

Syntax ABSi src, dst

Operation Isrq -. dst

Operands src general addressing modes (G):
0 0 any CPU register
0 1 direct
1 0 indirect
1 1 immediate

dst any CPU register

Encoding

Description The absolute value of the src operand is loaded into the dst register. The src
and dst operands are assumed to be signed integers.

An overflow occurs if src = 80000000h. If ST(0VM) = 1, the result is
dst=7FFFFFFFh. if ST(0VM) = 0, the result is dst = 80000000h.

Cycles

Status Bits

Mode Bit

Example 1

These condition flags are modified only if the destination register Is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 0
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C Unaffected

OVM Operation is affected by OVM bit value.

ABSI R0,RO
or
ABSI RO

Before Instruction:

RO = OFFFFFFCBh = - 53

After Instruction:

Assembly Language Instructions 10-25

ABSl Absolute Value of Integer

Example 2 A B S I *ARl,R3

Before Instruction:

AR1 = 20h
R3 = Oh
Data at 20h = OFFFFFFCBh = - 53

After Instruction:

AR1 = 20h
R3 = 35h = 53
Data at 20h = OFFFFFFCBh = - 53

Parallel ABSl and ST1 ABSll lSTl

Syntax ABSi src2, dstl

Operation Isrc2 I -, dst l
11 src3 + dst2

Operands src2 indirect (disp = 0, 1, IRO, IR1)
dstl register (Rnl , 0 r 1 r 7)
src3 register (Rn2, 0 r n2 r 7)
dst2 indirect (disp = 0, 1, IRO, IR1)

Encodlng

Description An integer absolute value and an integer store are performed in parallel. All
registers are read at the beginning and loaded at the end of the execute cycle.
This means that, if one of the parallel operations (STI) reads from a register
and the operation being performed in parallel (ABSI) writes to the same regis-
ter, ST1 accepts as input the contents of the register before it is modified by the
ABSI.

If src2and dst2point to the same location, src2is read before the write to dst2.

An overflow occurs if src = 80000000h. If ST(0VM) = 1, the result is dst =
7FFFFFFFh. If ST(0VM) = 0, the result is dst = 80000000h.

Cycles

Status Bits

Mode Bit

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 0
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C Unaffected

OVM Operation is affected by OVM bit value.

Assembly Language Instructions 10-27

ABSll lSTl ParallelABS1 and ST1

Example ABSI *-AR5(1),R5

I I ST1 Rlr*AR2--(IRl)

Before Instruction:

AR5 = 8099E2h
R5 = Oh
R1 = 42h = 66
AR2 = 8098FFh
IR1 = OFh
Data at 8099E1 h = OFFFFFFCBh = - 53
Data at 8098FFh = 2h = 2
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

AR5 = 8099E2h
R5 = 35h = 53
R1 = 42h = 66
AR2 = 8098FOh
IR1 = OFh
Data at 8099El h = OFFFFFFCBh = - 53
Data at 8098FFh = 42h = 66
L U F L V U F N Z V C = O O O 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

~ d d integer with Carry ADDC

Syntax ADDC src, dst

Operation dst + src + C -. dst

Operands src general addressing modes (G):

0 0 any CPU register
0 1 direct
1 0 indirect
1 1 immediate

dst any CPU register

Encoding

Description The sum of the dst and src operands and the carry (C) flag is loaded into the
dst register. The dst and src operands are assumed to be signed integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a carry occurs; 0 otherwise

Mode Bit

Example

OVM Operation is affected by OVM bit value.

ADDC Rl,R5

Before instruction:

After Instruction:

Assembly Language Instructions 10-29

ADDC3 Add Integer With Caw, 3-Operand

Syntax ADDC3 src2, srcl, dst

Operation srcl t src2 t C -, dst

Operands srcl three-operand addressing modes (T):
0 0 any CPU register
0 1 indirect (disp = 0, 1 , IRO, IR1)
1 0 any CPU register
1 1 indirect (disp = 0, 1, IRO, IR1)

src2 three-operand addressing modes (T):
0 0 any CPU register
0 1 any CPU register
1 0 indirect (disp = 0, 1 , IRO, IR1)
1 1 indirect (disp = 0, 1, IRO, IR1)

dst any CPU register

Encoding

- . -- .- .- -
1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1

srcl s r a

Description The sum of the srcl and src2 operands and the carry (C) flag is loaded into
the dst register. The srcl, src2, and dst operands are assumed to be signed
integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
U 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a carry occurs; 0 otherwise

Mode Bit OVM Operation is affected by OVM bit value.

Add Integer With Carry, 3-Operand ADDC3

Example 1 ADDC3 *AR5++(1RO),R5,R2
or

ADDC3 R5,*AR5++(IRO),R2

Before Instruction:

AR5 = 809908h
IRO = 10h
R5 = 066h = 102
R2 =Oh
Data at 809908h = OFFFFFFCBh = - 53
L U F L V U F N Z V C = O O O 0 0 0 1

After Instruction:

AR5 = 80991 8h
IRO = 10h
R5 = 066h = 102
R2 = 032h = 50
Data at 809908h = OFFFFFFCBh = - 53
L U F L V U F N Z V C = O 0 0 0 0 0 1

Example 2

Before Instruction:

After Instruction:

I

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Assembly Language instructions 10-31

ADDF Add Floating-Point

Syntax ADDF src, dst

Operation dst + src -. dst

Operands src general addressing modes (G):
0 0 register (Rn, 0 r n r 7)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 r n s 7)

Description The sum of the dstand srcoperands is loaded into the dstregister. The dstand
src operands are assumed to be floating-point numbers.

Encoding
3 1 24 23 16 15 8 7 0

Cycles 1

1 I

0 0 0

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ~

0 0 0 0 1 1 dst src

OVM Operation is not affected by OVM bit value.

ADDF *AR4++(IRl),R5

Mode Bit

Example

Before instruction:

AR4 = 809800h
IR1 = 12Bh
R5 = 0579800000h = 6.23750et01
Data at 809800h = 86B2800h = 4.7031 2500 + 02
L U F L V U F N Z V C = O 0 0 0 0 0 0

After instruction:

AR4 = 80992Bh
IR1 = 12Bh
R5 = 09052C0000h = 5.3268750et02
Data at 809800h = 86B2800h = 4.7031 2508 + 02
L U F L V U F N Z V C = O O 0 O 0 O O

Add Floating-Point, 3-Operand ADDF3

Syntax ADDF3 src2, srcl, dst

Operation src 1 + src2 -, dst

Operands srcl three-operand addressing modes 0:
0 0 register (Rnl, 0 s n l s 7)
0 1 indirect (disp = 0, 1, IRO, IR1)
1 0 register (Rnl, 0 s n l s 7)
1 1 indirect (disp = 0, 1, IRO, IR1)

src2 three-operand addressing modes 0:
0 0 register (Rn2, 0 r n2 5 7)
0 1 register (Rn2, 0 s n2 s 7)
1 0 indirect (disp = 0, 1, IRO, IR1)
1 1 indirect (disp = 0, 1, IRO, IR1)

dst register (Rn, 0 s n r 7)

Encoding

. - -
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

dst srcl srQ -
Description The sum of the src1 and src2operands is loaded into the dstregister. The src1,

src2, and dst operands are assumed to be floating-point numbers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

Mode Bit

Example 1

OVM Operation is not affected by OVM bit value.

Before Instruction:

Assembly Language Instructions 10-33

ADD F3 Add Floating-Point, 3-Operand

After Instruction:

Example 2

Before Instruction:

AR1 = 809820h
AR7 = 8099FOh
IRO = 8h
R4 = Oh
Data at 809821 h = 700F000h = 1.289408 + 02
Data at 8099FOh = 34C2000h = 1.275908 + 01
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

AR1 = 80982017
AR7 = 8099F8h
IRO = 8h
R4 = 070DB20000h = 1.41 6953138 + 02
Data at 809821 h = 700F000h = 1.289408 + 02
Data at 8099FOh = 34C2000h = 1.275908 + 01
L U F L V U F N Z V C = O O O 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

ParallelADDF3 and STF ADDF311STF

Syntax ADDF3 src2, srcl, dstl
11 STF s r c - dst2

Operation src 1 + src2 -, dst 1
I I src3 -. dst2

Operands srcl register (Rnl, 0 s n l s 7)
src2 indirect (disp = 0, 1, IRO, IR1)
dstl register (Rn2, 0 s n2 s 7)
src3 register (Rn3, 0 s n3 s 7)
dst2 indirect (disp = 0, 1, IRO, IR1)

Encoding

Descrlptlon Afloating-point addition and a floating-point store are performed in parallel. All
registers are read at the beginning and loaded at the end of the execute cycle.
This means that if one of the parallel operations (STF) reads from a register
and the operation being performed in parallel (ADDF3) writes to the same reg-
ister, STF accepts as input the contents of the register before it is modified by
the ADDF3.

If src2and dst2point to the same location, src2is read before the write to dst2.

Cycles

Status Bits

Mode Bit

Example

These condition flags are modified only if the destination register is R7-RO.
LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.

ADDF3 *+AR3(IRl),R2,R5
I I STF R4,*AR2

Assembly Language Instructions 10-35

Before Instruction:

AR3 = 809800h
IR1 = OA5h
R2 = 070C800000h = 1.40508 + 02
R5 = Oh
R4 = 0576400000h = 6.281 2506 + 01
AR2 = 8098F3h
Data at 8098A5h = 733C000h = 1,797508 + 02
Data at 8098F3h = Oh
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

AR3 = 809800h
IR1 = OA5h
R2 = 070C800000h = 1.4050et02
R5=0820200000h =3.202508+02
R4 = 0576400000h = 6.2812508 + 01
AR2 = 8098F3h
Data at 8098A5h = 733C000h = 1.797508 + 02
Data at 8098F3h = 5764000h = 6,281258 + 01
L U F L V U F N Z V C = O 0 0 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Syntax ADD1 src, dst

Operation dst + src -. dst

Operands src general addressing modes (G):
0 0 any CPU register
0 1 direct
1 0 indirect
1 1 immediate

dst any CPU register

Encoding

31 24 23 16 15 8 7 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

dst SIC

Description The sum of the dst and src operands is loaded into the the dst register. The
dst and src operands are assumed to be signed integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a carry occurs; 0 otherwise

Mode Bit

Example

OVM Operation is affected by OVM bit value.

Before Instruction:

R3 = OFFFFFFCBh = - 53
R7 = 35h = 53
L U F L V U F N Z V C = O 0 0 0 0 0 0

After instruction:

R3 = OFFFFFFCBh = - 53
R7 = Oh
LUFLV U F N Z V C = O 0 0 0 0 0 0

Assembly Language Instructions 10-37

ADD I3 Add lntegel; 3-Operand

Syntax ADD13 <src2 >, <src l >, edst >

Operation src 1 + src2 -. dst

Operands srcl three-operand addressing modes 0:
0 0 any CPU register
0 1 indirect (disp = 0, 1, IRO, IRA)
1 0 any CPU register
1 1 indirect (disp = 0, 1, IRO, IR1)

src2 three-operand addressing modes (Tj:
0 0 any CPU register
0 1 any CPU register
1 0 indirect (disp = 0, 1, IRO, IR1)
1 1 indirect (disp = 0, 1, IRO, IR1)

dst any CPU register

Encoding

Description The sum of the srcl and src2operands is loaded into the dstregister. The srcl,
src2, and dst operands are assumed to be signed integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a carry occurs; 0 otherwise

Mode Bit

Example 1

OVM Operation is affected by OVM bit value.

Before Instruction:

R4 = ODCh = 220
R7 =OAOh = 160
R5 = 10h = 16
L U F L V U F N Z V C - O O O O O O O

Add Integer, 3-Operand ADD13

After Instruction:

R4 = ODCh = 220
R7 = OAOh = 160
R5 = 017Ch = 380
L U F L V U F N Z V C = O O O 0 0 0 0

Example 2

Before Instructlon:

AR3 = 809802h
AR6 = 809930h
IRO = 18h
R2= 10h= 16
Data at 809801 h = 2AF8h = 11,000
Data at 809930h = 3A98h = 15,000
L U F L V U F N Z V C = O 0 0 0 0 0 0

After Instructlon:

AR3 = 809802h
AR6 = 80991 8h
IRO = 18h
R2 = 06598h = 26,000
Data at 809801 h = 2AF8h = 11,000
Data at 809930h = 3A98h = 15,000
L U F L V U F N Z V C = O 0 0 0 0 0 0

I

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Assembly Language Instructions 10-39

ADD131 ISTI ParallelADDI3 and ST1

Syntax ADD13 srcZ,srcl, dstl
(1 ST1 src3, dst2

Operation src 1 t src2 -+ dst 1
1 1 src3 -- dst2

Operands srcl register (Rnl, 0 s n l s 7)
src2 indirect (disp = 0, 1, IRO, IR1)
dstl register (Rn2, 0 s n2 r 7)
src3 register (Rn3, 0 s n3 s 7)
dst2 indirect (disp = 0, 1, IRO, IR1)

Encoding

Description An integer addition and an integer store are performed in parallel. All registers
are read at the beginning and loaded at the end of the execute cycle. This
means that if one of the parallel operations (STI) reads from a register and the
operation being performed in parallel (ADD13) writes to the same register, ST1
accepts as input the contents of the register before it is modified by the ADD13.

If src2and dst2point to the same location, src2is read before the write to dst2.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a carry occurs; 0 otherwise

OVM Operation is affected by OVM bit value. Mode Bit

ParallelADDI3 and ST1 ADD1311STI

Example

Before Instruction:

ARO = 80992Ch
IRO = OCh
R5 = ODCh = 220
RO = Oh
R3 = 35h = 53
AR7 = 80983Bh
Data at 80992Ch = 12Ch = 300
Data at 80983Bh = Oh
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

ARO = 809920h
IRO = OCh
R5 = ODCh = 220
RO = 208h = 520
R3 = 35h = 53
AR7 = 80983Bh
Data at 80992Ch = 12Ch = 300
Data at 80983Bh = 35h = 53
L U F L V U F N Z V C = O 0 0 0 0 0 0

b 1

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Assembly Language Instructions 10-41

AND Bitwise Logical-AND

Syntax AND src, dst

Operands dst AND src -. dst

Operands src general addressing modes (G):
0 0 any CPU register
0 1 direct
1 0 indirect
1 1 immediate (not sign-extended)

dst any CPU register

Encoding

.- .- - .
I l l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l

dst src

Description The bitwise logical-AND between the dst and src operands is loaded into the
dst register. The dst and src operands are assumed to be unsigned integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N MSB of the output.
Z 1 if a 0 result is generated; 0 otherwise
v 0
C Unaffected

Mode Bit

Example

OVM Operation is not affected by OVM bit value.

AND R1,RZ

Before Instruction:

R1 = 80h
R2 = OAFFh
L U F L V U F N Z V C = O O O 0 0 0 1

After Instruction:

Syntax AND3 src2, srcl, dst

Operation src 1 AND src2 -. dsl

Operands srcl three-operand addressing modes 0:
0 0 any CPU register
0 1 indirect (disp = 0, 1, IRO, IR1)
1 0 any CPU register
1 1 indirect (disp = 0, 1, IRO, iR1)

src2 three-operand addressing modes 0:
0 0 any CPU register
0 1 any CPU register
1 0 indirect (disp = 0, 1, IRO, IR1)
1 1 indirect (disp = 0, 1, IRO, IR1)

dst any CPU register

Encoding

3 1 24 23 16 15 8 7 0
l l l t l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

dst srcl $re2

Description The bitwise logical-AND between the srcl and src2 operands is loaded into
the destination register. The srcl, src2, and dstoperands are assumed to be
unsigned integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N MSB of the output.
Z 1 if a 0 result is generated; 0 otherwise
v 0
C Unaffected

Mode Bit OVM Operation is not affected by OVM bit value.

Assembly Language Instructions 1 0-43

Example 1 AND3 *ARO--(IRO)I*+AR1,R4

Before Instruction:

ARO = 8098F4h
IRO = 50h
AR1 = 809951 h
R4 = Oh
Data at 8098F4h = 30h
Data at 809952h = 123h
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

ARO = 8098A4h
IRO = 50h
AR1 = 809951 h
R4 = 020h
Data at 8098F4h = 30h
Data at 809952h = 123h
L U F L V U F N Z V C = O O 0 0 0 0 0

Example 2

Before Instruction:

AR5 = 80985Ch
R7 = 2h
R4 = Oh
Data at 80985Bh = OAFFh
L U F L V U F N Z V C = O O 0 0 0 0 0

After Instruction:

AR5 = 80985Ch
R7 = 2h
R4 = 2h
Data at 80985Bh = OAFFh
L U F L V U F N Z V C = O O O 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

ParallelAND3 and ST1 AND311STI

Syntax AND3 src2, srcl, dstl
I I ST1 src3, dst2

Operation src 1 AND src2 -. dst 1
11 src3 -. dst2

Operands srcl register (Rnl, 0 r n l s 7)
src2 indirect (disp = 0, 1, IRO, IR1)
dstl register (Rn2,O r n2 r 7)
src3 register (Rn3, 0 s n3 s 7)
dst2 indirect (disp = 0, 1, IRO, IR1)

Encoding

Description A bitwise logical-AND and an integer store are performed in parallel. All regis-
ters are read at the beginning and loaded at the end of the execute cycle. This
means that if one of the parallel operations (STI) reads from a register and the
operation being performed in parallel (AND3) writes to the same register, ST1
accepts as input the contents of the register before it is modified by the AND3.

If src2and dst2point to the same location, src2is read before the write to dst2.

Cycles

Status Bits

Mode Bit

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N MSB of the output.
Z 1 if a 0 result is generated; 0 otherwise
v 0
C Unaffected

OVM Operation is not affected by OVM bit value.

Assembly Language Instructions 10-45

AN D311STI Parallel AND3 and ST1

Example

Before Instructlon:

AR1 = 8099Fl h
IRO = 8h
R4 = OA323h
R7 = Oh
R3 = 35h = 53
AR2 = 80983Fh
Data at 8099F9h = 5C53h
Data at 80983Fh = Oh
L U F L V U F N Z V C = O O O 0 0 0 0

After Instructlon:

AR1 = 8099Fl h
RO = 8h
R4 = OA323h
R7 = 03h
R3 = 35h = 53
AR2 = 80983Fh
Data at 8099F9h = 5C53h
Data at 80983Fh = 35h = 53
L U F L V U F N Z V C = O O O 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Bitwise Logical-AND With Complement ANDN

Syntax ANDN src, dst

Operation dst AND -src -. dst

Operands src general addressing modes (G):
0 0 any CPU register
0 1 direct
1 0 indirect
1 1 immediate (not sign-extended)

dst any CPU register

Encoding

- . - . -- . -

I I 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 1 1 0 src

Description The bitwise logical-AND between the dstoperand and the bitwise logical com-
plement (-) of the src operand is loaded into the dst register. The dst and src
operands are assumed to be unsigned integers.

Cycles

Status Bits

Mode Bit

Example

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N MSB of the output.
Z 1 if a 0 result is generated; 0 otherwise
v 0
C Unaffected

OVM Operation is not affected by OVM bit value.

ANDN @980Ch,R2

Before instruction:

DP = 80h
R2 = OC2Fh
Data at 80980Ch = OA02h
L U F L V U F N Z V C = O O 0 0 0 0 0

After instruction:

DP = 80h
R2 = 042Dh
Data at 80980Ch = OA02h
L U F L V U F N Z V C = O O 0 0 0 0 0

Assembly Language Instructions 10-47

Syntax ANDN3 src2, srcl, dst

Operation src 1 AND -src2 + dst

Operands srcl three-operand addressing modes (T):
0 0 any CPU register
0 1 indirect (disp = 0, 1, IRO, IR1)
1 0 any CPU register
1 1 indirect (disp = 0, 1, IRO, IR1)

src2 three-operand addressing modes (T):
0 0 any CPU register
0 1 any CPU register
1 0 indirect (disp = 0, 1, IRO, IR1)
1 1 indirect (disp = 0, 1,100, IRA)

dst register (Rn, 0 s n s 27)

Encoding

. - . -
1 1 1 1 1 1 1 I 1 1 1 1 1 1

srcl src2

Description The bitwise logical-AND between the srcl operand and the bitwise logical
complement (-) of the src2 operand is loaded into the dst register. The srcl,
src2, and dst operands are assumed to be unsigned integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N MSB of the output.
Z 1 if a 0 result is generated; 0 otherwise
v 0
C Unaffected

Mode Bit

Example 1

OVM Operation is not affected by OVM bit value.

Before Instruction:

After Instruction:

Example 2

Before Instruction:

R1 = OCFh
AR5 = 809825h
IRO = 5h
RO = Oh
Data at 809825h = OFFFh
LUFLV UF N Z V C = O 0 0 0 0 0 0

After Instruction:

R1 = OCFh
AR5 = 80982Ah
IRO = 5h
RO = OF30h
Data at 809825h = OFFFh
L U F L V U F N Z V C = O O 0 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Assembly Language lnstnrctions 10-49

ASH Arithmetic Shin

Syntax ASH count, dst

Operation If (count z 0):
dst cc count -. dst

Else:
dst >> lcount I + dst

Operands count general addressing modes (G):
0 0 any CPU register
0 1 direct
1 0 indirect
1 1 immediate

dst any CPU register

Encoding

Description The seven least significant bits of the count operand are used to generate the
two's complement shift count of up to 32 bits.

3 1 24 23 16 15 8 7 0

If the count operand is greater than 0, the dst operand is left-shifted by the
value of the countoperand. Low-order bits shifted in are 0-filled, and high-ord-
er bits are shifted out through the carry (C) bit.

1 1 1 1

dst

Arithmetic left-shift:

C+dst+O

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

count

If the countoperand is less than 0, the dstoperand is right-shifted by the abso-
lute value of the countoperand. The high-order bits of the dstoperand aresign-
extended as it is right-shifted. Low-order bits are shifted out through the C bit.

A

Arithmetic right-shift:

sign of dst + dst -. C

Cycles

If the count operand is 0, no shift is performed, and the C bit is set to 0. The
count and dst operands are assumed to be signed integers.

Arithmetic Shill ASH

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N MSB of the output.
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C Set to the value of the last bit shifted out. 0 for a shift count of 0.

Mode Bit OVM Operation is not affected by OVM bit value.

Example 1 ASH R1 ,R3

Before Instructlon:

R1 = 10h= 16
R3 = OAEOOOh
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

Example 2 ASH @98C3hIR5

Before Instruction:

DP = 80h
R5 = OAECOOOOl h
Data at 8098C3h = OFFE8 = - 24
L U F L V U F N Z V C = O O O 0 0 0 0

After Instructlon:

DP = 80h
R5 = OFFFFFFAEh
Data at 8098C3h = OFFE8 = - 24
L U F L V U F N Z V C = O O O 1 0 0 1

Assembly Language Instructions 10-51

ASH3 Arithmetic Shift, 3-Operand

Syntax ASH3 count, src, dst

Operatlon If (count r 0):
src << count - dst

Else:
src >> lcount I + dst

Operands count three-operand addressing modes (T):
0 0 register (Rn2, 0 s n2 s 27)
0 1 register (Rn2,O s n2 s 27)
1 0 indirect (disp = 0, 1, IRO, IR1)
1 1 indirect (disp = 0, 1, IRO, IR1)

src three-operand addressing modes (T):
0 0 register (Rnl , 0 r n l s 27)
0 1 indirect (disp = 0, 1, IRO, IR1)
1 0 register (Rnl, 0 5 n l 5 27)
1 1 indirect (disp = 0, 1, IRO, IR1)

dst register (Rn, 0 s n 5 27)

Encoding

- . - . -- . - . -
I I 1 1 1 1 I l l l r l l l I 1 1 1 1 1 1

0 0 1 0 0 0 1 0 1 src count
L

Description The seven least significant bits of the count operand are used to generate the
two's complement shift count of up to 32 bits.

If the count operand is greater than 0, the src operand is left-shifted by the
value of the countoperand. Low-order bits shifted in are 0-filled, and high-ord-
er bits are shifted out through the status register's C bit.

Arithmetic left-shift:

C + src +- 0

If the countoperand is less than 0, the srcoperand is right-shifted by the abso-
lute value of the countoperand. The high-order bits of the srcoperand aresign-
extended as they are right-shifted. Low-order bits are shifted out through the
C (carry) bit.

Arithmetic right-shift:

sign of src -. src -. C

If the count operand is 0, no shift is performed, and the C bit is set to 0. The
count, src, and dst operands are assumed to be signed integers.

Arithmetic Shift, 3-Operand ASH3

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N MSB of the output.
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C Set to the value of the last bit shifted out. 0 for a shift count of 0.
OVM Operation is not affected by OVM bit value. Mode Bit

Example

Before Instruction:

AR3 = 809921 h
R5 = 02BOh
RO = Oh
Data at 809921 h = 1Oh = 16
L U F L V U F N Z V C = O O O O 0 0 0

After Instruction:

AR3 = 809920h
R5=000002BOh
RO = 02B00000h
Data at 809921 h = 1 Oh = 16
L U F L V U F N Z V C = O O O 0 0 0 0

Example ASH3 R1 ,R3,R5

Before Instruction:

R1 =OFFFFFFF8h=-8
R3 = OFFFFCBOOh
R5 = Oh
L U F L V U F N Z V C = O 0 0 0 0 0 0

After Instruction:

R1 =OFFFFFFF8h=-8
R3 = OFFFFCBOOh
R5 = OFFFFFFCBh
L U F L V U F N Z V C = O O O 1 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Assembly Language lnstnrctions 10-53

ASH31 ISTI ParallelASH3 and ST1

Syntax ASH3 count, src2, dst 1
11 ST1 src3, dst2

Operation If (count 8 0):
src2 << count + dstl

Else:
src2 >> 1 counq + dst 1

Operands count register (Rnl , 0 5 n l s 7)
src2 indirect (disp = 0, 1, IRO, IR1)
dstl register (Rn2,O s n2 5 7)
src3 register (Rn3, 0 5 n3 r 7)
dsf2 indirect (disp = 0, 1, IRO, IR1)

Encoding

Description The seven least significant bits of the countoperand register are used to gen-
erate the two's complement shift count of up to 32 bits.

If the count operand is greater than 0, the src2 operand is left-shifted by the
value of the countoperand. Low-order bits shifted in are 0-filled, and high-ord-
er bits are shifted out through the C bit.

Arithmetic left-shift:

If the countoperand is less than 0, the src2operand is right-shifted by the ab-
solute value of the countoperand. The high-order bits of the src2operand are
sign-extended as it is right-shifted. Low-order bits are shifted out through the
C bit.

Arithmetic right-shift:

sign of src2 + src2 -. C

If the count operand is 0, no shift is performed, and the C bit is set to 0. The
count and dst operands are assumed to be signed integers.

All registers are read at the beginning and loaded at the end of the execute
cycle. This means that, if one of the parallel operations (STI) reads from a reg-
ister and the operation being performed in parallel (ASH3) writes to the same
register, ST1 accepts as input the contents of the register before it is modified
by the ASH3.

ParaNelASH3 and ST1 ASH311STI

If src2and dst2point to the same location, src2is read before the write to dst2.

Cycler

Status Bits

Mode Bit

Example

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N MSB of the output
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C Set to the value of the last bit shifted out. 0 for a shift count of 0.

OVM Operation is not affected by OVM bit value.

Before Instruction:

AR6 = 809900h
IR1 = 8Ch
R1 =OFFE8h=-24
RO = Oh
R5 = 35h = 53
AR2 = 8098A2h
Data at 809900h = OAEOOOOOOh
Data at 8098A2h = Oh
L U F L V U F N Z V C = O 0 0 0 0 0 0

After Instruction:

AR6 = 80998Ch
IR1 = 8Ch
R1 = OFFE8h = - 24
RO = OFFFFFFAEh
R5 = 35h = 53
AR2 = 8098A2h
Data at 809900h = OAEOOOOOOh
Data at 8098A2h = 35h = 53
L U F L V U F N Z V C = O 0 0 1 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Assembly Language Instructions 10-55

Syntax Bcond src

Operation If cond is true:
If src is in register-addressing mode (Rn, 0 s n s 27),

src -. PC.
If src is in PC-relative mode (label or address),

displacement + PC + 1 -. PC.
Else, continue.

Operands src conditional-branch addressing modes (B):
0 register
1 PC-relative

Encoding

. .
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

cond register or displacement

Description Bcondsignifies a standard branch that executes in four cycles. A branch is per-
formed if the condition is true (since a pipeline flush also occurs on a true condi-
tion; see Section 9.2 on page 9-4). If the src operand is expressed in register
addressing mode, the contents of the specified register are loaded into the PC.
If the srcoperand is expressed in PC-relative mode, the assembler generates
a displacement: displacement = label - (PC of branch instruction + 1). This dis-
placement is stored as a 16-bit signed integer in the 16 least significant bits
of the branch instruction word. This displacement is added to the PC of the
branch instruction plus 1 to generate the new PC.

The TMS320C3x provides 20 condition codes that you can use with this in-
struction (see Table 10-9 on page -1 3 for a list of condition mnemonics, condi-
tion codes and flags). Condition flags are set on a previous instruction only
when the destination register is one of the extended-precision registers (R7-
RO) or when one of the compare instructions (CMPF, CMPF3, CMPI, CMP13,
TSTB, or TSTB3) is executed.

Cycles

Status Bits

Mode Bit

10-56

LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

Branch Conditionally (Standard) Bcond

Example

Before Instruction:

After Instruction:

I 1

Note:

If a BZ instruction is executed immediately following a RND instruction with
a 0 operand, the branch is not performed, because the 0 flag is not set. To
circumvent this problem, execute a BZUF instead of a BZ instruction.

I I

Assembly Language Instructions

BcondD Branch Conditionally (Delayed)

Syntax Bcond D src

Operation If cond is true:
If src is in register-addressing mode (Rn, 0 s n s 27),

src -. PC.
If src is in PC-relative mode (label or address),

displacement + PC + 3 -. PC.
Else, continue.

Operands

Encoding

src conditional-branch addressing modes (B):
0 register
1 PC-relative

I I I I I I l l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i

0 1 1 0 1 O B cond register or displacement

Description Bcond D signifies a delayed branch that allows the three instructions after the
delayed branch to be fetched before the PC is modified. The effect is a single-
cycle branch, and the three instructions following Bcond D will not affect the
cond.

A branch is performed if the condition is true. If the src operand is expressed
in register-addressing mode, the contents of the specified register are loaded
into the PC. If the srcoperand is expressed in PC-relative mode, the assembler
generates a displacement: displacement = label - (PC of branch instruction
+ 3). This displacement is stored as a 16-bit signed integer in the 16 least sig-
nificant bits of the branch instruction. This displacement is added to the PC of
the branch instruction plus 3 to generate the new PC. The TMS320C3x pro-
vides 20 condition codes that you can use with this instruction (see Table 10-9
on page -1 3for a list of condition mnemonics, condition codes, and flags). Con-
dition flags are set on a previous instruction only when the destination register
is one of the extended-precision registers (R7-RO) or when one of the com-
pare instructions (CMPF, CMPF3, CMPI, CMP13, TSTB, or TSTB3) is ex-
ecuted.

Cycles

Status Bits

Mode Bit

10-58

LU F
LV
UF
N
z
v
C

OVM

Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected

Operation is not affected by OVM bit value.

Branch Conditionally (Delayed) Bcond D

Example BNZD 36 (3 6 * 24h)

Before lnstructlon:

Atter Instructlon:

Assembly Language Instructions 10-59

BR Branch Unconditionally (Standard)

Syntax BR src

Operation src -. PC or PC + disp 4 PC, where disp = src - (PC + 1)

Operands src long-immediate addressing mode

Encoding

3 1 24 23 16 15 8 7 - . - -- - .
1 1 1 1 1 1 I I I I I I I I I I I 1 1 I 1 1 I 1 1 1 1 1 1

0 1 1 0 0 0 0 disp

Description BR performs a PC-relative branch that executes in four cycles, since a pipeline
flush also occurs upon execution of the branch; see Section 9.2 on page 9-4.
An unconditional branch is performed. The src operand is assumed to be a
24-bit unsigned integer. Note that bit 24 = 0 for a standard branch.

Cycles 4

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value. Mode Bit

Example

Before Instruction:

After Instruction:

Branch Unconditionally (Delayed) B R D

Syntax BRD src

Operation src 4 PC

Operands src long-immediate addressing mode

Encoding

Description BRD signifies a delayed branch that allows the three instructions after the
delayed branch to be fetched before the PC is modified. The effect is a
single-cycle branch.

An unconditional branch is performed. The src operand is assumed to be a
24-bit unsigned integer. Note that bit 24 = 1 for a delayed branch.

Cycles

Status Bits

Mode Bit

Example

LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

BRD 2Ch

Before instruction:

After instruction:

Assembly Language lnstnrctions 10-61

Syntax CALL src

Operation Next PC -. *++SP
src + PC

Operands src long-immediate addressing mode

Encoding

Description A call is performed. The next PC value is pushed onto the system stack. The
src operand is loaded into the PC. The src operand is assumed to be a 24-bit
unsigned immediate operand.

Cycles 4

Status Bits LU F
LV
UF
N
z
v
C

OVM Mode Bit

Example

Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected

Operation is not affected by OVM bit value.

CALL 123456h

Before Instruction:

After Instruction:

PC = 123456h
SP = 809802h
Data at 809802h = 6h
L U F L V U F N Z V C = O 0 0 0 0 0 0

CALLcond Call Subroutine Conditionally

Example CALLNZ R5

Before Instruction:

After Instruction:

PC = 789h
SP = 809836h
R5 = 789h
Data at 809836h = 124h
L U F L V U F N Z V C = O O O 0 0 0 0

Compare Floating-Point C MPF

Syntax CMPF src, dst

Operation dst - src

Operands src general addressing modes (G):
0 0 register (Rn, 0 s n s 7)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 s n s 7)

Encoding

Description The src operand is subtracted from the dst operand. The result is not loaded
into any register, thus allowing for nondestructive compares. The dst and src
operands are assumed to be floating-point numbers.

Cycles

Status Bits

Mode Bit

Example

These condition flags are modified for all destination registers (R27-RO).
LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.

CMPF *+AR4,R6

Before Instruction:

AR4 = 8098F2h
R6 = 070C800000h = 1.4050et02
Data at 8098F3h = 070C8000h = 1.40508 + 02
L U F L V U F N Z V C = O O 0 0 0 0 0

After Instruction:

AR4 = 8098F2h
R6 = 070C800000h = 1.40508 + 02
Data at 8098F3h = 070C8000h = 1.40508 + 02
L U F L V U F N Z V C = O O O 0 1 0 0

Assembly Language Instructions 1 0-65

CM PF3 Compare Floating-Point, 3-Operand

Syntax CMPF3 src2, srcl

Operation src 1 - src2

Operands srcl three-operand addressing modes 0:
0 0 register (Rnl, 0 s n l r 7)
0 1 indirect (disp = 0, 1, IRO, IR1)
1 0 register (Rnl , 0 r n1 s 7)
1 1 indirect (disp = 0, 1, IRO, IRA)

src2 three-operand addressing modes (T):
0 0 register (Rn2, 0 s n2 r 7)
0 1 register (Rn2, 0 r n2 r 7)
1 0 indirect (disp = 0, 1, IRO, IR1)
1 1 indirect (disp = 0, 1, IRO, IR1)

Encoding

- -- . .
1 1 1 1 I I I I I I I I I I l l l l l r

0 0 0 1 1 0 T srcl src2
A

Description The src2operand is subtracted from the src1 operand. The result is not loaded
into any register, thus allowing for nondestructive compares. The srcl and
src2 operands are assumed to be floating-point numbers. Although this in-
struction has only two operands, it is designated as a three-operand instruc-
tion because operands are specified in the three-operand format.

Cycles 1

Status Bits These condition flags are modified for all destination registers (R27-RO).
LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

Mode Bit OVM Operation is not affected by OVM bit value.

Compare Floating- Point, 3-Operand C M PF3

Example

Before Instruction:

AR2 = 809831 h
AR3 = 809852h
Data at 809831 h = 77A7000h = 2.50448 t 02
Data at 809852h = 57A2000h = 6.2531258 t 01
L U F L V U F N Z V C = O 0 0 0 0 0 0

After Instruction:

AR2 = 809831 h
AR3 = 809851 h
Data at 809831 h = 77A7000h = 2.50448 t 02
Data at 809852h = 57A2000h = 6.2531 258 + 01
L U F L V U F N Z V C = O O O 1 0 0 0

I

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

I J

Assembly Language Instructions 10-67

CM PI Compare Integer

Syntax CMPl src, dst

Operation dst - src

Operands src general addressing modes (G):
0 0 register (Rn, 0 s n r 27)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 s n s 27)

Encodlng

Description The src operand is subtracted from the dstoperand. The result is not loaded
into any register, thus allowing for nondestructive compares. The dst and src
operands are assumed to be signed integers.

Cycles 1

Status Bits These condition flags are modified for all destination registers (R27-RO).
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

Mode Bit

Example

OVM Operation is not affected by OVM bit value.

CMPI R3,R7

Before Instruction:

After instruction:

Compare Integer, 3-Operand C M P 13

Syntax CMP13 src2, srcl

Operation srcl - src2

Operand8 srcl three-operand addressing modes 0:
0 0 register (Rnl, 0 r n l s 27)
0 1 indirect (disp = 0, 1, IRO, IR1)
1 0 register (Rnl , 0 r n l r 27)
1 1 indirect (disp = 0, 1, IRO, IR1)

src2 three-operand addressing modes 0:
0 0 register (Rn2,O s n2 r 27)
0 1 register (Rn2,O s n2 s 27)
1 0 indirect (disp = 0, 1, IRO, IR1)
1 1 indirect (disp = 0, 1, IRO, IR1)

Encoding

Description The src2operand is subtracted from the srcl operand. The result is not loaded
into any register, thus allowing for nondestructive compares. The srcl and
src2 operands are assumed to be signed integers. Although this instruction
has only two operands, it is designated as a three-operand instruction be-
cause operands are specified in the three-operand format.

Cycles

Status Bit8

Mode Bit

These condition flags are modified for all destination registers (R27-RO).
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer ovemow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

OVM Operation is not affected by OVM bit value.

Assembly Language Instructions 10-69

CM PI3 Compare Integer, 3-Operand

Example

Before Instruction:

After Instruction:

I 1

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

I I

Decrement and Branch Conditionally (Standard) DBcond

Syntax DBcond ARn, src

Operation ARn - 1 -. ARn
If cond is true and ARn r 0 :

If src is in register addressing mode (Rn, 0 s n s 27),
src -. PC.

If src is in PC-relative mode (label or address),
displacement + PC + 1 -, PC.

Else, continue.

Operands src conditional-branch addressing modes (B):
0 register
1 PC-relative

ARn register (0 s n 5 7)

Encoding

- . .- .- - .
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

cond register or displacement

Description DBcond signifies a standard branch that executes in four cycles because the
pipeline must be flushed if cond is true. The specified auxiliary register is de-
cremented and a branch is performed if the condition is true and the specified
auxiliary register is greater than or equal to 0. The condition flags are those set
by the last previous instruction that affects the status bits.

The auxiliary register is treated as a 24-bit signed integer. The most significant
eight bits are unmodified by the decrement operation. The comparison of the
auxiliary register uses only the 24 least significant bits of the auxiliary register.
Note that the branch condition does not depend on the auxiliary register decre-
ment.

If the src operand is expressed in register addressing mode, the contents of
the specified register are loaded into the PC. If the src operand is expressed
in PC-relative addressing mode, the assembler generates a displacement:
displacement = label - (PC of branch instruction + 1). This integer is stored as
a 1 &bit signed integer in the 16 least significant bits of the branch instruction
word. This displacement is added to the PC of the branch instruction plus 1 to
generate the new PC.

The TMS320C3x provides 20 condition codes that can be used with this in-
struction (see Table 10-9 on page -13 for a list of condition mnemonics, condi-
tion codes, and flags). Condition flags are set on a previous instruction only
when the destination register is one of the extended-precision registers
(R0-R7) or when one of the compare instructions (CMPF, CMPF3, CMPI,
CMP13, TSTB, or TSTB3) is executed.

Assembly Language Instructions 10-71

DBcond Decrement and Branch Condition

Cycles 4

Status Bits LU F
LV
UF
N
z
v
C

OVM Mode Bit

Example

Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected

Operation is not affected by OVM bit value.

CMPI 20O,R3
DBLT AR3,R2

Before Instruction:

After Instruction:

Decrement and Branch Conditionally (Delayed) DBcondD

Syntax DBcondD ARn, src

Operation ARn - 1 -. ARn
If cond is true and ARN r 0:

If src is in register addressing mode (Rn, 0 5 n 5 27)
src -. PC

If src is in PC-relative mode (label or address)
displacement + PC + 3 -. PC.

Else, continue.

Operands src conditional-branch addressing modes (B):
0 register
1 PC-relative

ARn register (0 s n r 7)

Encoding

3 1 24 23 16 15 8 7 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

register or displacement

Description DBcond D signifies a delayed branch that allows the three instructions after
the delayed branch to be fetched before the PC is modified. The effect is a
single-cycle branch. The specified auxiliary register is decremented, and a
branch is performed if the condition is true and the specified auxiliary register
is greater than or equal to 0. The condition flags are those set by the last pre-
vious instruction that affects the status bits. The three instructions following the
DBcondD do not affect the cond.

The auxiliary register is treated as a 24-bit signed integer. The most significant
eight bits are unmodified by the decrement operation. The comparison of the
auxiliary register uses only the 24 least significant bits of the auxiliary register.
Note that the branch condition does not depend on the auxiliary register decre-
ment.

If the src operand is expressed in register-addressing mode, the contents of
the specified register are loaded into the PC. If the src is expressed in PC-rela-
tive addressing, the assembler generates a displacement: displacement = la-
bel - (PC of branch instruction + 3). This displacement is added to the PC of
the branch instruction plus 3 to generate the new PC. Note that bit 21 = 1 for
a delayed branch.

Assembly Language Instructions 10-73

DBcondD Decrement and Branch Conditionally (Delayed)

The TMS320C3x provides 20 condition codes that you can use with this in-
struction (see Table 10-9 on page 10-13 for a list of condition mnemonics,
condition codes, and flags). Condition flags are set on a previous instruction
only when the destination register is one of the extended-precision registers
(R7-RO) or when one of the compare instructions (CMPF, CMPF3, CMPI,
CMPI3, TSTB, or TSTB3) is executed.

Cycles 1

Status Bits LUF
LV
UF
N
z
v
C

OVM Mode Bit

Example

Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected

Operation is not affected by OVM bit value.

CMP I 26h,R2
DBZD AR5, $+110h

Before Instruction:

After Instruction:

Floating-Point-to-Integer Conversion FIX

Syntax FIX src, dst

Operation fix(src) -. dst

Operands src general addressing modes (G):
0 0 register (Rn, 0 s n s 7)
0 1 direct
1 0 indirect
1 1 immediate

dst any CPU register

Encoding

," ," - . -
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

src

Description The floating-point operand src is converted to the nearest integer less than or
equal to it in value, and the result is loaded into the dst register. The srcoper-
and is assumed to be a floating-point number and the dst operand a signed
integer.

The exponent field of the result register (if it has one) is not modified.

Integer overflow occurs when the floating-point number is too large to be rep-
resented as a 32-bit two's complement integer. In the case of integer overflow,
the result will be saturated in the direction of overflow.

Cycles

Status Bits

Mode Bit

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.

Assembly Language Instructions 10-75

FIX Floating-Point-to-integer Conversion

Example FIX Rl,R2

Before Instruction:

After Instructlon:

Parallel FIX and ST1 FlXllSTl

Syntax FIX src2, dstl
1 1 ST1 src3, dst2

Operation fix(src2) -. dstl
11 src3 -+ dst2

Operands src2 indirect (disp = 0, 1, IRO, IR1)
dstl register (Rnl , 0 r n l r 7)
src3 register (Rn2, 0 r n2 r 7)
dst2 indirect (disp = 0, 1, IRO, IRI)

Encoding

Description A floating-point to integer conversion is performed. All registers are read at the
beginning and loaded at the end of the execute cycle. This means that, if one
of the parallel operations (STI) reads from a register, and the operation being
performed in parallel (FIX) writes to the same register, ST1 accepts as input the
contents of the register before it is modified by FIX.

31 24 23 16 15 8 7 0

If src2and dst2point to the same location, src2is read before the write to dst2.

Integer overflow occurs when the floating-point number is too large to be rep-
resented as a 32-bit two's complement integer. In the case of integer overflow,
the result will be saturated in the direction of overflow.

I

1 1

Cycles

Status Bits

1 1 1 1 1 1 1

ds12

Mode Bit

1 1 1 1 1 1 1 -

src2
1 1 1 1

0 1 0 1 0

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.

I I

dstl

Assembly Language Instructions 10-77

I I

0 0 0
I I

s r d

FlXllSTl Parallel FlXand ST1

Example FIX *++AFt4 (1) , R1
I 1 ST1 RO,*AR2

Before Instruction:

AR4 = 8098A2h
R1 = Oh
RO = ODCh = 220
AR2 = 80983Ch
Data at 8098A3h = 733C000h = 1.79508 + 02
Data at 80983Ch = Oh
L U F L V U F N Z V C = O O 0 0 0 0 0

After Instruction:

AR4 = 8098A3h
R1 = OB3h = 179
RO = ODCh = 220
AR2 = 80983Ch
Data at 8098A3h = 733C000h = 1.797508 + 02
Data at 80983Ch = ODCh = 220
L U F L V U F N Z V C = O O O 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Integer-to-floating-point Conversion FLOAT

Syntax FLOAT src, dst

Operation float (src) -. dst

Operands src general addressing modes (G):
0 0 register (Rn, 0 s n s 27)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 s n s 7)

Encoding

Description

31 24 23 16 15 8 7 0
I I 1 1 1 1 I I I I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Cycles

Status Bits

Mode Bit

Example

src

The integer operand srcis converted to the floating-point value equal to it, and
the result loaded into the dst register. The src operand is assumed to be a
signed integer, and the dst operand a floating-point number.

0 0 0

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
v 0
C Unaffected

G 0 0 1 0 1 1

OVM Operation is not affected by OVM bit value.

dst

FLOAT *++AR2(2),R5

Before Instruction:

AR2 = 809800h
R5 = 034C2000h = 1.27578125e + 01
Data at 809802h = OAEh = 174
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

AR2 = 809802h
R5 = 072E00000h = 1.74e + 02
Data at 809802h = OAEh = 174
L U F L V U F N Z V C = O O O 0 0 0 0

Assembly Language Instructions 10-79

FLOATllSTF Parallel FLOATand STF

Syntax FLOAT src2, dstl
11 STF src3, dst2

Operation float(src2) -. dstl
1 1 src3 -. dst2

Operands src2 indirect (disp = 0, 1, IRO, IRI)
dstl register (Rnl, 0 s n l s 7)
src3 register (Rn2, 0 s n2 3 7)
dst2 register (disp = 0, 1, IRO, IR1)

Encoding

Description An integer to floating-point conversion is performed. All registers are read at
the beginning and loaded at the end of the execute cycle. This means that if
one of the parallel operations (STF) reads from a register and the operation
being performed in parallel (FLOAT) writes to the same register, then STF ac-
cepts as input the contents of the register before it is modified by FLOAT.

If src2and dst2point to the same location, src2is read before the write to dsg.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
v 0
C Unaffected

Mode Bit OVM Operation is affected by OVM bit value.

Parallel FLOAT and STF FLOAT11 STF

Example FLOAT *+ARZ(IRO),R6
(I STF R7,*AR1

Before Instruction:

AR2 = 8098C5h
IRO = 8h
R6 = Oh
R7 = 034C200000h = 1.275781 258 t 01
AR1 = 809933h
Data at 8098CDh = OAEh = 174
Data at 809933h = Oh
L U F L V U F N Z V C = O O O 0 0 0 0

After Instructlon:

AR2 = 8098C5h
IRO = 8h
R6 = 072E000000h = 1.7408 + 02
R7 = 034C200000h = 1.275781258 t 01
AR1 = 809933h
Data at 8098CDh = OAEh = 174
Data at 809933h = 034C2000h = 1.275781258 t 01
L U F L V U F N Z V C = O O O 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Assembly Language Instructions 1 0-81

IACK Interrupt Acknowledge

Syntax IACK src
-

Operation Perform a dummy read operation with IACK = 0. -
At end of dummy read, set IACK to 1.

Operands src general addressing modes (G):
0 1 direct
1 0 indirect

Description

Encoding

3 1 24 23 16 15 8 7 0

Cycles

Status Bits

Mode Bit

Example

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

src
I I

0 0 0

-
A dummy read operation is performed. If off-chip memory is specified, IACK
is set to 0 at half H I cycle after the beginning of the decode phase of the iACK -
instruction. At the first half of the H I cycle of the dummy read, IACK is set to -
1. Because of a multicycle read, the IACK signal will not be extended. This in-
struction can be used to generate an external interrupt acknowledge. The
IACK signal and the address can be used to signal interrupt acknowledge to
external devices. The data read by the processor is unused.

LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

I I I I I

1 1 0 1 1 0

OVM Operation is not affected by OVM bit value.

IACK *AR5

1

G

Before Instruction:

1 1 1 1

0 0 0 0 0

IACK = 1
PC = 300h
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:
-
IACK = 1
PC = 301h
L U F L V U F N Z V C = O O O 0 0 0 0

ldle Until Interrupt l D LE

Syntax IDLE

Operation 1 - ST(GIE)
Next PC + PC
ldle until interrupt.

Operands None

Encoding

3 1

Descriptlon

Cycles

Status B i b

Mode Bit

Example

The global interrupt enable bit is set, the next PC value is loaded into the PC,
and the CPU idles until an interrupt is received. When the interrupt is received,
the contents of the PC are pushed onto the active system stack.

LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

IDLE ; The processor idles until a reset
; or unmasked interrupt occurs.

Assembly Language Instructions 10-83

IDLE2 Low-Power ldle

Syntax IDLE2 (TMS320LC31 Only)

Operation 1 4 ST(GIE)
Next PC 4 PC
ldle until interrupt.

Operands

Encoding

None

Description The IDLE2 instruction serves the same function as IDLE, except that it re-
moves the functional clock input from the internal device. This allows for ex-
tremely low power mode. The PC is incremented once, and the device remains
in an idle state until one of the external interrupts (INTO-3) is asserted.

In IDLE2 mode, the 'C31 will behave as follows:

0 The CPU, peripherals, and memory will retain their previous states.

0 When the device is in the functional (nonemulation) mode, the clocks will
stop with H1 high and H3 low.

0 The 'LC31 will remain in IDLE2 until one of the four external interrupts
(m-m) is asserted for at least two H1 cycles. When one of the four
interrupts is asserted, the clocks start after a delay of one H1 cycle. The
clocks can start up in the phase opposite that in which they were stopped
(that is, H1 might start high when H3 was high before stopping, and H3
might start high when H I was high before stopping.) However, the H1 and
H3 clocks remain 180" out of phase with each other.

IJ During IDLE2 operation, for one of the four external interrupts to be recog-
nized by the CPU and serviced, it must be asserted for at least two H1
cycles. For the processor to recognize only one interrupt when it restarts
operation, the interrupt must be asserted for less than three cycles.

0 When the 'LC31 is in emulation mode, the H1 and H3 clocks will continue
to run normally, and the CPU will operate as if an IDLE instruction had been
executed. The clocks continue to run for correct operation of the emulator.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit

Example

OVM Operation is not affected by OVM bit value.

IDLE2 ; The processor idlea until a reset
; or unmasked interrupt occurs.

Assembly Language Instructions 10-85

LDE Load Floating-Point Exponent

Syntax LDE src, dst

Operation src(exp) -. dsyexp)

Operands src general addressing modes (G):
0 0 register (Rn, 0 r n r 7)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 5 n 5 7)

Encoding

Description The exponent field of the src operand is loaded into the exponent field of the
dst register. No modification of the dst register mantissa field is made unless
the value of the exponent loaded is the resewed value of the exponent for 0
as determined by the precision of the src operand. Then the mantissa field of
the dst register is set to 0. The src and dst operands are assumed to be float-
ing-point numbers. Immediate values are evaluated in the short floating-point
format.

-

3 1 24 23 16 15 8 7 0

Cycles

Status Bits

I I

0 0 0

Mode Bit

Example

LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

I I I 1 I

0 0 1 1 0 1

LDE RO,R5

Before Instruction:

I

G

After instruction:

1 1 1 1

dst
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

src

Load Floating-Point LDF

Syntax LDF src, dst

Operation src -. dst

Operands src general addressing modes (G):
0 0 register (Rn, 0 s n s 7)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 s n r 7)

Encoding

Description The src operand is loaded into the dst register. The dst and src operands are
assumed to be floating-point numbers.

31 24 23 16 15 8 7 0

Cycles 1

Status Bite These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
v 0
C Unaffected

I I

0 0 0

Mode Bit

Example

1

G
1 1 1 1 1

0 0 1 1 1 0

OVM Operation is not affected by OVM bit value.

LDF @9800h,R2

I I I I

dst

Before instruction:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SIC -

DP = 80h
R2 = Oh
Data at 809800h = 10C52AOOh = 2.1 92543038 + 00
L U F L V U F N Z V C = O O O 0 0 0 0

After instruction:

DP = 80h
R2 = 01 OC52AOOh = 2,192543038 + 00
Data at 809800h = 10C52AOOh = 2.192543038 + 00
L U F L V U F N Z V C = O O O 0 0 0 0

Assembly Language Instructions 10-87

LDFcond Load Floating- Point Conditionally

Syntax LDFcond src, dst

Operation If cond is true:
src -. dst.

Else:
dst is unchanged.

Operands src general addressing modes (G):
0 0 register (Rn, 0 s n r 7)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 s n s 7)

Encoding

Description

31 24 23 16 15 8 7 0

Cycles

Status Bits

Mode Bit

10-88

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

src

If the condition is true, the srcoperand is loaded into the dstregister. otherwise,
the dst register is unchanged. The dst and src operands are assumed to be
floating-point numbers.

I l l

0 1 0 0

The TMS320C3x provides 20 condition codes that can be used with this in-
struction (see Table 10-9 on page 10-13 for a list of condition mnemonics,
condition codes, and flags). Note that an LDFU (load floating-point uncondi-
tionally) instruction is useful for loading R7-RO without affecting condition
flags. Condition flags are set on a previous instruction only when the destina-
tion register is one of the extended-precision registers (R7-RO) or when one
of the compare instructions (CMPF, CMPF3, CMPI, CMP13, TSTB, orTSTB3)
is executed.

I

G
I I I I

cond

LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

I I I I

dst

OVM Operation is not affected by OVM bit value.

Load Floating-Point Conditionally LDFcond

Example LDFZ R3,R5

Before Instruction:

Atter Instruction:

Assembly Language Instructions 10-89

LD Fl Load Floating-Point, interlocked

Syntax LDFl src, dst

Operation Signal interlocked operation
src + dst

Operands src general addressing modes (G):
0 1 direct
1 0 indirect

dst register (Rn, 0 s n s 7)

Encoding

Description The srcoperand is loaded into the dstregister. An interlocked operation is sig-
naled over XFO and XF1. The srcand dstoperands are assumed to be floating-
point numbers. Note that only direct and indirect modes are allowed. Refer to
Section 6.4 on page 6-12 for detailed description.

0 0 0

Cycles 1 if XF1 = 0 (See Section 6.4 on page 6-12)

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
v 0
C Unaffected

I 0 0 1 1 1 1

Mode Bit

Example

G dst I src

OVM Operation is not affected by OVM bit value.

LDFI *+ARZ,R7

Before instruction:

AR2 = 8098Fl h
R7 = Oh
Data at 8098F2h = 584C000h = - 6.28125e + 01
L U F L V U F N Z V C = O 0 0 0 0 0 0

After Instruction:

AR2 = 8098Fl h
R7 = 0584C00000h = - 6.281258 + 01
Data at 8098F2h = 584C000h = - 6.281258 + 01
L U F L V U F N Z V C = O O O 0 0 0 1

Parallel LDF and LDF LDFll LDF

Syntax LDF src2, dst2
11 LDF srcl, dstl

Operation src2 + dst2
11 srcl -. dstl

Operands srcl indirect (disp = 0, 1, IRO, IR1)
dstl register (Rnl, 0 s n l 5 7)
src2 indirect (disp = 0, 1, IRO, IR1)
dst2 register (Rn2,O s n2 s 7)

Encoding

Description Two floating-point loads are performed in parallel. If the LDFs load the same
register, the assembler issues a warning. The result is that of LDF src2, dst2.

31 24 23 16 15 8 7 0

Cycles 1

Status Bite LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

I

Mode Bit

1 1 1 1 1 I I

srcl

OVM Operation is not affected by OVM bit value.

1 1 1 1 1 1 1

wc2
I 1 1 1

1 1 0 0 0 1 0

Assembly Language Instructions 10-91

1 I

dsQ

LDFllLDF Parallel LDFand LDF

Example LDF *--MI(IRO) , R7
I I LDF *AR7++(1),R3

Before Instruction:

AR1 = 80985Fh
IRO = 8h
R7 = Oh
AR7 = 80988Ah
R3 = Oh
Data at 809857h = 70C8000h = 1.40508 + 02
Data at 80988Ah = 5784000h = 6.281 2500 + 01
L U F L V U F N Z V C = O O O O O O O

After Instruction:

AR1 = 809857h
RO = 8h
R7 = 070C800000h = 1.40508 + 02
AR7 = 80988Bh
R3 = 0578400000h = 6.281 2506 + 01
Data at 809857h = 70C8000h = 1.40508 + 02
Data at 80988Ah = 57B4000h = 6,2812500 + 01
L U F L V U F N Z V C = O 0 0 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Parallel LDFand STF LDFllSTF

Syntax LDF srcz', dstl
11 STF src3, dst2

Operation src2 -, dst 1
11 src3 - dst2

Operands src2 indirect (disp = 0, 1, IRO, IR1)
dstl register (Rnl, 0 r n l r 7)
src3 register (Rn2, 0 r n2 s 7)
dsf2 indirect (disp = 0, 1, IRO, IR1)

Encoding

Description A floating-point load and a floating-point store are performed in parallel.

If src2and dst2point to the same location, src2is read before the write to dst2.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM Operation is not affected by OVM bit value.

Assembly Language Instructions 10-93

Example LDF *ARZ-- (1) , R1
I I STF R3, *AR4++ (IR1)

Before Instruction:

AR2 = 8098E7h
R1 = Oh
R3 = 0578400000h = 6.281258 + 01
AR4 = 809900h
iR1 = 10h
Data at 8098E7h = 70C8000h = 1.40508 + 02
Data at 809900h = Oh
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

AR2 = 8098E6h
R1 = 070C800000h = 1.4050e + 02
R3 = 0576400000h = 6.281 258 + 01
AR4 = 80991 Oh
IR1 = 10h
Data at 8098E7h = 70C8000h = 1.40508 + 02
Data at 809900h = 57B4000h = 6.281 256 + 01
L U F L V U F N Z V C = O O O 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Load Integer LDI

Syntax LDI src, dst

Operation src + dst

Operands src general addressing modes (G):
0 0 any CPU register
0 1 direct
1 0 indirect
1 1 immediate

dst any CPU register

Encoding

Description

31 24 23 16 15 8 7 0

Cycles

Status Bits

Mode Bit

Example

1 1 1 1 1 1 1 1 1 1 1 ~ ~ 1 1

src

The src operand is loaded into the dst register. The dst and src operands are
assumed to be signed integers. An alternate form of LDI, LDP, is used to load
the data page pointer register (DP). See the LDP instruction and subsec-
tion 10.3.2 on page 10-1 6.

I I I I

dst

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
v 0
C Unaffected

I

G
I 1

0 0 0

OVM Operation is not affected by OVM bit value.

1 1 1 1 I

0 1 0 0 0 0

LDI *-ARl(IRO),RS

Before instruction:

AR1 = 2Ch
IRO = 5h
R5 = 3C5h = 965
Data at 27h = 26h = 38
L U F L V U F N Z V C = O 0 0 0 0 0 0

Assembly Language Instructions 10-95

After Instruction:

AR1 = 2Ch
IRO = 5h
R5 = 26h = 38
Data at 27h = 26h = 38
L U F L V U F N Z V C = O O O 0 0 0 0

Load Integer Conditionally LDlcond

Syntax LDlcond src, dst

Operation If cond is true:
src -. dst,

Operands

Else:
dst is unchanged.

src general addressing modes (G):

0 0 any CPU register
0 1 direct
1 0 indirect
1 1 immediate

dst any CPU register

Encoding

Description If the condition is true, the srcoperand is loaded into the dstregister. otherwise,
the dst register is unchanged. Regardless of the condition, the read of the src
takes place. The dst and src operands are assumed to be signed integers.

31 24 23 16 15 8 7 0

The TMS320C3x provides 20 condition codes that can be used with this in-
struction (see Table 10-9 on page 10-1 3 for a list of condition mnemonics,
condition codes, and flags). Note that an LDlU (load integer unconditionally)
instruction is useful for loading R7-RO without affecting the condition flags.
Condition flags are set on a previous instruction only when the destination reg-
ister is one of the extended-precision registers (R7-RO) or when one of the
compare instructions (CMPF, CMPF3, CMPI, CMP13, TSTB, or TSTB3) is ex-
ecuted.

Cycles

Status Bits

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

src
I l l 1 1 1 1

0 1 0 1 cond

Mode Bit

LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

I

G

OVM Operation is not affected by OVM bit value.

1 1 1 1

dst

Assembly Language Instructions 10-97

LDlcond Load Integer Conditionally

Example LDIZ *ARO++,R6

Before Instruction:

ARO = 8098FO
Data at 8098FOh = 027Ch = 636
R6 = OFE2h = 4,066
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

ARO = 8098Fl h
Data at 8098FOh = 027Ch = 636
R6 = OFE2h = 4,066
L U F L V U F N Z V C = O 0 0 0 0 0 0

Note: Auxiliary Register Arithmetic

The test condition does not affect the auxiliary register arithmetic. (AR
modification will always occur.)

Load Integer, Interlocked LDII

Syntax LDll src, dst

Operation Signal interlocked operation
src --. dst

Operands src general addressing modes (G):
0 1 direct
1 0 indirect

dst any CPU register

Encoding

Description The src operand is loaded into the dst register. An interlocked operation is sig-
naled over XFO and XF1. The srcand dstoperands are assumed to be signed
integers. Note that only the direct and indirect modes are allowed. Refer to
Section 6.4 on page 6-1 2 for detailed description.

3 1 24 23 16 15 8 7 0

Cycles

Status Bits

Mode Bit

Example

I 1

0 0 0

1 if XF = 0 (See Section 6.4 on page 6-1 2)

I

G
I I I I I

0 1 0 0 0 1

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
v 0
C Unaffected

OVM Operation is not affected by OVM bit value.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

dst SIC

LDII @985Fh,R3

Before instruction:

DP = 80
R3 = Oh
Data at 80985Fh = ODCh
L U F L V U F N Z V C = O O 0 0 0 0 0

After Instruction:

DP = 80
R3 = ODCH
Data at 80985Fh = ODCh
L U F L V U F N Z V C = O O O 0 0 0 0

Assembly Language Instructions 10-99

LDll lLDl Parallel LD1 and LDI

Syntax LDI src2, dst2
(1 LDI src1,dstl

Operation src2 -. dst2
11 srcl + dstl

Operands srcl indirect (disp = 0, 1, IRO, IR1)
dstl register (Rnl, 0 r n l r 7)
src2 indirect (disp = 0, 1, IRO, IR1)
dst2 register (Rn2, 0 r n2 r 7)

Encoding

Description Two integer loads are performed in parallel. A warning is issued by the assem-
bler if the LDls load the same register. The result is that of LDI src2, dst2.

31 24 23 16 15 8 7 0

Cycles 1

I

1 1

Statur Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit

I

1 1 1 1

0 0 0 1 1

OVM Operation is not affected by OVM bit value.

I I

dsrZ
I I

dstl
I I

0 0 0
1 1 1 1 1 1 1

srcl
I 1 1 1 1 1 1

src2

Parallel LDI and LDI LDlll LDl

Example LDI *-ARl(l),R7
I I LDI *AR7++(IRO),Rl

Before Instruction:

AR1 = 809826h
R7 = Oh
AR7 = 8098C8h
IRO = 10h
R1 = Oh
Data at 809825h = OFAh = 250
Data at 8098C8h = 2EEh = 750
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

AR1 = 809826h
R7=OFAh=250
AR7 = 8098D8h
IRO = 10h
R1 = 02EEh = 750
Data at 809825h = OFAh = 250
Data at 8098C8h = 2EEh = 750
L U F L V U F N Z V C = O O O 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Assembly Language Instructions 1 0-1 01

LDII [ST1 Parallel LD1 and ST1

Syntax LDI src2, dstl
)I ST1 src3, dst2

Operation src2 + dst 1
1) src3 - dst2

Operands src2 indirect (disp = 0, 1, IRO, IR1)
dstl register (Rnl , 0 s n l s 7)
src3 register (Rn2, 0 s n2 s 7)
dst2 indirect (disp = 0, 1, IRO, IR1)

Encoding

Description An integer load and an integer store are performed in parallel. If src2and dst2
point to the same location, src2 is read before the write to dst2.

3 1 24 23 16 15 87 0

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

1

1 1

Mode Bit

I I

dstl
1 1 1 1

0 1 1 0 1

OVM Operation is not affected by OVM bit value.

I I

0 0 0

I I

src3
I I I I I I I

ds12
1 1 1 1 1 1 1

src2

Parallel LDI and ST1 LDlllSTl

Example LDI *-ARl(l),R2
I I ST1 R7, *AR5++(IRO)

Before Instruction:

AR1 = 8098E7h
R2 = Oh
R7 = 35h = 53
AR5 = 80982Ch
IRO = 8h
Data at 8098E6h = ODCh = 220
Data at 80982Ch = Oh
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

AR1 = 8098E7h
R2 = ODCh = 220
R7 = 35h = 53
AR5 = 809834h
IRO = 8h
Data at 8098E6h = ODCh = 220
Data at 80982Ch = 35h = 53
L U F L V U F N Z V C = O 0 0 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Assembly Language instructions 10-1 03

Syntax LDM src, dst

Operation src (man) -. dst (man)

Operands src general addressing modes (G):
0 0 register (Rn, 0 s n s 7)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 5 n s 7)

Encoding
3 I

Description The mantissa field of the src operand is loaded into the mantissa field of the
dst register. The dst exponent field is not modified. The src and dst operands
are assumed to be floating-point numbers. If the srcoperand is from memory,
the entire memory contents are loaded as the mantissa. If immediate address-
ing mode is used, bits 15-1 2 of the instruction word are forced to 0 by the as-
sembler.

- . - . -- . - . - - .

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SIC

1 I

0 0 0

Mode Bit

Example

OVM Operation is not affected by OVM bit value.

I I I I I

0 1 0 0 1 0

LDM 156.75,R2 (156.75 = 071CC00000h)

Before Instruction:

I

G

After Instruction:

1 1 1 1

dst

Load Data Page Pointer LDP

Syntax LDP src, DP

Operation src -. data page pointer

Operand8 src is the 8 MSBs of the absolute 24-bit source address (src).
The ", DP" in the operand is optional.

Encoding

31

Description This pseudo-op is an alternate form of the LDUl instruction, except that LDP
is always in the immediate addressing mode. The src operand field contains
the eight MSBs of the absolute 24-bit src address (essentially, only
bits 23-1 6 of src are used). These eight bits are loaded into the eight LSBs
of the data page pointer.

The eight LSBs of the pointer are used in direct addressing as a pointer to the
page of data being addressed. There is a total of 256 pages, each page 64K
words long. Bits 31 -8 of the pointer are reserved and should be kept set to 0.

Cycles

Status Bits

Mode Bit

Example

LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

LDP @809900h, DP
or
LDP @809900h

Before Instruction:

After instruction:

Assembly Language lnstructions 10-1 05

Syntax LOPOWER (TMS320LC31 Only)

Operation H1/16+ H I

Operands None

Encoding

3 1 23

Description Device continues to execute instructions, but at the reduced rate of the CLKlN
frequency divided by 16 (that is, in LOPOWER mode, an 'LC31 with a CLKlN
frequency of 32 MHz will perform in the same way as a 2-MHz 'LC31, which
has an instruction cycle time of 1000 ns). This allowsfor low-power operation.

The 'LC31 CPU slows down during the read phase of the LOPOWER instruc-
tion. To exit the LOPOWER power-down mode, invoke the MAXSPEED
instruction (opcode = 1080 0000 h). The 'LC31 resumes full-speed operation
during the read phase of the MAXSPEED instruction.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit

Example

OVM Operation is not affected by OVM bit value.

LOPOWER ; The processor slows down operation to
; 1/16th of the H1 clock.

~ogical shirt LSH

Syntax LSH count, dst

Operation If count r 0:
dst << count + dst

Operands

Encoding

3 I

Else:
dst >> 1 count I -. dst

count general addressing modes (G):
0 0 any CPU register
0 1 direct
1 0 indirect
1 1 immediate

dst any CPU register

Description The seven least significant bits of the countoperand are used to generate the
two's complement shift count. If the count operand is greater than 0, the dst
operand is left-shifted by the value of the countoperand. Low-order bits shifted
in are 0-filled, and high-order bits are shifted out through the carry (C) bit.

- . -- .- . - - .

Logical left-shift:

If the countoperand is less than 0, the dstis right-shifted by the absolute value
of the countoperand. The high-order bits of the dstoperand are 0-filled as they
are shifted to the right. Low-order bits are shifted out through the C bit.

1

0 0 0

Logical right-shift:

0 -. dst-C

1 1 1 1

dst

If the count operand is 0, no shift is performed, and the C bit is set to 0. The
count operand is assumed to be a signed integer, and the dst operand is as-
sumed to be an unsigned integer.

l l l l l l l l l l r r l l l -

count
1 1 1 1 1

0 1 0 0 1 1

Assembly Language Instructions 10-1 07

I

G

LSH Logicel Shiff

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N MSB of the output.
Z 1 if a 0 output is generated; 0 otherwise
v 0
C Set to the value of the last bit shifted out. 0 for a shift count of 0.

Mode Bit

Example 1

Example 2

OVM Operation is not affected by OVM bit value.

LSH R4,R7

Before Instruction:

After Instruction:

R4 = 01 8h = 24
R7 = OACOOOOOOh
L U F L V U F N Z V C = O O O 1 0 1 0

LSH *-AR5(IRl),RS

Before Instruction:

AR5 = 809908h
IRO = 4h
R5 = 001 2C00000h
Data at 809904h = OFFFFFFF4h = -1 2
L U F L V U F N Z V C = O 0 0 0 0 0 0

After Instruction:

AR5 = 809908h
IRO = 4h
R5 = 000001 2C00h
Data at 809904h = OFFFFFFF4h = -1 2
L U F L V U F N Z V C = O O O 0 0 0 0

Logical Shift, 3-Operand LSH3

Syntax LSH3 count, src, dst

Operation If count r 0:
src << count -. dst

Else:
src >> 1 count I -. dst

Operands src three-operand addressing modes (T):
0 0 any CPU register
0 1 indirect (disp = 0, 1, IRO, IR1)
1 0 any CPU register
1 1 indirect (disp = 0, 1, IRO, IR1)

count three-operand addressing modes (T):
0 0 any CPU register
0 1 any CPU register
1 0 indirect (disp = 0, 1, IRO, IR1)
1 1 indirect (disp = 0, 1, IRO, IR1)

dst register (Rn, 0 s n s 27)

Encoding

Description The seven least significant bits of the count operand are used to generate the
two's complement shift count.

31 24 23 16 15 8 7 0

If the count operand is greater than 0, a copy of the src operand is left-shifted
by the value of the countoperand, and the result is written to the dst. (The src
is not changed.) Low-order bits shifted in are 0-filled, and high-order bits are
shifted out through the C (carry) bit.

Logical left-shift:

1 1 1 1 1 1 1 -

count

C + src + 0

If the countoperand is less than 0, the srcoperand is right-shifted by the abso-
lute value of the count operand. The high-order bits of the dst operand are O-
filled as they are shifted to the right. Low-order bits are shifted out through the
C bit.

I

T
1 1 1 1

dst
1 I

0 0 1

Logical right-shift:

I I I I I I I

src
I l l 1 1

0 0 1 0 0 0

0 + src -. C

If the count operand is 0, no shift is performed, and the C bit is set to 0. The
count operand is assumed to be a signed integer. The src and dst operands
are assumed to be unsigned integers.

Assembly Language Instructions 1 0- 1 09

LSH3 Logical Shiff, 3-Operand

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N MSB of the output.
Z 1 if a 0 output is generated; 0 otherwise
v 0
C Set to the value of the last bit shifted out. 0 for a shift count of 0.

Unaffected if dst is not R7-RO.

Mode Bit OVM Operation is not affected by OVM bit value.

Example 1 LSH3 R4,R7,R2

Before Instruction:

After Instruction:

R4=018h =24
R7 = 02ACh
R2 = OACOOOOOOh
L U F L V U F N Z V C = O 0 0 1 0 1 0

Example 2 LSH3 *-AR4(IR1)lR51R3

Before Instruction:

AR4 = 809908h
IR1 = 4h
R5 = 01 2C00000h
R3 = Oh
Data at 809904h = OFFFFFFF4h = -1 2
L U F L V U F N Z V C = O 0 0 0 0 0 0

Logical Shift, 3-Operand LSH3

After Instruction:

AR4 = 809908h
IR1 = 4h
R5 = 01 2C00000h
R3 = 000001 2C00h
Data at 809904h = OFFFFFFF4h = -1 2
LUFLV UF N Z V C = O 0 0 0 0 0 0

I
-- - -- -

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Assembly Language Instructions 1 0-1 1 1

LSH31 ISTI Parallel LSH3 and ST1

Syntax LSH3 count, src2, dstl
I (ST1 src3, dst2

Operation If count r 0:
src2 << count + dst 1

Else:
src2 >> 1 count (+ dst 1

I I src3 + dst2

count register (Rnl , 0 5 n l 5 7)
srcl indirect (disp = 0, 1, IRO, IR1)
dstl register (Rn3, 0 s n3 s 7)
src2 register (Rn4, 0 s n4 5 7)
dst2 indirect (disp = 0, 1, IRO, IR1)

Operands

Encoding

Description The seven least significant bits of the countoperand are used to generate the
two's complement shift count.

31 24 23 16 15 8 7 0

If the count operand is greater than 0, a copy of the src2operand is left-shifted
by the value of the count operand, and the result is written to the dstl. (The
src2is not changed.) Low-order bits shifted in are 0-filled, and high-order bits
are shifted out through the C (carry) bit.

I

1 1

Logical left-shift:

C + src2 + 0

If the countoperand is less than 0, the src2operand is right-shifted by the ab-
solute value of the count operand. The high-order bits of the dst operand are
0-filled as they are shifted to the right. Low-order bits are shifted out through
the C (carry bit).

1 1 1 1

0 1 1 1 0

Logical right-shift:

0 + src2- C

If the count operand is 0, no shift is performed, and the carry bit is set to 0.

I I

dstl

The countoperand is assumed to be a seven-bit signed integer, and the src2
and dstl operands are assumed to be unsigned integers. All registers are read
at the beginning and loaded at the end of the execute cycle. This means that
if one of the parallel operations (STI) reads from a register and the operation
being performed in parallel (LSH3) writes to the same register, ST1 accepts as
input the contents of the register before it is modified by the LSH3.

1 I

count
I I

src3
I I I I I I I r 1 1 1 1 1 1 .

dsl2 src2

Parallel LSH3 and ST1 LSH311STI

If src2and dst2point to the same location, src2is read before the write to dst2.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N MSB of the output.
Z 1 if a 0 output is generated; 0 otherwise
v 0
C Set to the value of the last bit shifted out. 0 for a shift wunt of 0.

OVM Operation is affected by OVM bit value. Mode Bit

Example 1

Before instruction:

R2= 18h =24
AR3 = 8098C2h
RO = Oh
R4 = ODCh = 220
AR5 = 8098A3h
Data at 8098C3h = OACh
Data at 8098A2h = Oh
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

R2 = 18h = 24
AR3 = 8098C3h
RO = OACOOOOOOh
R4 = ODCh = 220
AR5 = 8098A3h
Data at 8098C3h = OACh
Data at 8098A2h = ODCh = 220
L U F L V U F N Z V C = O O O 1 0 1 0

Assembly Language Instructions 1 0-1 1 3

LSH311STI Parallel LSH3 and ST1

Example 2 LSH3 R7 , *AR2-- (1) , R2
1 I ST1 ROI*+ARO(l)

Before Instruction:

R7=OFFFFFFF4h=-12
AR2 = 809863h
R2 = Oh
RO = 12Ch = 300
ARO = 8098B7h
Data at 809863h = 2C000000h
Data at 8098B8h = Oh
L U F L V U F N Z V C = O 0 0 0 0 0 0

After Instruction:

R7=OFFFFFFF4h=-12
AR2 = 809862h
R2 = 2C000h
RO= 12Ch =300
ARO = 8098B7h
Data at 809863h = 2C000000h
Data at 8098B8h = 12Ch = 300
L U F L V U F N Z V C = O O O 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Restore Clock to Regular Speed M M S P E E D

Syntax MAXSPEED

Operation H1/16-, H1

Operands None

Encoding

Description Exits LOPOWER power-down mode (invoked by LOPOWER instruction with
opcode 10800001 h). The 'LC31 resumes full-speed operation during the read
phase of the MAXSPEED instruction.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit

Example

OVM Operation is not affected by OVM bit value.

MAXSPEED ; The processor resumes full-speed operation.

Assembly Language Instructions 10-1 1 5

M PY F Multiply Floating Point

Syntax MPYF src, dst

Operation dst x src + dst

Operands src general addressing modes (G):
0 0 register (Rn, 0 5 n 5 7)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 s n s 7)

Encoding

Description The product of the dst and srcoperands is loaded into the dst register. The src
operand is assumed to be a single-precision floating-point number, and the dst
operand is an extended-precision floating-point number.

3 1 24 23 16 15 8 7 0

Cycles 1

Status

I 1

0 0 0

Bits These condition flags are modified only if the destination register is R7-RQ.
LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

I I I I I

0 1 0 1 0 0

Mode Bit

Example

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

src
1

G

OVM Operation is not affected by OVM bit value.

I I I I

dst

MPYF RO ,R2

Before Instruction:

After Instruction:

Multiply Floating Point, 3-Operand M PY F3

Syntax MPYF3 src2, srcl, dst

Operation srcl x src2 -. dst

Operands srcl three-operand addressing modes 0:
0 0 register (Rnl , 0 s n l s 7)
0 1 indirect (disp = 0, 1, IRO, IR1)
1 0 register (Rnl, 0 5 n l s 7)
1 1 indirect (disp = 0, 1, IRO, IR1)

src2 three-operand addressing modes (T):
0 0 register (Rn2, 0 r n2 r 7)
0 1 register (Rn2, 0 s n2 s 7)
1 0 indirect (disp = 0, 1, IRO, IRA)
1 1 indirect (disp = 0, 1, IRO, IR1)

dst register (Rn, 0 5 n 5 7)

Encoding

Description The product of the srcl and src2operands is loaded into the dst register. The
srcl and src2 operands are assumed to be single-precision floating-point
numbers, and the dstoperand is an extended-precision floating-point number.

3 1 24 23 16 15 87 0

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

l 1 1 1 1 1 1

src2

Mode Bit

I I I I I I I

srcl
I I

0 0 1

OVM Operation is not affected by OVM bit value.

Assembly Language Instructions 1 0-1 1 7

I I I I I

0 0 1 0 0 1
I

T
I l l 1

dst

M PY F3 Multiply Floating Point, 3-Operand

Example 1 MPYF3 ROIR7,R1

Before Instruction:

After Instruction:

Example 2

Before Instruction:

AR2 = 809800h
IRO = 12Ah
R7 = 057B400000h = 6.2812506 + 01
R2 = Oh
Data at 80992Ah = 70C8000h = 1.4050e + 02
L U F L V U F N Z V C = O 0 0 0 0 0 0

After Instruction:

AR2 = 809800h
IRO = 12Ah
R7 = 0578400000h = 6.281 250e + 01
R2 = OD09E4A000h = 8.8251 5625e + 03
Data at 80992Ah = 70C8000h = 1.4050e + 02
L U F L V U F N Z V C = O O O 0 0 0 0

1

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Parallel MPYF3 and ADDF3 MPYF3I IADDF3

Syntax MPYF3 srcA, srcB, dstl
/I ADDF3 srcC, srcD, dst2

Operation srcA x srcB .-. dst 1
11 srcC + srcD .-. dst2

Operands
Any two indirect (disp = O,1 ,IRO,IRl)
Any two register (0 s Rn s 7)

dst 1 register (d l) :
O=RO
1 =R1

dst2 register (d 4 :
0 = R2
1 = R3

src 1 register (Rn, 0 s n s 7)
src2 register (Rn, 0 s n s 7)
src3 indirect (disp = 0, 1, IRO, IR1)
src4 indirect (disp = 0, 1, IRO, IR1)

P parallel addressing modes (0 s P s 3)

Operation (P Field)

00 src3 x src4, srcl + src2
0 1 src3 x srcl, src4 + src2
10 srcl x src2, src3 + src4
11 src3 x src 1, src2 + src4

Encoding

0 0 0 0 P dl d2 srcl src2 src3 src4

Description A floating-point multiplication and a floating-point addition are performed in
parallel. All registers are read at the beginning and loaded at the end of the
execute cycle. This means that if one of the parallel operations (MPYF3) reads
from a register and the operation being performed in parallel (ADDF3) writes
to the same register, then MPYF3 accepts as input the contents of the register
before it is modified by the ADDF3.

Assembly Language Instructions 10-1 1 9

MPYF31 lADDF3 Parallel MPYF3 andADDF3

Any combination of addressing modes can be coded for the four possible
source operands as long as two are coded as indirect and two are register. The
assignment of the source operands srcA- srcD to the srcl - src4 fields
varies, depending on the combination of addressing modes used, and the P
field is encoded accordingly.

If src2and dsgpoint to the same location, src2is read before the write to dsf2.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 0
z 0
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

Mode Bit

Example

OVM Operation is not affected by OVM bit value.

Before Instruction:

AR5 = 8098C5h
AR1 = 8098A8h
IRO = 4h
RO = Oh
R5 = 0733C00000h = 1.797508 + 02
R7 = 070C800000h = 1.40508 + 02
R3 = Oh
Data at 8098C5h = 34C0000h = 1.27500 + 01
Data at 8098A4h = 11 10000h = 2.2656258 + 00
L U F L V U F N Z V C = O 0 0 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Parallel MPYF3 andADDF3 MPYFSIIADDF3

After Instruction:

AR5 = 8098C6h
AR1 = 8098A4h
IRO = 4h
RO = 04671 80000h = 2,888671 888 + 01
R5 = 0733C00000h = 1.797508 + 02
R7 = 070C800000h = 1.40508 + 02
R3=0820200000h =3.202508+02
Data at 8098C5h = 34C0000h = 1.27508 + 01
Data at 8098A4h = 11 10000h = 2.2656258 + 00
L U F L V U F N Z V C = O 0 0 0 0 0 0

Assembly Language Instructions 1 0- 1 2 1

MPYF3I 1STF Parallel MPYF3 and STF

Syntax MPYF3 src2, srcl, dst
1) STF src3, dst2

Operation src 1 x src2 -. dst 1
11 src3 -. dsf2

Operands srcl register (Rnl , 0 s n l s 7)
src2 indirect (disp = 0, 1, IRO, IR1)
dstl register (Rn3, 0 s n3 s 7)
src3 register (Rn4, 0 s n4 r 7)
dst2 indirect (disp = 0, 1, IRO, IR1)

Encoding

Description Afloating-point multiplication and afloating-point store are performed in paral-
lel. All registers are read at the beginning and loaded at the end of the execute
cycle. This means that if one of the parallel operations (MPYF3) writes to a reg-
ister and the operation being performed in parallel (STF) reads from the same
register, the STF accepts as input the contents of the register before it is modi-
fied by the MPYF3.

3 1 24 23 16 15 8 7 0

If src2and dst2point to the same location, src2is read before the write to dsg.

Cycles

Status Bits

I 1 1 1 1 1 1

src2

Mode Bit

I

1 1

These condition flags are modified only if the destination register is R7-RO.
LUF 1 if a floating-point underflow occurs; 0 unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

I I

sml

OVM Operation is not affected by OVM bit value.

1 1 1 1

0 1 1 1 1
I I

src3
I I

dsfl
1 1 1 1 I I l

ds12

Parallel MPYF3 and STF MPYF311STF

Example MPYF3 *-AR2(1)lR71R0

I I STF R3 *ARO-- (IRO)

Before Instruction:

AR2 = 80982Bh
R7 = 057B400000h = 6.281 2508 + 01
RO = Oh
R3 = 086B280000h = 4.7031 2508 + 02
ARO = 809860h
IRO = 8h
Data at 80982Ah = 70C8000h = 1.40508 + 02
Data at 809860h = Oh
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

AR2 = 80982Bh
R7 = 057B400000h = 6.2812508 + 01
RO = OD09E4A000h = 8.8251 56258 + 03
R3 = 086B280000h = 4.7031 2508 + 02
ARO = 809858h
IRO = 8h
Data at 80982Ah = 70C8000h = 1.40508 + 02
Data at 809860h = 86B280000h = 4.70312508 + 02
L U F L V U F N Z V C = O 0 0 0 0 0 0

r

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Assembly Language Instructions 1 0-1 23

MPYF3I ISU BF3 Parallel MPYF3 and SUBF3

Syntax MPYF3 srcA, srcB, dstl
1 1 SUBF3 srcC,srcD,dst2

Operation srcA x srcB -. dstl
I I srcD - srcC -. dst2

Operands :"_1 Any~ind i rec t (d i~p=O,1~ IRO, lR l)
srcC Any two register (0 5 Rn 5 7)
srcD

dst 1 register (d 1) :
0 = RO
1 =R1

dst2 register (d 4 :
0 = R2
1 =R3

src 1 register (Rn, 0 r n s 7)
src2 register (Rn, 0 r n r 7)
src3 indirect (disp = 0, 1, IRO, IR1)
src4 indirect (disp = 0, 1, IRO, IR1)

P parallel addressing modes (0 r P r 3)

Operation (P Field)

00 sfC3 x srC4, s f ~ l - S ~ C Z
0 1 src3 x src 1, src4 - src2
10 src 1 x src2, src3 - src4
11 src3 x src 1, src2 - src4

Encoding

Description A floating-point multiplication and a floating-point subtraction are performed
in parallel. All registers are read at the beginning and loaded at the end of the
execute cycle. This means that if one of the parallel operations (MPYF3) reads
from a register and the operation being performed in parallel (SUBF3) writes
to the same register, MPYF3 accepts as input the contents of the register be-
fore it is modified by the SUBF3.

1 0 0 0 0 1 P d l d 2 srcl src2 src3 s f 4

Parallel MPYF3 and SUBF3 MPYF311SUBF3

Any combination of addressing modes can be coded for the four possible
source operands as long as two are coded as indirect and two are coded regis-
ter. The assignment of the source operands srcA - srcD to the srcl - src4
fields varies, depending on the combination of addressing modes used, and
the P field is encoded accordingly.

Cycles

Statue Bits

Mode Bit

Example

These condition flags are modified only if the destination register is R7-RO.
LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 0
z 0
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.

Before Instruction:

R5 = 034C000000h = 1.27508 + 01
AR7 = 809904h
lR1 = 8h
RO = Oh
R7 = 0733C00000h = 1.797508 + 02
AR3 = 8098B2h
R2 = Oh
Data at 80990Ch = 11 10000h = 2.2508 + 00
Data at 8098B2h = 70C8000h = 1.40508 + 02
L U F L V U F N Z V C = O 0 0 0 0 0 0

Assembly Language Instructions 1 0-1 25

After Instruction:

R5 = 034C000000h = 1.27506 + 01
AR7 = 80990Ch
IR1 = 8h
RO = 04671 80000h = 2.888671 888 + 01
R7 = 0733C00000h = 1.797508 + 02
AR3 = 8098Bl h
R2 = 05E3000000h = - 3.92508 + 01
Data at 80990Ch = 11 10000h = 2.2508 + 00
Data at 8098B2h = 70C8000h = 1.40508 + 02
L U F L V U F N Z V C = O O 0 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Multiply Integer M PY l

Syntax MPYl src, dst

Operation dst x src -+ dst

Operands src general addressing modes (G):
0 0 any CPU register
0 1 direct
1 0 indirect
1 1 immediate

dst any CPU register

Description The product of the dstand srcoperands is loaded into the dstregister. The src
and dstoperands, when read, are assumed to be 24-bit signed integers. The
result is assumed to be a 48-bit signed integer. The output to the dst register
is the 32 least significant bits of the result.

Encoding
3 1 24 23 16 15 8 7 0

lnteger overflow occurs when any of the most significant 16 bits of the 48-bit
result differs from the most significant bit of the 32-bit output value.

Cycles

Status Bits

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

src
1 I

0 0 0

Mode Bit

Example

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C Unaffected

I I I I I

0 1 0 1 0 1

OVM Operation is affected by OVM bit value.

MPYI Rl,R5

I

G

Before Instruction:

1 1 1 1

dst

After instruction:

Assembly Language Instructions 1 0-1 27

M PY 13 Multiply Integer, 3-Operand

syntax MPYi3 src2, srcl, dst

Operation src 1 x src2 + dst

Operands srcl three-operand addressing modes 0:
0 0 any CPU register
0 1 indirect (disp = 0, 1, IRO, IR1)
1 0 any CPU register
1 1 indirect (disp = 0, 1, IRO, IR1)

src2 three-operand addressing modes 0:
0 0 any CPU register
0 1 any CPU register
1 0 indirect (disp = 0, 1, IRO, IR1)
1 1 indirect (disp = 0, 1, IRO, IR1)

dst register (Rn, 0 r n r 27)

Encoding

Description The product of the srcl and src2 operands is loaded into the dst register. The
srcl and src2 operands are assumed to be 24-bit signed integers. The result
is assumed to be a signed 48-bit integer. The output to the dst register is the
32 least significant bits of the result.

3 1 24 23 16 15 8 7 0

Integer overflow occurs when any of the most significant 16 bits of the 48-bit
result differs from the most significant bit of the 32-bit output value.

1 1 1 1 1

0 0 1 0 1 0

Cycles

Status Bits

Mode Bit

I

T

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C Unaffected

OVM Operation is affected by OVM bit value.

I I I I

dst
I I I I I I I

srcl
1 1 1 1 1 1 1 -

src2

Multiply Integer, 3-Operand M PY 13

Example 1 MPYI3 *AR4t*-AR1(1)IR2

Before Instruction:

AR4 = 809850h
AR1 = 8098F3h
R2 = Oh
Data at 809850h = OADh = 173
Data at 8098F2h = ODCh = 220
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

AR4 = 809850h
AR1 = 8098F3h
R2 = 094ACh = 38,060
Data at 809850h = OADh = 173
Data at 8098F2h = ODCh = 220
L U F L V U F N Z V C = O 0 0 0 0 0 0

Example 2

Before Instruction:

AR4 = 8099F8h
IRO = 8h
R2 = OC8h = 200
R7 = Oh
Data at 8099FOh = 32h = 50
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

AR4 = 8099FOh
IRO = 8h
R2 = OC8h = 200
R7 = 0271 Oh = 10,000
Data at 8099FOh = 32h = 50
L U F L V U F N Z V C = O O O 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Assembly Language Instructions 1 0-1 29

MPY131 !ADD13 Parallel MPY13 andADDI3

Syntax MPY13 srcA, srcB, dstl
) I ADD13 srcC, srcD, dst2

Operation srcA x srcB -. dstl
(1 srcD + srcC + dst2

dst 1 register (d l) :
0 = RO
1 =R1

Operands srcA
srcB
srcC

dst2 register (dZ):
0 = R2
1 =R3

Any two indirect (disp = O,1 ,IRO,IR1)
Any two register (0 s Rn s 7)

src 1 register (Rn, 0 s n s 7)
src2 register (Rn, 0 s n s 7)
src3 indirect (disp = 0, 1, IRO, IR1)
src4 indirect (disp = 0, 1, IRO, IR1)

P parallel addressing modes (0 s P s 3)

Operation (P Field)

00 src3 x src4, src 1 + src2
0 1 src3 x srcl, src4 + src2
10 srcl x src2, src3 + src4
11 src3 x src 1, src2 + src4

Encoding

Description An integer multiplication and an integer addition are performed in parallel. All
registers are read at the beginning and loaded at the end of the execute cycle.
This means that if one of the parallel operations (MPY13) reads from a register
and the operation being performed in parallel (ADD13) writes to the same reg-
ister, then MPY13 accepts as input the contents of the register before it is modi-
fied by the ADD13.

31 24 23 16 15 8 7 0
I

1 0 d l d 2
I l l

0 0 1 0
I I

srcl
I

P
I I

src2
1 1 1 l I l

srd3
I 1 1 1 1 1 1

sf04

Parallel MPY13 and ADD13 MPY13J IADD13

Any combination of addressing modes can be coded for the four possible
source operands as long as lwo are coded as indirect and two are coded as
register. The assignment of the source operands srcA -srcD to the
srcl - src4fields varies, depending on the combination of addressing modes
used, and the P field is encoded accordingly. To simplify processing when the
order is not significant, the assembler may change the order of operands in
commutative operations.

Cycler

Status Bits

Mode Bit

Example

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 0
z 0
V 1 if an integer overflow occurs; 0 otherwise
C Unaffected

OVM Operation is affected by OVM bit value.

Before Instruction:

R7 = 14h = 20
R4= 64h = 100
RO = Oh
AR3 = 80981 Fh
AR5 = 80996Eh
R3 = Oh
Data at 80981 Eh = OFFFFFFCBh = - 53
Data at 80996Eh = 35h = 53
L U F L V U F N Z V C = O O O 0 0 0 0

Assembly Language Instructions 1 0- 1 3 1

MPY1311ADDI3 Parallel MPY13 and ADD13

After Instruction:

R7= 14h 520
R4 = 64h = 100
RO = 07DOh = 2000
AR3 = 80981 Fh
AR5 = 80996Dh
R3 = Oh
Data at 80981 Eh = OFFFFFFCBh = - 53
Data at 80996Eh = 35h = 53
L U F L V U F N Z V C = O O O 0 0 0 0

t i

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

1 I

Parallel MPYI3 and ST1 MPY131JSTI

Syntax MPYl3 src2, src 1, dstl
11 ST1 src3, dst2

Operation src 1 x src2 -. dst 1
11 src3 -+ dst2

Operands srcl register (Rnl , 0 5 n l r 7)
src2 indirect (disp = 0, 1, IRO, IR1)
dstl register (Rn3, 0 r n3 s 7)
src3 register (Rn4, 0 r n4 r 7)
dst2 indirect (disp = 0, 1, IRO, IR1)

Encoding

Description An integer multiplication and an integer store are performed in parallel. All reg-
isters are read at the beginning and loaded at the end of the execute cycle. This
means that if one of the parallel operations (STI) reads from a register and the
operation being performed in parallel (MPY13) writes to the same register, ST1
accepts as input the contents of the register before it is modified by the MPY13.

3 1 24 23 16 15 8 7 0

If src2and dst2point to the same location, src2is read before the write to dst2.

Integer overflow occurs when any of the most significant 16 bits of the 48-bit
result differ from the most significant bit of the 32-bit output value.

1 1 1 1 1 1 1 -

src2
I

1 1

Cycles

Status Bits

Mode Bit

1 1 1 1

1 0 0 0 0

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C Unaffected

OVM Operation is affected by OVM bit value.

Assembly Language Instructions 1 0-1 33

I I

dstl
I I

sf&
I I

srcl
1 1 1 1 1 1 1

dsQ

MPY13I ISTI Parallel MPY13 and ST1

Example

Before Instruction:

ARO = 80995Ah
R5 = 32h = 50
R7 = Oh
R2 = ODCh = 220
AR3 = 80982Fh
Data at 80995Bh = OC8h = 200
Data at 80982Eh = Oh
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

ARO = 80995Bh
R5 = 32h = 50
R7 = 2710h = 10000
R2 = ODCh = 220
AR3 = 80982Fh
Data at 80995Bh = OC8h = 200
Data at 80982Eh = ODCh = 220
L U F L V U F N Z V C = O 0 0 0 0 0 0

I

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Parallel MPYI3 and SUB13 MPY1311SUB13

Syntax MPY13 srcA, srcB, dstl
11 SUB13 srcC, srcD, dst2

Operation srcA x srcB -. dst 1
I I srcD - srcC - dst2

Operands

dst 1 register (dl):
O=RO
1 =R1

srcA
srcB
srcC
srcD

dst2 register (d2):
O=R2
1 =R3

Any two indirect (disp = O,1 ,IRO,IRl)
Any two register (0 s Rn s 7)

src 1 register (Rn, 0 s n s 7)
src2 register (Rn, 0 s n s 7)
src3 indirect (disp = 0, 1, IRO, IR1)
src4 indirect (disp = 0, 1, IRO, IR1)

P parallel addressing modes (0 r P s 3)

Operation (P Field)

00 src3 x src4, srcl - src2
0 1 src3 x src 1, src4 - src2
10 src 1 x src2, src3 - src4
11 src3 x src 1, src2 - src4

Encoding

Description An integer multiplication and an integer subtraction are performed in parallel.
All registers are read at the beginning and loaded at the end of the execute
cycle. This means that if one of the parallel operations (MPY13) reads from a
register and the operation being performed in parallel (SUB13) writes to the
same register, MPY13 accepts as input the contents of the register before it is
modified by the SUB13.

31 24 23 16 15 8 7 0

Assembly Language Instructions 1 0-1 35

I

d l d
I I I

1 0 0 0 1 1
1

P
1 1 1 1 1 1

src3
I I I I I I I

wc4

Any combination of addressing modes can be coded for the four possible
source operands as long as two are coded as indirect and two are coded as reg-
ister. The assignment of the source operands srcA - srcD to the srcl - src4
fields varies, depending on the combination of addressing modes used, and the
P field is encoded accordingly. To simplify processing when the order is not sig-
nificant, the assembler may change the order of operands in commutative op-
erations.

Integer overflow occurs when any of the most significant 16 bits of the 48-bit
result differs from the most significant bit of the 32-bit output value.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 1 if an integer underflow occurs; 0 otherwise
N 0
z 0
V 1 if an integer overflow occurs; 0 otherwise
C Unaffected

Mode Bit

Example

OVM Operation is affected by OVM bit value.

Before Instruction:

R2 = 32h = 50
ARO = 8098E3h
RO = Oh
AR5 = 8099FCh
IR1 = OCh
R4 = 07DOh = 2000
Data at 8098E4h = 62h = 98
Data at 8099FCh = 4BOh = 1200
L U F L V U F N Z V C = O O O 0 0 0 0

Parallel MPYI3 and SUB13 MPY1311SUB13

After Instruction:

R2 = 320h = 800
ARO = 8098E4h
RO = 01324h = 4900
AR5 = 8099FOh
IR1 = OCh
R4=07DOh=2000
Data at 8098E4h = 62h = 98
Data at 8099FCh = 4BOh = 1200
L U F L V U F N Z V C = O 0 0 0 0 0 0

I i

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

I I

Assembly Language Instructions 1 0-1 37

N EG B Negative I n a e r With Borrow

Syntax NEGB src, dst

Operation 0 - src- C -. dst

Operands src general addressing modes (G):
0 0 any CPU register
0 1 direct
1 0 indirect
1 1 immediate

dst any CPU register

Encoding

Description The difference of the 0, src, and C operands is loaded into the dstregister. The
dst and src are assumed to be signed integers.

0 0 0

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

0 1 0 1 1 0 G

Mode Bit

Example

OVM Operation is affected by OVM bit value.

dst

NEGB R5,R7

src

Before Instruction:

R5 = OFFFFFFCBh = - 53
R7 = Oh
L U F L V U F N Z V C = O O O 0 0 0 1

After Instruction:

R5 = OFFFFFFCBh = - 53
R7 = 34h = 52
L U F L V U F N Z V C = O O O 0 0 0 1

Negate Floating Point N EG F

Syntax NEGF src, dst

Operation 0 - src -. dst

Operands src general addressing modes (G):
0 0 register (Rn, 0 s n s 7)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 s n s 7)

Encoding

Description The difference of the 0 and src operands is loaded into the dst register. The
dst and src operands are assumed to be floating-point numbers.

3 1 24 23 16 15 8 7 0

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 '

src

Mode Bit

Example

I I

0 0 0

OVM Operation is affected by OVM bit value.

I

G
I I I I I

0 1 0 1 1 1

NEGF *++AR3(2),R1

1 1 1 1

dst

Before Instruction:

AR3 = 809800h
R1 = 0578400025h = 6.281 25006e t 01
Data at 809802h = 70C8000h = 1.4050e + 02
L U F L V U F N Z V C = O O 0 0 0 0 0

After instruction:

AR3 = 809802h
R1 = 07F3800000h = -1.4050e + 02
Data at 809802h = 70C8000h = 1.4050e t 02
L U F L V U F N Z V C = O O O 0 0 0 0

Assembly Language Instructions 1 0-1 39

NEGFllSTF Parallel NEGFand STF

Syntax NEGF src2, dstl
1) STF srC3, dst2

Operation 0 - src2 -* dst 1
11 srC3 --. dst2

Operands src2 indirect (disp = 0, 1, IRO, IR1)
dstl register (Rnl , 0 r n l r 7)
src3 register (Rn2, 0 r n2 r 7)
dst2 indirect (disp = 0, 1, IRO, IR1)

Encoding

Description A floating-point negation and a floating-point store are performed in parallel.
All registers are read at the beginning and loaded at the end of the execute
cycle. This means that if one of the parallel operations (STF) reads from a reg-
ister and the operation being performed in parallel (NEGF) writes to the same
register, STF accepts as input the contents of the register before it is modified
by the NEGF.

If src2and dst2point to the same location, src2is read before the write to dst2

Cycles

Status Bits

Mode Bit

These condition flags are modified only if the destination register is R7-RO.
LUF 1 if a floating-point underflow occurs; 0 unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.

Parallel NEFG and STF NEGFllSTF

Example NEGF *AR4-- (1) , R7
1 1 STF RZ,*++AR5(1)

Before Instruction:

AR4 = 8098El h
R7 = Oh
R2 = 0733C00000h = 1.797508 + 02
AR5 = 809803h
Data at 8098El h = 578400000h = 6.281 2508 + 01
Data at 809804h = Oh
L U F L V U F N Z V C = O O 0 0 0 0 0

After Instruction:

AR4 = 8098EOh
R7 = 0584C00000h = - 6.2812508 + 01
R2 = 0733C00000h = 1.797508 + 02
AR5 = 809804h
Data at 8098El h = 5784000h = 6.281 2508 + 01
Data at 809804h = 733C000h = 1,797508 + 02
L U F L V U F N Z V C = O O O 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Assembly Language Instructions 1 0-1 41

NEGl Negate Integer

Syntax NEGl src, dst

Operation 0 - src -. dst

Operands src general addressing modes (G):
0 0 any CPU register
0 1 direct
1 0 indirect
1 1 immediate

dst any CPU register

Encoding

Description The difference of the 0 and src operands is loaded into the dst register. The
dst and src operands are assumed to be signed integers.

3 1 24 23 16 15 8 7 0

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

Mode Bit

Example

1 1 1 1

dst
I

G
I I

0 0 0

OVM Operation is affected by OVM bit value.

1 1 1 l 1 1 1 1 1 1 1 1 1 1 1

src
1 1 1 1 1

0 1 1 0 0 0

NEGI 174,R5 (174 = OAEh)

Before Instruction:

R5 = ODCh = 220
L U F L V U F N Z V C = O O 0 0 0 0 0

After Instruction:

Parallel NEGI and ST1 NEGll lSTl

Syntax NEGI src2,dstl
11 ST1 src3,dsQ

Operation 0 - src2 + dst 1
11 src3 -. dst2

Operands src2 indirect (disp = 0, 1, IRO, IR1)
dstl register (Rnl , 0 r n l r 7)
src3 register (Rn2,O r n2 r 7)
dst2 indirect (disp = 0, 1, IRO, IR1)

Encoding

Descrlptlon An integer negation and an integer store are performed in parallel. All registers
are read at the beginning and loaded at the end of the execute cycle. This
means that if one of the parallel operations (STI) reads from a register and the
operation being performed in parallel (NEGI) writes to the same register, then
ST1 accepts as input the contents of the register before it is modified by the
NEGI.

If src2and dst2point to the same location, src2is read before the write to dst2.

Cycles

Status Bits

Mode Bit

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

OVM Operation is affected by OVM bit value.

Assembly Language Instructions 1 0- 1 43

NEGll lSTl Parallel NEGI and ST1

Example NEGI *-AR3,RZ
I I ST1 R2, *ARl++

Before Instruction:

AR3 = 80982Fh
R2= 19h =25
AR1 = 8098A5h
Data at 80982Eh = ODCh = 220
Data at 8098A5h = Oh
L U F L V U F N Z V C = O O 0 0 0 0 0

After Instruction:

AR3 = 80982Fh
R2 = OFFFFFF24h = - 220
AR1 = 8098A6h
Data at 80982Eh = ODCh = 220
Data at 8098A5h = 19h = 25
L U F L V U F N Z V C = O O O 1 0 0 1

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

NO operation NOP

Syntax NOP src

Operation No ALU or multiplier operations.
ARn is modified if src is specified in indirect mode.

Operands src general addressing modes (G):
0 0 register (no operation)
1 0 indirect (modify ARn, 0 s n s 7)

Encoding

Description If the src operand is specified in the indirect mode, the specified addressing
operation is performed, and a dummy memory read occurs. If the srcoperand
is omitted, no operation is performed.

Cycles

Status Blts

Mode Bit

Example 1

Example 2

LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

NOP

Before Instruction:

After instruction:

NOP *AR3-- (1)

Before Instruction:

After instruction:

Assembly Language Instructions 1 0-1 45

N 0 R M Normalize

Syntax NORM src, dst

Operation norm (src) -. dst

Operands src general addressing modes (G):
0 0 register (Rn, 0 s n s 7)
0 1 direct
1 0 indirect
1 1 immediate

Encoding

Description The srcoperand is assumed to be an unnormalized floating-point number; that
is, the implied bit is set equal to the sign bit. The dst is set equal to the normal-
ized src operand with the implied bit removed. The dst operand exponent is
set to the src operand exponent minus the size of the left-shift necessary to
normalize the src. The dst operand is assumed to be a normalized floating-
point number.

3 1 24 23 16 15 8 7 0

If src (exp) = -1 28 and src (man) = 0, then dst= 0, Z = 1, and UF = 0. If src (exp)
= -1 28 and src (man) z 0, then dst = 0, Z = 0, and UF = 1. For all other cases
of the src, if a floating-point underflow occurs, then dst (man) is forced to 0 and
dst (exp) = -1 28. If src (man) = 0, then dst (man) = 0 and dst (exp) = -1 28. Re-
fer to Section 4.6 on page 4-1 8 for more information.

Cycles 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

src

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV Unaffected
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
v 0
C Unaffected

-
I I

0 0 0

Mode Bit

I

G
I I I I I

0 1 1 0 1 0

OVM Operation is not affected by OVM bit value.

1 1 1 1

dst

Normalize NORM

Example

Before Instruction:

After Instruction:

Assembly Language Instructions 1 0-1 47

NOT Bitwise Logical-Complement

Syntax NOT src, dst

Operation -src -, dst

Operands src general addressing modes (G):
0 0 any CPU register
0 1 direct
1 0 indirect
1 1 immediate

dst any CPU register

Encoding

Description

31 24 23 16 15 8 7 0

Cycles

Status Bits

I I I I I

0 1 1 0 1 1

Mode Bit

Example

The bitwise logical-complement of the srcoperand is loaded into the dstregis-
ter. The complement is formed by a logical-NOT of each bit of the srcoperand.
The dst and src operands are assumed to be unsigned integers.

1

G

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 result is generated; 0 otherwise
v 0
C Unaffected

OVM Operation is affected by OVM bit value.

1 1 1 1

dst

NOT @982Ch,R4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

src

Before Instruction:

DP = 80h
R4 = Oh
Data at 80982Ch = 5E2Fh
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

DP = 80h
R4 = OFFFFA1 Doh
Data at 80982Ch = 5E2Fh
L U F L V U F N Z V C = O O O 1 0 0 0

Parallel NOTand ST1 NOTllSTl

Syntax NOT src2, dstl
I(STi src3, dst2

Operation -src2 -, dstl
11 src3-. dst2

Operands src2 indirect (disp = O,1, IRO, IRA)
dstl register (Rnl, 0 s n l s 7)
src3 register (Rn2, 0 s n2 s 7)
dst2 indirect (disp = 0, 1, IRO, IR1)

Encoding

Description A bitwise logical-NOT and an integer store are performed in parallel. All regis-
ters are read at the beginning and loaded at the end of the execute cycle. This
means that if one of the parallel operations (STI) reads from a register and the
operation being performed in parallel (NOT) writes to the same register, ST1
accepts as input the contents of the register before it is modified by the NOT.

If src2and dst2point to the same location, src2is read before the write to dst2.

Cycles

Status Bits

Mode Bit

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 result is generated; 0 otherwise
v 0
C Unaffected

OVM Operation is not affected by OVM bit value.

Assembly Language Instructions 1 0-1 49

NOT11 ST1 Parallel NOT and ST1

Example NOT *+ARZ,R3
I I ST1 R7, *--AR4 (IR1)

Before Instruction:

AR2 = 8099CBh
R3 = Oh
R7 = ODCh = 220
AR4 = 809850h
IR1 = 10h
Data at 8099CCh = OC2Fh
Data at 809840h = Oh
L U F L V U F N Z V C = O 0 0 0 0 0 0

After Instruction:

AR2 = 8099CBh
R3 = OFFFFF3DOh
R7 = ODCh = 220
AR4 = 809840h
IR1 = 10h
Data at 8099CCh = OC2Fh
Data at 809840h = ODCh = 220
L U F L V U F N Z V C = O O O 1 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Syntax OR src, dst

Operation dst OR src - dst

Operands src general addressing modes (G):
0 0 any CPU register
0 1 direct
1 0 indirect
1 1 immediate (not sign-extended)

dst any CPU register

Description The bitwise logical OR between the srcand dstoperands is loaded into the dst
register. The dst and src operands are assumed to be unsigned integers.

Encoding
31 24 23 16 15 8 7 0

Cycles 1

1 1 1 1 1

1 0 0 0 0 0

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 result is generated; 0 otherwise
v 0
C Unaffected

OVM Operation is not affected by OVM bit value. Mode Bit

Example

I

G

Before instruction:

AR1 = 809800h
IR1 = 4h
R2 = 01 2560000h
Data at 809804h = 2BCDh
L U F L V U F N Z V C = O 0 0 0 0 0 0

1 1 1 1

dst

After instruction:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -

src

AR1 = 809804h
IR1 = 4h
R2 = 01 2562BCDh
Data at 809804h = 2BCDh
L U F L V U F N Z V C = O 0 0 0 0 0 0

Assembly Language Instructions 1 0- 1 5 1

Syntax OR3 src2, srcl, dst

Operation src 1 OR src2 + dst

Operands srcl three-operand addressing modes 0:
0 0 register (Rnl , 0 n l s 27)
0 1 indirect (disp = 0, 1, IRO, IR1)
1 0 register (Rnl , 0 s n l r 27)
1 1 indirect (disp = 0, 1, IRO, IR1)

src2 three-operand addressing modes 0:
0 0 register (Rn2, 0 r n2 5 27)
0 1 register (Rn2, 0 s n2 r 27)
1 0 indirect (disp = 0, 1, IRO, IR1)
1 1 indirect (disp = 0, 1, IRO, lR1)

dst register (Rn, 0 r n s 27)

Encoding

Description The bitwise logical-OR between the srcl and src2operands is loaded into the
dstregister. The srcl, src2, and dstoperands are assumed to be unsigned in-
tegers.

31 24 23 16 15 8 7 0

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV ilnaffected
UF 0
N MSB of the output
Z 1 if a 0 result is generated; 0 otherwise
v 0
C Unaffected

I 1 1 1 1 1 1

arc2

Mode Bit OVM Operation is not affected by OVM bit value.

1 1 1 1

dst
I

T
I I

0 0 1

I I 1 1 1 1 1

sml
I I I I I

0 0 1 0 1 1

Example

Before Instruction:

AR1 = 809800h
IR1 = 4h
R2 = 01 2560000h
R7 = Oh
Data at 809804h = 2BCDh
L U F L V U F N Z V C = O O O 0 0 0 0

Atter lnstructlon:

AR1 = 809804h
IR1 = 4h
R2 = 01 2560000h
R7 = 01 2562BCDh
Data at 809804h = 2BCDh
L U F L V U F N Z V C = O O 0 0 0 0 0

t 1

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Assembly Language Instructions 1 0- 1 53

OR3JISTI Parallel OR3 and ST/

Syntax OR3 src2# src 1, dst 1
11 ST1 src3, dst2

Operation srcl OR src2 -. dstl
I src3 -. dst2

Operands srcl register (Rnl , 0 5 n l 5 7)
src2 indirect (disp = 0, 1, IRO, IR1)
dstl register (Rn2, 0 s n2 s 7)
src3 register (Rn3, 0 5 n3 s 7)
dst2 indirect (disp = 0, 1, IRO, IR1)

Encoding

A bitwise logical-OR and an integer store are performed in parallel. All regis-
ters are read at the beginning and loaded at the end of the execute cycle. This
means that if one of the parallel operations (STI) reads from a register and the
operation being performed in parallel (OR3) writes to the same register, then
ST1 accepts as input the contents of the register before it is modified by the
OR3.

31 24 23 16 15 8 7 0

If src2and dst2point to the same location, src2is read before the write to dst2.

Cycles

Status Bits

I

1 1

Mode Bit

I I

dsfl
1 1 1 1

1 0 1 0 0

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 result is generated; 0 otherwise
v 0
C Unaffected

OVM Operation is not affected by OVM bit value.

I I

srcl
I I

s r d
I I I I I I I

dst2
I 1 1 1 1 1 1

src2

Parallel OR3 and ST1 OR311STI

Example

Before Instruction:

AR2 = 809830h
R5 = 800000h
R2 = Oh
R6 = ODCh = 220
AR1 = 809883h
Data at 809831 h = 9800h
Data at 809883h = Oh
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

AR2 = 809831 h
R5 = 800000h
R2 = 809800h
R6 = ODCh = 220
AR1 = 809882h
Data at 809831 h = 9800h
Data at 809883h = ODCh = 220
L U F L V U F N Z V C = O O O 0 0 0 0

I

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Assembly Language Instructions 10-1 55

POP Pop Integer

Syntax POP dst

Operation *SP-- -+ dst

Operands dst register (Rn, 0 s n s; 27)

Encoding

Description The top of the current system stack is popped and loaded into the dst register
(32 LSBs). The top of the stack is assumed to be a signed integer. The POP
is performed with a postdecrement of the stack pointer. The exponent bits of
an extended precision register (R7-RO) are left unmodified.

31 24 23 16 15 8 7 0

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
v 0
C Unaffected

1 1 1 1 1 l 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mode Bit

Example

I I

0 0 0

OVM Operation is not affected by OVM bit value.

I I I I I

0 1 1 1 0 0
I

0 1

POP R3

I I I I

dst

Before Instruction:

SP = 809856h
R3 = 012DAh = 4,826
Data at 809856h = FFFFODA4h = - 62,044
L U F L V U F N Z V C = O 0 0 0 0 0 0

After Instruction:

SP = 809855h
R3 = OFFFFODA4h = -62,044
Data at 809856h = FFFFODA4h = - 62,044
L U F L V U F N Z V C = O 0 O 1 O 0 0

Pop Floating Point POP F

Syntax POPF dst

Operation *SP-- -. dstl

Operands dst register (Rn, 0 s n s 7)

Encoding

Description The top of the current system stack is popped and loaded into the dst register
(32 MSBs). The top of the stack is assumed to be a floating-point number. The
POP is performed with a postdecrement of the stack pointer. The eight LSBs
of an extended precision register (R7-RO) are 0 filled.

3 1 24 23 16 15 8 7 0

Cycles

Status Bits

Mode Bit

Example

I I I

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
UF 0
LV Unaffected
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
v 0
C Unaffected

I I I I I

OVM Operation is not affected by OVM bit value.

I l l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

POPF R4

Before Instruction:

SP = 80984Ah
R4 = 025D2E0123h = 6.91 186578e + 00
Data at 80984Ah = 5F2C1302h = 5.32544007e + 28
L U F L V U F N Z V C = O O O 0 0 0 0

dst 1 0 1 0 0 0

After Instruction:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

SP = 809849h
R4=5F2C130200h=5.32544007e+28
Data at 80984Ah = 5F2C1302h = 5.32544007e + 28
L U F L V U F N Z V C = O O 0 0 0 0 0

Assembly Language Instructions 1 0-1 57

PUSH PUSH Integer

Syntax PUSH src

Operation src + *t tSP

Operands src register (Rn, 0 s n s 27)

Encoding

Description

31 24 23 16 15 8 7 0

Cycles

Status Bits

1 1

0 0 0

Mode Bit

Example

The contents of the src register (32 LSBs) are pushed on the current system
stack. The srcis assumed to be a signed integer. The PUSH is performed with
a preincrement of the stack pointer. The integer or mantissa portion of an ex-
tended precision register (R7-RO) is saved with this instruction.

I I I I I

0 1 1 1

LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

1

1 0 0 1

PUSH R6

Before Instruction:

1 1 1 1

src

SP = 8098AEh
R6 = 025C128081 h = 633,415,688
Data at 8098AFh = Oh
L U F L V U F N Z V C = O O O 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After instruction:

SP = 8098AFh
R6 = 025C128081 h = 633,415,688
Data at 8098AFh = 5C128081 h = 1,544,716,417
L U F L V U F N Z V C = O 0 0 0 0 0 0

PUSH Floating Point PUSH F

Syntax PUSHF src

Operation src + *++SP

Operands src register (Rn, 0 s n s 7)

Encoding

Description The contents of the src register (32 MSBs) are pushed on the current system
stack. The src is assumed to be a floating-point number. The PUSH is per-
formed with a preincrement of the stack pointer. The eight LSBs of the mantis-
sa are not saved. (Note the difference in R2 and the value on the stack in the
example below.)

31 24 23 16 15 8 7 0

Cycles

Status Bits

Mode Bit

Example

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

I I

0 0 0

OVM Operation is not affected by OVM bit value.

I

0 1
I I I I I

0 1 1 1 1 1

PUSHF R2

I I I I

src

Before Instruction:

SP = 809801 h
R2 = 025C128081 h = 6.877258548 + 00
Data at 809802h = Oh
L U F L V U F N Z V C = O O 0 0 0 0 0

After Instruction:

SP = 809802h
R2 = 025C128081 h = 6,877258546 + 00
Data at 809802h = 025C1280h = 6.877258308 + 00
L U F L V U F N Z V C = O O 0 0 0 0 0

Assembly Language Instructions 10-1 59

RETlcond Return From Interrupt Conditionally

Syntax RETlcond

Operation If cond is true:
*SP--- PC
1 -. ST (GIE).

Else, continue.

Operands None

Encoding

Description

3 1 24 23 16 15 8 7 0

Cycles

Status Bits

Mode Bit

I I I I I I I I I I ~ I I I I

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A conditional return is performed. If the condition is true, the top of the stack
is popped to the PC, and a 1 is written to the global interrupt enable (GIE) bit
of the status register. This has the effect of enabling all interrupts for which the
corresponding interrupt enable bit is a 1.

1 1 1 1

0 1 1 1 1

The TMS320C3x provides 20 condition codes that can be used with this in-
struction (see Table 10-9 on page 10-1 3 for a list of condition mnemonics,
condition codes, and flags). Condition flags are set on a previous instruction
only when the destination register is one of the extended-precision registers
(R7-RO) or when one of the compare instructions (CMPF, CMPF3, CMPI,
CMP13, TSTB, or TSTB3) is executed.

I I I I

0 0 0 0 0 0

LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

1 1 1 1

cond

OVM Operation is not affected by OVM bit value.

Return From Interrupt Conditionally R ETlcond

Example RETINZ

Before Instruction:

PC = 456h
SP = 809830h
ST = Oh
Data at 809830h = 123h
L U F L V U F N Z V C = O O O 0 0 0 0

After Instructlon:

PC = 123h
SP = 80982Fh
ST = 2000h
Data at 809830h = 123h
L U F L V U F N Z V C = O O O 0 0 0 0

Assembly Language Instructions 1 0-1 61

RETScond Return From Subroutine Conditionally

Syntax R ETScond

Operation If cond is true:
*SP- - + PC.
Else, continue.

Operands

Encoding

None

Description A conditional return is performed. If the condition is true, the top of the stack
is popped to the PC.

3 1 24 23 16 15 8 7 0

The TMS320C3x provides 20 condition codes that you can use with this in-
struction (see Table 10-9 on page -1 3 for a list of condition mnemonics, condi-
tion codes, and flags). Condition flags are set on a previous instruction only
when the destination register is one of the extended-precision registers (R7-
RO) or when one of the compare instructions (CMPF, CMPF3, CMPI, CMP13,
TSTB, or TSTB3) is executed.

1 1 1 1

0 1 1 1 1

Cycles

Status Bits

Mode Bit

Example

-
1 1 1

0 0 0 1

LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

RETSGE

I

0 0

Before Instruction:

PC = 123h
SP = 80983Ch
Data at 80983Ch = 456h
L U F L V U F N Z V C = O 0 0 0 0 0 0

1 1 1 1

cond

After Instruction:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC = 456h
SP = 80983Bh
Data at 80983Ch = 456h
L U F L V U F N Z V C = O O O 0 0 0 0

Round Floating Point RN D

Syntax RND src, dst

Operation rnd(src) -. dst

Operands src general addressing modes (G):
0 0 register (Rn, 0 s n s 7)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 s n s 7)

Encoding

Description The result of rounding the src operand is loaded into the dst register.The src
operand is rounded to the nearest single-precision floating-point value. If the
src operand is exactly half-way between two single-precision values, it is
rounded to the most positive value.

3 1 24 23 16 15 8 7 0

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs or the src operand is 0;

0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z Unaffected
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

src
I I

0 0 0

Mode Blt

Example

OVM Operation is affected by OVM bit value.

I I I I I

1 0 0 0 1 0

RND R 5 ,R2

Before Instruction:

I

G

Assembly Language Instructions 1 0-1 63

I I I I

dst

R N D Round Floating Point

After Instruction:

I

Note: BZUF Instruction

If a BZ instruction is executed immediately following an RND instruction with
a 0 operand, the branch is not performed because the zero flag is not set.
To circumvent this problem, execute a BZUF instruction instead of a BZ
instruction.

Rotate Left ROL

Syntax ROL dst

Operation dst left-rotated 1 bit -. dst

Operands dst register (Rn, 0 s n r 27)

Encoding

Descrlptlon The contents of the dstoperand are left-rotated one bit and loaded into the dst
register. This is a circular rotation, with the MSB transferred into the LSB.

31 24 23 16 15 8 7 0

Rotate left:

I I

0 0 0

Cycles

Status Bits

Mode Bit

Example

1 1 1 1 1

1 0 0 0 1 1

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 output is generated; 0 otherwise
V 0
C Set to the value of the bit rotated out of the high-order bit. Unaffected

if dst is not R7 - RO.

OVM Operation is not affected by OVM bit value.

1

1 1

ROL R3

Before Instruction:

I 1 1 1

dst

After Instruction:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Assembly Language Instructions 1 0-1 65

ROLC Rotate Left Through Carry

Syntax ROLC dst

Operation dst left-rotated one bit through carry bit -. dst

Operands dst register (Rn, 0 s n r 27)

Encoding

Description The contents of the dst operand are left-rotated one bit through the carry bit
and loaded into the dstregister. The MSB is rotated to the carry bit at the same
time the carry bit is transferred to the LSB.

3 1 24 23 16 15 8 7 0

Rotate left through carry bit:

Cycles

Status Bits

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Mode Bit

Example 1

1 1 1 1

dst
1 I

0 0 0

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 output is generated; 0 otherwise
v 0
C Set to the value of the bit rotated out of the high-order bit. if dst is not

R7-RO, then C is shifted into the dst but not changed.

OVM Operation is not affected by OVM bit value.

1 1 1 1 1

1 0 0 1 0 0 1 1

ROLC R3

I

Before Instruction:

After Instruction:

Rotate Left Through Carry ROLC
w

Example 2 ROLC ~3

Before Instruction:

After Instruction:

Assembly Language Instructions 10-1 67

Syntax ROR dst

Operation dst right-rotated one bit through carry bit -. dst

Operands dst register (Rn, 0 s n s 27)

Encoding

31 24 23 16 15 8 7

Description The contents of the dst operand are right-rotated one bit and loaded into the
dst register. The LSB is rotated into the carry bit and also transferred into the
MSB.

- -.

Rotate right:

Cycles

Status Bits

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
I I

0 0 0

Mode Bit

Example

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 output is generated; 0 otherwise
v 0
C Set to the value of the bit rotated out of the high-order bit. Unaffected

if dst is not R7-RO.

I I I I I

1 0 0 1 0 1 1 1

OVM Operation is not affected by OVM bit value.

ROR R7

1

Before Instruction:

1 1 1 1

dst

After Instruction:

Rotate Right Through Carry RORC

Syntax RORC dst

Operation dst right-rotated one bit through carry bit -. dst

Operands dst register (Rn, 0 s n s 27)

Encoding

Description The contents of the dst operand are right-rotated one bit through the status
register's carry bit. This could be viewed as a 33-bit shift. The carry bit value
is rotated into the MSB of the dst, while at the same time the dst LSB is rotated
into the carry bit.

3 1 24 23 16 15 8 7 0

Rotate right through carry bit:

Cycles

Status Bits

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -

Mode Bit

Example

I I I I

dst

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 output is generated; 0 otherwise
v 0
C Set to the value of the bit rotated out of the high-order bit. If dst is not

R7 - RO, then C is shifted in but not changed.

1 1 I

0 0 0

OVM Operation is not affected by OVM bit value.

1 1 1 1 1

1 0 0 1 1 0 1 1

RORC R4

Before Instruction:

After Instruction:

Assembly Language Instructions 1 0-1 69

RPTB Repeat Block

Syntax RPTB src

Operation src -, RE
1 -, ST (RM)
Next PC -, RS

Operands src long-immediate addressing mode

Description RPTB allows a block of instructions to be repeated a number of times without
any penalty for looping. This instruction activates the block repeat mode of up-
dating the PC. The src operand is a 24-bit unsigned immediate value that is
loaded into the repeat end address (RE) register. A 1 is written into the repeat
mode bit of status register ST (RM) to indicate that the PC is being updated
in the repeat mode. The address of the next instruction is loaded into the repeat
start address (RS) register.

Encoding
31 24 23 16 15 8 7 0

Cycles 4

1 1 1 1 1 l 1

0 1 1 0 0 1 0 0

Status Bits LUF
LV
UF
N
z
v
C

OVM

I I 1 1 I I I I I I I I I I I I I 1 ~ 1 1 ~ ~

src

Mode Bit

Example

Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected

Operation is not affected by OVM bit value.

RPTB 127h

Before Instruction:

After Instruction:

Repeat Single R PTS

Syntax RPTS src

Operation src -+ RC
1 -ST(RM)
1 - 3
Next PC - RS
Next PC -+ RE

Operands src general addressing modes (G):
0 0 register
0 1 direct
1 0 indirect
1 1 immediate

Encoding

Description The RPTS instruction allows you to repeat a single instruction a number of
times without any penalty for looping. Fetches can also be made from the in-
struction register (IR), thus avoiding repeated memory access.

3 1 24 23 16 15 8 7 0
I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 l 1 1 1 1 1 1 ~

The src operand is loaded into the repeat counter (RC). A 1 is written into the
repeat mode bit of the status register ST (RM). A 1 is also written into the re-
peat single bit (S). This indicates that the program fetches are to be performed
only from the instruction register. The next PC is loaded into the repeat end
address (RE) register and the repeat start address (RS) register.

For the immediate mode, the srcoperand is assumed to be an unsigned inte-
ger and is not sign-extended.

0 0 0

Cycles

Status Bits

1 0 0 1 1 1

Mode Bit

src G

LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

1 1 0 1 1

OVM Operation is not affected by OVM bit value.

Assembly Language Instructions 1 0-1 71

RPTS Repeat Single

Example RPTS A R ~

Before Instruction:

PC = 123h
ST = Oh
RS = Oh
RE = Oh
RC = Oh
AR5 = OFFh
L U F L V U F N Z V C = O O 0 0 O 0 0

After Instruction:

PC = 124h
ST = 100h
RS = 124h
RE = 124h
RC = OFFh
AR5 = OFFh
L U F L V U F N Z V C = O O O 0 0 0 0

Signal, Interlocked S lG 1

Syntax SlGl

Operation Signal interlocked operation.
Wait for interlock acknowledge.
Clear interlock.

Operands None

Encoding

Description An interlocked operation is signaled over XFO and XF1. After the interlocked
operation is acknowledged, the interlocked operation ends. SlGl ignores the
external ready signals. Refer to Section 6.4 on page 6-1 2 for detailed informa-
tion.

Cycles

Status Bits

Mode Bit

Example

LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

SIGI ; The processor sets XFO to 0, idles
; until XF1 is set to 0, and then
; sets XFO to 1.

Assembly Language Instructions 1 0-1 73

STF Store Floating Point

Syntax STF src, dst

Operation src - dst

Operands src register (Rn, 0 r n r 7)

dst general addressing modes (G):
0 1 direct
1 0 indirect

Encoding

Description The src register is loaded into the dst memory location. The src and dstoper-
ands are assumed to be floating-point numbers.

31 24 23 16 15 8 7 0

Cycles 1

I I

0 0 0

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

STF R2,@98Alh

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

dst
I I I I I

1 0 1 0 0 0

Mode Bit

Example

Before instruction:

I

G

DP = 80h
R2 = 052C501900h = 4.30782204e + 01
Data at 8098Al h = Oh
L U F L V U F N Z V C = O O 0 0 0 0 0

1 1 1 1

src

After Instruction:

DP = 80h
R2 = 052C501900h = 4.30782204e + 01
Data at 8098Al h = 52C5019h = 4.30782204e + 01
L U F L V U F N Z V C = O 0 0 0 0 0 0

Store Floating Point, Interlocked STFl

Syntax STFi src, dst

Operation src -. dst
Signal end of interlocked operation.

Operands src register (Rn, 0 s n s 7)

dst general addressing modes (G):
0 1 direct
1 0 indirect

Description

Encoding

31 24 23 16 15 8 7 0

Cycles

Status Bits

Mode Bit

Example

I I

0 0 0

The src register is loaded into the dstmemory location. An interlocked opera-
tion is signaled over pins XFO and XF1. The srcand dstoperands are assumed
to be floating-point numbers. Refer to Section 6.4 on page 6-1 2 for detailed
information.

I

G
1 1 1 1 1

1 0 1 0 0 1

LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

1 1 1 1

src

STFI R3, *-AR4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 l

dst

Before Instruction:

R3 = 0733C00000h = 1.797508 + 02
AR4 = 80993Ch
Data at 80993Bh = Oh
L U F L V U F N Z V C = O 0 0 0 0 0 0

After Instruction:

R3 = 0733C00000h = 1.797508 + 02
AR4 = 80993Ch
Data at 80993Bh = 733C000h = 1.797500 + 02
L U F L V U F N Z V C = O 0 0 0 0 0 0

Assembly Language Instructions 1 0-1 75

STFl ISTF Parallel Store Floating Point

Syntax STF src2, dst2
I(STF srcl, dstl

Operation src2 + dst2
1 1 srcl -. dstl

Operands srcl register (Rnl , 0 s n l s 7)
dstl indirect (disp = 0, 1, IRO, IR1)
src2 register (Rn2, 0 r n2 s 7)
dst2 indirect (disp = 0, 1, IRO, IR1)

Encoding

Description Two STF instructions are executed in parallel. Both srcl and src2are assumed
to be floating-point numbers.

3 1 24 23 16 15 8 7 0

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

I

1 1

Mode Bit

Example

I I

srcl

OVM Operation is not affected by OVM bit value.

1 1 1 1

0 0 0 0 0

STF R4,*AR3--
I I STF R3,*+tAR5

1 1 1 1 I I I

dstl

Before Instruction:

I 1

s r d
1 1 1 1 1 l 1

ds12

R4 = 070C800000h = 1.4050e t 02
AR3 = 809835h
R3 = 0733C00000h = 1.797506 + 02
AR5 = 8099D2h
Data at 809835h = Oh
Data at 8099D3h = Oh
L U F L V U F N Z V C = O 0 0 0 0 0 0

I I

0 0 0

Parallel store Floating Point STFl ISTF

After Instruction:

R4 = 070C800000h = 1.40508 + 02
AR3 = 809834h
R3 = 0733C00000h = 1.797500 + 02
AR5 = 8099D3h
Data at 809835h = 070C8000h = 1.4050e + 02
Data at 8099D3h = 0733C000h = 1.797508 + 02
L U F L V U F N Z V C = O O O 0 0 0 0

1 i

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

I 1

Assembly Language Instructions

ST1 Store Integer

Syntax ST1 src, dst

Operatlon src -, dst

Operands src register (Rn, 0 r n 5 27)

dst general addressing modes (G):
0 1 direct
1 0 indirect

Encoding

Description The src register is loaded into the dst memory location. The src and dst oper-
ands are assumed to be signed integers.

31 24 23 16 15 8 7 0

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

l l l l l l l l l l l l l l l

dst
I I

0 0 0

OVM Operation is not affected by OVM bit value. Mode Bit

Example

I I I I I

1 0 1 0 1 0

Before Instruction:

DP = 80h
R4 = 42BD7h = 273,367
Data at 80982Bh = OE5FCh = 58,876
L U F L V U F N Z V C = O O O 0 0 0 0

I

G

After Instruction:

1 1 1 1

src

DP = 80h
R4 = 42BD7h = 273,367
Data at 80982Bh = 42BD7h = 273,367
L U F L V U F N Z V C = O O O 0 0 0 0

Store Integer, Interlocked ST1 1

Syntax ST11 src, dst

Operation src -. dst
Signal end of interlocked operation

Operands src register (Rn, 0 s n s 27)

dst general addressing modes (G):
0 1 direct
1 0 indirect

Encoding

Description The src register is loaded into the dstmemory location. An interlocked opera-
tion is signaled over pins XFO and XF1. The srcand dstoperands are assumed
to be signed integers. Refer to Section 6.4 on page 6-1 2 for detailed informa-
tion.

31 24 23 16 15 8 7 0

Cycles

Status Bits

1 1 1 1 I

1 0 1 0 1 1

Mode Bit

Example

LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

I

G

OVM Operation is not affected by OVM bit value.

Before Instruction:

1 1 1 1

src

DP = 80h
R1 = 78Dh
Data at 8098AEh = 25Ch

I l l l l l l l l l l l l l l

dst

After Instruction:

DP = 80h
R1 = 78Dh
Data at 8098AEh = 78Dh

Assembly Language Instructions 1 0-1 79

ST1 1 lSTl Parallel ST1 and ST1

Syntax ST1 src2, dst2
11 ST1 src1,dstl

Operation src2 -, dst2
1 1 srcl -, dstl

Operands srcl register (Rnl , 0 s n l s 7)
dstl indirect (disp = 0, 1, IRO, IR1)
src2 register (Rn2, 0 s n2 s 7)
dst2 indirect (disp = 0, 1, IRO, iR1)

Encoding

Description

31 24 23 16 15 8 7 0

Cycles

Status Bits

Mode Bit

Example

I 1 1 1 1 1 1

dsQ

Two integer stores are performed in parallel. If both stores are executed to the
same address, the value written is that of ST1 src2, dst2.

LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

I I

0 0 0
I I

src2
1

1 1

OVM Operation is not affected by OVM bit value.

1 1 1 1

0 0 0 0 1

Before Instruction:

I I

srcl

RO = ODCh = 220
AR2 = 809830h
IRO = 8h
R5 = 35h = 53
ARO = 8098D3h
Data at 809838h = Oh
Data at 8098D3h = Oh
L U F L V U F N Z V C = O 0 0 0 0 0 0

1 1 1 1 1 1 1

dsfl

Parallel ST1 and ST1 STlllSTl

After Instruction:

RO = ODCh = 220
AR2 = 809838h
IRO = 8h
R5 = 35h = 53
ARO = 8098D3h
Data at 809838h = ODCh = 220
Data at 8098D3h = 35h = 53
L U F L V U F N Z V C = O O 0 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Assembly Language Instructions 1 0- 1 81

SU BB Subtract Integer With Borrow

Syntax SUBB src, dst

Operation dst- src-C + dst

Operands src general addressing modes (G):
0 0 register (Rn, 0 s n r 27)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 s n r 27)

Encoding

Description The difference of the dst, src, and C operands is loaded into the dst register.
The dst and src operands are assumed to be signed integers.

3 1 24 23 16 15 8 7 0

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SIC

I I

0 0 0

Mode Bit

Example

OVM Operation is affected by OVM bit value.

1 1 1 1 I

1 0 1 1 0 1

SUBB *AR5++(4),R5

Before Instruction:

I

G

AR5 = 809800h
RS=OFAh=250
Data at 809800h = OC7h = 199
L U F L V U F N Z V C = O O O 0 0 0 1

1 1 1 1

dst

After Instruction:

AR5 = 809804h
R5 = 032h = 50
Data at 809800h = OC7h = 199
L U F L V U F N Z V C = O 0 0 0 0 0 0

Subtract Integer With Borrow, 3-Operand SUBB3

Syntax SUBB3 src2, srcl, dst

Operation srcl- src2- C 4 dst

Operands srcl three-operand addressing modes 0:
0 0 register (Rnl , 0 r n l 5 27)
0 1 indirect (disp = 0, 1, IRO, IR1)
1 0 register (Rnl, 0 5 n l s 27')
1 1 indirect (disp = 0, 1, IRO, IR1)

src2 three-operand addressing modes (T):
0 0 register (Rn2, 0 s n2 s 27)
0 1 register (Rn2, 0 5 n2 r 27')
1 0 indirect (disp = 0, 1, IRO, IR1)
1 1 indirect (disp = 0, 1, IRO, lR1)

dst register (Rn, 0 5 n 5 27)

Encoding

Description The difference of the srcl and src2operands and the C flag is loaded into the
dst register. The srcl, src2, and dst operands are assumed to be signed inte-
gers.

31 24 23 16 15 8 7 0

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

l l l r l

0 0 1 1 0 0

Mode Bit

I

T
1 1 1 1

dst

OVM Operation is affected by OVM bit value.

Assembly Language Instructions 1 0-1 83

I I I I I I I

srcl
1 1 1 1 1 1 1

srcZ

SUBB3 Subtract Integer With Borrow, 3-Operand

Example

Before Instruction:

AR5 = 809800h
IRO = 4h
R5=OC7h = 199
RO = Oh
Data at 809800h = OFAh = 250
L U F L V U F N Z V C = O O O 0 0 0 1

After Instruction:

AR5 = 809804h
IRO = 4h
R5=OC7h = 199
RO = 32h = 50
Data at 809800h = OFAh = 250
L U F L V U F N Z V C = O O O 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

I I

Subtract Integer Conditionally SU BC

Syntax SUBC src, dst

Operation If (dst - src 2 0):
(dst- S ~ C << 1) OR 1 -. dsi
Else:
dst << 1 + dst

Operands src general addressing modes (G):
0 0 register (Rn, 0 r n 5 27)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 r n s 27)

Encoding

Description The srcoperand is subtracted from the dstoperand. The dstoperand is loaded
with a value dependent on the result of the subtraction. If (dst- src) is greater
than or equal to 0, then (dst- src) is left-shifted one bit, the least significant
bit is set to 1, and the result is loaded into the dst register. if (dst - src) is less
than 0, dst is left-shifted one bit and loaded into the dst register. The dst and
src operands are assumed to be unsigned integers.

31 24 23 16 15 8 7 0

You can use SUBC to perform a single step of a multibit integer division. See
subsection 11 -3.4 on page 11 -26 for a detailed description.

I I

0 0 0

Cycles

Status Bits

Mode Bit

I I I I I

1 0 1 1 1 0

LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

I

G

Assembly Language Instructions 1 0- 1 85

1 1 1 1

dst
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

src

SU BC Subtract Integer Conditionally

Example 1 SUBC @98C5hfR1

Before Instructlon:

DP = 80h
R1 = 04F6h = 1270
Data at 8098C5h = 492h = 11 70
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

DP = 80h
R1 = OC9h = 201
Data at 8098C5h = 492h = 11 70
L U F L V U F N Z V C = O 0 0 0 0 0 0

Example 2 SUBC 3000,RO (3000 = OBB8h)

Before Instruction:

After Instructlon:

RO = OFAOh = 4000
L U F L V U F N Z V C = O 0 0 0 0 0 0

Subtract Floating Point S U BF

Syntax SUBF src, dst

Operation dst - src -. dst

Operands src general addressing modes (G):
0 0 register (Rn, 0 s n s 7)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 s n r 7)

Encoding

Description The difference of the dst operand minus the src operand is loaded into the
dst register. The dst and src operands are assumed to be floating-point num-
bers.

31 24 23 16 15 8 7 0

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

1 1 1 1 I I I I I

Mode Bit

Example

I

OVM Operation is not affected by OVM bit value.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SUBF *ARO--(IRO),R5

Before Instruction:

1 0 1 1 1 1

ARO = 809888h
IRO = 80h
R5 = 0733C00000h = 1.79750000e + 02
Data at 809888h = 70C8000h = 1.4050e + 02
L U F L V U F N Z V C = O O O 0 0 0 0

G dst

After Instruction:

src

ARO = 809808h
IRO = 80h
R5 = 051 D000000h = 3.92508 + 01
Data at 809888h = 70C8000h = 1.4050e + 02
L U F L V U F N Z V C = O 0 0 0 0 0 0

Assembly Language Instructions 1 0-1 87

SUBF3 Subtract Floating Point, 3-Operand

Syntax SUBF3 src2, srcl, dst

Operation src 1 - src2 -, dst

Operands srcl three-operand addressing modes (T):
0 0 register (Rnl , s n l s 7)
0 1 indirect (disp = 0, 1, IRO, IRI)
1 0 register (Rnl, s n l s 7)
1 1 indirect (disp = 0, 1, IRO, IR1)

src2 three-operand addressing modes 0:
0 0 register (Rn2, s n2 s 7)
0 1 register (Rn2, s n2 s 7)
1 0 indirect (disp = 0, 1, IRO, IR1)
1 1 indirect (disp = 0, 1, IRO, IRI)

dst register (Rn, 0 s n s 7)

Encoding

Description The difference of the srcl and src2 operands is loaded into the dst register.
The srcl, src2, and dst operands are assumed to be floating-point numbers.

3 1 24 23 16 15 8 7 0

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.

I 1 1 1 1 1 1

s r d

Mode Bit

I I

0 0 1

I

T
I I I I I

0 0 1 1 0 1
I I I I

dst
I I I I I I I

srcl

Subtract Floating Point, 3-Operand SUBF3

Example 1 SUBF3 *ARO--(IRO),*ARl,R4

Before Instruction:

ARO = 809888h
IRO = 80h
ARI = 808851 h
R4 = Oh
Data at 809888h = 70C8000h = 1.40508 + 02
Data at 809851 h = 733C000h = 1.79750e + 02
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

ARO = 809808h
IRO = 80h
AR1 = 809851 h
R4 = 51 D000000h = 3.92508 + 01
Data at 809888h = 70C8000h = 1.40506 + 02
Data at 809851 h = 733C000h = 1.797508 + 02
L U F L V U F N Z V C = O O O 0 0 0 0

Example 2 SUBF3 R7, RO , R6

Before Instruction:

After Instruction:

I

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Assembly Language Instructions 1 0-1 89

Syntax SUBF3 srcl, src2, dstl
)I STF src3, dst2

Operation src2 - src 1 4 dst 1
1 1 src3 + dst2

Operands srcl register (Rnl , 0 r n l r 7)
src2 indirect (disp = 0, 1, IRO, IR1)
dstl register (Rn2, 0 s n2 s 7)
src3 register (Rn3, 0 s n3 s 7)
dst2 indirect (disp = 0, 1, IRO, IR1)

Encoding

Description

3 1 24 23 16 15 8 7 0
I I l l I I I I I I I I I I I I I 1 1 1 1 1 1 1 .

Cycles

Status Bits

Mode Bit

1 1

Afloating-point subtraction and a floating-point store are performed in parallel.
All registers are read at the beginning and loaded at the end of the execute
cycle. This means that if one of the parallel operations (STF) reads from a reg-
ister and the operation being performed in parallel (SUBF3) writes to the same
register, STF accepts as input the contents of the register before it is modified
by the SUBF3.

dstl

If src3and dstl point to the same location, src3is read before the write to dstl.

1

These condition flags are modified only if the destination register is R7-RO.
LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.

srcl 0 1 0 1 s r d dsi2 src?

Parallel SUBF3 and STF SUBF311STF

Example SUBF3 Rl,*-AR4(IRl),RO
I I STF R7,*+AR5(IRO)

Before Instruction:

R1 = 057B400000h = 6.281 258 + 01
AR4 = 8098B8h
IR1 = 8h
RO = Oh
R7 = 0733C00000h = 1.797508 + 02
AR5 = 809850h
IRO = 10h
Data at 8098BOh = 70C8000h = 1.40508 + 02
Data at 809860h = Oh
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

R1 = 057B400000h = 6.281 258 + 01
AR4 = 8098B8h
IR1 = 8h
RO = 061 B600000h = 7.7687508 + 01
R7 = 0733C00000h = 1.797508 + 02
AR5 = 809850h
IRO = 10h
Data at 8098BOh = 70C8000h = 1.40508 + 02
Data at 809860h = 733C000h = 1.797508 + 02
L U F L V U F N Z V C = O O O 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Assembly Language Instructions 1 0- 1 91

Syntax SUB1 src, dst

Operation dst - src + dst

Operands src general addressing modes (G):
0 0 register (Rn, 0 s n s 27)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 s n s 27)

Encoding

Description

31 24 23 16 15 8 7 0

Cycles

Status Bits

1 1

0 0 0

Mode Bit

Example

The difference of the dstoperand minus the srcoperand is loaded into the dst
register. The dst and src operands are assumed to be signed integers.

1 1 1 1 I

1 1 0 0 0 0

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

OVM Operation is affected by OVM bit value.

1

G

Before Instruction:

After Instruction:

I l l 1

dst
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SIC

Subtract Integer, 3-Operand SU B13

Syntax SUB13 src2, srcl, dst

Operation src 1 - src2 -+ dst

Operands srcl three-operand addressing modes (T):
0 0 register (Rnl, 0 r n l r 27)
0 1 indirect (disp = 0, 1, IRO, IR1)
1 0 register (Rnl, 0 r n l s 27)
1 1 indirect (disp = 0, 1, IRO, IR1)

src2 three-operand addressing modes (T):
0 0 register (Rn2, 0 r n2 a 27)
0 1 register (Rn2, 0 r n2 s 27)
1 0 indirect (disp = 0, 1, IRO, IR1)
1 1 indirect (disp = 0, 1, IRO, IR1)

dst register (Rn, 0 s n 5 27)

Encoding

Description The difference of the srcl operand minus the src2operand is loaded into the
dst register. The srcl, src2, and dst operands are assumed to be signed inte-
gers.

3 1 24 23 16 15 8 7 0

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

~ I I I ~ I I

srQ

Mode Bit

1 1 1 1 1 1 1

srcl

OVM Operation is affected by OVM bit value.

1 1 1 1

dst

Assembly Language Instructions 1 0- 1 93

I

T
I I

0 0 1
1 1 1 1 1

0 0 1 1 1 0

SU B13 Subtract Integer, 3-Operand

Example 1 SUB13 R7, R2, RO

Before Instructlon:

After Instruction:

Example 2

Before Instruction:

AR2 = 80985Eh
R4 = 0226h = 550
R3 = Oh
Data at 80985Dh = ODCh = 220
L U F L V U F N Z V C = O O O 0 0 0 0

After Instructlon:

AR2 = 80985Eh
R4 = 0226h = 550
R3 = 01 4Ah = 330
Data at 80985Dh = ODCh = 220
L U F L V U F N Z V C = O O O 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Parallel SUB13 and ST1 SUB131JSTI

Syntax SUB13 srcl, src2, dstl
(1 ST1 src3, dst2

Operation src2 - src 1 + dst 1
1 1 src3 -. dst2

Operands srcl register (Rnl, 0 s n l r 7)
src2 indirect (disp = 0, 1, IRO, IR1)
dstl register (Rn2, 0 s n2 s 7)
src3 register (Rn3, 0 r n3 5 7)
dst2 indirect (disp = 0, 1, IRO, IR1)

Encoding

Description An integer subtraction and an integer store are performed in parallel. All regis-
ters are read at the beginning and loaded at the end of the execute cycle. This
means that if one of the parallel operations (STI) reads from a register and the
operation being performed in parallel (SUBI3) writes to the same register, ST1
accepts as input the contents of the register before it is modified by the SUB13.

31 24 23 16 15 8 7 0
I 1 1 1 1 I I I I I I 1 1 1 1 1 I I 1 I I 1 1 1 I -

If src3and dstl point to the same location, src3is read before the write to dstl.

Cycles

Status Bits

1 1

Mode Bit

srcl

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

1 0 1 1 0

OVM Operation is affected by OVM bit value.

dsn

Assembly Language Instructions 1 0-1 95

src2 srd dslz

Example

Before Instruction:

R7 = 14h = 20
AR2 = 80982Fh
IRO = 10h
R1 = Oh
R3 = 35h = 53
AR7 = 80983Bh
Data at 80983Fh = ODCh = 220
Data at 80983Ch = Oh
L U F L V U F N Z V C = O O 0 0 0 0 0

After Instruction:

R7= 14h =20
AR2 = 80982Fh
IRO = 10h
R1 =OC8h=200
R3 = 35h = 53
AR7 = 80983Ch
Data at 80983Fh = ODCh = 220
Data at 80983Ch = 35h = 53
L U F L V U F N Z V C = O 0 0 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Subtract Reverse Integer With Borrow SUBRB

Syntax SUBRB src, dst

Operation src - dst- C + dst

Operands src general addressing modes (G):
0 0 register (Rn, 0 s n r 27)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 s n s 27)

Encoding

Description The difference of the src, dst, and C operands is loaded into the dst register.
The dst and src operands are assumed to be signed integers.

31 24 23 16 15 8 7 0

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

OVM Operation is affected by OVM bit value.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

src

SUBRB R4 ,R6

I I l l 1

G dst
I I

0 0 0

Mode Bit

Example

I l l 1 1

1 1 0 0 0 1

Before Instruction:

After instruction:

Assembly Language Instructions 1 0-1 97

Syntax SUBRF src, dst

Operation src - dst -. dst

Operands src general addressing modes (G):
0 0 register (Rn, 0 s n s 7)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 5 n s 7)

Encoding

31

Description The difference of the src operand minus the dstoperand is loaded into the dst
register. The dstand srcoperands are assumed to be floating-point numbers.

- . - . -- . - . - - .

Cycles 1

I I

0 0 0

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

Mode Bit

Example

1 1 1 1 I

1 1 0 0 1 0

OVM Operation is not affected by OVM bit value.

SUBRF @9905h,R5

I

G

Before Instruction:

DP = 80h
R5 = 0578400000h = 6.2812506 + 01
Data at 809905h = 733C000h = 1.797508 + 02
L U F L V U F N Z V C = O 0 0 0 0 0 0

1 1 1 1

dst

After Instruction:

1 1 1 1 1 1 1 1 1 1 1 l l l l

src

DP = 80h
R5 = 0669E00000h = 1.169375008 + 02
Data at 809905h = 733C000h = 1.797506 + 02
LUFLV UF N Z V C = O 0 0 0 0 0 0

Subtract Reverse Integer SUBRl

Syntax SUBRi src, dst

Operation src - dst -. dst

Operands src general addressing modes (G):
0 0 register (Rn, 0 r n r 27)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 r n r 27)

Description The difference of the srcoperand minus the dstoperand is loaded into the dst
register. The dst and src operands are assumed to be signed integers.

Encoding
31 24 23 16 15 8 7 0

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

I I 1

Mode Bit

Example

1 1 1 1 1

OVM Operation is affected by OVM bit value.

I 1 1 1 t l l l l l l 1 1 1 1 1 1 1 1

SUBRI *AR5++(IRO),R3

Before instruction:

dst SIC

AR5 = 809900h
IRO = 8h
R3 = ODCh = 220
Data at 809900h = 226h = 550
L U F L V U F N Z V C = O O O 0 0 0 0

G 0 0 0

After Instruction:

1 1 O O 1 1

AR5 = 809908h
IRO = 8h
R3 = 01 4Ah = 330
Data at 809900h = 226h = 550
L U F L V U F N Z V C = O O O 0 0 0 0

Assembly Language Instructions 1 0- 1 99

Syntax SWI

Operation Performs an emulation interrupt

Operands None

Encoding
!3 I

Description The SWI instruction performs an emulator interrupt. This is a reserved instruc-
tion and should not be used in normal programming.

Cycles 4

Status Bits LU F
LV
UF
N
z
v
C

OVM Mode Bit

Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected

Operation is not affected by OVM bit value.

Trap Conditionally TRAPcond

Syntax TRAPcond N

Operation 0 -. ST(GIE)
If cond is true:

Next PC - *++SP,
Trap vector N - PC.

Else:

Set ST(GIE) to original state.
Continue.

Operands N (0 s N s 31)

Encoding

Description Interrupts are disabled globally when 0 is written to ST(GIE). If the condition
is true, the contents of the PC are pushed onto the system stack, and the PC
is loaded with the contents of the specified trap vector (N). If the condition is
not true, ST(GIE) is set to its value before the TRAPcond instruction changes
it.

3 1 24 23 16 15 87 0

The TMS320C3x provides 20 condition codes that can be used with this in-
struction (see Table 10-9 on page 10-1 3 for a list of condition mnemonics,
condition codes, and flags). Condition flags are set on a previous instruction
only when the destination register is one of the extended-precision registers
(R7-RO) or when one of the compare instructions (CMPF, CMPF3, CMPI,
CMP13, TSTB, or TSTB3) is executed.

Cycles

Status Bits

I l l 1

N

Mode Bit

1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1
1 1 1 1 1 1

0 1 1 1 0 1 0 0 0 0 0

LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

I l l

Assembly Language Instructions 10-201

I I I I

cond

TRAPcon d Trap Conditionally

Example TRAPZ 16

Before Instruction:

PC = 123h
SP = 809870h
ST = Oh
Trap Vector 16 = 1 Oh
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

PC = 10h
SP = 809871 h
Data at 809871 h = 124h
ST = Oh
L U F L V U F N Z V C = O O O 0 0 0 0

Test Bit Fields TSTB

Syntax TSTB src, dst

Operation dst AN D src

Operands src general addressing modes (G):
0 0 register (Rn, 0 r n r 27)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 r n s 27)

Encoding

Description The bitwise logical-AND of the dst and src operands is formed, but the result
is not loaded in any register. This allows for nondestructive compares. The dst
and src operands are assumed to be unsigned integers.

31 24 23 16 15 8 7 0

Cycles 1

Status Bits These condition flags are modified for all destination registers (R27-RO).
LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 output is generated; 0 otherwise
v 0
C Unaffected

I I

0 0 0

Mode Bit

Example

1 1 1 1

dst

OVM Operation is not affected by OVM bit value.

I I I I I

1 1 0 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

src

TSTB *-AR4(1),R5

I

G

Before Instruction:

AR4 = 8099C5h
R5 = 898h = 2200
Data at 8099C4h = 767h = 1895
L U F L V U F N Z V C = O 0 0 0 0 0 0

After Instruction:

AR4 = 8099C5h
R5 = 898h = 2200
Data at 8099C4h = 767h = 1895
L U F L V U F N Z V C = O 0 0 0 1 0 0

Assembly Language instructions 1 0-203

Syntax TSTB3 src2, srcl

Operation srcl AND src2

Operands srcl three-operand addressing modes 0:
0 0 register (Rn 1, 0 r n l r 27)
0 1 indirect (disp = 0, 1, IRO, IR1)
1 0 register (Rnl, 0 s n l 5 27)
1 1 indirect (disp = 0, 1, IRO, IR1)

src2 three-operand addressing modes (T):
0 0 register (Rn2, 0 s n2 s 27)
0 1 register (Rn2, 0 s n2 s 127)
1 0 indirect (disp = 0, 1, IRO, IR1)
1 1 indirect (disp = 0, 1, IRO, IR1)

Encoding

0 0 1 1 1 1 T 0 0 0 0 0 srcl src2

Description The bitwise logical-AND between the srcl and src2operands is formed but is
not loaded into any register. This allows for nondestructive compares. The
srcl and src2 operands are assumed to be unsigned integers. Although this
instruction has onlytwo operands, it is designated as a three-operand instruc-
tion because operands are specified in the three-operand format.

Cycles

Status Bits

Mode Bit

These condition flags are modified for all destination registers (R27-RO).
LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 output is generated; 0 otherwise
v 0
C Unaffected

OVM Operation is not affected by OVM bit value.

Test Bit Fields, 3-Operands TSTB3

Example 1 TSTB3 *AR5--(IRO),*+ARO(l)

Before Instruction:

AR5 = 809885h
IRO = 80h
ARO = 80992Ch
Data at 809885h = 898h = 2200
Data at 80992Dh = 767h = 1895
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

AR5 = 809805h
IRO = 80h
ARO = 80992Ch
Data at 809885h = 898h = 2200
Data at 80992Dh = 767h = 1895
L U F L V U F N Z V C = O O O 0 1 0 0

Example 2 TSTB3 R4 *AR6-- (IRO)

Before Instruction:

R4 = OFBC4h
AR6 = 8099F8h
iRO = 8h
Data at 8099F8h = 1568h
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

R4 = OFBC4h
AR6 = 8099FOh
IRO = 8h
Data at 8099F8h = 1568h
L U F L V U F N Z V C = O O O 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Assembly Language Instructions 1 0-205

Syntax XOR src, dsl

Operation dst XOR src + dst

Operands src general addressing modes (G):
0 0 register (Rn, 0 s n s 27)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 s n s 27)

Encoding

Description The bitwise exclusive-OR of the src and dst operands is loaded into the dst
register. The dst and src operands are assumed to be unsigned integers.

3 1 24 23 16 15 8 7 0

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 output is generated; 0 othewise
v 0
C Unaffected

1 1

0 0 0

OVM Operation is not affected by OVM bit value.

I I I I I

1 1 0 1 0 1

XOR R1 ,R2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -

src
I

G

Mode Bit

Example

1 1 1 1

dst

Before Instruction:

After Instruction:

Syntax XOR3 src2, srcl, dst

Operation src 1 XOR src2 -, dst

Operands srcl three-operand addressing modes (T):
0 0 register (Rnl, 0 s n l r 27)
0 1 indirect (disp = 0, 1, IRO, IR1)
1 0 register (Rnl, 0 s n l s 27)
1 1 indirect (disp = 0, 1, IRO, IR1)

src2 three-operand addressing modes (T):
0 0 register (Rn2, 0 r n2 s 27)
0 1 register (Rn2, 0 r n2 s 27)
1 0 indirect (disp = 0, 1, IRO, IR1)
1 1 indirect (disp = 0, 1, IRO, IR1)

dst register (Rn, 0 s n s 27)

Encoding

Description The bitwise exclusive-OR between the srcl and src2operands is loaded into
the dstregister. The srcl, src2, and dstoperands are assumed to be unsigned
integers.

31 24 23 16 15 8 7 0

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 output is generated; 0 otherwise
v 0
C Unaffected

I 1 1 1 1 1 1 ~

src2

Mode Bit

1 1 1 1 1 1 1

srcl

OVM Operation is not affected by OVM bit value.

I I I I

dst

Assembly Language Instructions 1 0-207

I

T
I I

0 0 1
1 1 1 1 1

0 1 0 0 0 0

Example 1 XOR3 *AR3++(IRO),R7,R4

Before Instruction:

AR3 = 809800h
IRO = 10h
R7 = OFFFFh
R4 = Oh
Data at 809800h = 5AC3h
L U F L V U F N Z V C = O 0 0 0 0 0 0

After instruction:

AR3 = 80981 Oh
IRO = 10h
R7 = OFFFFh
R4 = OA53Ch
Data at 809800h = 5AC3h
L U F L V U F N Z V C = O O O 0 0 0 0

Example 2

Before Instruction:

R5=OFFA32h
AR1 = 809826h
R1 = Oh
Data at 809825h = OFF5Cl h
L U F L V U F N Z V C = O O O 0 O 0 0

After Instruction:

R5=OFFA32h
AR1 = 8098261.1
R1 = 000F33h
Data at 809825h = OFF5Cl h
L U F L V U F N Z V C = O 0 0 0 0 0 0

,
Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Parallel XOR3 and ST1 XOR311STI

Syntax XOR3 src2,srcl,dstl
1 1 ST1 src3, dst2

Operation src 1 XOR src2 -. dst 1
(1 src3 -. dst2

Operands srcl register (Rnl , 0 r n l s 7)
src2 indirect (disp = 0, 1, IRO, IR1)
dstl register (Rn2, 0 s n2 s 7)
src3 register (Rn3, 0 r n3 s 7)
dst2 indirect (disp = 0, 1, IRO, IR1)

Encoding

Description A bitwise exclusive-XOR and an integer store are performed in parallel. All reg-
isters are read at the beginning and loaded at the end of the execute cycle. This
means that, if one of the parallel operations (STI) reads from a register and the
operation being performed in parallel (XOR3) writes to the same register, ST1
accepts as input the contents of the register before it is modified by the XOR3.

31 24 23 16 15 8 7 0

If src2and dst2point to the same location, src2is read before the write to dst2.

1

1 1

Cycles

Status Bits

Mode Bit

1 1 1 1

1 0 1 1 1

These condition flags are modified only if the destination register is R7-RO.
LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 output is generated; 0 otherwise
v 0
C Unaffected

OVM Operation is not affected by OVM bit value.

1 I

dst

Assembly Language Instructions 1 0-209

I I

srcl
I I

src3
I I I I I I I

dsQ
1 l 1 1 1 1 1

sn2

XOR311STI Parallel XOR3 and ST1

Example XOR3 *ARl++, R 3 , R 3
I I ST1 R 6 , *-AR2 (IRO)

Before Instruction:

AR1 = 80987Eh
R3 = 85h
R6 = ODCh = 220
AR2 = 8098B4h
IRO = 8h
Data at 80987Eh = 85h
Data at 8098ACh = Oh
L U F L V U F N Z V C = O O O 0 0 0 0

After Instruction:

AR1 = 80987Fh
R3 = Oh
R6 = ODCh = 220
AR2 = 8098B4h
IRO = 8h
Data at 80987Eh = 85h
Data at 8098ACh = ODCh = 220
L U F L V U F N Z V C = O 0 0 0 0 0 0

Note: Cycle Count

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle
count.

Software Applications

The TMS320C3x is a powerful digital signal processor with an architecture and
instruction set designed to find simple solutions to DSP problems. There are
instructions specifically designed for efficient implementation of DSP algo-
rithms as well as general-purpose instructions that make the device suitable
for more general tasks, like any microprocessor. The floating-point and integer
arithmetic supported by the device let you concentrate on the algorithm and
pay less attention to scaling, dynamic range, and overflows.

The purpose of this chapter is to explain how to use the instruction set, the ar-
chitecture, and the interface of the TMS320C3x processor. It presents coding
examples for frequently used applications and discusses more involved exam-
ples and applications. This chapter defines the principles involved in the ap-
plications and provides the corresponding assembly-language code for in-
structional purposes and for immediate use. Whenever the detailed explana-
tion of the underlying theory is too extensive to be included in this manual, ap-
propriate references are given for further information.

Major topics discussed in this chapter are listed below.

Topic Page

Processor Initialization

11 .I Processor initialization

Before you execute a digital signal processing algorithm, you must initialize
the processor. Initialization usually occurs any time the processor is reset.

You can reset the processor by applying a low level to the RESET input for sev-
eral cycles. At this time, the TMS320C3x terminates execution and puts the
reset vector (that is, the contents of memory IocationO) in the program counter.
The reset vector normally contains the address of the system-initialization rou-
tine. The hardware reset also initializes various registers and status bits.

After reset, you can further initialize the processor by executing instructions
that set up operational modes, memory pointers, interrupts, and the remaining
functions needed to meet system requirements.

To configure the processor at reset, you should initialize the following internal
functions:

0 Memory-mapped registers
0 Interrupt structure

In addition to the initialization performed during the hardware reset (for condi-
tions after hardware reset, see Chapter 12), Example 11-1 shows coding for
initializing the TMS320C3x to the following machine state:

0 All interrupts are enabled.
0 The overflow mode is disabled.
0 The data memory page pointer is set to 0.
Q The internal memory is filled with 0s.

Note that all constants larger than 16 bits should be placed in memory and ac-
cessed through direct or indirect addressing.

Processor Initialization

Example 1 1 - 1. TMS320C3x Processor Initialization

* TITLE PROCESSOR INITIALIZATION

.global RESET,INIT,BEGIN
.global INTO,INTl,INT2,1NT3
.global ISROIISR1,1SR2,1SR3 . global DINT, DMA
.global TINTO,TINT1,XINTO,RINTOIXINT1,R1NTl
.global TIMEO,TIME1,XMTO,RCVO,XMT1,RCVl
.global TRAPO,TRAPl,TRAP2,TRPO,TRPl,TRP2

PROCESSOR INITIALIZATION FOR THE TMS320C3x

RESET AND INTERRUPT VECTOR SPECIFICATION. THIS
ARRANGEMENT ASSUMES THAT DURING LINKING, THE FOLLOWING
TEXT SEGMENT WILL BE PLACED TO START AT MEMORY
LOCATION 0.

*
. sect " init" ; Named section

RESET .word INIT ; RS- load address INIT to PC
INTO .word ISRO ; INTO- loads address ISRO to PC
INTl .word ISRl ; INTI- loads address ISRl to PC
INT2 .word ISR2 ; INT2- loads address ISR2 to PC
INT3 .word ISR3 ; INT3- loads address ISR3 to PC

XINTO .word XMTO ; Serial port 0 transmit interrupt processing
RINTO .word RCVO ; Serial port 0 receive interrupt processing
XINTl .word XMTl ; Serial port 1 transmit interrupt processing

* RINTl .word RCVl ; Serial port 1 receive interrupt processing
TINT0 .word TIME0 ; Timer 0 interrupt processing
TINT1 .word TIME1 ; Timer 1 interrupt processing
DINT .word DMA ; DMA interrupt processing . space 2 0 ; Reserved space
TRAP0 .word TRPO ; Trap 0 vector processing begins
TRAP1 .word TRPl ; Trap 1 vector processing begins
TRAP2 .word TRP2 ; Trap 2 vector processing begins . space 2 9 ; Leave space for the other 29 traps
4

* IN THE FOLLOWING SECTION, CONSTANTS THAT CANNOT BE REPRESENTED
* IN THE SHORT FORMAT ARE INITIALIZED. THE NUMBERS IN PARENTHESIS
* AT THE END OF THE COMMENTS REPRESENT THE OFFSET OF A
* PARTICULAR CONTROL REGISTER FROM
* CTRL (808000X)

Software Applications 11-3

Processor Initialization

MASK
BLKO
BLK 1
STCK
CTRL
DMACTL
TIMOCTL
TIMlCTL
SERGLOBO
SERPRTXO
SERPRTRO
SERTIMO
SERGLOBl
SERPRTXl
SERPRTRl
SERTIMl
PARINT
IOINT
*

OFFFFFFFFH
0809800H ;
0809COOH ;
0809FOOH ;
0808000H ;
OOOOOOOH ;
OOOOOOOH ;
OOOOOOOH ;
OOOOOOOH ;
OOOOOOOH ;
OOOOOOOH ;
OOOOOOOH ;
OOOOOOOH ;
OOOOOOOH ;
OOOOOOOH ;
OOOOOOOH ;
OOOOOOOH ;
OOOOOOOH ;

Beginning address of RAM block 0
Beginning address of RAM block 1
Beginning of stack
Pointer for peripheral-bus memory map
Init for DMA control (0)
Init of timer 0 control (32)
Init of timer 1 control (48)
Init of serial 0 glbl control (64)
Init of serial 0 xrnt port control (66)
Init of serial 0 rcv port control (67)
Init of serial 0 timer control (68)
Init of serial 1 glbl control (80)
Init of serial 1 xmt port control (82)
Init of serial 1 rcv port control (83)
Init of serial 1 timer control (84)
Init of parallel interface control (100)
Init of 1/0 interface control (96)

*
THE ADDRESS AT MEMORY LOCATION 0 DIRECTS EXECUTION TO BEGIN HERE

* FOR RESET PROCESSING THAT INITIALIZES THE PROCESSOR. WHEN RESET
* IS APPLIED, THE FOLLOWING REGISTERS ARE INITIALIZED TO 0:
*

* ST -- CPU STATUS REGISTER
* IE -- CPU/DMA INTERRUPT ENABLE FLAGS
* IF -- CPU INTERRUPT FLAGS
* IOF-- 1/0 FLAGS
*
* THE STATUS REGISTER HAS THE FOLLOWING ARRANGEMENT:

* BITS: 31-14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

* FUNCTION: RESRV GIE CC CE CF RESRV RM OVM LUF LV UF N Z V C
*

INIT LDP 0,DP ; Point the DP register to page 0
LDI 1800H,ST ; Clear and enable cache, and disable OVM
LDI @MASK,IE ; Unmask all interrupts

*
INTERNAL DATA MEMORY INITIALIZATION TO FLOATING POINT 0

*

LDI @BLKO , ARO ; ARO points to block 0
LDI @BLKl ,AR1 ; AR1 points to block 1
LDFO,O,RO ; 0 register RO
RPTS 1023 ; Repeat 1024 times ...
STF RO, *ARO++ (1) ; Zero out location in RAM block 0 and ...

I I STFRO,*ARl++(l) ; Zero out location in RAM block 1

Processor Initialization

THE PROCESSOR IS INITIALIZED. THE REMAINING APPLICATION--
DEPENDENT PART OF THE SYSTEM (BOTH ON- AND OFF--CHIP) SHOULD
NOW BE INITIALIZED.

FIRST, INITIALIZE THE CONTROL REGISTERS. IN THIS EXAMPLE,
EVERYTHING IS INITIALIZED TO 0, SINCE THE ACTUAL INITIALIZATION IS
APPLICATION-DEPENDENT.

LDI QCTRL,ARO ; Load in ARO the pointer to control
; registers

LDI Q DMACTL , RO
STIRO,*+ARO(O) ; Init DMA control

LDI eTIMOCTL, RO
STIRO1*+AR0(32)
LDI @TIMlCTL,RO
STIRO,*+AR0(48)
LDIeSERGLOB0,RO
STIRO,*+AR0(64)
LDI OSERPRTXO , RO
ST1 RoI*+ARO(66)
LDI QSERPRTRO I RO
ST1 RO, *+AR0(67)
LDI QSERTIMO , RO
ST1 RO, *+AR0(68)
LDIPSERGLOB1,RO
ST1 RO,*+AR0(80)
LDI O SERPRTX 1, RO
STIROI*+AR0(82)
LDI QSERPRTR1 , RO
STIRO,*+AR0(83)
LDI QSERTIM1 , RO
STIRO,*+ARO(84)
LDI QPARINT, RO
STIRO,*+AR0(100)
LDI QIOINT, RO
STIROI*+AR0(96)

Init timer 0 control

Init timer 1 control

Init serial 0 global control

Init serial 0 xmt control

Init serial 0 rcv control

Init serial 0 timer control

Init serial 1 global control

Init serial 1 xmt control

Init serial 1 rcv control

Init serial 1 timer control

Init parallel interface control (C30 only)

Init 1/0 interface control

LDI @ STCK , SP ; Init the stack pointer
OR 2000H,ST ; Global interrupt enable

BR BEGIN ; Branch to the beginning of application

Software Applications 11-5

Program Control

11.2 Program Control

One group of TMS320C3x instructions provides program control and facili-
tates all types of high-speed processing. These instructions directly handle:

IJ subroutine calls
IJ software stack
IJ interrupts
IJ zero-overhead branches
IJ single- and multiple-instruction loops without any overhead

11.2.1 Subroutines

The TMS320C3x has a 24-bit program counter (PC) and a practically unlimited
software stack. The CALL and CALLcond subroutine calls cause the stack
pointer to increment and store the contents of the next value of the PC counter
on the stack. At the end of the subroutine, RETScond performs a conditional
return.

Example 11-2 illustrates the use of a subroutine to determine the dot product
between two vectors. Given two vectors of length N, represented by the arrays
a [O], a [I] ,..., a [N -I] and b [0], b [I] ,..., b [N -11, the dot product is computed
from the expression

d =a[O] b [0] + a[1] b [I] + ... + a[N- I] b[N-11

Processing proceeds in the main routine to the point where the dot product is
to be computed. It is assumed that the arguments of the subroutine have been
appropriately initialized. At this point, a CALL is made to the subroutine,
transferring control to that section of the program memory for execution, then
returning to the calling routine via the RETS instruction when execution has
completed. Note that for this particular example, it would suffice to save the
register R2. However, a larger number of registers are saved for demonstra-
tion purposes. The saved registers are stored on the system stack. This stack
should be large enough to accommodate the maximum anticipated storage re-
quirements. You could use other methods of saving registers equally well.

Program Control

Example 11-2. Subroutine Call (Dot Product)

* TITLE SUBROUTINE CALL (DOT PRODUCT)
*
*
* MAIN ROUTINE THAT CALLS THE SUBROUTINE 'DOT' TO COMPUTE THE
* DOT PRODUCT OF TWO VECTORS

*
*
*
* LDI @blkO,ARO ; ARO points to vector a

LDI @blkl,ARl ; AR1 points to vector b
* LDI N,RC ; RC contains the number of elements

* CALL DOT
*

*

* SUBROUTINE DOT
*

* EQUATION: d = a(0) * b(0) + a(1) b(1) + ... + a(N-1) * b(N-1)
*
* THE DOT PRODUCT OF a AND b,IS PLACED IN REGISTER RO. N MUST
* BE GREATER THAN OR EQUAL TO 2.
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT I FUNCTION

* ARO
* AR1
* RC
*

I ADDRESS OF a(0)
I ADDRESS OF b(0)
I LENGTH OF VECTORS (N)

* REGISTERS USED AS INPUT: ARO, AR1, RC
* REGISTER MODIFIED: RO
* REGISTER CONTAINING RESULT: RO
*

.global DOT

DOT PUSH ST ; Save status register
PUSH R2 ; Use the stack to save R2's
PUSHF R2 ; Lower 32 and upper 32 bits
PUSH ARO ; Save ARO
PUSH AR1 ; Save AR1
PUSH RC ; Save RC

Software Applications 11-7

Program Control

* ; Initialize RO:
MPYF3 *ARO,*ARl,RO ; a(0) b(0) -> RO
LDFO.O,R2 ; Initialize R2
SUB1 2 ,RC ; Set RC = N-2

*
* DOT PRODUCT (1 <= i < N)
*

RPTS RC ; Setup the repeat single

RETURN SEQUENCE
*

POP RC
POP AR1
POP ARO
POPF R2
POP R2
POP ST
RETS

; Restore RC
; Restore AR1
; Restore ARO
; Restore top 32 bits of R2
; Restore bottom 32 bits of R2
; RestoreST
; Return

* end

*
. end

11.2.2 Software Stack

The TMS320C3x has a software stack whose location is determined by the
contents of the stack pointer register (SP). The stack pointer increments from
low to high values, and provisions should be made to accommodate the antici-
pated storage requirements. The stack can be used not only during the sub-
routines CALL and RETS, but also inside the subroutine as a place of tempo-
rary storage of the registers, as shown in Example 11-2. SP always points to
the last value pushed on the stack.

Proaram Control

The CALL and CALLcond instructions and the interrupt routines push the
value of the PC onto the stack. RETScond and RETlcond then pop the stack
and place the value in the program counter. You can also use the PUSH and
POP instructions to maneuver the integer value of any register onto and off the
stack, respectively. There are two additional instructions, PUSHF and POPF,
for floating point numbers. You can push and pop floating point numbers to reg-
isters R7-RO. This feature makes it easy to save all 40 bits of the extended
precision registers (see Example 11-2). Using PUSH and PUSHF on the
same register saves the lower 32 and upper 32 bits. PUSH saves the lower
32; PUSHF, the upper 32. POPF, followed by POP, will recover this extended
precision number. It is important to perform the integer and floating-point
PUSH and POP in the order given above. POPF forces the least significant
eight bits of the extended-precision registers to 0 and therefore must be per-
formed first.

You can easily read and write to the SP to create multiple stacks for different
program segments. SP is not initialized by the hardware during reset. It is
therefore important to remember to initialize its value so that SP points to a pre-
determined memory location. This avoids the problem of SP attempting to
write into ROM or otherwise write over useful data.

11.2.3 Interrupt Service Routines

lnterrupts on the TMS320C3x are prioritized and vectored. When an interrupt
occurs, the corresponding flag is set in the interrupt flag register IF. If the corre-
sponding bit in the interrupt enable register (IE) is set, and interrupts are en-
abled by having the GIE bit in the status register set to 1, interrupt processing
begins. You can also write to the interrupt flag register, allowing you to force
an interrupt by software or to clear interrupts without processing them.

Even when the interrupt is disabled, you can read the interrupt flag register (IF)
and take appropriate action, depending on whether the interrupt has occurred.
This is true even when the interrupt is disabled. This can be useful when an
interrupt-driven interface is not implemented. Example 11-3 shows the case
in which a subroutine is called when interrupt 1 has not occurred.

Example 1 1 3 . Use of Interrupts for Software Polling
* TITLE INTERRUPT POLLING

TSTB 2,1F ; Tes t i f in terrupt 1 has occurred
CALLZ SUBROUTINE ; If not, c a l l subroutine

Software Applications 11-9

Program Control

When interrupt processing begins, the PC is pushed onto the stack, and the
interrupt vector is loaded in the PC. Interrupts are then disabled by setting the
GIE = 0, and the program continues from the address loaded in the PC. Since
all interrupts are disabled, interrupt processing can proceed without further in-
terruption, unless the interrupt service routine re-enables interrupts.

Except for very simple interrupt service routines, it is important to ensure that
the processor context is saved during execution of this routine. You must save
the context before you execute the routine itself and restore it after the routine
is finished. The procedure is called context switching. Context switching is also
useful for subroutine calls, especially during extensive use of the auxiliary and
the extended precision registers. This section contains code examples of con-
text switching and an interrupt service routine.

Program Control

11.2.3.1 Context Switching

Context switching is commonly required during the processing of subroutine
calls or interrupts. It might be quite extensive or it might be simple, depending
on system requirements. On the TMS320C3x, the program counter is auto-
matically pushed onto the stack. Important information in other TMS320C3x
registers, such as the status, auxiliary, or extended-precision registers, must
be saved by special commands. In order to preserve the state of the status reg-
ister, you should push it first and pop it last. This keeps the restoration of the
extended precision registers from affecting the status register.

Example 11-4 and Example 11-5 show saving and restoring of the
TMS320C3xstate. In both examples, the stack is used for saving the registers,
and it expands towards higher addresses. If you don't want to use the stack
pointed at by SP, you can create a separate stack by using an auxiliary register
as the stack pointer. Registers saved in these examples are:

Q Extended-precision registers R7 through RO
Q Auxiliary registers AR7 through ARO
Q Data-page pointer DP
Q Index registers IRO and IR1
Q Block-size register BK
Q Status register ST
Q Interrupt-related registers IE and IF
Q I10 flag IOF
Q Repeat-related registers RS, RE, and RC

Software Applications 11-11

Proaram Control

Example 11-4. Context Save for the TMS320C3x

* TITLE CONTEXT SAVE FOR THE TMS320C3x

*
*

.global SAVE
*

* CONTEXT SAVE ON SUBROUTINE CALL OR INTERRUPT
*
SAVE :

PUSH ST ; Save status register
*
* SAVE THE EXTENDED PRECISION REGISTERS
*

PUSH RO
PUSHF RO
PUSH R1
PUSHF R1
PUSH R2
PUSHF R2
PUSH R3
PUSHF R3
PUSH R4
PUSHF R4
PUSH R5
PUSHF R5
PUSH R6
PUSHF R6
PUSH R7
PUSHF R7

*

Save the lower 32 bits
and the upper 32 bits

Save the lower 32 bits
and the upper 32 bits

Save the lower 32 bits
and the upper 32 bits

Save the lower 32 bits
and the upper 32 bits

Save the lower 32 bits
and the upper 32 bits

Save the lower 32 bits
and the upper 32 bits

Save the lower 32 bits
and the upper 32 bits

Save the lower 32 bits
and the upper 32 bits

* SAVE THE AUXILIARY REGISTERS

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH

*

ARO
AR1
AR2
AR3
AR4
AR5
AR6
AR7

; Save ARO
; Save AR1
; Save AR2
; Save AR3
; Save AR4
; Save AR5
; Save AR6
; Save AR7

Program Control

PUSH DP
PUSH IRO
PUSH IR1
PUSH BK
PUSH IE
PUSH IF
PUSH IOF
PUSH RS
PUSH RE
PUSH RC

*
SAVE IS COMPLETE

*

SAVE THE REST REGISTERS FROM THE REGISTER FILE

Save data page pointer
Save index register IRO
Save index register IR1
Save block-size register
Save interrupt enable register
Save interrupt flag register
Save 1/0 flag register
Save repeat start address
Save repeat end address
Save repeat counter

Software Applications 11-13

Program Control

Example 11-5. Context Restore for the TMS320C3x

* TITLE CONTEXT RESTORE FOR THE TMS320C3x

*
.global RESTR

*

* CONTEXT RESTORE AT THE END OF A SUBROUTINE CALL OR INTERRUPT
*
RESTR:
*
* RESTORE THE REST REGISTERS FROM THE REGISTER FILE

*
POP RC
POP RE
POP RS
POP IOF
POP IF
POP IE
POP BK
POP IRl
POP IRO
POP DP

*

Restore
Restore
Restore
Restore
Restore
Restore
Restore
Restore
Restore
Restore

repeat counter
repeat end address
repeat start address
1/0 flag register
interrupt flag register
interrupt enable register
block-size register
index register IR1
index register IRO
data page pointer

* RESTORE THE AUXILIARY REGISTERS
*

POP AR7
POP AR6
POP AR5
POP AR4
POP AR3
POP AR2
POP ARl
POP ARO

*

; Restore AR7
; Restore AR6
; RestoreAR5
; Restore AR4
; Restore AR3
; Restore AR2
; Restore AR1
; Restore ARO

* RESTORE THE EXTENDED PRECISION REGISTERS
*

Program Control

POPF R7
POP R7
POPF R6
POP R6
POPF R5
POP R5
POPF R4
POP R4
POPF R3
POP R3
POPF R2
POP R2
POPF R1
POP Rl
POPF RO
POP RO
POP ST

*

* RESTORE I S COMPLETE
*

Restore the upper 32 bits and
the lower 32 bits of R7

Restore the upper 32 bits and
the lower 32 bits of R6

Restore the upper 32 bits and
the lower 32 bite of R5

Restore the upper 32 bite and
the lower 32 bite of R4

Restore the upper 32 bits and
the lower 32 bits of R3

Restore the upper 32 bits and
the lower 32 bits of R2

Restore the upper 32 bite and
the lower 32 bite of R1

Restore the upper 32 bits and
the lower 32 bits of RO

Restore status register

Software Applications 11-15

Program Control

11 2.3.2 Interrupt Prlority

Interrupts on the TMS320C3x are automatically prioritized. This allows inter-
rupts that occur simultaneously to be serviced in a predefined order. Infrequent
but lengthy interrupt service routines might need to be interrupted by more fre-
quently occurring interrupts. In Example 114, the interrupt service routine for
INT2 temporarily modifies the IE to permit interrupt processing when an inter-
rupt to INTO (but no other interrupt) occurs. When the routine has finished pro-
cessing, the IE register is restored to its original state. Notice that the
RETlcondinstruction not only pops the next program counter address from the
stack, but also sets the GIE bit of the status register. This enables all interrupts
that have their interrupt enable bit set.

Example 11-6. Interrupt Service Routine

* TITLE INTERRUPT SERVICE ROUTINE

ENABLE .set 2000h

*
* INTERRUPT PROCESSING FOR EXTERNAL INTERRUPT INT2-

PUSH ST
PUSH DP
PUSH IE
PUSH RO
PUSHF RO
PUSH R1
PUSHF R1
LDI MASK, IE
OR ENABLE, ST

Save status register
Save data page pointer
Save interrupt enable register
Save lower 32 bits and

upper 32 bits of RO
Save lower 32 bits and

upper 32 bits of R1
Unmask only INTO
Enable all interrupts

*
* MAIN PROCESSING SECTION FOR ISR2

XOR ENABLE, ST
POPF R1
POP Rl
POPF RO
POP RO
POP IE
POP DP
POP ST

*
RETI

Disable all interrupts
Restore upper 32 bits and

lower 32 bits of R1
Restore upper 32 bits and

lower 32 bits of RO
Restore interrupt enable register
Restore data page register
Restore status register

Return and enable interrupts

Prooram Control

11.2.4 Delayed Branches

The TMS320C3x uses delayed branches to create single-cycle branching.
The delayed branches operate like regular branches but do not flush the pipe-
line. Instead, the three instructions following a delayed branch are also ex-
ecuted. As discussed in Chapter 6, the only limitations are that none of the
three instructions following a delayed branch can be a:

Q Branch (standard or delayed)
Q Call to a subroutine
Q Return from a subroutine
Q Return from an interrupt
Q Repeat instruction
Q TRAP instruction
r~ IDLE instruction

Conditional delayed branches use the conditions that exist at the end of the
instruction immediately preceding the delayed branch. Sometimes a branch
is necessary in the flow of a program, but fewer than three instructions can be
placed after a delayed branch. For faster execution, it is still advantageous to
use a delayed branch. This is shown in Example 11-7, with NOPs taking the
place of the unused instructions. The trade-off is more instruction words for
less execution time.

Example 11-7. Delayed Branch Execution

* TITLE DELAYED BRANCH EXECUTION

LDF *+AR1(5),R2 ; Load contents of memory to R2
BGED SKIP ; I f loaded number >=Or branch (delayed)
LDFN R2,Rl ; I f loaded number <Or load it to R1
SUBF 3.0,Rl ; Subtract 3 from R1
NOP ; Dummy operation to complete delayed

; branch
MPYF 1.5,Rl ; Continue here if loaded number < O

SKIP LDF R1, R3 ; Continue here if loaded number >=0

Software Applications 11-17

Program Control

11 -2.5 Repeat Modes

The TMS320C3x supports looping without any overhead. For that purpose,
there are two instructions: RPTB repeats a block of code, and RPTS repeats
a single instruction. There are three control registers: repeat start address
(RS), (repeat end address (RE), and repeat counter (RC). These contain the
parameters that specify loop execution (refer to Section 6.1 on page 6-2 for
a complete description of RPTB and RPTS). RS and RE are automatically set
from the code, while you must set RC, as shown in the examples below.

11.2.5.1 Block Repeat

Example 11-8 shows an application of the block repeat construct. In this ex-
ample, an array of 64 elements is flipped over by exchanging the elements that
are equidistant from the end of the array. In other words, if the original array is

the final array after the rearrangement will be

Because the exchange operation is done on two elements at the same time,
it requires 32 operations. The repeat counter RC is initialized to 31. In general,
if RC contains the number N, the loop will be executed N + 1 times. The loop
is defined by the RPTB instruction and the EXCH label.

Program Control

Example 1 1 -8 . Loop Using Block Repeat
* TITLE LOOP USING BLOCK REPEAT

*
* THIS CODE SEGMENT EXCHANGES THE VALUES OF ARRAY ELEMENTS THAT ARE
* SYMMETRIC AROUND THE MIDDLE OF THE ARRAY.

L D I @ADDR, A R O ;
L D I A R O , AR1
ADD1 63,ARl ;

* ;
L D I 31,RC i

*
RPTB EXCH ;

;
L D I *ARO,RO ;

1 1 L D I *ARl,Rl ;
EXCH S T 1 R 1 , *ARO++ (1) ;

1) STIRO,*ARl--(I)

A R O pointe to the beginning of the array

AR1 pointe to the end of the
64 -element array
Initialize repeat counter

Repeat RC+1 times between here and
EXCH

Load one memory element in RO,
and the other in R l

Then, exchange their locations

Subsection 6.1.2 on page 6-3 specifies restrictions in the block-repeat con-
struct. Because the program counter is modified at the end of the loop accord-
ing to the contents of the registers RS, RE, and RC, no operation should at-
tempt to modify the repeat counter or the program counter at the end of the
loop in a different way.

In principle, it is possible to nest repeat blocks. However, there is only one set
of control registers: RS, RE, and RC. It is therefore necessary to save these
registers before entering an inside loop. It might be more practical to imple-
ment a nested loop by the more traditional method of using a register as a
counter and then using a delayed branch rather than using the nested repeat
block approach.

Example 11-9 shows another example of using the block repeat to find a maxi-
mum of 147 numbers.

Soitware Applications 11-19

Program Control

Example 11-9. Use of Block Repeat to Find a Maximum

* TITLE USE OF BLOCK REPEAT TO FIND A MAXIMUM
*
* THIS ROUTINE FINDS THE MAXIMUM OF N = 147 NUMBERS.
*

LDI 146,RC ; Initialize repeat counter to 147-1
LDI @ADDR,ARO ; ARO points to beginning of array
LD *ARO++(l),RO ; Initialize MAX to the first value

*
RPTB LOOP
CMPF *ARO++(l),RO ; Compare number to the maximum

LOOP LDFLT *-ARO(l),RO ; If greater, this ie a new maximum

11.2.5.2 Single-instruction Repeat

The single-instruction repeat uses the control registers RS, RE, and RC in the
same way as the block repeat. The advantage over the block repeat is that the
instruction is fetched only once, and then the buses are available for moving
operands. Note that the single-instruction repeat construct is not interruptible,
while block repeat is interruptible.

Example 11 -1 0 shows an application of the single-repeat construct. In this ex-
ample, the sum of the products of two arrays is computed. The arrays are not
necessarily different. If the arrays are a(i) and b(i), each of length N = 512,
register RO will contain, after computation, this quantity:

a (1) b (1) t a(2) b (2) +...+a (N) b (N).

The value of the RC is specified to be 51 1 in the instruction. If RC contains the
number N, the loop will be executed N t 1 times.

Proaram Control

Example 1 1 - 10. Loop Using Single Repeat
TITLE LOOP USING SINGLE REPEAT

*
* THIS CODE SEGMENT COMPUTES SUM[a(i)b(i)] FOR i = 1 to N.
*
*

LDI @ADDRl,ARO ; ARO pointe to array a(i)
LDI eADDR2,ARl ; AR1 pointe to array b(i)

*
LDF O.O,RO ; Initialize RO

*
MPYF3 *ARO++(l),*ARl++(l),Rl

* ; Compute firet product
RPTS 511 ; Repeat 512 times

*

MPYF3 *ARO++(l),*ARl++(l),Rl,RO ; Compute next product
I I ADDF3 R1 ,RO ,RO ; and accumulate the

; previoue one *
ADDF R1,RO ; One final addition

Software Applications 11-21

Proaram Control

11.2.6 Computed GOTOs

It is occasionally convenient to select during run time (and not during assem-
bly) the subroutine to be executed. The TMS320C3x1s computed GOT0 sup-
ports this selection. The computed GOT0 is implemented using the CALLcond
instruction in the register-addressing mode. This instruction uses the contents
of the register as the address of the call. Example 11-11 shows a computed
GOT0 for a task controller.

Example 11 -1 1. Computed GOT0

TITLE COMPUTED GOT0

TASK CONTROLLER

THIS MAIN ROUTINE CONTROLS THE ORDER OF TASK EXECUTION (6 TASKS
IN THE PRESENT EXAMPLE). TASKO THROUGH TASK5 ARE THE NAMES OF
SUBROUTINES TO BE CALLED. THEY ARE EXECUTED IN ORDER, TASKO,
TASK1, . . .TASKS. WHEN AN INTERRUPT OCCURS, THE INTERRUPT
SERVICE ROUTINE IS EXECUTED, AND THE PROCESSOR CONTINUES
WITH THE INSTRUCTION FOLLOWING THE IDLE INSTRUCTION. THIS
ROUTINE SELECTS THE TASK APPROPRIATE FOR THE CURRENT CYCLE,
CALLS THE TASK AS A SUBROUTINE, AND BRANCHES BACK TO THE IDLE
TO WAIT FOR THE NEXT SAMPLE INTERRUPT WHEN THE SCHEDULED TASK
HAS COMPLETED EXECUTION. RO HOLDS THE OFFSET FROM THE BASE
ADDRESS OF THE TASK TO BE EXECUTED.

LDI
LDI

WAIT IDLE
ADD13

*
SUB1
LDILT
LDI
CALLU
BR

TSKSEQ .word
.word
.word
.word
.word
.word

ADDR .word

1,RO
5,RO
*AR2, R1
R 1
WAIT

TASK5
TASK4
TASK3
TASK2
TASKl
TASKO
TSKSEQ

Initialize RO
AR1 holds base address of the table
Wait for the next interrupt
Add the base address to the table
Entry number
Decrement RO
If ROCO, reinitialize it to 5
Load the task address
Execute appropriate task

Address of TASK5
Address of TASK4
Address of TASK3
Address of TASK2
Address of TASKl
Address of TASKO

Loaical and Arithmetic O~erations

11.3 Logical and Arithmetic Operations

The TMS320C3x instruction set supports both integer and floating-point arith-
metic and logical operations. The basic functions of such instructions can be
combined to form more complex operations. This section examines examples
of these operations:

Bit manipulation
a Block moves
0 Bit-reversed addressing
a Integer and floating-point division

Square root
Extended-precision arithmetic

a Floating-point format conversion between IEEE and TMS320C3x formats

11.3.1 Bit Manipulation

Instructions for logical operations, such as AND, OR, NOT, ANDN, and XOR
can be used together with the shift instructions for bit manipulation. A special
instruction, TSTB, tests bits. TSTB performs the same operation as AND, but
the result of the logical AND is only used to set the condition flags and is not
written anywhere. Example 11-1 2 and Example 11-1 3 demonstrate the use
of the several instructions for bit manipulation and testing.

Example 1 1 - 12. Use of TSTB for Soflware-Controlled Interrupt

TITLE USE OF TSTB FOR SOFTWARE-CONTROLLED INTERRUPT

IN THIS EXAMPLE, ALL INTERRUPTS HAVE BEEN DISABLED BY
RESETTING THE GIE BIT OF THE STATUS REGISTER. WHEN AN
INTERRUPT ARRIVES, IT IS STORED IN THE IF REGISTER. THE
PRESENT EXAMPLE ACTIVATES THE INTERRUPT SERVICE ROUTINE INTR
WHEN IT DETECTS THAT INT2- HAS OCCURRED.

TSTB 0100b,IF ; Check if bit 2 of IF is set,
CALLNZ INTR ; and, if so, call subroutine INTR

Software Applications 1 1 -23

Logical and Arithmetic Operations

Example 11-1 3. Copy a Bit From One Location to Another

* TITLE COPY A BIT FROM ONE LOCATION TO ANOTHER
*
* BIT I OF R1 NEEDS TO BE COPIED TO BIT J OF R2.
* ARO POINTS TO A LOCATION HOLDING I, AND IT IS ASSUMED THAT THE
* NEXT MEMORY LOCATION HOLDS THE VALUE J.
*

LDI
LSH
TSTB
BZD
LDI
LSH
ANDN
OR

CONT .

l,RO
*ARO , RO ; Shift 1 to align it with bit I
R1, RO ; Test the Ith bit of R1
CONT ; If bit = 0, branch delayed
l,RO
*+ARO(l),RO ; Align 1 with Jth location
RO , R2 ; If bit = 0, reeet Jth bit of R2
RO,R2 ; If bit = 1, set Jth bit of R2

Logical and Arithmetic Operations

11.3.2 Block Moves

Since the TMS320C3x directly addresses a large amount of memory, blocks
of data or program code can be stored off-chip in slow memories and then
loaded on-chip for faster execution. Data can also be moved from on-chip to
off-chip memory for storage or for multiprocessor data transfers.

You can use direct memory access (DMA) in parallel with CPU operations to
accomplish such data transfers. The DMA operation is explained in detail in
subsection 8.3 on page 8-43. An alternative to DMA is to perform data trans-
fers under program control using load and store instructions in a repeat mode.
Example 11-14 shows the transfer of a block of 512 floating-point numbers
from external memory to block 1 of the on-chip RAM.

Example 11-1 4. Block Move Under Program Control

* TITLE BLOCK MOVE UNDER PROGRAM CONTROL
*

extern .word OlOOOH
block1 .word 0809COOH

LDI @extern,ARO ; Source address
LDI @blockl,ARl ; Destination address

LDF *ARO++,RO ; Load the first number

RPTS 510 ; Repeat following instruction 511 times
LDF *ARO++,RO ; Load the next number, and...

I I STF RO,*ARl++ ; store the previous one

STF RO,*ARl ; Store the last number

11.3.3 Bit-Reversed Addressing

The TMS320C3x can implement fast Fourier transforms (FFT) with bit-rev-
ersed addressing. If the data to be transformed is in the correct order, the final
result of the FFT is scrambled in bit-reversed order. To recover the frequency-
domain data in the correct order, you must swap certain memory locations.
The bit-reversed addressing mode makes swapping unnecessary. The next
time data needs to be accessed, the access is performed in a bit-reversed
manner rather than sequentially. The base address of bit-reversed addressing
must be located on a boundary of the size of the table. For example, if IRO =
2-1, the n LSBs of the base address must be 0.

Software Applications 1 1 -25

Logical and Arithmetic Operations

In bit-reversed addressing, IRO holds a value equal to one-half the size of the
FFT, if real and imaginary data are stored in separate arrays. During access-
ing, the auxiliary register is indexed by IRO, but with reverse carry propagation.
Example 11-15 illustrates a 51 2-point complex FFT being moved from the
place of computation (pointed at by ARO) to a location pointed at by AR1. In
this example, real and imaginary parts XR(i) and XI (i) of the data are not stored
in separate arrays, but they are interleaved XR(O), XI(O), XR(l), XI(1), ...,
XR(N-I), XI(N-1). Because of this arrangement, the length of the array is 2N
instead of N, and IRO is set to 512 instead of 256.

Example 1 1 - 15. Bit-Reversed Addressing
*
* TITLE BIT-REVERSED ADDRESSING
*
* THIS EXAMPLE MOVES THE RESULT OF THE 512-POINT FFT
* COMPUTATION POINTED AT BY A R O TO A LOCATION POINTED AT
* BY AR1. REAL AND IMAGINARY POINTS ARE ALTERNATING.

L D I
L D I
L D I
LDF
RPTB

LDF

I I STF

LOOP LDF
1 I STF

512,IRO
2, I R 1
511,RC ; Repeat 511+1 t i m e 8
*+ARO(l),Rl ; Load f i r s t imaginary point
LOOP

*ARO++(IRO)B,RO ; Load r e a l value (and point
Rl,*+ARl(l) : t o next locat ion) and s to re

I the imaginary value
*+ARO(l),Rl ; Load next imaginary point and store
RO, *M I++ (I R 1) ; previous r e a l va lue

11.3.4 lnteger and FloatTng-Point Division

Although division is not implemented as a single instruction in the
TMS320C3x, the instruction set has the capacity to perform an efficient divi-
sion routine. lnteger and floating-point division are examined separately be-
cause different algorithms are used.

Logical and Arithmetic Operations

11.3.4.1 Integer Division

Division is implemented on the TMS320C3x by repeated subtractions using
SUBC, a special conditional subtract instruction. Consider the case of a 32-bit
positive dividend with i significant bits (and 32 - i sign bits) and a32-bit positive
divisor with j significant bits (and 32 - j sign bits). The repetition of the SUBC
command i - j + 1 times produces a 32-bit result in which the lower i - j +
1 bits are the quotient and the upper 31 - i + j bits are the remainder of the
division.

SUBC implements binary division in the same manner that long division imple-
ments it. The divisor which is assumed to be smaller than the dividend) is
shifted left i - j times to be aligned with the dividend. Then, using SUBC, the
shifted divisor is subtracted from the dividend. For each subtraction that does
not produce a negative answer, the dividend is replaced by the difference. It
is then shifted to the left, and a 1 is put in the LSB. If the difference is negative,
the dividend is simply shifted left by 1. This operation is repeated
i - j + 1 times.

Software Applications 11 -27

Logical and Arithmetic Operations

As an example, consider the division of 33 by 5, using both long division and
the SUBC method. In this case, i = 6 , j = 3, and the SUBC operation is repeated
6 - 3 + 1 = 4 times.

Long Division:

-1 01
1101
-1 01

11 Remainder

SUBC Method:

00000000000000000000000000100001 Dividend
000000000000000000000000001 01 000 Divisor (Alianed)

Negative Difference (First SUB^ command)

.1
000000000000000000000000001 0001 0 New Dividend + Quotient
00000000000000000000000000101000 Divisor

00000000000000000000OOOOO00110,O Difference (> 0) (Second SUBC Command)

0000000000000000000000000011 01 01 New Dividend + Quotient
000000000000000000000000001 01 000 Divisor

Difference (> 0) (Third SUBC Command)

.1
00000000000000000000000000011 01 1 New Dividend + Quotient
000000000000000000000000001 01 000 Divisor

Negative Difference (Fourth SUBC Command)

Remainder

When the SUBC command is used, both the dividend and the divisor must be
positive. Example 11-1 6 shows an example of a realization of the integer divi-
sion in which the sign of the quotient is properly handled. The last instruction
before returning modifies the condition flag in case subsequent operations de-
pend on the sign of the result.

Logical and Arithmetic Operations

Example 1 1 - 16. Integer Division

TITLE INTEGER DIVISION

SUBROUTINE DIVI

INPUTS: SIGNED INTEGER DIVIDEND IN RO,
SIGNED INTEGER DIVISOR IN R1

OUTPUT: RO/R1 into RO

REGISTERS USED: RO-R3, IRO, IR1

OPERATION: 1. NORMALIZE DIVISOR WITH DIVIDEND
2. REPEAT SUBC
3. QUOTIENT IS IN LSBs OF RESULT

CYCLES : 31-62 (DEPENDS ON AMOUNT OF NORMALIZATION)

.glob1 DIVI

SIGN .set R2
TEMPF .set R3
TEMP .set IRO
COUNT .set IR1

* DIVI - SIGNED DIVISION

DIVI :

DETERMINE SIGN OF RESULT. GET ABSOLUTE VALUE OF OPERANDS.
*

XOR RO,Rl,SIGN ; Get the sign
ABSI RO
ABSI R1

CMPI R0,Rl ; Divisor > dividend ?
BGTD ZERO ; If so, return 0

*

* NORMALIZE OPERANDS. USE DIFFERENCE IN EXPONENTS AS SHIFT COUNT
* FOR DIVISOR AND AS REPEAT COUNT FOR 'SUBC'.
*

FLOAT RO , TEMPF ; Normalize dividend
PUSHF TEMPF ; PUSH as float
POP COUNT ; POP as int
LSH -24, COUNT ; Get dividend exponent

Software Applications 11 -29

Logical and Arithmetic Operations

FLOAT R 1 , TEMPF ; Normalize d i v i s o r
PUSHF TEMPF ; PUSH a s f l o a t
POP TEMP ; POP a s i n t
LSH -24,TEMP ; G e t d i v i s o r exponent
SUB1 TEMP,COUNT ; G e t d i f f e r e n c e i n exponents
LSH COUNT,Rl ; Align d i v i s o r w i t h d iv idend

DO COUNT+l SUBTRACT 6 SHIFTS.

RPTS COUNT
SUBC R1,RO

MASK OFF THE LOWER COUNT+l BITS OF RO.

SUBRI 3 1, COUNT ; S h i f t count i s (32 - (COUNT+l))
LSH COUNT,RO ; S h i f t l e f t
NEGI COUNT
LSH COUNT,RO ; S h i f t r i g h t t o g e t r e s u l t

CHECK SIGN AND NEGATE RESULT I F NECESSARY.

NEGI R0,Rl ; Negate r e s u l t
ASH -31,SIGN ; Check s i g n
LDINZ R1,RO ; I f set, u s e n e g a t i v e r e s u l t
CMPI 0,RO ; S e t s t a t u s from r e s u l t
RETS

RETURN 0.

LDI 0,RO
RETS
.end

If the dividend is less than the divisor and you want fractional division, you can
perform a division after you determine the desired accuracy of the quotient in
bits. If the desired accuracy is k bits, start by shifting the dividend left by k posi-
tions. Then apply the algorithm described above, with i replaced by i t k. It is
assumed that i t k is less than 32.

Logical and Arithmetic Operations

11.3.4.2 Computation of Floating-Poin t inverse and Division

This section presents a method of implementing floating-point division on the
TMS320C3x. Since the algorithm outlined here computes the inverse of a
number v, to perform y / v, multiply y by the inverse of v.

The computation of 1 / v is based on the following iterative algorithm. At the
ith iteration, the estimate x [i] of 1 / v is computed from v and the previous esti-
mate x [i-1] according to the following formula:

To start the operation, an initial estimate x [0] is needed. If v = a 26, a good
initial estimate is

x [0] = 1.0*2-e-1

Example 11-1 7 shows the implementation of this algorithm on the
TMS320C3x1 where the iteration has been applied five times. Both accuracy
and speed are affected by the number of iterations. The accuracy offered by
the single-precision floating-point format is 2 - 23 = 1 .I 92E - 7. If you want
more accuracy, use more iterations. If you want less accuracy, reduce the
number of iterations to increase the execution speed.

This algorithm properly treats the boundary conditions when the input number
either is 0 or has a very large value. When the input is 0, the exponent
e = - 128. Then the calculation of x [0] yields an exponent equal to
- (- 128) -1 = 127, and the algorithm will overflow and saturate. On the other
hand, in the case of a very large number, e = 127, the exponent of x [O] will be
- 127 - 1 = - 128. This will cause the algorithm to yield 0, which is a reasonable
handling of that boundary condition.

Software Applications 11 -31

Loaical and Arithmetic O~erations

Example 1 1 - 1 7. Inverse of a Floating-Point Number
*
* TITLE INVERSE OF A FLOATING-POINT NUMBER
*

SUBROUTINE INVF

*
* THE FLOATING-POINT NUMBER V IS STORED IN RO. AFTER THE

COMPUTATION IS COMPLETED, l/v IS ALSO STORED IN RO.
*

TYPICAL CALLING SEQUENCE:
* LDFv, RO
* CALL INVF

* ARGUMENT ASSIGNMENTS:

* ARGUMENT I FUNCTION
*
* RO v = NUMBER TO FIND THE RECIPROCAL OF (UPON THE CALL)
* RO I l/v (UPON THE RETURN)

* REGISTER USED AS INPUT: RO
REGISTERS MODIFIED: RO, R1, R2, R3
REGISTER CONTAINING RESULT: RO

*
CYCLES: 35 WORDS: 32

*

.global INVF
*
INVF : LDF RO , R3 ; v is saved for later

ABSF RO ; The algorithm uses v = Ivl
*
* EXTRACT THE EXPONENT OF v.
*

PUSHF RO
POP R1
ASH -24,Rl ; The 8 LSBs of R1 contain the exponent

; of v
*
* x[O] FORMATION IS GIVEN THE EXPONENT OF v.

Logical and Arithmetic Operations

NEGI R1
SUB1 1,Rl ; Now we have -e-1, the exponent of x[O]
ASH 24,Rl
PUSH R1
POPF R1 ; Now R1 = x[O] = 1.0 * 2**(-e-1)

*
NOW THE ITERATIONS BEGIN.

*
MPYF Rl,RO,RZ ; R2 = v * x[O]
SUBRF 2.01R2 ; R2 = 2.0 - v * x[O]
MPYF R2,Rl ; R1 = x[l] = x[O] * (2.0 - v * x[O])

*
MPYF Rl,RO,R2 ; R2 = v * x[l]
SUBRF 2.01R2 ; R2 = 2.0 - v * x[l]
MPYF R2,Rl ; R1 = x[2] = x[l] * (2.0 - v ~ [l]) *
MPYF Rl,RO,RZ ; R2 = v * x[2]
SUBRF 2.0,RZ ; R2 = 2.0 - v * x[2]
MPYF R2,Rl ; R1 = x[3] = x[2] * (2.0 - v * x[2])

MPYF Rl,RO,R2 ; R2 = v * x[3]
SUBRF 2.01R2 ; R2 = 2.0 - v * x[3]
MPYF R2,Rl ; R1 x[4] x[3] * (2.0 - v x[3])

RND R1 ; Thie minimizes error in the LSBe
*
* FOR THE LAST ITERATION WE USE THE FORMULATION:
* x[5] = (x[4] (1.0 - (v x[4]))) + x[4]
*

MPYF RlIR0,R2 ; R2 = v * x[4] = 1.0..01.. => 1
SUBRF 1.0,RZ ; R2 = 1.0 - v * x[4] = 0.0..01... => 0
MPYF Rl,R2 ; R2 I x[4] * (1.0 - v * ~ [4])
ADDF R2,Rl ; R2 E x[5] t (~[4]*(1.0-(v*x[~])))+x[~]

*
RNDR1,RO ; Round eince thie is followed by a MPYF

*
* NOW THE CASE OF v < 0 IS HANDLED.
*

NEGF RO ,R2
LDF R3,R3 ; Thie eete condition flage
LDFN R2,RO ; If v < 0, then RO = -RO

*
RETS

*
* END
*

.end

Software Applications 11 -33

Logical and Arithmetic Operations

11.3.5 Square Root

An iterative algorithm computes square root on the TMS320C3x and is similar
to the one used for the computation of the inverse. This algorithm computes
the inverse of the square root of a number v, 1 / SQRT(v). To derive SQRT(v),
multiply this result by v. Since in many applications, division by the square root
of a number is desirable, the output of the algorithm saves the effort to compute
the inverse of the square root.

At the ith iteration, the estimate x[i] of 1 / SQRT(v) is computed from v and the
previous estimate x[i-1] according to this formula:

To start the operation, an initial estimate x[O] is needed. If v = a * 2e, a good
initial estimate is

x [O] = 1.0*2-812

Example 11-18 shows the implementation of this algorithm on the
TMS320C3x, where the iteration has been applied five times. Both accuracy
and speed are affected by the number of iterations. If you want more accuracy,
use more iterations. If you want less accuracy, reduce the number of iterations
to increase the execution speed.

Logical and Arithmetic Operations

Example 1 1 - 18. Square Root of a Floating-Point Number

TITLE SQUARE ROOT OF A FLOATING-POINT NUMBER

SUBROUTINE SQRT

THE FLOATING POINT NUMBER v IS STORED IN RO. AFTER THE
COMPUTATION IS COMPLETED, SQRT(v) IS ALSO STORED IN RO. NOTE
THAT THE ALGORITHM ACTUALLY COMPUTES l/SQRT(v).

TYPICAL CALLING SEQUENCE:

LDF v, RO
CALL SQRT

ARGUMENT ASSIGNMENTS:

ARGUMENT I FUNCTION

RO I v = NUMBER TO FIND THE SQUARE ROOT OF
I (UPON THE CALL)

RO I SQRT(v) (UPON THE RETURN)

REGISTER USED AS INPUT: RO
REGISTERS MODIFIED: RO, R1, R2, R3
REGISTER CONTAINING RESULT: RO

CYCLES: 50 WORDS: 39

.global SQRT

EXTRACT THE EXPONENT OF V.

Software Applications 11 -35

Logical and Arithmetic Operations

SQRT : LDF RO , R3 ; Save v
RETSLE ; Return if number is non-positive
PUSHF RO
POP Rl
ASH -24 ,R1 ; The 8 LSBs of R1 contain exponent of v
ADD1 1,Rl ; Add a rounding bit in the exponent
ASH -1,Rl ; e/2

*
* X[O] FORMATION GIVEN THE EXPONENT OF V.
*

NEGI R1
ASH 24,Rl
PUSH R1
POPF R1 ; Now R1 = x[O] = 1.0 * 2**(-e/2)

*
* GENERATE V/2.
*

MPYF 0.5,RO ; V/2 and take rounding bit out
*
* NOW THE ITERATIONS BEGIN.
*

MPYF Rl,Rl,R2 ; R2 = x[0] * x[O]
MPYF ROIR2 ; R2 = (v/2) * x[O] * x[O]
SUBRF 1.5,RZ ; R2 = 1.5 - (v/2) x[O] x[O]

MPYF R2,Rl ; R1 = x[1] = x[O] *
* ; (1.5 - (v/2)*x[O]*x[O])

RND R1
MPYF Rl,Rl,R2 ; R2 = x[l] x[l]
MPYF RO,R2 ; R2 = (v/2) * x[l] * x[l]
SUBRF 1.5,R2 ; R2 = 1.5 - (v/2) * x[l] * x[l]
MPYF R2,Rl ; R1 = x[2] = x[l] *

* ; (1.5 - (v/2)*x[l]*x[l])
RND R1
MPYF Rl,Rl,R2 ; R2 = x[2] * x[2]
MPYF RO,R2 ; R2 = (v/2) x[2] * x[2]
SUBRF 1.5,RZ ; R2 = 1.5 - (v/2) * x[2] * x[2]
MPYF R2,Rl ; R1 = x[3] = x[2]

* i *(1.5 - (v/2)*x[2]*x[2])
RND R1

*

Logical and Arithmetic Operations

MPYF
MPYF
SUBRF
MPYF

RND

MPYF
MPYF
SUBRF
MPYF

RND

MPYF

RETS

end

.end

Round

Sqrt(v) from sqrt(v**(-1))

Software Applications 11 -37

Logical and Arithmetic Operations

11.3.6 Extended-Precision Arithmetic

The TMS320C3x offers 32 bits of precision for integer arithmetic and 24 bits
of precision in the mantissa for floating-point arithmetic. For higher precision
in floating-point operations, the eight extended-precision registers R7 to RO
contain eight additional bits of accuracy. Since no comparable extension is
available for fixed-point arithmetic, this section shows how you can achieve
fixed-point double precision by using the capabilities of the processor. The
technique consists of performing the arithmetic by parts (which is similar to
performing longhand arithmetic).

In the instruction set, operations ADDC (add with carry) and SUBB (subtract
with borrow) use the status carry bit for extended-precision arithmetic. The
carry bit is affected by the arithmetic operations of the ALU and by the rotate
and shift instructions. It can also be manipulated directly by setting the status
register to certain values. For proper operation, the overflow mode bit should
be reset (OVM = 0) so that the accumulator results are not loaded with the sat-
uration values. Example 11-1 9 and Example 11 -20 show 64-bit addition and
64-bit subtraction. The first operand is stored in the registers RO (low word) and
R1 (high word). The second operand is stored in R2 and R3. The result is
stored in RO and R1.

Logical and Arithmetic Operations

Example 1 1 - 19. 64-Bit Addition
TITLE 64-BIT ADDITION

TWO 64-BIT NUMBERS ARE ADDED TO EACH OTHER, PRODUCING
A 64-BIT RESULT. THE NUMBERS X (R1,RO) AND Y (R3,RZ) ARE
ADDED, RESULTING IN W (R1,RO).

ADD1 R2,RO
ADDC R3,Rl

Example 1 1-20. 64-Bit Subtraction
TITLE 64-BIT SUBTRACTION

TWO 64-BIT NUMBERS ARE SUBTRACTED FROM EACH OTHER
PRODUCING A 64-BIT RESULT. THE NUMBERS X (R1,RO) AND
Y (R3,RZ) ARE SUBTRACTED, RESULTING IN W (R1,RO).

SUB1 R2,RO
SUBB R3,Rl

When two 32-bit numbers are multiplied, a 64-bit product results. The proce-
dure for multiplication is to split the 32-bit magnitude values of the multiplicand
X and the multiplier Y into two parts (XI ,XO) and (X3,X2), respectively, with 16
bits each. The operation is done on unsigned numbers, and the product is ad-
justed for the sign bit. Example 11-21 shows the implementation of a 32-bit by
32-bit multiplication.

Software Applications 11 -39

Logical and Arithmetic Operations

Example 1 1-2 1. 32- Bit-by-32- Bit Multiplication

TITLE 32 BIT X 32 BIT MULTIPLICATION

SUBROUTINE EXTMPY

FUNCTION: TWO 32-BIT NUMBERS ARE MULTIPLIED, PRODUCING A 64-BIT
RESULT. THE TWO NUMBERS (X and Y) ARE EACH SEPARATED INTO TWO
PARTS (X1 XO) AND (Y1 YO), WHERE XO, XI, YO, AND Y1 ARE 16 BITS.
THE TOP BIT IN X1 AND Y1 IS THE SIGN BIT. THE PRODUCT IS
IN TWO WORDS (WO AND Wl). THE MULTIPLICATION IS PERFORMED ON
POSITIVE NUMBERS, AND THE SIGN IS DETERMINED AT THE END.

X1 XO BITS OF PRODUCTS

X Y1 Yo (NOT COUNTING SIGN) PRODUCT

ARGUMENT ASSIGNMENTS:

ARGUMENT I FUNCTION
I

RO I MULTIPLIER AND LOW WORD OF THE PRODUCT
R1 I MULTIPLICAND AND UPPER WORD OF THE PRODUCT

REGISTERS USED AS INPUT: RO, R1
REGISTERS MODIFIED: RO, R1, R2, R3, R4, ARO, AR1
REGISTER CONTAINING RESULT: R0,Rl

Logical and Arithmetic Operations

* CYCLES: 28 (WORST CASE) WORDS: 25

.global EXTMPY

EXTMPY XOR3 RO,Rl,ARO ; Store sign
ABSI RO ; Absolute values of X
ABSI R1 i and Y

*
* SEPARATE MULTIPLIER AND MULTIPLICAND INTO TWO PARTS
*

LDI -16,ARl
LSH3 AR1, RO , R2 ; R2 = X1 = upper 16 bite of X
AND OFFFFH ,RO ; RO = XO = lower 16 bits of X
LSH3 AR1,Rl1R3 ; R3 = Y1 = upper 16 bits of Y
AND OFFFFH,Rl ; R 1 = YO = lower 16 bits of Y

*
* CARRY OUT THE MULTIPLICATION
*

MPYI
MPY I
ADDI
MPYI

LD I
LSH
CMPI
BGED

R3,RO
R2, R1
R0,Rl
R2, R3

R1,RZ
16,RZ
0 ,ARo
DONE

LSH -16,Rl
ADD13 R4, R2, RO
ADDC3 Rl,R3,Rl

*
NEGATE THE PRODUCT

NOT RO
ADDI 1,RO
NOT Rl
ADDC 0,Rl

i
i
i
;

i
;
i
i
;
I

i

IF THE

Lower 16 bits of P2tP3
Check the sign of the product
If >O, multiplication complete

(delayed)
Upper 16 bits of P2tP3
WO = RO = lower word of the product
W1 = R1 = upper word of the product

NUMBERS ARE OF OPPOSITE SIGNS

DONE RETS
.end

Software Applications 1 1 -41

Logical and Arithmetic Operations

11.3.7 IEEErTMS320C3x Floating-Point Format Conversion

The fast version of the IEEE-to-TMS320C3x conversion routine was originally
developed by Keith Henry of Apollo Computer, Inc. The other routines were
based on this initial input.

In fixed-point arithmetic, the binary point that separates the integer from the
fractional part of the number is fixed at a certain location. For example, if a
32-bit number has the binary point after the most significant bit (which is also
the sign bit), only fractional numbers (numbers with absolute values less than
I), can be represented. In other words, there is a number called aQ31 number,
which is a number with 31 fractional bits. All operations assume that the binary
point is fixed at this location. the fixed-point system, although simple to imple-
ment in hardware, imposes limitations in the dynamic range of the represented
number, which causes scaling problems in many applications. You can avoid
this difficulty by using floating-point numbers.

A floating-point number consists of a mantissa m multiplied by base b raised
to an exponent e:

In current hardware implementations, the mantissa is typically a normalized
number with an absolute value between 1 and 2, and the base is b = 2. Al-
though the mantissa is represented as a fixed-point number, the actual value
of the overall number floats the binary point because of the multiplication by
be. The exponent e is an integer whose value determines the position of the
binary point in the number. IEEE has established a standard format for the re-
presentation of floating-point numbers.

To achieve higher efficiency in hardware implementation, the TMS320C3x
uses a floating-point format that differs from the IEEE standard. This section
briefly describes the two formats and presents software routines to convert be-
tween them.

TMS320C3x floating-point format:

Logical and Arithmetic Operations

In a 32-bit word representing a floating-point number, the first eight bits corre-
spond to the exponent expressed in two's-complement format. There is one
bit for sign and 23 bits for the mantissa. The mantissa is expressed in two's-
complement form, with the binary point after the most significant nonsign bit.
Since this bit is the complement of the sign bit s, it is suppressed. In other
words, the mantissa actually has 24 bits. A special case occurs when
e = -1 28. In this case, the number is interpreted as 0, independently of the
values of s and f (which are set to 0 by default). To summarize, the values of
the represented numbers in the TMS320C3x floating-point format are as fol-
lows:

2e * (01 .f) i f s = 0
2e * (1 0.9 i f s = 1
0 i fe = -128

IEEE floating-point format:

The IEEE floating-point format uses sign-magnitude notation for the mantissa,
and the exponent is biased by 127. In a 32-bit word representing a
floating-point number, the first bit is the sign bit. The next eight bits correspond
to the exponent, which is expressed in an offset-by-127 format (the actual ex-
ponent is e-127). The following 23 bits represent the absolute value of the
mantissa with the most significant 1 implied. The binary point is after this most
significant 1. In other words, the mantissa actually has 24 bits. There are sev-
eral special cases, summarized below.

These are the values of the represented numbers in the IEEE floating-point
format:

Special cases:

(-1)s * 0.0
(- l)~ *2 -126* (0.0
(-1)s * infinity
NaN (not a number)

if e = 0 and f = 0 (zero)
if e = 0 and f < > 0 (denormalized)
if e = 255 and f = 0 (infinity)
if e = 255andf < > O

Based on these definitions of the formats, two versions of the conversion rou-
tines were developed. One version handles the complete definition of the for-
mats. The other ignores some of the special cases (typically the ones that are
rarely used), but it has the benefit of executing faster than the complete con-
version. For this discussion, the two versions are referred to as the complete
version and the fast version, respectively.

Software Applications 11 -43

Logical and Arithmetic Operations

11.3.7.1 IEEE-to-TMS320C3x Floating-Point Format Conversion

Example 11 -22 shows the fast conversion from IEEE to TMS320C3x floating-
point format. It properly handles the general case when 0 < e < 255, and also
handles 0s (that is, e = 0 and f = 0). The other special cases (denormalized,
infinity, and NaN) are not treated and, if present, will give erroneous results.

Example 11-22. IEEE-to-TMS320C3x Conversion (Fast Version)

TITLE IEEE TO TMS320C3x CONVERSION (FAST VERSION)

SUBROUTINE FMIEEE

FUNCTION: CONVERSION BETWEEN THE IEEE FORMAT AND THE
TMS320C3x FLOATING-POINT FORMAT. THE NUMBER TO
BE CONVERTED IS IN THE LOWER 32 BITS OF RO.
THE RESULT IS STORED IN THE UPPER 32 BITS OF RO.
UPON ENTERING THE ROUTINE, AR1 POINTS TO THE
FOLLOWING TABLE:

* ARGUMENT ASSIGNMENTS:

* ARGUMENT I FUNCTION
*
* RO I NUMBER TO BE CONVERTED
* AR1 (POINTER TO TABLE WITH CONSTANTS
*
* REGISTERS USED AS INPUT: RO, AR1
* REGISTERS MODIFIED: RO, R1
* REGISTER CONTAINING RESULT: RO
*

* NOTE: SINCE THE STACK POINTER SP IS USED, MAKE SURE TO
* INITIALIZE IT IN THE CALLING PROGRAM.
*

* CYCLES: 12 (WORST CASE) WORDS: 12
*

.global FMIEEE
*

Logical and Arithmetic Operations

FMIEEE AND3
BND
ADD1

*
NEG

LDIZ
SUB1
PUSH
POPF
RETS

PUSH
POPF
NEGF
RETS

RO,*ARl,Rl
NEG
RO , Rl

; Replace fraction with 0
; Test sign
; Shift sign
i and exponent inserting 0
; If all 0 , generate C30 0
; Unbiaa exponent

; Load this as a flt. pt. number

; Load this as a flt. pt. number
; Negate if orig. sign is negative

Software Applications 11 -45

Logical and Arithmetic Operations

Example 11-23 shows the complete conversion between the IEEE and
TMS320C3xformats. In addition to the general case and the Os, it handles the
special cases as follows:

If NaN (e = 255, fc >O), the number is returned intact.

a If infinity (e = 255, f = 0), the output is saturated to the most positive or
negative number, respectively.

Q If denormalized (e = 0, fc >0), two cases are considered. If the MSB of
f is 1, the number is converted to TMS320C3x format. Otherwise, an un-
derflow occurs, and the number is set to 0.

Example 1 1-23. IEEE-to- TMS320C3x Conversion (Complete Version)

* TITLE IEEE TO TMS320C3x CONVERSION (COMPLETE VERSION)
*

* SUBROUTINE FMIEEEl
*

* FUNCTION: CONVERSION BETWEEN THE IEEE FORMAT AND THE TMS320C3x
* FLOATING-POINT FORMAT. THE NUMBER TO BE CONVERTED
* IS IN THE LOWER 32 BITS OF RO. THE RESULT IS STORED
* IN THE UPPER 32 BITS OF RO.
*

* UPON ENTERING THE ROUTINE, AR1 POINTS TO THE FOLLOWING TABLE:

* ARGUMENT ASSIGNMENTS:

* ARGUMENT I FUNCTION
*
* RO I NUMBER TO BE CONVERTED
* AR1 I POINTER TO TABLE WITH CONSTANTS
*

* REGISTERS USED AS INPUT: RO, AR1
* REGISTERS MODIFIED: RO, R1
* REGISTER CONTAINING RESULT: RO
*

Loaical and Arithmetic O~erations

NOTE: SINCE THE STACK POINTER SP IS USED, MAKE SURE TO
* INITIALIZE IT IN THE CALLING PROGRAM.
*

* CYCLES: 23 (WORST CASE) WORDS: 34
*

.global FMIEEEl

FMIEEEl LDI RO,R1
AND *+ARl(S),Rl
BZ UNNORM
*
XOR *+ARl(S),Rl
BNZ NORMAL

; If e = 0, number is either 0 or
i denormalized

; If e < 255, use regular routine

* HANDLE NaN AND INFINITY

TSTB *+AR1(7),RO
RETSNZ ; Return if NaN
LDI R0,RO

LDFGT *+ARl(E),RO ; If positive, infinity =
i most positive number

LDFN *+ARl(S),RO ; If negative, infinity =
RETS ; most negative number RETS

* HANDLE 0s AND UNNORMALIZED NUMBERS

UNNORM TSTB *+AR1(6),RO ; Is the MSB of f equal to I?
LDFZ *+AR1(3),RO ; If not, force the number to 0
RETSZ ; and return

XOR
BND
LSH

SUB1
PUSH
POPF
RETS

NEG 1 POPF
NEGF
RETS

*+ARl(C),RO ; If MSB of f = 1, make it 0
NEGl
1,RO ; Eliminate sign bit

; 6 line up mantissa
*+ARl(Z),RO ; Make e = -127
RO
RO ; Put number in floating point format

RO
RO , RO ; If negative, negate RO

Software Applications 11 -47

Logical and Arithmetic Operations

HANDLE THE REGULAR CASES
*
NORMAL AND3 RO,*ARl,Rl ; Replace fraction with 0

BND NEG ; Test sign
ADD1 R0,Rl ; Shift sign and exponent inserting 0
SUB1 *+ARl(Z),Rl ; Unbias exponent
PUSH R1
POPF RO ; Load this as a flt. pt. number
RETS

NEG POPF RO ; Load this as a flt. pt. number
NEGF R0,RO ; Negate if original sign negative
RETS

Loaical and Arithmetic Oaerations

11.3.7.2 TMS320C3x-to-IEEE Floating-Point Format Converslon

The vast majority of the numbers represented by the TMS320C3x
floating-point format are covered by the general IEEE format and the repre-
sentation of 0s. The only special case is e = -1 27 in the TMS320C3x format;
this corresponds to a denormalized number in IEEE format. It is ignored in the
fast version, while it is treated properly in the complete version.
Example 11-24 shows the fast version, and Example 11-25 shows the com-
plete version of the TMS320C3x-to-IEEE conversion.

Example 11-24. TMS320C3x-to-IEEE Conversion (Fast Version)

*
* TITLE TMS320C3x TO IEEE CONVERSION (FAST VERSION)
*
*
* SUBROUTINE TOIEEE
*
* FUNCTION: CONVERSION BETWEEN THE TMS320C3x FORMAT AND THE IEEE
* FLOATING-POINT FORMAT. THE NUMBER TO BE CONVERTED

I S IN THE UPPER 32 BITS OF RO. THE RESULT WILL BE IN
* THE LOWER 32 BITS OF RO.
*

* UPON ENTERING THE ROUTINE, AR1 POINTS TO THE FOLLOWING TABLE:

* (0) OxFF800000 <-- AR1
* (1) O ~ F F 0 0 0 0 0 0
* (2) 0x7F000000
* (3) 0x80000000
* (4) 0x81000000
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT I FUNCTION
I

* RO I NUMBER TO BE CONVERTED
* AR1 I POINTER TO TABLE WITH CONSTANTS

REGISTERS USED AS INPUT: RO, ARI
* REGISTERS MODIFIED: RO
* REGISTER CONTAINING RESULT: RO
*

* NOTE: SINCE THE STACK POINTER 'SP' I S USED, MAKE SURE TO
* INITIALIZE I T I N THE CALLING PROGRAM.

Software Applications 11 -49

Logical and Arithmetic Operations

CYCLES: 14 (WORST CASE)
*

.global TOIEEE
*
TOIEEE LDF R0,RO

LDFZ *+AR1(4),RO
BND NEG
ABSF RO
LSH 1,RO
PUSHF RO
POP RO
ADDI *+AR1(2),RO
LSH -l,RO
RETS

WORDS: 15

; Determine the sign of the number
; If 0, load appropriate number
; Branch to NEG if negative (delayed)
; Take the absolute value of the number
; Eliminate the sign bit in RO

; Place number in lower 32 bits of RO
; Add exponent bias (127)
; Add the positive sign

NEG POP RO ; Place number in lower 32 bite
; of RO

ADD1 *+AR1(2),RO ; Add exponent bias (127)
LSH -l,RO ; Make space for the sign
ADD1 *+AR1(3) ,RO ; Add the negative sign
RETS

Logical and Arithmetic Operations

Example 1 1-25. TMS320C3x-to-IEEE Conversion (Complete Version)

TITLE TMS320C3x TO IEEE CONVERSION (COMPLETE VERSION)

SUBROUTINE TOIEEEl

FUNCTION: CONVERSION BETWEEN THE TMS320C3x FORMAT AND THE IEEE
FLOATING-POINT FORMAT. THE NUMBER TO BE CONVERTED
IS IN THE UPPER 32 BITS OF RO. THE RESULT WILL BE
IN THE LOWER 32 BITS OF RO.

UPON ENTERING THE ROUTINE, AR1 POINTS TO THE FOLLOWING TABLE:

ARGUMENT ASSIGNMENTS:

ARGUMENT I FUNCTION

RO I NUMBER TO BE CONVERTED
AR1 I POINTER TO TABLE WITH CONSTANTS

REGISTERS USED AS INPUT: RO, AR1
REGISTERS MODIFIED: RO
REGISTER CONTAINING RESULT: RO

NOTE: SINCE THE STACK POINTER 'SP1 IS USED, MAKE SURE TO
INITIALIZE IT IN THE CALLING PROGRAM.

CYCLES: 31 (WORST CASE) WORDS: 25

.global TOIEEEl

Software Applications 11-51

Logical and Arithmetic Operations

TOIEEEl LDF ROIRO ;
LDFZ *+AR1(4),RO ;
BND NEG i
ABSF RO i

;
LSH 1,RO i
PUSHF RO
POP RO i
ADDI *+ARl(Z),RO ;
LSH -1,RO ;

CONT TSTB *+AR1(5) , RO
RETSNZ i
TSTB *+AR1(7),RO
RETSZ I

PUSH RO
POPF RO
LSH -1,RO i
PUSHF RO
POP RO
ADDI *+AR1(6),RO ;
RETS

NEG POP RO I

BRD CONT
ADDI *+ARI(2),RO ;
LSH -1,RO i
ADDI *+AR1(3),RO ;
RETS

Determine the sign of the number
If 0, load appropriate number
Branch to NEG if negative (delayed)
Take the absolute value

of the number
Eliminate the sign bit in RO

Place number in lower 32 bits of RO
Add exponent bias (127)
Add the positive sign

If e > 0, return

If e = 0 & f = 0, return

Shift f right by one bit

Add 1 to the MSB of f

Place number in lower 32 bits of RO

Add exponent bias (127)
Make space for the sign
Add the negative sign

Application-Oriented Operations

11.4 Application-Oriented Operations

Certain features of the TMS320C3x architecture and instruction set facilitate
the solution of numerically intensive problems. This section presents exam-
ples of applications using these features, such as companding, filtering, FFTs,
and matrix arithmetic.

11.4.1 Companding

In telecommunications, conserving channel bandwidth while preserving
speech quality is a primary concern. This is achieved this by quantizing the
speech samples logarithmically. An 8-bit logarithmic quantizer produces
speech quality equivalent to a 13-bit uniform quantizer. The logarithmic quanti-
zation is achieved by companding (COMpressIexPANDing). Two international
standards have been established for companding: the p-law standard (used
in the United States and Japan), and the A-law standard (used in Europe). De-
tailed descriptions of p law and A law companding are presented in an applica-
tion report on companding routines included in the book Digital Signal Pro-
cessing Applications with the TMS320 Family (literature number SPRA012A).

During transmission, logarithmically compressed data in sign-magnitude form
is transmitted along the communications channel. If any processing is neces-
sary, you should expand this data to a 14-bit (for p law) or 13-bit (for A law)
linear format. This operation is performed when the data is received at the digi-
tal signal processor. After processing, the result is compressed back to 8-bit
format and transmitted through the channel to continue transmission.

Example 11-26 and Example 11-27 show p-law compression and expansion
(that is, linear to p-law and p-law to linear conversion), while Example 11-28
and Example 11 -29 show A-law compression and expansion. For expansion,
using a look-up table is an alternative approach. A look-up table trades
memory space for speed of execution. Since the compressed data is eight bits
long, you can construct a table with 256 entries containing the expanded data.
If the compressed data is stored in the register ARO, the following two instruc-
tions will put the expanded data in register RO:

ADD1 @TABL,ARO ; @TABL = BASE ADDRESS OF TABLE
LDI *ARO RO ; PUT EXPANDED NUMBER IN RO

You could use the same look-up table approach for compression, but the re-
quired table length would then be 16,384 words for p-law or 8,192 words for
A-law. If this memory size is not acceptable, use the subroutines presented in
Example 11-26 or Example 11 -28.

Software Applications 11 -53

Application-Oriented Operations

Example 11-26. p-Law Compression
*

TITLE U-LAW COMPRESSION
*
*
* SUBROUTINE MUCMPR
*
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT 1 FUNCTION

* RO I NUMBER TO BE CONVERTED
*
* REGISTERS USED AS INPUT: RO
* REGISTERS MODIFIED: RO, R1, R2, SP
* REGISTER CONTAINING RESULT: RO
*

* NOTE: SINCE THE STACK POINTER 'SP' IS USED IN THE COMPRESSION
* ROUTINE 'MUCMPR', MAKE SURE TO INITIALIZE IT IN THE

CALLING PROGRAM.
*

* CYCLES: 20 WORDS: 17
*
*

.global MUCMPR
*
MUCMPR LDI R0,Rl ; Save sign of number

ABSI R0,RO
CMPI lFDEH,RO ; If RbOxlFDE,
LDIGT lFDEH, RO ; saturate the result
ADD1 33,RO ; Add bias

FLOAT RO ; Normalize: (seg+5)0WXYZx ... x
MPYF 0.03125,RO ; Adjust segment number by 2**(-5)
LSH 1,RO ; (seg)WXYZx...x
PUSHF RO
POP RO ; Treat number as integer
LSH -20,RO ; Right-justify

LDI O,R2
LDI R1,Rl ; If number is negative,
LDILT 80H,R2 I set sign bit
ADD1 R2,RO ; RO = compressed number
NOT RO ; Reverse all bits for transmission
RETS

Example 11-27. p-La w Expansion
4

* TITLE U-LAW EXPANSION

*
SUBROUTINE MUXPND

*

* ARGUMENT ASSIGNMENTS:
*

* ARGUMENT 1 FUNCTION

* RO 1 NUMBER TO BE CONVERTED
*
* REGISTERS USED AS INPUT: RO
* REGISTERS MODIFIED: RO, R1, R2, SP
* REGISTER CONTAINING RESULT: RO
4

*
* CYCLES: 20 (WORST CASE)WORDS: 14
*

.global MUXPND
*
MUXPND NOT ROIRO

LDI ROIRl
AND OFH,Rl
LSH 1,Rl
ADD1 33,Rl
LDI RO,R2
LSH -4,R0
AND 7,R0
LSH3 RO,Rl,RO
SUB1 33,RO
TSTB 80H1R2
RETSZ
NEGI RO
RETS

Complement bits

Isolate quantization bin

Add bias to introduce lxxxxl
Store for sign bit

Isolate segment code
Shift and put result in RO
Subtract bias
Test sign bit

Negate if a negative number

Software Applications 11 -55

Example 1 1-28. A-Law Compression
*
* TITLE A-LAW COMPRESSION
*

* SUBROUTINE ACMPR
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT I FUNCTION

* RO I NUMBER TO BE CONVERTED

* REGISTERS USED AS INPUT: RO
REGISTERS MODIFIED: RO, R1, R2, SP

* REGISTER CONTAINING RESULT: RO
*
* NOTE: SINCE THE STACK POINTER 'SP' IS USED IN THE COMPRESSION
* ROUTINE 'ACMPR', MAKE SURE TO INITIALIZE IT IN THE
* CALLING PROGRAM.
*

* CYCLES:ZZ WORDS: 19

*
.global ACMPR

*
ACMPR LDI RO , R1 ; Save sign of number

ABSI R0,RO
CMPI lFH, RO ; If R0<0x20,
BLED END ; do linear coding
CMPI OFFFH, RO ; If RO>OxFFF,
LDIGT OFFFH, RO ; saturate the result
LSH -1,RO ; Eliminate rightmost bit

FLOAT RO ; Normalize: (seg+3)0WXYZx. ..x
MPYF 0.125,RO ; Adjust segment number by 2**(-3)
LSH 1, RO ; (seg)wxYzx...x
PUSHF RO
POP RO ; Treat number as integer
LSH -20,RO ; Right-justif y

END LDI 0,RZ
LDI R1,Rl ; If number is negative,
LDILT 80H,R2 I set sign bit
ADD1 R2,RO ; RO = compressed number
XOR OD5H,RO ; Invert even bits

; for transmission
RETS

Application-Oriented Operations

Example 1 1-29. A- Law Expansion

* TITLE A-LAW EXPANSION
*

SUBROUTINE AXPND
*

* ARGUMENT ASSIGNMENTS:

ARGUMENT 1 FUNCTION
*

RO (NUMBER TO BE CONVERTED
*
* REGISTERS USED AS INPUT: RO

REGISTERS MODIFIED: RO, R1, R2, SP
* REGISTER CONTAINING RESULT: RO
*

CYCLES: 25 (WORST CASE)WORDS: 16
*
*

.global AXPND

AXPND XOR
LDI
AND
LSH
LDI
LSH
AND
BZ
SUB1
ADDI

SKIPl ADDI
LSH3
TSTB
RETSZ
NEGI
RETS

DSH, RO
RO,R1
OFH ,Rl
1,Rl
RO , R2
-4,RO
7 ,RO
SKIPl
1,RO
32,Rl
1,Rl
RO,Rl,RO
80H,R2

Invert even bits

Isolate quantization bin

Store for bit sign

Isolate segment code

Create lxxxxl
OR Oxxxxl
Shift and put result in RO
Test sign bit

Negate if a negative number

Software Applications 11-57

Application-Oriented Operations

11.4.2 FIR, IIR, and Adaptive Filters

Digital filters are a common requirement for digital signal processing systems.
There are two types of digital filters: finite impulse response (FIR) and infinite
impulse response (IIR). Each of these types can have either fixed or adaptable
coefficients. This section presents the fixed-coefficient filters first, followed by
the adaptive filters.

11.4.2.1 FIR Filters

If the FIRfilter has an impulse response h [0], h [I], ..., h [N -11, and x[n] repre-
sents the input of the filter at time n, the output y [n] at time n is given by this
equation:

y[n] = h [O] x[n] + h [l] x[n-11 + ... + h [N-11 x [n- (N-I)]

Two features of the TMS320C3x that facilitate the implementation of the FIR
filters are parallel multiplyladd operations and circular addressing. The former
permits the performance of a multiplication and an addition in a single machine
cycle, while the latter makes a finite buffer of length N sufficient for the data x.

Figure 11-1 shows the arrangement of the memory locations necessary to im-
plement circular addressing, while Example 11-30 presents the TMS320C3x
assembly code for an FIR filter.

Figure 1 1 - 1. Data Memory Organization for an FIR Filter

Impulse
Resoonse

Initial Final
lnout Samples lnout Samoles

O w Oldest n u t Address
h (N - 2)

High
Address

-1 Newest Input

e Circular
Queue

I

To set up circular addressing, initialize the block-size register BK to block
length N. Also, the locations for signal x should start from a memory location
whose address is a multiple of the smallest power of 2 that is greater than N.
For instance, if N = 24, the first address for x should be a multiple of 32 (the
lowest five bits of the beginning address should be 0). See Section 5.3 on page
5-24 for more information.

Application-Oriented Operations

In Example 1130, the pointer to the input sequence x is incremented and is
assumed to be moving from an older input to a newer input. At the end of the
subroutine, AR1 will be pointing to the position for the next input sample.

Example 1 1-30. FIR Filter

* TITLE FIR FILTER
*
*
* SUBROUTINE FIR
*
* EQUATION: y(n) = h(0) * x(n) + h(1) * x(n-1) +
t ... + h(N-1) x(n-(N-1))
*
* TYPICAL CALLING SEQUENCE:
*
* LOAD ARO
* LOAD AR1
* LOAD RC
* LOAD BK
* CALL FIR
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT I FUNCTION
L

ARO I ADDRESS OF h(N-1)
* AR1 I ADDRESS OF ~(n-(N-1))
* RC I LENGTH OF FILTER - 2 (N-2)

BK I LENGTH OF FILTER (N)
*
* REGISTERS USED AS INPUT: ARO, AR1, RC, BK
* REGISTERS MODIFIED: RO, R2, ARO, AR1, RC
* REGISTER CONTAINING RESULT: Ro
*
*
* CYCLES: 11 + (N-1) WORDS: 6
*
*

.global FIR

; Initialize RO:
FIR MPYF3 *ARO++(1),*AR1++(1)%,RO

* ; h(N-1) * x(n-(N-1)) -> RO
LDF 0.0tR2 ; Initialize R2

* FILTER (1 <= i < N)
*

RPTS RC ; Set up the repeat cycle
MPYF3 *ARO++(l),*ARl++(l)%,RO; h(~-1-i)*x(n-(N-1-i))->RO

I I ADDF3 RO ,R2, R2 ; Multiply and add operation

Software Applications 11 -59

Application-Oriented Operations

ADDF RO , R2, RO
*
* RETURN SEQUENCE
*

RETS

; Add last product

; Return

end
*

.end

11.4.2.2 IIR Filters

The transfer function of the IIR filters has both poles and 0s. Its output depends
on both the input and the past output. As a rule, the filters need less computa-
tion than an FIR with similar frequency response, but the filters have the draw-
back of being sensitive to coefficient quantization. Most often, the IIR filters are
implemented as a cascade of second-order sections, called biquads.
Example 11-31 and Example 11-32 show the implementation for one biquad
and for any number of biquads, respectively.

This is the equation for a single biquad:

y [n] = a1 y [n - 11 t a2 y [n -21 t bO x [n] t b l x [n -11 t b2 x [n -21

However, the following two equations are more convenient and have smaller
storage requirements:

d [n] = a2 d [n - 21 t a1 d [n -11 + x [n]
y[n] = b2d[n-21 t b l d [n - 1] t bOd[n]

Figure 11-2 shows the memory organization for this two-equation approach,
and Example 11-31 is an implementation of a single biquad on the
TMS320C3x.

Figure 11-2. Data Memory Organization for a Single Biquad

Fi!ter Newest Delay Newest Delay

Low Coeffcients Node Values Node Values

Address rl "west D e w Fl r~
d(n - 2) Circular Queue

Oldest Delay d(n - 2)

High (bO 1
Address

As in the case of FIR filters, the address for the start of the values d must be
a multiple of 4; that is, the last two bits of the beginning address must be 0. The
block-size register BK must be initialized to 3.

Application-Oriented Operations

Example 1 1 3 1. IIR Filter (One Biquad)

TITLE IIR FILTER

SUBROUTINE IIR 1

IIRl == IIR FILTER (ONE BIQUAD)

EQUATIONS: d(n) = a2 d(n-2) + a1 * d(n-1) + x(n)
y(n) = b2 * d(n-2) + bl d(n-1) + bO * d(n)

TYPICAL CALLING SEQUENCE:

load R2
load ARO
load AR1
load BK
CALL IIRl

ARGUMENT ASSIGNMENTS:

ARGUMENT I FUNCTION

R2 INPUT SAMPLE X(N)
ARO I ADDRESS OF FILTER COEFFICIENTS (I2)
AR1 ADDRESS OF DELAY MODE VALUES (D(N-2))
BK I B K - 3

REGISTERS USED AS INPUT: R2, ARO, AR1, BX
REGISTERS MODIFIED: RO, R1, R2, ARO, AR1
REGISTER CONTAINING RESULT: RO

CYCLES: 11 WORDS: 8

FILTER

Software Applications 11-61

.global IIRl
*
IIRl MPYF3 *ARO I *AR1, RO
* ; a2 * d(n-2) -> RO

MPYF3 *++ARO(l) ,*ARl--(I) % ,R1
* ; b2 * d(n-2) -> R1
*

MPYF3 *++ARO(1),R2,R2 ; bO * d(n) -> R2
STF RZ,*ARl++(l)%

ADDF RO,R2
ADDF R1,R21R0

RETURN SEQUENCE

; Store d(n)and point to d(n-1)

RETS ; Return

* end
*

In the more general case, the IIR filter contains N>1 biquads. The equations
for its implementation are given by the following pseudo-C language code:

Y [O,nl = x [nl
for (i = 0; i < N; i ++){

d [i,n] = a2 [i] d [i, n - 21 + a1 [i] d [i,n -11 + y [i - 1 ,n]
y [i,n] = b2 [i] d [i - 21 + b l [i] d [i,n - 11 + bO [i] d [i,n]

1
Y [nl = Y [N - 1,nI

Figure 11-3 shows the corresponding memory organization, while
Example 11-32 shows the TMS320C3x assembly-language code.

Application-Oriented Operations

Figure 11-3. Data Memory Organization for N Biquads

Low
Address Newest Delay

Oldest Delay

Initial Delay
Node Values

Final Delay
Node Values

d(N -1, n - 2) Circular . Queue

You should initialize the block register BK to 3; the beginning of each set of d
values (that is, d [i,n 1, i = O...N - 1) should be at an address that is a multiple
of 4 (where the last two bits are 0).

Software Applications 1 1 -63

Application-Oriented Operations

Example 11-32. IIR Filters (N > 1 Biquads)

* TITLE IIR FILTERS (N > 1 BIQUADS)

*
* SUBROUTINE IIR2
*
*
*
* EQUATIONS: y(0,n) = x(n)
*

FOR (i = 0; i < N; i++)

* TYPICAL CALLING SEQUENCE:
* 1

* Y(n) = ~(N-lrn) *
TYPICAL CALLING SEQUENCE:

*

load
load
load
load
load
load
load
CALL

R2
ARO
AR1
IRO
IR1
BK
RC
IIR2

* ARGUMENT ASSIGNMENT:

ARGUMENT I FUNCTION

R2
ARO
AR1
BK
IRO
IR1
RC

INPUT SAMPLE x(n)
ADDRESS OF FILTER COEFFICIENTS (a2(0))
ADDRESS OF DELAY NODE VALUES (d(0,n-2))
BK = 3
IRO = 4
IR1 = 4*N-4
NUMBER OF BIQUADS (N) -2

* REGISTERS USED AS INPUT; ~ 2 , ARO, AR1, IRO, IR1, BK, RC
* REGISTERS MODIFIED; RO, R1, R2, ARO, AR1, RC

REGISTERS CONTAINING RESULT: RO

Application-Oriented Operations

CYCLES: 17 + 6N WORDS: 17
*
*
*

.global IIR2
*

MPYF3
ADDF

al(0) * ~(0,n-1) -> RO
First sum term of d(0,n)

*++ARO(l) ,*ARl--(l)%,RO
RO, R2, R2
*++ARO(1),RZIR2
R2, *ARl--(I)%

bl(0) * d(0,n-1) -> RO
Second sum term of d(0,n)
bO(0) * d(0,n) -> R2

MPYF3
ADDF3
MPYF3
STF

Store d(0,n);
point to
d(0,n-2)

Loop for 1 <= i < n RPTB LOOP

MPYF3
ADDF 3

a2(i) d(i,n-2) -> RO
First sum term of y(i-1,n)

b2(i) * D(i,n-2) -> R1
Second sum term

of y(i-1,n)

al(i) * d(i,n-1) -> RO
First sum of d(i,n)

bl(i) * d(i,n-1) -> RO
Second sum term of d(i,n)

STF
Store d(i,n);

point to d(i,n-2)
LOOP
*
*

Software Applications 11 -65

Application-Oriented Operations

FINAL SUMMATION

ADDF RO,R2
ADDF3 Rl,R2,RO

NOP *ARl--(IR1)
NOP *MI--(1) %

RETURN SEQUENCE

RETS

end

; First sum term of y(n-1,n)
; Second sum term
; of y(n-1,n)

; Return to first biquad
; Point to d(0,n-1)

; Return

. end

11.4.2.3 Adaptive Filters (LMS Algorithm)

In some applications in digital signal processing, you must adapt a filter over
time to keep track of changing conditions. The book Theory and Design of
Adaptive Filters by Treichler, Johnson, and Larimore (Wiley-Interscience,
1987) presents the theory of adaptive filters. Although in theory, both FIR and
IIR structures can be used as adaptive filters, the stability problems and the
local optimum points that the IIR filters exhibit make them less attractive for
such an application. Hence, until further research makes IIR filters a better
choice, only the FIR filters are used in adaptive algorithms of practical applica-
tions.

In an adaptive FIR filter, the filtering equation takes this form:

y [n] = h [n,O] x [n] t h [n,l] x [n - 11 t ... t h [n,N - 11 x [n - (N - I)]

The filter coefficients are time-dependent. In a least-mean-squares (LMS) al-
gorithm, the coefficients are updated by an equation in this form:

p is a constant for the computation. You can interleave the updating of the filter
coefficients with the computation of the filter output so that it takes three cycles
per filter tap to do both. The updated coefficients are written over the old filter
coefficients. Example 11-33 shows the implementation of an adaptive FIR fil-
ter on the TMS320C3x. The memory organization and the positioning of the
data in memory should follow the same rules that apply to the FIR filter de-
scribed in subsection 11.4.2.1 on page 11 -58.

Software Applications 11 -67

Application-Oriented Operations

Example 1 1-33. Adaptive FIR Filter (L MS Algorithm)

* TITLE ADAPTIVE FIR FILTER (LMS ALGORITHM)

*
* SUBROUTINE LMS

* LMS == LMS ADAPTIVE FILTER
*
*
*
* EQUATIONS: y(n) = h(n,O)*x(n) + h(n,l)*x(n-1) + ...

* FOR (i = 0; i < N; i++)

* h(n+l,i) = h(n,i) + tmuerr * x(n-i)

*
* TYPICAL CALLING SEQUENCE:
*

load R4
* load ARO
* load AR1
* load RC
* load BK
* CALL LMS
*
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT I FUNCTION
* I

* R4 I SCALE FACTOR (2 * mu * err)
* ARO I ADDRESS OF h(n,N-1)
* AR1 I ADDRESS OF x(n-(N-1))
* RC I LENGTH OF FILTER - 2 (N-2)
* BK I LENGTH OF FILTER (N)
*

* REGISTERS USED AS INPUT: R4, ARO, ARl, RC, BK
* REGISTERS MODIFIED: RO, R1, R2, ARO, AR1, RC
* REGISTER CONTAINING RESULT: RO
*
* PROGRAM SIZE: 10 words
*

EXECUTION CYCLES: 14 + 3(N-1)
*

* SETUP (i = 0)
*

.global LMS

; Initialize RO:
LMS MPYF3 *ARO, *ARl, RO

; h(n,N-1) x(n-(N-1)) -> RO
LDF O.OlR2 ; Initialize R2

; Initialize R1:
MPYF3 *AR1++(1)%, R4, R1

; x(n-(N-1)) * tmuerr -> R1
ADDF3 *ARO++(l), R1, R1

; h(n,N-1) + x(n-(N-1)) *
; tmuerr -> R1

* FILTER AND UPDATE (1 <= I < N)
*

RPTB LOOP Set up the repeat block

Filter:
h(n,N-1-i)

* x(n-(N-1-i)) -> RO
Multiply and add operation

UPDATE :
x(n,N-(N-1-i)) * tmuerr -> R1
Rl -> h(n+l,N-1-(i-1))

MPYF3
STF I I *

LOOP
*

ADDF3
STF

Add last product

h(n,O) + x(n)
* tmuerr -> h(n+l,O)

RETURN SEQUENCE

Software Applications 11 -69

A~~li~ati~n-Orie.iented Operations

RETS
*

; Return

* end
4

.end

11.4.3 Matrix-Vector Muitipllcation

In matrix-vector multiplication, a K x N matrix of elements m(i,j) having K rows
and N columns is multiplied by an N x 1 vector to produce a K x 1 result. The
multiplier vector has elements v(j), and the product vector has elements p(i).
Each one of the product-vector elements is computed by the following expres-
sion:

This is essentially a dot product, and the matrix-vector multiplication contains,
as a special case, the dot product presented in Example 11-2 on page 11-7.
In pseudo-C format, the computation of the matrix multiplication is expressed
by

for (i = 0; i < K; i + +) {
p (i) = 0
for (j = 0; j c N; j + +)

p (i) = p (i) + m (i,j) * v (j)
1

Figure 11-4 shows the data memory organization for matrix-vector multiplica-
tion, and Example 11-34 shows the TMS320C3x assembly code that imple-
ments it. Note that in Example 11-34, K (number of rows) should be greater
than 0, and N (number of columns) should be greater than 1.

Application-Oriented Operations

Figure 1 1-4. Data Memory Organization for Matrix- Vector Multiplication

Input ResuR
Matrix Storage Vector Storaae Vector Storage

High
Address a

Software Applications

Application-Oriented Operations

Example 1 1-34. Matrix Times a Vector Multiplication

TITLE MATRIX TIMES A VECTOR MULTIPLICATION

SUBROUTINE MAT

MAT == MATRIX TIMES A VECTOR OPERATION

TYPICAL CALLING SEQUENCE:*
load ARO
load AR1
load AR2
load AR3
load R1
CALL MAT

ARGUMENT ASSIGNMENTS:

ARGUMENT I FUNCTION

ARO (ADDRESS OF M(0,O)
AR1 I ADDRESS OF V(0)
AR2 I ADDRESS OF P(0)
AR3 I NUMBER OF ROWS - 1 (K-1)
R 1 I NUMBER OF COLUMNS - 2 (N-2)

REGISTERS USED AS INPUT: ARO, AR1, AR2, AR3, R1
REGISTERS MODIFIED: RO, R2, ARO, AR1, AR2, AR3, IRO,

RC, RSA, REA

PROGRAM SIZE: 11

EXECUTION CYCLES: 6 + 10 * K + K * (N - 1)

.global MAT

*
* SETUP

MAT LDI R1,IRO
ADD1 2,IRO

; Number of columns-2 -> IRO
; IRO = N

RETS

*
* FOR (i = 0; i < K; i++) LOOP OVER THE ROWS
*

ROWS LDF 0.O,R2 ; I n i t i a l i z e R2
MPYF3 *ARO++(l),*ARl++(l),RO

* ; m (i , O) v (0) -> RO
*

* FOR (j = 1; j < N; j++) DO DOT PRODUCT OVER COLUMNS
*

RPTS R1
* ; M u l t i p l y a r o w by a column

MPYF3 *ARO++(l) , *ARl++(l) ,RO ; m (i , j) * v (j) -> RO
1 1 ADDF3 RO,R2,R2 ; m (i , j-1) v(j -1) + R2 -> R2
*

DBD AR3,ROWS ; Counts the no. of roue l e f t
*
*

ADDF RO,R2 ; Last accumulate
STF R2, *AR2++ (1) ; R e s u l t -> p (i)

NOP *--m1(IRO) ; S e t AR1 t o point t o v (0)

* 1 1 1 DELAYED BRANCH HAPPENS HERE 1 1 1
*
* RETURN SEQUENCE
*

; Return

* end
*

. end

11.4.4 Fast Fourier Transforms (FFT)

Fourier transforms are an important tool often used in digital signal processing
systems. The purpose of the transform is to convert information from the time
domain to the frequency domain. The inverse Fourier transform converts infor-
mation back to the time domain from the frequency domain. Implementation
of Fourier transforms that are computationally efficient are known as fast Four-
ier transforms (FFTs). The theory of FFTs can be found in books such as DFT/
FFTand Convolution Algorithms by C.S. Burrus and T.W. Parks (John Wiley,
1985) and Digital Signal Processing Applications with the TMS320 Family by
Texas Instruments (literature number SPRAO12A).

Software Applications 11 -73

Application-Oriented Operations

Fast Fourier transform is a label for a collection of algorithms that implement
efficient conversion from time to frequency domain. There are several types
of FFTs:

a Radix-2 or radix-4 algorithms (depending on the size of the FFT butterfly)
Decimation in time or frequency (DIT or DIF)

a Complex or real FFTs
FFTs of different lengths, etc.

Certain TMS320C3x features that increase efficient implementation of numer-
ically intensive algorithms are particularly well-suited for FFTs. The high speed
of the device (33-17s cycle time) makes implementation of real-time algorithms
easier, while floating-point capability eliminates the problems associated with
dynamic range. The powerful indirect-addressing indexing scheme facilitates
the access of FFT butterfly legs with different spans. The repeat block implem-
ented by the RPTB instruction reduces the looping overhead in algorithms
heavily dependent on loops (such as the FFTs). This construct provides the
efficiency of in-line coding in loop form. The FFT will reverse the bit order of
the output; therefore, the output must be reordered. This reordering does not
require extra cycles, because the device has a special mode of indirect ad-
dressing (bit-reversed addressing) for accessing the FFT output in the original
order.

The examples in this subsection were based on programs contained in the
Burrus and Parks book and in the paper Real-Valued Fast Fourier Transform
Algorithms by H.V. Sorensen, et al (IEEE Transform on ASSP, June 1987).

Example 11-35 and Example 11-36 show the implementation of a complex
radix-2, DIF FFT on the TMS320C3x. Example 11-35 contains the generic
code of the FFT, which can be used with a number of any length. However, for
the complete implementation of an FFT, you need a table of twiddle factors
(sineslcosines); the length of the table depends on the size of the transform.
To retain the generic form of Example 11-35, the table with the twiddle factors
(containing 1-114 complete cycles of a sine) is presented separately in
Example 1136for the case of a64-point FFT. Afull cycle of asine should have
a number of points equal to the FFT size. Example 11-36 uses two variables:
N, which is the FFT length, and M, which is the logorithm of N to a base equal
to the radix. In other words, M is the number of stages of the FFT. For example,
in a 64-point FFT, M = 6 when using a radix-2 algorithm, and M = 3 when using
a radix-4 algorithm. If the table with the twiddle factors and the FFT code are
kept in separate files, they should be connected at link time.

Application-Oriented Operations

Example 1 1-35. Complex, Radix-2, DlF FFT

TITLE COMPLEX, RADIX-2, DIF FFT

GENERIC PROGRAM FOR LOOPED-CODE RADIX-2 FFT COMPUTATION IN TMS320C3x

THE PROGRAM IS TAKEN FROM THE BURRUS AND PARKS BOOK, P. 111.
THE (COMPLEX) DATA RESIDE IN INTERNAL MEMORY. THE COMPUTATION
IS DONE IN PLACE, BUT THE RESULT IS MOVED TO ANOTHER MEMORY
SECTION TO DEMONSTRATE THE BIT-REVERSED ADDRESSING.

THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE THAT IS PUT IN A .DATA
SECTION. THIS DATA IS INCLUDED IN A SEPARATE FILE TO PRESERVE THE
GENERIC NATURE OF THE PROGRAM. FOR THE SAME PURPOSE, THE SIZE OF
THE FFTN AND LOG2(N) ARE DEFINED IN A .GLOBL DIRECTIVE AND SPECIFIED
DURING LINKING.

.glob1 FFT

.glob1 N . glob1 M

.glob1 SINE

INP .usect "INu, 1024
.BSS OUTP,1024

* INITIALIZE

FFTSIZ .word N
LOGFFT .word M
SINTAB .word SINE
INPUT .word INP
OUTPUT .word OUTP

FFT : LDP FFTSIZ

LDI @FFTSIZ,IRl
LSH -2, IR1
LDI O,AR6
LDI @FFTSIZ,IRO
LSH 1, IRO
LDI @FFTSIZ,R7
LDI 1 ,AR7

LDI 1 ,AR5

; Entry point for execution
; FFT size
; LOG2(N)
; Address of sine table

; Memory with input data
; Memory with output data

; Command to load data page pointer

; IR1 = N/4, pointer for SIN/COS table
; AR6 holds the current stage number

; IRO = 2*N1 (because of real/imag)
; R7 = N2
; Initialize repeat counter
; of first loop
; Initialize IE index (AR5 = IE)

Software Applications 11 -75

Application-Oriented Operations

* OUTER LOOP

LOOP : NOP *++AR6(1) ; Current FFT stage
LDI @INPUT,ARO ; ARO points to X(1)
ADD1 R7,ARO1AR2 ; AR2 points to X(L)
LDI AR7,RC
SUB1 1,RC ; RC should be one less than desired #

* FIRST LOOP

RPTB
ADDF
SUBF
ADDF
SUBF
STF

I I STF
BLKl STF
I I STF

BLK 1
*ARO,*AR2,RO ;
*AR2++,*ARO++,Rl ;
*AR2,*ARO1R2 ;
*AR2,*AROIR3 I

R2, *ARO-- ;
R3 1 *AR2-- ;
RO,*ARO++(IRO) ;
R1, *AR2++ (IRO) ;

RO = X(I)+X(L)
R1 = X(1)-X(L)
R2 = Y(I)+Y(L)
R3 = Y(1)-Y(L)
Y(1) = R2 and...
Y(L) = R3
X(1) = RO and.. .
X(L) = R1 and ARO,2 = AR0,2 + 2*n

* IF THIS IS THE LAST STAGE, YOU ARE DONE

CMPI @LOGFFT, AR6
BZD END

* MAIN INNER LOOP

LDI

LDI
INLOP: ADDI

LDI
ADDI
ADDI
ADDI
LDI
SUBI

LDF

* SECOND LOOP

RPTB
SUBF
SUBF

*
MPYF

I I ADDF *
MPYF

I I STF

AR1,ARo
2 ,AR1
@INPUT, ARO
R7,AR01AR2
AR7, RC
l,RC

Init loop counter for
inner loop

Initialize IA index (AR4 = IA)
IA = IA+IE; AR4 points to

cosine

Increment inner loop counter
(X(I),Y(I)) pointer
(X(L),Y(L)) pointer

RC should be 1 less than
desired #

R6 = SIN

BLK2
*AR2,*ARO1R2 ; R2 = X(1)-X(L)
+AR2,+AR01R1

; R1 = Y(1)-Y(L)
R2,R6,RO ; RO = R2*SIN and...
+AR2,+AR01R3

; R3 = Y(I)+Y(L)
Rl1*+AR4(IR1),R3; R3= Rl*COS and ...
R3, *+ARO ; Y(1) = Y(I)+Y(L)

Application-Oriented Operations

SUBF RO1R3,R4 ;
MPYF RlIR6,RO ;

I I ADIN? *AR2,*ARO1R3 i
MPYF R2,*tAR4(IRl),R3 ;

I I STF R3,*ARO++(IRO)
*
* ;

ADDF RO1R3,R5 i
BLK2 STFR5,*AR2++(IRO) ;

I

I I STF R4, *+AR2 ;

R4 R1 * COS-R2 * SIN
RO = R1 SIN and...
R3 = X(1) + X(L)
R3 = R2 * COS and...

X(1) = X(I)+X(L) and ARO = ARO+2*N1
R5 = R2*COS+Rl*SIN
X(L) R2 * COStR1 * SIN,

incr AR2 and. . .
Y(L) = Rl*COS-R2*SIN

CMPI R7 ,AR1
BNE INLOP ; Loop back to the inner loop

LSH 1 ,AR7 ; Increment loop counter for next time
BRD LOOP ; Next FFT stage (delayed)
LSH 1 ,AR5 ; I E = 2 * I E
LDI R7, IRO ; N1 = N2
LSH -1,R7 ; N2 = N2/2

* STORE RESULT OUT USING BIT-REVERSED ADDRESSING

END: LDI @FFTSIZ,RC ; R C = N
SUB1 1 ,RC ; RC should be one less than desired #
LDI @FFTSIZ,IRO ; IRO = size of FFT = N
LDI 2, IR1
LDI @INPUT,ARO
LDI @OUTPUT,ARl

RPTB BITRV
LDF *+ARO(l),RO

I I LDF *ARO++(IRO)B,Rl
BITRV STF RO,*+ARl(l)

1 I STF Rl,*ARl++(IRl)

SELF BR SELF
.end

; Branch to itself at the end

Software Applications 11 -77

Application-Oriented Operations

Example 11-36. Table With Twiddle Factors for a 64-Point FIT

*TITLE TABLE WITH TWIDDLE FACTORS FOR A 64-POINT FFT
*
* FILE TO BE LINKED WITH THE SOURCE CODE FOR A 64--POINT, RADIX-2 FFT

.glob1 SINE

.glob1 N . glob1 M

SINE
.float . float
.float . float
.float . float . float . float . float . float . float . float
.float
.float . float
.float

COSINE
.float
.float
.float
.float
.float . float . float
.float
.float
.float
.float
.float . float
.float . float

Application-Oriented Operations

. float . float . float -
.float - . float -
. float -
.float - . float
. float -
.float - . float - . float -
. float - . float -
. float - . float - . float -
. float . float -
. float -
. float -
. float -
.float - . float - . float -
. float - . float - . float -
.float -
.float -
. float -
. float -
.float -

Software Applications 11 -79

. float . float . float
.float
.float . float
.float
.float
.float . float
.float
.float
.float . float . float . float

The radix-2 algorithm has tutorial value, because the functioning of the FFT
algorithm is relatively easy to understand. However, radix-4 implementation
can increase execution speed by reducing the amount of arithmetic required.
Example 11-37 shows the generic implementation of a complex, DIF FFT in
radix-4. A companion table, such as the one in Example 11-36, should have
a value of M equal to the logN, where the base of the logarithm is 4.

Application-Oriented Operations

Example 1 1-37. Complex, Radix-4, DlF FFT

TITLE COMPLEX, RADIX-4, DIF FFT

GENERIC PROGRAM TO PERFORM A LOOPED-CODE RADIX-4 FFT COMPUTATION
IN THE TMS320C3x

THE PROGRAM IS TAKEN FROM THE BURRUS AND PARKS BOOK, P. 117.
THE (COMPLEX) DATA RESIDE IN INTERNAL MEMORY, AND THE COMPUTATION
IS DONE IN PLACE.

THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE THAT IS PUT IN A .DATA
SECTION. THIS DATA IS INCLUDED IN A SEPARATE FILE TO PRESERVE THE
GENERIC NATURE OF THE PROGRAM. FOR THE SAME PURPOSE, THE SIZE OF
THE FFT N AND LOG4(N) ARE DEFINED IN A .GLOBL DIRECTIVE AND
SPECIFIED DURING LINKING.

IN ORDER TO HAVE THE FINAL RESULT IN BIT-REVERSED ORDER, THE TWO
MIDDLE BRANCHES OF THE RADIX-4 BUTTERFLY ARE INTERCHANGED DURING
STORAGE. NOTE THIS DIFFERENCE WHEN COMPARING WITH THE PROGRAM IN
P. 117 OF THE BURRUS AND PARKS BOOK.

*
.glob1 FFT ; Entry point for execution
.glob1 N ; FFT size
.glob1 M ; LOG4(N)
.glob1 SINE ; Address of sine table

.usect "INW,1024 ; Memory with input data

* INITIALIZE

TEMP .word $+2
STORE .word FFTSIZ ; Beginning of temp storage area

.word N

.word M

.word SINE

.word INP

. BSS FFTSIZ,l ; FFT size . BSS LOGFFT,l ; LOGI(FFTS1Z) . BSS SINTAB,l ; Sine/cosine table base . BSS INPUT,l ; Area with input data to process . BSS STAGE, 1 ; FFT stage # . BSS RPTCNT,l ; Repeat counter . BSS IEINDX,l ; IE index for sine/cosine

Software Applications 11 -81

Application-Oriented Operations

. BSS LPCNT,l ; Second-loop count . BSS JT, 1 ; JT counter in program, P. 117 . BSS IA1,l ; IAl index in program, P. 117

FFT :

* INITIALIZE DATA LOCATIONS

LDP
LDI
LDI
LDI
ST1
LD I
ST1
LDI
ST1
LDI
ST1

LDP
LDI
LDI
LDI
LDI
ST1
LSH
LSH
LDI
ST1
ST1
LSH
ADD I
ST1
SUBI
LSH

TEMP ; Command to load data page counter
@TEMP ,ARO
@STORE,ARl
*ARO++, RO ; Xfer data from one memory to the other
RO, *ARl++
*ARO++, RO
RO, *ARl++
*ARO++, RO
RO, *ARl++
*ARO , RO
RO , *AR1

FFTSIZ
@FFTSIZ,RO
@FFTSIZ,IRO
@FFTSIZ,IRl
O,AR7
AR7, @STAGE
1, IRO
-2, IR1
1 ,AR7
AR7,@RPTCNT
AR7,@IEINDX
-2,RO
2,RO
RO,@JT
2,RO
1,RO

Command to load data page pointer

@STAGE holds the current stage number
IRO = 2*N1 (because of real/imag)
IR1 = N/4, pointer for SIN/COS table

Init repeat counter of first loop
Init. IE index
JT = RO/2+2

* OUTER LOOP

LOOP :
LDI @INPUT , ARO ; ARO points to X(1)
ADD1 RO,ARO,ARl ; ARI points to X(I1)
ADD1 RO,ARl,AR2 ; AR2 points to X(I2)
ADD1 RO1AR2,AR3 ; AR3 points to X(I3)
LDI @RPTCNT , RC
SUB1 1 ,RC ; RC should be one less than desired #

* FIRST LOOP

RPTB BLKl
ADDF *+AROI*+AR2,R1

BLK 1

I I

ADDF R3,RlIR6
SUBF *+AR2,*+AROIR4

STF R6,*+ARO
SUBF R3,Rl
LDF *AR2,R5
LDF *+ARl,R7
ADDF *AR3, *AR1, R3
ADDF R5, *ARO , R1
STF Rl,*+ARl
ADDF R3,RlIR6
SUBF R5, *ARO , R2
STF R6,*ARO++(IRO)
SUBF R3 ,R1
SUBF *AR3, *ARl, R6
SUBF R7, *+AR3, R3
STF Rl,*ARl++(IRO)
SUBF R6, R4, R5
ADDF R6 ,R4
STF R5, *+AR2
STF R4,*+AR3
SUBF R3, R2, R5
ADDF R3,RZ
STF RSI*AR2++(IRO)
STFR2,*AR3++(IRO)

* IF THIS IS THE LAST STAGE, YOU ARE DONE

LDI @STAGE,AR7
ADDI 1,AR7
CMPI @LOGFFT, AR7
BZD END
ST1 AR7 I @STAGE ; Current FFT stage

* MAIN INNER LOOP

LDI
ST1
LDI
ST1

LDI
ADDI
LDI
LDI
ADDI
ADDI
ST1

1,AR7
AR7, @IAl ; Init IAI index
2 ,AR7
AR7, @LPCNT ; Init loop counter for inner loop

i INLOP :
2 ,AR6 ; Increment inner loop counter
@LPCNT , AR6
@LPCNT, ARO
@IA1 ,AR7
@IEINDX,AR7 ; IA1 = IAl+IE
@INPUT, ARO ; (X(I),Y(I)) pointer
AR7, @IA1

Software Applications 11 -83

A~plication-Oriented Operations

ADDI
ST1
ADDI
ADDI
LDI
SUBI
CMPI
BZD
LDI
LDI
ADDI
SUBI
ADDI
SUBI
ADDI
SUBI

RO,ARO,ARl
AR6, @LPCNT
RO,ARl,AR2
RO ,AR2 ,AR3
@RPTCNT,RC
l,RC
@JT,AR6
SPCL
@ IA1, AR7
@ IA1, AR4
@SINTAB,AR4
1 ,AR4
AR4 ,AR7 ,AR5
1,AR5
AR7 ,AR5 ,AR6
1,AR6

(X(Il),Y(Il)) pointer

(X(I2),Y(I2)) pointer
(X(I3),Y(I3)) pointer

RC should be one lese than desired #
If LPCNT = JT, go to

special butterfly

Create cosine index AR4
Adjust sine table pointer

* SECOND LOOP

RPTB BLK2
ADDF *+AR2,*+AR01R3

; R3 = Y(I)+Y(I2)
ADDF *+AR3, *+ARl, R5

; RS = Y(Il)+Y(I3)
ADDF R5,R3,R6 ; R6 = R3+R5
SUBF *+AR2,*+ARO1R4

; R4 = Y(1)-Y(I2)
SUBF R5,R3 ; R3 = R3-R5
ADDF *AR2, *ARO , R1 ; R1 = X(I)+X(I2)
ADDF *AR3, *AR1, R5 ; R5 = X(Il)+X(I3)
MPYF R3,*+AR5(IRl),R6 R6 = R3*C02
STF R6,*+ARO ; Y(1) =R3+R5
ADDF R5,RlIR7 ; R7 = Rl+R5
SUBF *AR2, *ARO , R2 ; R2 = X(1)-X(I2)
SUBF R5,Rl ; R1 = R1-R5
MPYF Rl1*AR5,R7 ; R7 = Rl*SI2
STFR7,*ARO++(IRO) ; X(1) =Rl+R5
SUBF R7 ,R6 ; R6 = R3*C02-Rl*SI2
SUBF *+AR3,*+ARl,R5

; R5 = Y(I1)-Y(I3)
MPYF RlI*+AR5(IR1),R7 ; R7 = Rl*CO2
STF R6,*+AR1 ; Y(I1) = R3*C02-R1*SI2
MPYF R3 , *AR5, R6 ; R6 = R3*SI2
ADDF R7,R6 ; R6 = Rl*COZ+R3*SI2
ADDF R5,R2,Rl ; R1 = R2+R5
SUBF R5,R2 ; R2 = R2-R5
SUBF *AR3, *ARl, R5 ; R5 = X(I1)-X(I3)
SUBF R5, R4, R3 ; R3 = R4-R5
ADDF R5,R4 ; R4 = R4+R5
MPYF R3,*+AR4(IRl),R6 ; R6 = R3*C01
STFR6,*ARl++(IRO) ; X(I1) = Rl*C02+R3*SI2

MPYF Rl1*AR4,R7 I

SUBF R7,R6 i
MPYF Rl1*+AR4(IR1),R6;

1 I STF R6, *+AR2 i
MPYF R3 *AR4, R7 i
ADDF R7,R6 I

MPYF R4,*+AR6(1Rl),R6 ;
I I STFR61*AR2++(IRO) I

MPYF R2, *AR6, R7 I

SUBF R7, R6 I

MPYF R2,*+AR6(IRl),R6;

I I STF R6, *+AR3 i
MPYF R4, *AR6, R7 i
ADDF R7,R6 I

BLK2 STF R6,*AR3++(1RO)
* ; x(i3) = R2*C03+R4*SI3

CMPI @LPCNT,RO
BP INLOP ; Loop back to the inner loop
BR CONT

* SPECIAL BUTTERFLY FOR W = J

SPCL LDI IR1, AR4
LSH-1,ARI ; Point to SIN(45)
ADD1 @SINTAB ,AR4 ; Create cosine index AR4 = C021

RPTB
ADDF
SUBF
ADDF

SUBF
*

ADDF
SUBF
ADDF
ADDF

*
SUBF
ADDF
STF

I I STF
SUBF
SUBF

*
STF

Software Applications 1 1 -85

Application-Oriented Operations

I I STF RT,*ARl++(IRO) ;
ADDF R3,R2,R5 i
SUBF R2, R3, R2 ;
SUBF R1, R4, R3 ;
ADDF Rl,R4 i
SUBF R5, R3, R1 i
MPYF *AR4,R1 ;
ADDF R5,R3 i
MPYF *AR4,R3 ;

I I STF R1, *+AR2 ;
SUBF R4, R2, R1 i
MPYF *AR4,R1 ;

I I STF R3,*ARZ++(IRO) ;
ADDF R4,R2 i
MPYF *AR4,R2 i

BLK3 STF Rl,*+AR3 ;
I I STF R2, *AR3++ (IRO) ;

CMPI @LPCNT, RO
BPD INLOP ; Loop back to the inner loop

CONT LDI @RPTCNT,AR7
LDI @IEINDX ,AR6
LSH 2,AR7 ; Increment repeat counter for

* ; next time
ST1 AR7, @RPTCNT
LSH 2,AR6 ; I E 1 4 * I E
ST1 AR6, @IEINDX
LDI R0,IRO ; N1 = N2
LSH -3,RO
ADD1 2,R0
ST1 RO, @JT ; JT = N2/2+2
SUB1 2,R0
LSH l,RO ; N2 = N2/4
BR LOOP ; Next FFT stage

* STORE RESULT USING BIT-REVERSED ADDRESSING

Application-Oriented Operations

END: L D I @FFTSIZ,RC ; R C - N
SUB1 l,RC ; RC should be one l e ee than deeired #
L D I @FFTSIZ, IRO ; IRO = s i z e o f FFT = N
L D I 2 , I R l
L D I @INPUT, A R O
LDP STORE
L D I @STORE,ARl

RPTB BITRV
LDF *+ARO(l),RO

1 1 LDF *ARO++(IRO)B,Rl
BITRV STF RO , *+ARl(1)
1 1 STF Rl,*ARl++(IRl)

SELF BR SELF . end
; Branch t o i t e e l f a t t h e end

The data to be transformed is usually asequence of real numbers. In this case,
the FFT demonstrates certain symmetries that permit the reduction of the
computational load even further. Example 11-38 shows the generic imple-
mentation of a real-valued, radix-2 FFT. For such an FFT, the total storage re-
quired for a length-N transform is only N locations; in a complex FFT, 2N are
necessary, Recovery of the rest of the points is based on the symmetry condi-
tions.

Example 11-39 shows the implementation of a radix2 real inverse FFT. The
inverse transformation assumes that the input data is given in the order pres-
ented at the output of the forward transformation and produces a time signal
in the proper order (that is, bit reversing takes place at the end of the program).

Software Applications 11 -87

Application-Oriented Operations

Example 11-38. Real, Radix-2 FFT

.
FILENAME : ffft-rl.asm

WRITTEN BY : Alex Tessarolo
* Texas Instruments, Australia
*
* DATE : 23rd July 1991
*
* VERSION : 2.0

*
* VER
* -
1.0

* 2.0
*
*
*
*

DATE COMMENTS

18th July 91 Original release.
23rd July 91 Most stages modified.

Minimum FFT size increased from 32 to 64.
Faster in place bit reversing algorithm.
Program size increased by about 100 words.
One extra data word required.

* SYNOPSIS:
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*

int

int
int
float
float

float
int

NOTE :

ffft-rl(FFT-SIZE, LOG-SIZE, SOURCE-ADDR, DEST-ADDR,
SINE-TABLE, BIT-REVERSE) ;

FFT-SIZE ; 64, 128, 256, 512, 1024, ...
LOG-SIZE ; 6 , 7, 8, 9, 10 , . . .
*SOURCE-ADDR ; Points to location of source data.
*DEST-ADDR ; Points to where data will be

; operated on and stored.
*SINE-TABLE ; Points to the SIN/COS table.
BIT-REVERSE ; = 0, bit reversing is disabled.

; <> 0, bit reversing is enabled.

1) If SOURCE-ADDR = DEST-ADDR, then in-place bit
reversing is performed, if enabled (more
processor intensive).

2) FFT-SIZE must be >= 64 (this is not checked).

* DESCR1PTION:Generic function to do a radix-2 FFT computation on the C30.
* The data array is FFT-SIZE-long with only real data. The out-
* put is stored in the same locations with real and imaginary

points R and I as follows:

The program is based on the FORTRAN program in the
paper by Sorensen et al., June 1987 issue of Trans.
on ASSP.

* Bit reversal is optionally implemented at the begin-
ning of the function.

*
The sine/cosine table for the twiddle factors is ex-
pected to be supplied in the following format:

* NOTE: The table is the first half period of a sine wave.

Stack structure upon call:

BIT-REVERSE
SINE-TABLE
DEST-ADDR
SOURCE-ADDR
LOG-SI ZE
FFT-SIZE
returne

old FP

Software Applications 1 1 -89

Application-Oriented Operations

* NOTE: Calling C program can be compiled using either large
* or small model.
*
* WARNING: DP initialized only once in the program. Be wary

with interrupt service routines. Make sure interrupt
* service routines save the DP pointer.
*
* WARNING: The DEST-ADDR must be aligned such that the first
* LOG-SIZE bits are zero (this is not checked by the
* program).
*
.
*

* REGISTERS USED: RO, R1, R2, R3, R4, R5, R6, R7
* ARO, AR1, AR2, AR3, AR4, AR5, AR6, AR7
* IRO, IR1
* RC, RS, RE
* DP
*
MEMORY REQUIREMENTS: Program = 405 Words (approximately)

* Data = 7 Words
* Stack = 12 Words
*
.

* BENCHMARKS:
*
*
*
*

Assumptions - Program in RAM0
- Reserved data in RAMO
- Stack on primary/expansion bus RAM
- Sine/cosine tables in RAMO
- Processing and data destination in RAM1.
- Primary/expansion bus RAM, 0 wait state.

FFT Size Bit ReversingData Source Cycles(C30)

1024 OFF RAM1 19816 approx.
Note: This number does not include the C callable overheads.

Add 57 cycles for these overheads.

.global -ffft-rl ; Entry execution point.

FFT-SIZE : .usect ".fftdata",l ; Reserve memory for arguments.
LOG-SIZE : .usect ".fftdata",l
SOURCE-ADDR: .usect ".fftdata",l
DEST-ADDR: .usect ".fftdataN,l
SINE-TABLE: .usect ".fftdata",l
BIT-REVERSE: .usect ".fftdata",l
SEPARATION: .usect ".fftdata",l

Application-Oriented Operations

;
; Initialize C function.
r'

PUSH
LDI
PUSH
PUSH
PUSH
PUSHF
PUSH
PUSHF
PUSH
PUSH
PUSH
PUSH
PUSH

LDP

LDI
ST1
LDI
ST1
LDI
ST1
LDI
ST1
LDI
ST1
LDI
ST1

LDI
CMPI
BZ

; Preserve C environment.

FFT-SIZE ; Init. DP pointer.

*-FP(Z),RO ; Move arguments from stack.
RO,@FFT-SIZE
*-FP(3),RO
RO,@LOG-SIZE
*-FP(4),RO
RO , @ SOURCE-ADDR
*-FP(S),RO
RO , @DEST-ADDR
*-FP(6),RO
RO,@SINE-TABLE
*-FP(7),RO
RO,@BIT-REVERSE

;
; Check bit reversing mode (on or off).
i
; BIT-REVERSING = 0, then OFF
i (no bit reversing).
; BIT-REVERSING <> 0, Then ON.
;

@BIT-REVERSE,RO
0,RO
MOVE-DATA

i
; Check bit reversing type.
;
; If SourceAddr = DestAddr, then in place
i bit reversing.
; If SourceAddr <> DestAddr, then
I standard bit reversing.
I

Software Applications 1 1 -91

Application-Oriented Operations

LDI
CMPI
BEQ

LDI
SUBI
LDI
LSH
LDI
LDI

LDF

RPTS
LDF

I I
STF

IN-PLACE : LDI
LSH
LDI

LDI
LSH
SUBI
LDI
LDI
LDI

NOP
NOP
LDF
LDF
CMPI
LDFGT
LDFGT

@SOURCE-ADDR,RO
@DEST-ADDR,RO
IN-PLACE

:
; Bit reversing Type 1 (from source to
I destination).
;
; NOTE: abs(S0URCE-ADDR - DEST-ADDR)
; must be > FFT-SIZE, this is not
i checked.
;

@FFT-SIZE,RO
2,RO
@FFT-SIZE,IRO
-1, IRO ; IRO = half FFT size.
@SOURCE-ADDR,ARO
@ DEST-ADDR, AR1

RO
*ARO++,Rl
STF Rl,*ARl++(IRO)B

START

;
; In-place bit reversing.
I

; Bit reversing on even locations,
; 1st half only.

@FFT-SIZE,IRO
-2, IRO ; IRO = quarter FFT size.
2, IR1

*ARl++ (IRO) B
*ARZ++(IRO)B
*++ARO(IRl),RO
*AR1, R1
AR1, ARO ; Xchange locs only if ARO<ARl.
R0,Rl
*ARl++(IRO)B,Rl

A~~lication-Oriented Operations

RPTB
LDF

LDF
I I

I I
CMPI
LDFGT

BITRV1: LDFGT

STF
STF

LDI
LSH
LDI
ADDI
ADDI
LDI
LDI
LSH
SUB1

NOP
NOP
LDF
LDF
CMPI
LDFGT
LDFGT

RPTB
LDF

LDF
I I

I I
CMPI
LDFGT

BITRV2 : LDFGT

STF
STF

BITRVl
*++ARO(IRl),RO
STF RO , *ARO
*ARl, R1
STF Rl,*AR2++(IRO)B
AR1,ARO
RO , R1
*ARl++(IRO)B,RO

; Perform bit reversing on odd
i locations, 2nd half only.

@FFT-SIZE,RC
-1,RC
@DEST-ADDR, ARO
RC , ARO
1,ARo
AR0,ARl
ARo,AR2
-1,RC
3 ,RC

*ARl++(IRO)B
*AR2++(IRO)B
*++ARO(IRl),RO
*AR1 , R1
AR1,ARO ; Xchange locs only if ARO<ARl.
R0,Rl
*ARl++(IRO)B,Rl

BITRV2
*++ARO(IRl),RO
STF RO , *ARO
*ARl/ R1
STF Rl,*ARZ++(IRO)B
AR1,ARo
R0,Rl
*ARl++(IRO)B,RO

i Perform bit reversing on odd
i locations, let half only.

LDI @FFT-SIZE,RC
LSH -1,RC
LDI RC, IRO
LDI @DEST-ADDR, ARO
LDI AR0,ARl
ADD1 1 ,ARO

Software Applications 11 -93

Application-Oriented Operations

ADD1
LSH
LDI
SUBI

LDF
LDF

RPTB
LDF

BITRV3r LDF
I I

I I
STF
STF

BR

MOVE-DATA: LDI
CMPI
BEQ

LDI
SUBI
LDI
LDI

LDF

RPTS
LDF

I I

IRO , ARl
-1,RC
RC, IRO
2,RC

BITRV3
*++ARO(IRl),RO
STF RO,*ARl++(IRO)B
*AR1 , R1
STF Rl,*-ARO(IR1)

RO, *AR1
R1, *ARO

START

i
i Check data source locatione.
i
i If SourceAddr = DestAddr, then
; do nothing.
i If SourceAddr o DeetAddr, then move

data.
:

@SOURCE-ADDR,RO
@DEST-ADDR,RO
START

RO
*ARO++, R1
STF R1, *ARl++

STF

;
; Perform first and second FFT loops.

0 4 [X(Il) + X(I2)l + [X(I3) + X(I4)]

START:

I I

I I

I I

I I

I I

LOOP 1-2 :

I I

I I

LDI
LD I
LDI
LDI
ADDI
ADDI
ADDI
LDI
LDI
LSH
SUB1
LDF
LDF
ADDF3
SUBF3
SUBF3
ADDF3
ADDF3
SUBF3

RPTB
LDF
LDF
ADDF3
STF
SUBF3
STF
SUBF3
STF
ADDF3
STF
ADDF3
SUBF3
STF
STF
STF
S TF

@DEST-ADDR,ARl
AR1,ARZ
ARl,AR3
ARl,AR4
1,AR2
2,AR3
3 ,AR4
4, IRO
@FFT-SIZE,RC
-2 ,RC
2,RC
*AR2, RO
*AR3, R1
RlI*AR4,R4
RlI*AR4++(1RO),R5
ROI*AR1,R6
ROI*AR1++(IRO),R7
R7,R4,R2
R4,R7,R3

LOOPI-2
*+AR2(IRO),RO
*+AR3(IRO),R1
R1, *AR4 ,R4
R3,*AR3++(IRO)
RlI*AR4++(IRO),R5
R5 , *-AR4 (IRO)
ROI*ARlIR6
R6,*AR2++(IRO)
ROI*AR1++(IRO),R7
R2 , *-AR1 (IRO)
R7,R4,R2
R4,R7,R3
R3, *AR3
R5,*-AR4(IRO)
R6, *AR2
R2,*-ARl(IR0)

Software Applications 11 -95

Application-Oriented Operations

I

; Perform third FFT loop.
I

; Part A:

LDI
LDI
LDI
ADDI
ADDI
LDI
LDI
LSH
SUB1

@DEST-ADDRIAR1
ARl,AR2
AR1 ,AR3
4 ,AR2
6 ,AR3
8, IRO
@FFT-SIZE,RC
-3 1 RC
2,RC

SUBF3 *AR2,*ARl1R1
ADDF3 *AR2,*AR11R2
NEGF *AR3, R3

RPTB
LDF

I I STF
SUBF3

I I STF
ADDF3

I I STF
LOOP3-A: NEGF

LOOP3-A
*+AR2(IRO),RO
R2,*ARl++(IRO)
ROl*ARl1R1
RlI*AR2++(IRO)
RO, *ARlIR2
R3,*AR3++(1RO)
*AR3, R3

STF R2, *AR1
STF R1, *AR2
STF R3, *AR3

Application-Oriented Operations

;
; Part B:

i

ARO

; AR1
;
i I ARZ

L - 3
;
; ARO

LDI
LSH
LDI
SUB1
LDI
LDI
LDI
LDI
LDI
ADDI
ADDI
ADDI
ADDI
LDI
LDF

MPYF3
MPYF3
ADDF3
MPYF3
SUBF3
SUBF3
ADDF3
STF
SUBF3
STF
ADDF3
STF

RPTB
MPYF3
STF
ADDF3
MPYF3

0
1 4 X[Il] + [X(I3)*COS+ X(I4)*COS]
2
3 4 XI111 - [X(I3)*COS+ X(I4)*COS]
4
5 4 -X[I2] - [X(I3)*COS- X(I4)*COS]
6
7 4 X[I2] - [X(I3)*COS- X(I4)*COS]
8
9 NOTE: COS(Z*pi/8) = SIN(2*pi/8)

@FFT-SIZE,RC
-3 ,RC
RC, IR1
3,RC
8, IRO
@DEST-ADDR,ARO
AR0,ARl
ARo,AR2
ARO,AR3
1 ,ARo
3,ARl
5,AR2
7,AR3
@SINE_TABLE,AR7 ; Initialize table pointers.
*++AR7(1Rl),R7 ; R7 = COS(2*pi/8)

; *AR7 = COS(Z*pi/8)
*AR7,*AR2,RO ; RO = X(I3)*COS
*AR3,R7,Rl ; R5 = X(I4)*COS
RO,Rl,RZ ; R2 = [X(I3)*COS + X(I4)*COS]
AR7,+AR2(1RO),RO
RO,Rl,R3 ; R3 -[X(I3)*COS - X(I4)*COS]
*ARl,R3,R4 ; R4 -X(I2) + R3
*ARlIR3,R4 ; R4 = X(I2) + R3
RQ,*ARZ++(IRO)
R2, *ARO ,R4
R4,*AR3++(IRO)
*ARO , R2, R4
RI,*ARl++(IRO)

;
LOOP3-B i
*AR3,R7,R1
R4,*ARO++(IRO)
RO,Rl,R2
AR7,+AR2(IRO),RO

Software Applications 11 -97

Application-Oriented Operations

LOOP 3-B I
I I

I I

SUBF3
SUBF 3
ADDF3
STF
SUBF3
STF
ADDF3
STF
MPYF3
STF
ADDF3
SUBF3
SUBF3
ADDF3
STF
SUBF3
STF
ADDF3
STF
STF

Application-Oriented Operations

i
; Perform fourth FFT loop.
I

; Part A:

LDI
LDI
LDI
ADDI
ADDI
LDI
LDI
LSH
SUB1
SUBF3
ADDF3
NEGF
RPTB
LDF
STF
SUBF3
STF
ADDF3
STF
NEGF

STF
STF
STF

@DEST-ADDRIAR1
ARl,AR2
ARl,AR3
8 ,AR2
12 ,AR3
16, IRO
@FFT-SIZE,RC
-4 ,RC
2,RC
*AR2,*ARlIR1
*AR2,*ARlIR2
*AR3, R3
LOOP4-A
*+ARZ(IRO),RO
RZ,*ARl++(IRO)
RO, *AR1 ,R1
RlI*AR2++(IRO)
RO,*ARl,R2
R3,*AR3++(IRO)
*AR3, R3

Software Applications 11 -99

Application-Oriented Operations

i
; Part B: -

ARO -b

LDI
LSH
LDI
LDI
SUB1
LDI
LDI
LDI
LDI
LDI
ADDI
ADD I
ADDI
ADD I
ADDI

LDI
LDF

LDI
LDF

LDI
LDF

@FFT-SIZE,RC
-4 ,RC
RC, IR1
2, IRO
3,RC
@DEST-ADDR,ARO
AR0,ARl
ARO,AR2
ARO,AR3
AR0,ARI
1 ,ARO
7 ,AR1
9 ,AR2
15,AR3
ll,AR4

LDI

Application-Oriented Operations

MPYF3
MPYF3
MPYF3
ADDF3
MPYF3
SUBF3
SUBF3
ADDF3
STF
SUBF3
STF
ADDF3
STF

MPY F 3
STF
ADDF3
MPYF3
SUBF3
SUBF3
ADDF3
STF
SUBF3
STF
STF

MPYF3
STF
MPYF3
MPYF3
ADDF3
MPYF3
SUBF3
SUBF3
ADDF3
STF
SUBF3
STF
ADDF3
STF

RPTB
MPYF3
STF
MPYF3
MPYF3
ADDF3
MPYF3
SUBF3
SUBF3
ADDF3

Software Applications 11 -1 01

Application-Oriented Operations

Application-Oriented Operations

MPYF3
STF
ADDF3
MPYF3
SUBF3
SUBF3
ADDP3
STF
SUBF3
STF
ADDF3
STF

MPYF3
STF
MPYF3
MPYF3
ADDF3
SUBF3
SUBF3
ADDF3
STF
SUBF3
STF
ADDF3
STF

STF

Software Applications 11 -1 03

Application-Oriented Operations

LOOP :

11-104

i
; Perform remaining FFT loops (loop 4 onwards).
i LOOP
i 1st 2nd

+
LDI
LSH
ST1
LSH
LDI
LDI
LDI
LDI
LDI
LSH
LSH
ADD1
LSH
LDI

i
I

;
i
:
i
i
:
i
i
i
i
i
;
;
i
;
i
i
i
I

:
i
;
i
;
i

@FFT-SIZE,IRO
-2, IRO
IRO,@SEPARATION
-2, IRO
5,R5
3,R7
16,R6
@DESTPDDRlAR5
@DEST-ADDR,ARl
-1, IRO
11R7
1,R7
1 ,R6
AR1, AR4

- + +
ARl' 1-1 0 0 4 X1(Il)+ X'(13)

1 1 4 X(I1) + [X(I3)*COS + X(I4)*SIN]
2 2

X 11 3 3

-C LP

A +
X'(I2) 8 16

B +
4

13 29
14 30

AR2+ 15 31 + X[Il] - [X(I3)*COS + X(I4)*SIN]
16 32 4 X1(1l)- X1(13)

AR3 + 17 33 4 -X[I2]- [X(I3)*SIN- X(I4)*COS]
18 34
19 35

' f""i24 48 4 -X1(14)

+

[%JiE[;
i
i
I

i

29 61
30 62

+ 31 63 4 X[I2] - [X(I3)*SIN - X(I4)*COS] - 32 64

+ 33 65

I I

Application-Oriented Operations

INLOP :

IN-BLK :
I I

I I

ADDI
LDI
ADDI
ADDI
SUBI
LDI
SUBI

LDI
LDI
LDI

ADDF3
SUBF3
NEGF
STF
STF
STF

LDI

SUBI

MPYF3
MPYF3
MPYF3
MPYF3
SUBF3
MPYF3
ADDF3
SUBF3
ADDF3
STF
SUBF3
STF
ADDF3
STF

RPTB
LDF
MPYF3
STF
MPYF3
MPYF3
SUBF3
MPYF3
ADDF3
SUBF3
ADDF3
STF
SUBF3
STF
ADDF3
STF

; AR1 points at A.

; AR2 points at B.

; AR4 points at D.

; AR3 points at C.

@SINE-TABLE,ARO ; ARO points at SIN/COS table.
R7, IR1
R7, RC

--ARl(IRl),++AR2(1Rl),RO; RO =
*--AR3(IRl),*ARl++,Rl ; R1 r

*--AR4 1 R2 ; R 2 = .
RO, *-AR1 ; X'(I1)
R1, *AR2-- ; X'(I3)
RZI*AR4++(IR1) ; X1(14)

@SEPARATION,IRl ; IRl=SEPARATION
BETWEEN SIN/COS TBLS

3,RC

IN-BLK
*-ARO(IRl),R3
*AR4, R3, R4
R4, *ARl++
*AR3,R3,R1
*AROI*AR3,R0
Rl,RO,R3
++ARO(IRO)I-AR4,R0
RO1R4,R2
*AR2, R3, R4
*AR2, R3, R4
R4, *AR3++
R2, *AR1 ,R4
R4, *AR4--
*ARl1R2,R4
R4, *AR2--

Software Applications 1 1 -1 05

Application-Oriented Operations *

LDF
MPYF3

I I
MPYF3
MPYF3

LD I
I I

ABDF 3
SUBF3
ADDF3

I I
SUBF3

I I
ADDF3

I I
STF

SUB13
CMPI
BLTD

LDI

LDI
LDI

ADD1
CMPI
BLED
LDI
LSH
LSH

*-ARO(IRl),R3
*AR4, R3, R4
STF R4, *ARl++
*AR3,R3,R1
*AROI*AR3,RO
SUBF3 R1,RO1R3
R6, IR1
RO1R4,R2
*AR2,R3,R4
*AR2,R3,R4
STF R4,*AR3++(IRl)
R2, *AR1 ,R4
STF R4,*AR4++(IRl)
*ARllR2,R4
STF R4,*AR2++(IRl)

ARS,ARl,RO
@FFT-SIZE,RO
INLOP ; LOOP BACK TO THE

INNER LOOP
@SINE-TABLE,ARO ; ARO POINTS TO

SIN/COS TABLE
R7, IR1
R7, RC

1,R5
@LOG-SIZE,R5
LOOP
@DEST-ADDR,ARI
-1, IRO
1,R7

Application-Oriented Operations

POP DP

POP AR7
POP AR6
POP AR5
POP AR4
POPF R7
POP R7
POPF R6
POP R6
POP R5
POP R4
POP FP
RETS

;
; Return to C environment.
i

; Restore C environment
i variables.

*
* NO more.

.

Software Applications 11 -1 07

Application-Oriented Operations

Example 1 1-39. Real Inverse, Radix-2 FFT

* Real Inverse FFT
.
*
* FILENAME r ifft-rl.asm
*
* WRITTEN BY : Daniel Mazzocco
* Texas Instruments, Houston
*
* DATE : 18th Feb 1992
*
VERSION : 1.0

*

.
* VER DATE COMMENTS
* -
* 1.0 18th Feb 92 Original release. Started from forward real FFT

routine written by Alex Tessarolo, rev 2.0 .
*

* SYNOPSIS: int ifft-rl(FFT-SIZE, LOG-SIZE, SOURCE-ADDR,
DEST-ADDR, SINE-TABLE, BIT-REVERSE) ;

*
int FFT-SIZE ; 64, 128, 256, 512, 1024, ...
int LOG-S I Z E ; 6 , 7, 8, 9, 10 , . . .
float *SOURCE-ADDR ; Points to where data is originated

; and operated on.
float *DEST-ADDR ; Points to where data will be stored.
float *SINE-TABLE ; Points to the SIN/COS table.
int BIT-REVERSE ; = 0, bit reversing is disabled.

; <> 0, bit reversing is enabled.

NOTE: 1) If SOURCE-ADDR = DEST-ADDR, then in place bit
reversing is performed, if enabled (more
processor intensive).

2) FFT-SIZE must be >= 64 (this is not checked).

Application-Oriented Operations

DESCRIPTION:
*

*
*

*
*
*

Generic function to do an inverse radix-2 FFT computation
on the C30.
The data array is FFT-SIZE long with real and imaginary
points R and I as follows:

The output data array will contain only real values.
Bit reversal is optionally implemented at the end
of the function.

The sine/cosine table for the twiddle factors is expected
to be supplied in the following format:

NOTE: The table is the first half period of a sine wave.

* Stack structure upon call:

BIT-REVERSE
SINE-TABLE
DEST-ADDR
SOURCE-ADDR
LOG-S I ZE
FFT-SIZE
returne

old FP

Software Applications 1 1 -1 09

Application-Oriented Operations

NOTE: Calling C program can be compiled using either large
or small model.

WARNING: DP initialized only once in the program. Be wary
with interrupt service routines. Make sure interrupt
service routines save the DP pointer.

WARNING: The SOURCE-ADDR must be aligned such that the first
LOG-SIZE bits are zero (this is not checked by the
program).

*
* REGISTERS USED: RO, R1, R2, R3, R4, R5, R6, R7
* ARO, AR1, AR2, AR3, AR4, AR5, AR6, AR7
* IRO, IR1
* RC, RS, RE
* DP

* MEMORY REQUIREMENTS: Program = 322 words (approximately)
Data = 7 words
Stack = 12 words

*
* BENCHMARKS : Assumptions - Program in RAM0
* - Reserved data in RAM0
3t - Stack on primary/expansion bus RAM
* - Sine/cosine tables in RAM0
* - Processing and data destination in RAM1
* - Primary/expansion bus RAM, 0 wait state
4

* FFT Size Bit Reversing Data Source Cycles(C30)
*
* 1024 OFF RAM1 25892 approx.
* Note: This number does not include the C callable overheads.
* Add 57 cycles for these overheads.
.

.global -ifft-rl ; Entry execution point.

FFT-SIZE : .usect ".ifftdata",l ; Reserve memory for arguments.
LOG-SIZE : .usect ".ifftdata",l
SOURCE-ADDR: .usect ".ifftdata",l
DEST-ADDR : .usect ".ifftdataW,l
SINE-TABLE: .usect ".ifftdata",l
BIT-REVERSE : .usect ".ifftdatal', 1
SEPARATION : .usect " . iff tdata" , 1

A~~lication-Oriented Operations

- if ftrl r PUSH
LDI
PUSH
PUSH
PUSH
PUSHF
PUSH
PUSHF
PUSH
PUSH
PUSH
PUSH
PUSH

LDP

LDI
ST1
LDI
ST1
LDI
ST1
LDI
ST1
LDI
ST1
LD I
ST1

;
; Initialize C Function.
;

; Preserve C environment.

FFT-SIZE ; Initialize DP pointer.

*-FP(2),RO ; Move arguments from stack.
RO,@FFT-SIZE
*-FP(3)tRO
RO,@LOG-SIZE
*-FP(4),RO
RO,@SOURCE-ADDR
*-FP(S),RO
RO,@DEST-ADDR
*-FP(6)tRO
RO,@SINE-TABLE
*-FP(7),RO
RO,@BIT-REVERSE

Software Applications 1 1 -1 1 1

Application-Oriented Operations

i
; Perform last FFT loops first (loop 2 onwards).
:
d LOOP
: 1st 2nd

LOOP :

11-112

- + +
0 0 4 Xp(Il)t X'(13)

4 X(I1) t [X(I2)

A 1 16 * Xr(12)* 2 XI (12)
B +

13 29
14 30

AR2 + 15 31 4 Xi141 - [X(I3)
16 32 4 X1(1l)- X'(13)

AR3 + 17 33 4 [X(Il)-X(I2)]*COS-[X(13)+X(I4)]*SIN
18 34
19 35

48 + -X8(14)*2
D +

+ [X(I2)-X(I2)]*SIN+[X(I3)+X(I4)]*COS
- 32 64

-b 33 65

+
LDI 1, IRO ; Step between two consecutive sines
LDI 4, R5 ; Stage number from 4 to M.
LDI @FFT_SIZE,R7
LSH -2,R7 ; R7 is FFT-SIZE/4-1 (ie 15 for 64 pts)
SUB1 1,R7 ; and will be used to point at A & D.
LDI @FFT_SIZE,R6 ; R6 will be used to point at D.
LSH 1,R6
LDI @SOURCE-ADDR,AR5
LDI @SOURCE-ADDR,ARl

LSH -1,R6 ; R6 is FFT-SIZE at the 1st loop.
LDI AR1 ,AR4
ADD1 R7, AR1 ; AR1 points at A.

Application-Oriented Operations

INLOP :

LDI
ADDI
ADDI
SUBI
LDI
SUBI

LDI
LDI

SUBF3
LDF

I I STF
MPYF
LDF

I I STF
MPYF
STF

I I STF

LDI

LDI
LSH
SUBI

SUBF3
ADDF3
MPYF3
LDF
MPYF3

I I SUBF3
ADDF3

I I STF
MPYF3

I I STF
ADDF3
MPYF3

I I STF
SUBF3

RPTB

AR1,ARZ
2 ,AR2 ; AR2 points at B.
R6,AR4
R7 ,AR4 ; AR4 points at D.
AR4,AR3
2 ,AR3 ; AR3 points at C.

--ARl(IRl) ,
--AR3(IRl),RO ; RO Xf(I1) + X1(13)
*AR3,*ARl,Rl ; Rl = Xf(Il) - Xf(13)
*--AR4 R2
RO, *ARl++ ; X f (11)
-2.0,RZ ; R2 = -2*X'(I4)
*--AR2 R3
R1, *AR3++ ; X'(I3)
2.O,R3 ; R3 = 2*X'(I2)
R3,*AR2++(IRl) ; X'(I2) 4
RZ,*ARI++(IRl) ; Xf(14)

@FFT-SIZE,IRl ; IRlnseparation between SIN/
; COS tbls

@SINE-TABLE,ARO; ARO points at SIN/COS table.
-2, IR1
3,RC

IN-BLK

Software Applications 11 -1 1 3

Application-Oriented Operations

IN-BLK :

SUBF3
ADDF 3
MPYF3
STF
LDF
MPYF3
SUBF3
ADDF3
STF
MPYF3
STF
ADDF3
MPYF3
STF
SUBF3

SUBF3
ADDF3
MPYF3
STF
LDF
MPYF3
SUBF3
ADDF3
STF
MPYF3
STF
LDI
ADDF3
MPYF3
STF
SUBF3
NEGF
STF

SUB13
CMPI
BLTD
NOP
LDI
LDI

ADD1
CMPI
BLED
LDI
LSH
LSH

*AR2,*ARl1R3 ; R3 X(I1)-X(I2)
*ARlI*AR2,R2 ; R2 = X(Il)+X(IZ)
R3,*++ARO(IRO),Rl; R1 = R3*SIN
R4, *AR3++ ; x(I3)
*AR4, R4 ; R4 = X(I4)
R3,*++ARO(IR1),RO; RO = R3*COS
*AR3,R4,R3 ; R3 = X(I4)-X(I3)
R4,*AR3,R2 ; R2 = X(I3)+X(I4)
R2, *AR1 ; X(I1) 4
R2,*ARO--(IRl),R4; R4 R2*COS
R3, *AR2 ; x(I2) 4
R6, IR1 ; Get prepared for the next
R4,Rl1R3 ; R3 = R3*SIN + R2*COS
R2, *ARO,Rl ; R1 = R2*SIN
R3,*AR4++(IRl) ; X(I4)
Rl,RO,R4 ; R4 R3*COS 2 - R2*SIN
*ARl++(IRl),RZ ; Dummy
R4,*AR3++(IRl) ; X(I3)

AR5,ARl1RO
@FFT-SIZE,RO
INLOP ; Loop back to the inner loop
*AR2++ (IR1) ; Dummy
R7, IR1
R7, RC

1,R5
@LOG-SIZE,R5 ; Next stage if any left
LOOP
@SOURCE-ADDR,~~
1, IRO ; Double step in sinus table
-1 ,R7

Application-Oriented Operations

I

; Perform third FFT loop.

LDI
LDI
LDI
LDI
ADDI
ADDI
ADDI
LDI
LDI
LSH
SUB1
LDI

RPTB
LDF
ADDF3
SUBF3
LDF

I I STF
MPYF
LDF

I I STF
MPYF

LOOP3-A : STF
I I STF

@SOURCE-ADDRIAR1
AR11AR2
AR11AR3
AR11AR4
2 ,AR2
4 ,AR3
6 ,AR4
8, IRO
@FFT-SIZE,RC
-3,RC
1 ,RC
@SINE-TABLE,ARO ; ARO points at SIN/COS table

Software Applications 1 1 -1 1 5

Application-Oriented Operations

i
; Part B:

r

LDI
LDI
LDI
LDI
ADDI
ADDI
ADDI
ADDI
LDI
LDI
LSH
LDI
SUB1

0
1 4- X(I1) + X(I2)
2
3 +' X(I1) - X(I3)
4
5 4- [X(Il)- X(I2)]*COS-- [X(I3)+ X(I4)]*SIN
6
7 +' [X(Il)- X(I2)]*SIN+ [X(I3)+ X(I4)]*COS]
8
9 NOTE: COS(2*pi/8) = SIN(2*pi/8)

@SOURCE-ADDR,ARl
AR1,ARZ
ARl,AR3
ARl,AR4
1,ARl
3 ,AR2
5,AR3
7 ,AR4
@SINE_TABLE,AR7 ; AR7 points at SIN/COS table.
@FFT-SIZE,RC
-3, RC
RC, IR1
2 ,RC

Application-Oriented Operations

LDF
LDF
ADDF3
SUBF3
SUBF3
ADDF3
SUBF3

I I STF
ADDF3

I I STF
MPYF3

I I SUBF3
MPYF3

I I STF

RPTB

LDF
I l STF

ADDF3
LDF
SUBF3
SUBF3
ADDF3
SUBF3

I I STF
ADDF3

I I STF
MPYF3

1) SUBF3
LOOP3-B : MPYF3

I I STF

STF

*AR2, R6 ; R6 = X(I2)
*AR3, RO ; RO = X(I3)
R6,*ARlrR5 ; R5 = X(Il)+X(I2)
R6, *AR1 ,R4 ; R4 = X(I1)-X(I2)
R01R4 ,R3 ; R3 I X(I1)-X(I2)-X(I3)
ROIR4,R2 ; R2 X(I1)-X(I2)+X(I3)
RO, *AR4 ,R1 ; R1 = X(I4)-X(I3)
R5,*ARl++(IRO) ; X(I1) 4
R2, *AR4, R5 ; R5 = X(I1)-X(IZ)+X(I3)+X(I4)
Rlr*AR2++(IRO) ; x(I2) 4
R5,*++AR7(IRl),Rl ; R1 = R5*SIN
*AR4, R3, R2 ; R2 X(I1)-X(I2)-X(I3)-X(I4)
RZI*AR7,RO ; RO = R2*SIN
Rlr*AR4++(IRO) i X(I4) 4

;
LOOP3-B i

;
*AR2 R6 ; R6 = X(I2)
RO,*AR3++(IRO) ; X(I3) 4
R6, *ARl,RS ; R5 = X(Il)+X(IZ)
*AR3, RO ; RO = X(I3)
R6,*ARlIR4 ; R4 X(I1)-X(I2)
ROtR4,R3 ; R3 X(I1)-X(I2)-X(I3)
ROrR4,R2 ; R2 = X(I1)-X(I2)+X(I3)
RO, *AR4 ,R1 ; R1 = X(I4)-X(I3)
R5,*ARl++(IRO) i X(I1) 4
R2, *AR4 ,R5 ; R5 = X(I1)-X(I2)+X(I3)+X(I4)
RlI*AR2++(IRO) i x(I2) 4
R5, *AR7 ,R1 ; R1 = R5*SIN
*AR4, R3, R2 ; R2 X(I1)-X(I2)-X(I3)-X(I4)
R2, *AR7 ,RO
Rl1*AR4++(IRO)

Software Applications 1 1 -1 1 7

Application-Oriented Operations
L

;
; Perform first and second FFT loops.
;

; [ii Fl 0 4- X(I1) + X(I3) + 2*X(I2)
1 4 X(I1) + X(I3) - 2*X(I2)

; 2 4- X(I1) - X(I3) - 2*X(I4)

i AR4 -b 3 4- X(I1) - X(I3) + 2*X(I4)

: AR1 -b 4

;
; 6

LDI
LDI
LDI
LDI
ADDI
ADDI
ADDI
LDI
LDI
LSH
SUB1

@SOURCE-ADDR,ARI
ARl,AR2
ARl,AR3
ARl,AR4
1 ,AR2
2,AR3
3 ,AR4
4, IRO
@FFT-SIZE,RC
-2, RC
2,RC

Application-Oriented Operations

LOOP 1-2 :
I I

LDF
LDF
LDF
MPYF
MPYF
SUBF3
SUBF3
SUBF3
STF
ADDF3
ADDF3
STF
SUBF3
ADDF3
STF
ADDF3

RPTB
LDF
STF
MPYF
LDF
LDF
MPYF
SUBF3
SUBF3
SUBF3
STF
ADDF 3
ADDF3
STF
SUBF3
ADDF3
STF
ADDF3

STF

LOOP 1-2
*AR4, R6
RO,*ARl++(IRO)
2.O,R6
*AR2, R7
* M I , R1
2.O,R7
R6,*AR3,R5
R5,RlIR4
R7, *AR3, R5
R4,*AR4++(IRO)
R5,RlIR3
R6, *AR3, R4
R3,*AR2++(IRO)
R4,Rl1R4
R7, *AR3,RO
R4,*AR3++(IRO)
RO,Rl,RO

RO, *AR1
;
; LAST X(I1)

Software Applications 1 1 -1 1 9

Application-Oriented Operations
I

;
; Check bit reversing mode (on or off).
;
; BIT-REVERSING = 0, then OFF (no bit reversing).
; BIT-REVERSING <> 0, then ON.
;

LDI @BIT-REVERSE,RO
CMPI 0,RO
BZ MOVE-DATA

t
; Check bit reversing type.
i
; If SourceAddr = DestAddr, then in place bit reversing.
; If SourceAddr <> DestAddr, then standard bit reversing.
i

LDI @SOURCE-ADDR,RO
CMPI @DEST-ADDR,RO
BEQ IN-PLACE

;
; Bit reversing type 1 (from source to destination).
1

; NOTE: abs(S0URCE-ADDR - DEST-ADDR) must be > FFT-SIZE, this is not checked.
;

LDI @FFT-SIZE,RO
SUB1 2,RO
LDI @FFT-SIZE,IRO
LSH -1, IRO ; IRO = half FFT size.
LDI @SOURCE-ADDR,ARO
LDI @DEST-ADDR,AR~

LDF *ARO++,Rl

RPTS RO
LDF *ARO++, R1

I I STF Rl,*ARl++(IRO)B

STF Rl,*ARl++(IRO)B

BR DIVISION

Application-Oriented Operations

:
; In-place bit reversing.
;

; Bit reversing on even locations, let half
; only.

IN-PLACE : LDI
LSH
LDI

LDI
LSH
SUBI
LDI
LDI
LDI

NOP
NOP
LDF
LDF
CMPI
LDFGT
LDFGT

RPTB
LDF

I I STF
LDF

1 I STF
CMPI
LDFGT

BITRV1: LDFGT

STF
STF

LDI
LSH
LDI
ADDI
ADDI
LDI
LD I
LSH
SUBI

NOP
NOP
LDF

@FFT-SIZE,IRO
-2, IRO ; IRO = quarter FFT size.
2, IR1

*ARl++(IRO)B
*AR2++(IRO)B
*++ARO(IRl),RO
*AR1, R1
AR1,ARO ; Xchange locations only if ARO<ARl.
R0,Rl
*ARl++(IRO)B,Rl

RO, *ARO
R1, *AR2

; Perform bit reversing on odd locations,
i 2nd half only.

@FFT-SIZE,RC
-1,RC
@DEST-ADDR,ARO
RC , ARO
1 ,ARo
AR0,ARl
ARO,AR2
-1,RC
3,RC

*AR1++ (IRO) B
*AR2++(IRO)B
*++ARO(IRl),RO

Software Applications 11 -1 2 1

Application-Oriented Operations

LDF
CMPI
LDFGT
LDFGT

RPTB
LDF

I I STF
LDF

I I STF
CMPI
LDFGT

BITRVZ : LDFGT

STF
STF

LDI
LSH
LDI
LDI
LDI
ADDI
ADDI
LSH
LDI
SUB1

LDF
LDF

RPTB
LDF

I I STF
BITRV3: LDF
I I STF

STF
STF

*AR1, R1
AR1,ARO ; Xchange locations only if ARO<ARl.
R0,Rl
*ARl++(IRO)B,Rl

BITRVZ
*++ARO(IRl),RO
RO , *ARO
*AR1, R1
Rl,*ARZ++(IRO)B
AR1,ARo
RO , R1
*ARl++(IRO)B,RO

RO, *ARO
R1, *ARZ

; Perform bit reversing on odd
I locations, 1st half only.

@FFT-SIZE,RC
-1,RC
RC , IRO
ODEST-ADDR,ARO
AR0,ARl
1 ,ARO
IRO , AR1
-1,RC
RC, IRO
2 ,RC

RO, *AR1
R1, *ARO

DIVISION

Application-Oriented Operations

MOVE-DATA: LDI
CMPI
BEQ

LDI
SUBI
LDI
LDI

LDF

RPTS
LDF

1 I STF

STF

DIVISION : LDI
LDI
FLOAT
PUSHF
POP
NEGI
PUSH
POPF
LDI
LDI
NOP
LDI
LSH
SUBI
MPYF3
RPTB
MPYF3

I I STF
LAST-LOOP: MPYF3

I I STF

MPYF3

I I STF
STF

I

; Check data source locations.
I

; If SourceAddr =
; DestAddr, then do nothing.
; If SourceAddr <>
; DestAddr, then move data.

@SOURCE-ADDR,RO
@DEST-ADDR, RO
DIVISION

@FFT-SIZE,RO
2,RO
@ SOURCE-ADDR, ARO
@DEST-ADDR,ARI

2, IRO
@FFT-SIZE,RO
RO
RO
RO
RO
RO
RO
@DEST-ADDR,ARl
@DEST-ADDR,AR2
*AR2++
@FFT-SIZE,RC
-1,RC
2,RC
RO,*ARl,Rl
LAST-LOOP
RO , *AR2, R2
R1, *ARl++ (IRO)
RO, *ARl,Rl
R2,*AR2++(IRO)

; exp = LOG-SIZE
; 32 MSB'S saved

; Neg exponent

; RO = l/FFT-SIZE

; 1st location

; 2nd,4th,6th1 ... location
; 3rd,5th,7th1... location

; Last location

Software Applications 1 1 -1 23

Application-Oriented Operations

; Return to C environment.
;

POP DP
POP AR7
POP AR6
POP AR5
POP AR4
POPF R7
POP R7
POPF R6
POP R6
POP R5
POP R4
POP FP
RETS

; Restore C environment variables.

*
* NO more.

.
*

The TMS320C3x quickly executes FFT lengths up to 1024 points (complex)
or 2048 (real), covering most applications, because it can do so almost entirely
in on-chip memory. Table 11-1 and Table 11-2 summarize the number of CPU
clock cycles and the execution time required for FFT lengths between 64 and
1024 points for the four algorithms.

Application-Oriented Operations

Table 1 1 - 1. TMS320C3x FFT Timing Benchmarks (Cycles)

FFT Timing In Cycles

Number ot RADIX-2 RADIX-4 RADIX-2 RADIX-2
Points (Complex) (Complex) (Real) (Real Inverse)

t This benchmark is based on the Meyer and Schwarz program found in DigitalSignalProcessing Applications With the TMS320
Family, Volume 3.

Table 11-2. TMS320C3x F I T Timing Benchmarks (Milliseconds)

FFT Timing in Mllllseconds

Number ot RADIX-2 RADIX-4 RADIX-2 RADIX-2
Points (Complex) (Complex) (Real) (Real Inverse)

64 0.139 0.1 03 0.041 0.054

1 024t 1.975

t This benchmark is based on the Meyer and Schwarz program found in Digitalsignal ProcessingApplications With the TMS320
Family, Volume 3.

11.4.5 Lattice Filters

The lattice form is an alternative way of implementing digital filters; it has found
applications in speech processing, spectral estimation, and other areas. In this
discussion, the notation and terminology from speech processing applications
are used.

If H(z) is the transfer function of a digital filter that has only poles, A(z) = 1/H(z)
will be a filter having only Os, and it will be called the inverse filter. The inverse
lattice filter is shown in Figure 11-5. These equations describe the filter in
mathematical terms:

Software Applications 1 1 -1 25

Application-Oriented Operations

f (i , n) = f (i - l , n) t k (i) b(i -1,n-1)
b (i,n) = b (i-1,n-1) t k (i) f (i- 1,n)

Initial conditions:

f (0,n) = b (0,n) = x (n)

Final conditions:

In the above equation, f (i,n) is the forward error, b (i,n) is the backward error,
k (i) is the i-th reflection coefficient, x (n) is the input, and y (n) is the output
signal. The order of the filter (that is, the number of stages) is p. In the linear
predictive coding (LPC) method of speech processing, the inverse lattice filter
is used during analysis, and the (forward) lattice filter during speech synthesis.

Figure 11-5. Structure of the Inverse Lattice Filter

Figure 11-6 shows the data memory organization of the inverse lattice-filter
on the TMS320C3x.

Figure 11-6. Data Memory Organization for Lattice Filters

Reflection Baclyard
Coefficients Propagat~on Terms

Low
Address

High k(p) I b(p-1,n-1) 3
Address

Example 11-40 shows the implementation of an inverse lattice filter

Application-Oriented Operations

Example 1140. Inverse Lattice Filter

* TITLE INVERSE LATTICE FILTER
*

SUBROUTINE LATINV
*
* LATIM LATTICE FILTER (LPC INVERSE FILTER - ANALYSIS)
*
*
* TYPICAL CALLING SEQUENCE:

* load R2
* load ARO
* load AR1
* load RC
* CALL LATINV
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT I FUNCTION
I

RZ I f(O,n) = x(n)
* ARO I ADDRESS OF FILTER COEFFICIENTS (k(1))
* AR1 I ADDRESS OF BACKWARD PROPAGATION
* I VALUES (b(0,n-1))
* RC I R C = p - 2

* REGISTERS USED AS INPUT: R2, ARO, AR1, RC
* REGISTERS MODIFIED: RO, R1, R2, R3, RS, RE, RC, ARO, AR1

REGISTER CONTAINING RESULT: R2 (f(p,n))
*

PROGRAM SIZE: 10 WORDS
*
* EXECUTION CYCLES: 13 + 3 * (p-1)
*
*

.global LATINV
*
* 1 - 1
*
LATINV MPYF3 *ARO, *ARl, RO

Software Applications 11 -1 27

Application-Oriented Operations

* ; k(1) * b(0,n-1) -> RO
* ; Assume f(0,n) -> R2.

LDF R2,R3 ; Put b(0,n) = f(O,n) -> R3.
MPYF3 *ARO++(l),R2,Rl

* ; k(1) * f(0,n) -> R1
*

*
RPTB LOOP
MPYF3 *ARO,*++ARl(l),RO

) I ADDF3 R2,RO1R2
*

*
*

ADDF3 *-AR1(1), R1, R3

I I STFR3, *-ARl(1)
*
LOOP MPYF3 *ARO++(l),R2,Rl
4

*
* I = P+l (CLEANUP)

ADDF3 *AR1, R1, R3

I I STF R3, *AR1
*

* RETURN SEQUENCE
*

RETS ; RETURN

* end
*

.end

The forward lattice filter is similar in structure to the inverse filter, as shown in
Figure 11-7.

Figure 11-7. Structure of the (Forward) Lattice Filter

Application-Oriented O~erations

These corresponding equations describe the lattice filter:

f (i - l , n) = f (i , n) - k (i) b (i - l 1 n - 1)
b (i,n) = b (i- 1 , n - 1) + k (i) f (i- 1,n)

Initial conditions:

f (pin) = x (n), b (i , n - 1) = 0 fori = 1 ,..., p

Final conditions:

The data memory organization is identical to that of the inverse filter, as shown
in Figure 11-6 on page 11 -1 26. Example 11-41 shows the implementation of
the lattice filter on the TMS320C3x.

Example 1 1-4 1. Lattice Filter

* T I T L E LATTICE F I L T E R
*
*
* SUBROUTINE LATICE
*

LOAD ARO
LOAD AR1
LOAD RC
CALL LATICE

ARGUMENT ASSIGNMENTS:
ARGUMENT I FUNCTION

R 2 I F (P , N) = E (N) = EXCITATION
ARO I ADDRESS OF F I L T E R C O E F F I C I E N T S (K (P))
AR1 I ADDRESS OF BACKWARD PROPAGATION VALUES (B (P - 1 , N - 1))
IRO 1 3
RC I R C - P - 3

REGISTERS USED AS INPUT: R 2 , ARO, AR1, RC
REGISTERS MODIFIED: RO, R 1 , R 2 , R 3 , R S , RE, RC, ARO, AR1
REGISTER CONTAINING RESULT: R 2 (f (0 , n))

STACK USAGE: NONE

PROGRAM S I Z E : 1 2 WORDS

EXECUTION CYCLES: 15 + 3 * (P- 2)

Software Applications 11 -1 29

Application-Oriented Operations

.global LATICE
*
*
LATICE MPYF3 *ARO,*AR1,RO
* ; K(P) * B(P-1,N-1) -> RO

; Assume F(P,N) -> R2
SUBF3 RO , R2, R2 ; F(P,N)-K(P)*B(P-1,N-1)

; = F(P-1,N) -> R2
((MPYF3 *--ARO(l) l*--AR1(l)lRO

; K(P-1) * B(P-2,N-1) -> RO
SUBF3 RO , R2, R2 ; F(P-1,N)-K(P-l)*B(P-2,N-l)

; F(P-2,N) -> R2
1 1 MPYF3 *--ARO(l),*--ARl(l),RO

; K(P-2) B(P-3,N-1) -> RO
MPYF3 R2,*+ARO(l),Rl ; F(P-2,N) * K(P-1) -> R1
ADDF3 Rlr*+AR1(1),R3 ; F(P-2,N) * K(P-1) + B(P-2,Wl)

I I B(P-1,N) -> R3

RPTB LOOP
SUBF3 RO , R2, R2 ; F(1,N) - K(1) B(1-1,Wl)

I Z= F(1-1,N) -> R2
I (MPYF3 *--ARO(l),*--ARl(l),RO

STF R3, *+ARl (IRO) ; B(I+l,N) -> B(I+l,N-1)
1) MPYF3 R2,*+ARO(l),Rl ; F(1-1,N) * K(1) -> R1
LOOP ADDF3 Rl,*+ARl(l) ,R3 ; F(1-1,N) * K(1) + B(1-1,N-1)

STF R3,*+AR1(2) ; B(1,N) -> B(1,N-1)
STF R2,*tAR1(1) ; F(OIN) -> B(0,N-1)

* RETURN SEQUENCE
*

RETS
*

END
*

Programming Tips

11.5 Programming Tips

Programming style reflects personal preference. The purpose of this section
is not to impose any particular style; rather, it is to highlight features of the
TMS320C3x that can help to produce faster and/or shorter programs. The tips
cover the C compiler, assembly language programming, and low-power-mode
wakeup.

11.5.1 C-Callable Routines

The TMS320C3x was designed with a large register file, software stack, and
large memory space to implement a high-level language (HLL) compiler easi-
ly. The first such implementation supplied is a C compiler. Use of the C compil-
er increases the transportability of applications that have been tested on large,
general-purpose computers, and it decreases their porting time.

For best use of the compiler, complete the following steps:

1) Write the application in the high-level language.

2) Debug the program.

3) Determine whether it runs in real-time.

4) If it doesn't, identify the places where most of the execution time is spent.

5) Optimize these areas by writing assembly language routines that implement
the functions.

6) Call the routines from the C program as C functions.

When writing a C program, you can increase the execution speed by maximiz-
ing the use of register variables. For more information, refer to the
TMS320C3x C Compiler Reference Guide.

You must observe certain conventions when writing a C-callable routine.
These conventions are outlined in the Runtime Environment chapter of the
TMS320C3x C Compiler Reference Guide. Certain registers are saved by the
calling function, and others need to be saved by the called function. The C
compiler manual helps achieve a clean interface. The end result is the read-
ability and natural flow of a high-level language combined with the efficiency
and special-feature use of assembly language.

11.5.2 Hints for Assembly Coding

Each program has particular requirements. Not all possible optimizations will
make sense in every case. You can use the suggestions presented in this sec-
tion as a checklist of available software tools.

Software Applications 1 1 - 1 3 1

Programming Tips

Use delayed branches. Delayed branches execute in a single cycle; reg-
ular branches execute in four cycles. The following three instructions are
also executed whether the branch is taken or not. If fewer than three in-
structions can be used, use the delayed branch and append NOPs. Ma-
chine cycles (time) are still being saved.

Q Apply the repeat singlelblock construct. In this way, loops are achieved
with no overhead. Nesting such constructs will not normally increase effi-
ciency, so try to use the feature on the most often performed loop. Note
that RPTS is not interruptible, and the executed instruction is not refetched
for execution. This frees the buses for operands.

u Use parallel instructions. It is possible to have a multiply in parallel with
an add (or subtract) and to have stores in parallel with any multiply or ALU
operation. This increases the number of operations executed in a single
cycle. For maximum efficiency, observe the addressing modes used in
parallel instructions and arrange the data appropriately.

Q Maximize the use of registers. The registers are an efficient way to ac-
cess scratch-pad memory. Extensive use of the register file facilitates the
use of parallel instructions and helps avoid pipeline conflicts when you use
the registers in addressing modes.

Use the cache. This is especially important in conjunction with external
slow memory. The cache is transparent to the user, so make sure that it
is enabled.

Q Use internal memory instead of external memory. The internal
memory (2K x 32 bits RAM and 4K x 32 bits ROM) is considerably faster
to access. In a single cycle, two operands can be brought from internal
memory. You can maximize performance if you use the DMA in parallel
with the CPU to transfer data to internal memory before you operate on it.

Avoid pipeline conflicts. If there is no problem with program speed,
ignore this suggestion. For time-critical operations, make sure you do not
miss any cycles because of conflicts. To identify conflicts, run the trace
function on the development tools (simulator, emulators) with the program
tracing option enabled. The tracing immediately identifies the pipeline
conflicts. Consult the appropriate section of this user's guide for an expla-
nation of the reason for the conflict. You can then take steps to correct the
problem.

The above checklist is not exhaustive, and it does not address the more de-
tailed features outlined in other sections of this manual. To learn how to exploit
the full power of the TMS320C3x, study the architecture, hardware configura-
tion, and instruction set of the device. These subjects are described in earlier
chapters.

Programming Tips

11.5.3 Low-Power-Mode Wakeup Example

There are two instructions by which theTMS320C31 is placed in the low power
consumption mode:

IJ IDLE2
IJ LOPOWER

The LOPOWER instruction will slow down the H1/H3 clock by a factor of 16
during the read phase of the instruction. The MAXSPEED instruction will wake
the device from the low-power mode and return it to full frequency during
MAXSPEED'S read cycle. However, the H1/H3 clock may resume with the
phase opposite from before the clocks were shut down.

The IDLE2 instruction has the same functions that the IDLE instruction has,
except that the clock is stopped during the execute phase of the IDLE2 instruc-
tion. The clock pin will stop with H I high and H3 low. The status of all of the
signals will remain the same as in the execute phase of the IDLE2 instruction.
In emulation mode, however, the clocks will continue to run, and IDLE2 will op-
erate identically to IDLE. The external interrupts INT(O-3) are the only signals
that start the processor up from the mode the device was in. Therefore, you
must enable the external interrupt before going to IDLE2 power-down mode.
(See Example 11-42.) If the proper external interrupt is not set up before
executing IDLE2 to power down, the only way to wake up the processor is with
a device RESET.

Example 11-42. Setup of IDLE2 Power-Down-Mode Wakeup

* TITLE IDLE2 POWER-DOWN MODE WAKEUP ROUTINE SETUP
*
* THIS EXAMPLE SETS UP THE EXTERNAL INTERRUPT 0, INTO, BEFORE

EXECUTING THE IDLE2 INSTRUCTION. WHEN THE INTO SIGNAL IS RECEIVED
* LATER, THE PROCESSOR WILL RESUME FROM ITS PREVIOUS
* STATE. NOTE: THE "INTRPT" SECTION IS MAPPED FROM THE
* ADDRESS 0 FROM THE RESET AND INTERRUPT VECTORS.
*

. sect "INTRPT"
RESET .word START ; Reset vector
INTO .word INTO-ISR ; INTO interrupt vector
INTI .word INTI-ISR ; INTl interrupt vector
INT2 .word INT2-ISR ; INT2 interrupt vector
INT3 .word INT3-ISR ; INT3 interrupt vector

.text

Software Applications 11 -1 33

Programming Tips

I

LDP
L D I
OR
IDLE 2

INTO- ISR

@SP-ADR
@SP-ADR,SP ; Set up stack pointer
Olh, I E ; Enable INTO

; Set G I E = 1 and stop clock

:

RETI ; Return to instruction after IDLE2

There will be one cycle of delay while waking up the processor from the IDLE2
power-down mode before the clocks start up. This adds one extra cycle from
the time the interrupt pad goes low until the interrupt is taken. The interrupt pad
needs to be low for at least two cycles. The clocks may start up in the phase
opposite from before the clocks were stopped.

Hardware A~~l icat ions

The TMS320C3x's advanced interface design can implement many system
configurations. Its two external buses and DMA capability provide a parallel
32-bit interface to external devices, while the interrupt interface, dual serial
ports, and general-purpose digital I10 provide communication with many
peripherals.

This chapter describes how to use the TMS320C3xfs interfaces to connect to
various external devices. Specific discussions include implementation of par-
allel interface to devices with and without wait states, use of general-purpose
110, and system control functions. All interfaces shown in this chapter have
been built and tested to verify proper operation and apply to the TMS320C30.
Comparable designs for the other TMS320C3x devices can be implemented
with appropriate logic.

Major topics discussed in this chapter are as follows:

Topic Page

Svstem Confiuration O~tions Overview

12.1 System Configuration Options Overview
The various TMS320C3x interfaces connect to many different device types.
Each of these interfaces is tailored to a particular family of devices.

12.1.1 Categories of Interfaces on the TMS320C3x

The TMS320C3x interface types fall into several categories, depending on the
devices to which they are intended to be connected. Each interface comprises
one or more signal lines that transfer information and control its operation.
Figure 12-1 shows the signal line groupings for each of these various inter-
faces.

Figure 12- 1. External Interfaces on the TMS320C3x

Data 4 '?2 b- D31-DO HOLD4
Address 4 '?4 ,423-A0 -A& External DMA Interface

Primary
Bus RPi INT3-0 4 ', - -

STRB IACK External Interrupt Interface -
RDY XF1-0 4 b External Flags

System Reset d RESET TCLKO 4
TCLK1 4

:} Timer Interface

Master Clock {4 X1 :- WCLKIN CLKXO 4

H1

H3

ROM Enable b- M C / ~
(TMS320C30 only)

Boot Load Enable b- M C B U ~
(TMS320C31 only) CLKX14

Data Serial Port 1
Address (TMS320C30 only)

Expansion Bus
(TMS320C30 only)

DR1 4

Control FSRl 4

TMS320C3x

All of the interfaces are independent of one another, and you can perform dif-
ferent operations simultaneously on each interface.

The primary and expansion buses implement the memory-mapped interface
to the device. The external direct memory access (DMA) interface allows ex-
ternal devices to cause the processor to relinquish the primary bus and allow
direct memory access.

System Configuration Options Overview

12.1.2 Typical System Block Diagram

The devices that can be interfaced to the TMS320C3x include memory, DMA
devices, and numerous parallel and serial peripherals and I10 devices.
Figure 12-2 illustrates a typical configuration of a TMS320C3x system with
different types of external devices and the interfaces to which they are con-
nected.

Figure 12-2. Possible System Configurations

Memory .tt-----C DMADevices -F Memory
b .

.
Peripherals 4 - 4 1 External DMA Interface Peripherals

b

--b- Primary Bus Expansion Bus 4-

Interrupt
Peripherals < = lnte*,.. Timer Interface b 110 Devices

rt External Flags

System Serial Serial
Control Ports Ports

Bit I10

Generators,
etc. Analog I10

This block diagram constitutes essentially a fully expanded system. In an actual
design, you can use any subset of the illustrated configuration as appropriate.

Hardware Applications 12-3

Primarv Bus Interface

12.2 Primary Bus Interface
The TMS320C3x uses the primary bus to access the majority of its
memory-mapped locations. Therefore, typically, when a large amount of exter-
nal memory is required in a system, it is interfaced to the primary bus. The ex-
pansion bus (discussed in Section 12.3 on page 12-1 9) actually comprises two
mutually exclusive interfaces, controlled by the MSTRB and IOSTRB signals,
respectively. Cycles on the expansion bus controlled by the MSTRB signal are
essentially equivalent to cycles on the primary bus, except that bank switching
is not implemented on the expansion bus. Accordingly, the discussion of pri-
mary bus cycles in this section applies equally to MSTRB cycles on the expan-
sion bus.

Although you can use both the primary bus and the expansion bus to interface
to a wide variety of devices, the devices most commonly interfaced to these
buses are memories. Therefore, this section presents detailed examples of
memory interface.

12.2.1 Zero-Wait-State Interface to Static RAMs

Zero-wait-state read access time for the TMS320C3x is determined by the dif-
ference between the cycle time (specification 10 in Table 13-1 2 on page
13-31) and the sum of the times for HI low to address valid (specification 14.1
in Table 13-1 3 on page 13-34) and data setup before next HI low (specifica-
tion 15.1 in Table 13-1 3 on page 13-34):

For example, for full-speed, zero-wait-state interface to any device, the 60-ns
TMS320C3x requires a read access time of 30 ns from address stable to data
valid. Because for most memories access time from chip select is the same
as access time from address, it is theoretically possible to use 30-ns memories
at full speed with the TMS320C3x-33. This requires that there be no delays
between the processor and the memories. However, because of
interconnection delays and because some gating is normally required for chip-
select generation, this is usually not the case. Therefore, slightly faster memo-
ries are required in most systems.

Among currently available RAMs, there are two distinct categories of devices
with different interface characteristics:

IJ RAMs without output enable control lines (m), which include the one-bit-
wide organized RAMs and most of the four-bit wide RAMs

RAMs with controls, which include the byte-wide RAMs and a few of
the four-bit wide RAMS

Primary Bus Interface

Many of the fastest RAMs do not provide C)E control; they use chip-select (m)
controlled write cycles to ensure that data outputs do not turn on for write oper-
ations. In =-controlled write cycles, the write control line (Ew) goes low be-
fore - goes low, and internal logic holds the outputs disabled until the cycle
is completed. Using =-controlled write cycles is an efficient way to interface
fast RAMs without controls to the TMS320C30 at full speed.

In the case of RAMs with controls, using this signal can add flexibility to
many systems. Additionally, many of these devices can be interfaced by using -
CS-controlled write cycles with tied low in the same manner as with RAMs
without controls. There are, however, two requirements for interfacing to -
OE RAMs in this manner. First, the RAM'S input must be gated with chip
select and WE internally so that the device's outputs do not turn on unless a
read is being performed. Second, the RAM must allow its address inputs to
change while WE is low; some RAMs specifically prohibit this.

Figure 12-3 shows the TMS320C3x interfaced to Cypress Semiconductor's
CY7C186 25-11s 8K x &bit CMOS static RAM with the =control input tied low
and using a --controlled write cycle.

Hardware Applications 12-5

Primary Bus Interface

Figure 12-3. TMS320C3x lnterface to Cypress Semiconductor C M C 186 CMOS SRA M

In this circuit, the two chip selects on the RAM are driven by STRB and m,
which are ANDed together internally. locates the RAM at addresses
OOOOOh through 03FFFh in external memory, and STRB establishes the m-
controlled write cycle. The WE control input is then driven by the TMS320C3x
~ m s i g n a l , and the input is not used and is therefore connected to ground.

The timing of read operations, shown in Figure 12-4, is very straightforward
because the two chip-select inputs are driven directly. The read access time
of the circuit is therefore the inverter propagation delay added to the RAM'S
chip-select access time, or t l + t p = 5 + 25 = 30 ns. This access time therefore
meets the TMS320C3x-33's specified 30-ns read access time requirement.

D31 \

030

' D29 :
D28 \

D27 \

, D26 \

, D25 \

D24

4 x CYIC186-25

1/07 '"
1/05

1/04

1/03

1/02

1/01

1/00

Primary
Address

Bus

8, D23416
\

\

A23-A0

I/o
(7-0) -

A23

\ A1O -
A9

\ A8
\ A7 -
\ A6

\ A4
A3

\ A 2

8, D15-D8
\

A12

A l l

A10

A9

A8
A7
A8

A5
A4

A3
A2

A1

A A0

110
(7-0)

A1

A0

-
STRB

~ r n

-
CS 1

CS2

WE
8, D7-DO

\
74AS04

6
Primary Data Bus D31-DO

OE I/O
2-

(7-0)

Prirnarv Bus Interface

Figure 12-4. Read Operations Timing

--
CSl = STRB

D31-00 Valid

During write operations, as shown in Figure 12-5, the RAM'S outputs do not
turn on at all, because of the use of the chip-select controlled write cycles. The
chip-select controlled write cycles are generated because goes active
(low) before the STRB term of the chip-select input. Because the RAM'S output
drivers are disabled whenever the WE input is low (regardless of the state of
the input), bus conflicts with the TMS320C3x are automatically avoided
with this interface. The circuit's data setup and hold times (tl and t2 in the timing
diagram) of approximately 50 and 20 ns, respectively, also easily meet the
RAM'S timing requirements of 10 and 0 ns.

Hardware Applications 12-7

Primary Bus Interface

Figure 12-5. Write Operations Timing

--
CS1 = STRB

If you require more complex chip-select decode than can be accomplished in
time to meet zero-wait-state timing, you should use wait states (see subsec-
tion 12.2.2) or bank-switching techniques (see subsection 12.2.3).

Note that the CWC186's = control is gated internally with CS; therefore, the
RAM'S outputs are not enabled unless the device is selected. This is critical
if there are any other devices connected to the same bus; if there are no other
devices connected to the bus, need not be gated internally with chip select.

You can easily interface RAMS without controls to the TMS320C3x by us-
ing an approach similar to that used with RAMs with = controls. If only one
bank of memory is implemented and no other devices are present on the bus,
the memories' CS input can usually be connected to STRB directly. If several
devices must be selected, however, a gate is generally required to AND the
device select and STRB to drive the CS input to generate the chip-select con-
trolled write cycles. In either case, the WE input is driven by the TMS320C3x
~m signal. Provided sufficiently fast gating is used, 25-ns RAMs can still be
used.

As with the case of RAMs with =control lines, this approach works well if only
a few banks of memory are implemented where the chip-select decode can
be accomplished with only one level of gating. If many banks are required to
implement very large memory spaces, bank switching can be used to provide
for multiple bank select generation while still maintaining full-speed accesses
within each bank. Bank switching is discussed in detail in subsection 12.2.3.

Primary Bus Interface

12.2.2 Ready Generation

The use of wait states can greatly increase system flexibility and reduce hard-
ware requirements over systems without wait-state capability. The
TMS320C3x has the capability of generating wait states on either the primary
bus or the expansion bus; both buses have independent sets of ready control
logic.This subsection discusses ready generation from the perspective of the
primary bus interface; however, wait-state operation on the expansion bus is
similar to that on the primary bus. Therefore, these discussions also pertain
to expansion bus operation. Accordingly, ready generation is not included in
the specific discussions of the expansion bus interface.

Wait states are generated on the basis of:

Q the internal wait-state generator, -
the external ready input (RDY), or

Q the logical AND or OR of the two.

When enabled, internally generated wait states affect all external cycles, re-
gardless of the address accessed. If different numbers of wait states are re- -
quired for various external devices, the external RDY input may be used to tai-
lor wait-state generation to specific system requirements.

If the logical AND (electrical OR) of the wait count and external ready signals
is selected, the later of the two signals will control the internal ready signal, and
both signals must occur. Accordingly, external ready control must be imple-
mented for each wait-state device, and the wait count ready signal must be en-
abled.

If the logical OR (or electrical AND, since the signals are low true) of the exter-
nal and internal wait-count ready signals is selected, the earlier of the two sig-
nals will generate a ready condition and allow the cycle to be completed. Both
signals need not be present.

ORing of the Ready Signals

The OR of the two ready signals can implement wait states for devices that
require a greater number of wait states than are implemented with external
logic (up to seven). This feature is useful, for example, if a system contains
some fast and some slow devices. In this case, fast devices can generate a
ready signal externally with a minimum of logic, and slow devices can use the
internal wait counter for larger numbers of wait states. Thus, when fast devices
are accessed, the external hardware responds promptly with a ready signal
that terminates the cycle. When slowdevices are accessed, the external hard-
ware does not respond, and the cycle is appropriately terminated after the in-
ternal wait count.

Hardware Applications 12-9

Primary Bus Interface

You can use the OR of the two ready signals if conditions occur that require
termination of bus cycles prior to the number of wait states implemented with
external logic. In this case, a shorter wait count is specified internally than the
number of wait states implemented with the external ready logic, and the bus
cycle is terminated after the wait count. This feature can also be a safeguard
against inadvertent accesses to nonexistent memory that would never re-
spond with ready and would therefore lock up the TMS320C3x.

If the OR of the two ready signals is used, however, and the internal wait-state
count is less than the number of wait states implemented externally, the exter-
nal ready generation logic must have the ability to reset its sequencing to allow
a new cycle to begin immediately following the end of the internal wait count.
This requires that, under these conditions, consecutive cycles be from inde-
pendently decoded areas of memory and that the external ready generation
logic be capable of restarting its sequence as soon as a new cycle begins.
Otherwise, the external ready generation logic might lose synchronization with
bus cycles and therefore generate improperly timed wait states.

ANDlng of the Ready Slgnals

The AND of the two ready signals can be used to implement wait states for de-
vices that are equipped to provide a ready signal but cannot respond quickly
enough to meet the TMS320C3x's timing requirements. In particular, if these
devices normally indicate a ready condition and, when accessed, respond with
a wait until they become ready, the logical AND of the two ready signals can
be used to save hardware in the system. In this case, the internal wait counter
can provide wait states initially and become ready after the external device has
had time to send a not ready indication. The internal wait counter then remains
ready until the external device also becomes ready, which terminates the
cycle.

Additionally, the AND of the two ready signals can extend the number of wait
states for devices that already have external ready logic implemented but re-
quire additional wait states under certain unique circumstances.

External Ready Generation

In the implementation of external ready generation hardware, the particular
technique employed depends heavily on the specific characteristics of the sys-
tem. The optimum approach to ready generation varies, depending on the rel-
ative number of wait-state and non-wait-state devices in the system and on the
maximum number of wait states required for any one device. The approaches
discussed here are intended to be general enough for most applications and
are easily modifiable to comprehend many different system configurations.

Primarv Bus Interface

In general, ready generation involves the following three functions:

IJ Segmentating the address space in some fashion to distinguish fast and
slow devices

IJ Generating properly timed ready indications

Q Logically ORing all of the separate ready timing signals together to con-
nect to the physical ready input

Segmentation of the address space is required to obtain a unique indication
of each particular area within the address space that requires wait states. This
segmentation is commonly implemented in a system in the form of chip-select
generation. In many cases, you can use chip-select signals to initiate wait
states; however chip-select decoding considerations might occasionally pro-
vide signals that will not allow ready input timing requirements to be met. In this
case, you could make coarse address space segmentation on the basis of a
small number of address lines, where simpler gating allows signals to be gen-
erated more quickly. In either case, the signal indicating that a particular area
of memory is being addressed is normally used to initiate a ready or wait-state
indication.

Once the region of address space being accessed has been established, a
timing circuit of some sort is normally used to provide a ready indication to the
processor at the appropriate point in the cycle to satisfy each device's unique
requirements.

Finally, since indications of ready status from multiple devices are typically -
present, the signals are logically ORed by using a single gate to drive the RDY
input.

Ready Control Logic

You can take one of two basic approaches in the implementation of ready con- -
trol logic, depending on the state of the ready input between accesses. If RDY
is low between accesses, the processor is always ready unless a wait state is -
required; if RDY is high between accesses, the processor will always enter a
wait state unless a ready indication is generated.
-

If ROY is low between accesses, control of full-speed devices is straightfor-
ward; no action is necessary because ready is always active unless otherwise
required. Devices requiring wait states, however, must drive ready high fast
enough to meet the input timing requirements. Then, after an appropriate
delay, a ready indication must be generated. This can be quite difficult in many
circumstances because wait-state devices are inherently slow and often re-
quire complex select decoding.

Hardware Applications 12-11

Primarv Bus Interface

-
If RDY is high between accesses, zero-wait-state devices, which tend to be
inherently fast, can usually respond immediately with a ready indication. Wait-
state devices might delay their select signals appropriately to generate a
ready. Typically, this approach results in the most efficient implementation of
ready control logic. Figure 12-6 shows a circuit of this type, which can be used
to generate zero, one, or two wait states for multiple devices in a system.

Figure 124. Circuit for Generation of Zero, One, or Two Wait States for Multiple Devices

74ALS138
TMS320C30

Bus

STRB G2A Y3 Device
Selects

Other 2- - Y5
Wait-State G2B

Devices Y7

A
Other 1 - 74AS32

-
Wait-State STRB
Devices
A A23

4 I Other O-
Wait-State

74ACT112 -
RDY

H I - C>
74ACT112

-KmQ-

A - -
RESET ------------

Primarv Bus Interface

Example Circuit

In this circuit, full-speed devices drive ready directly through the '74AS21, and
the two flip-flops delay wait-state devices' select signals one or two H1 cycles
to provide one or two wait states.

Considering the TMS320C3x-33's ready delay time of eight ns following ad-
dress, zero-wait-state devices must use ungated address lines directly to drive
the input of the '74AS21, since this gate contributes a maximum propagation -
delay of six ns to the RDY signal. Thus, zero-wait-state devices should be
grouped together within a coarse segmentation of address space if other de-
vices in the system require wait states.

With this circuit, devices requiring wait states might take up to 36 ns from aval-
id address on the TMS320C3x to provide inputs to the '74AS20's inputs. This
usually allows sufficient time for any decoding required in generating select
signals for slower devices in the system. For example, the 74ALS138, driven -
by address and STRB, can generate select decodes in 22 ns, which easily
meets the TMS320C3x-33's timing requirements.

With this circuit, unused inputs to either the 74AS20s or the 74AS21 should
be tied to a logic high level to prevent noise from generating spurious wait
states.

If more than two wait states are required by devices within a system, other ap-
proaches can be employed for ready generation. If between three and seven
wait states are required, additional flip-flops can be included in the same man-
ner shown in Figure 12-6, or internally generated wait states can be used in
conjunction with external hardware. If more than seven wait states are re-
quired, an external circuit using a counter may be used to supplement the ca-
pabilities of the internal wait-state generators.

12.2.3 Bank Switching Techniques

The TMS320C3x1s programmable bank switching feature can greatly ease
system design when large amounts of memory are required. Because, in gen-
eral, devices take longer to release the bus than they take to drive the bus,
bank switching is used to provide a period of time for disabling all device se-
lects that would not be present otherwise (refer to Section 7.4 on page 7-30
for further information regarding bank switching). During this interval, slow de-
vices are allowed time to turn off before other devices have the opportunity to
drive the data bus, thus avoiding bus contention.

Hardware Applications 12-1 3

Primarv Bus Interface

When bank switching is enabled, any time a portion of the high order address -
lines changes, as defined by the contents of the BNKCMPR register, STRB -
goes high for one full HI cycle. Provided STRB is included in chip-select de-
codes, this causes all devices to be disabled during this period. The next bank
of devices is not enabled until STRB goes low again.

In general, bank switching is not required during writes, because these cycles
always exhibit an inherent one-half H I cycle setup of address information be-
fore - goes low. Thus, when you use bank switching for readtwrite de-
vices, a minimum of half of one H1 cycle of address setup is provided for all
accesses. Therefore, large amounts of memory can be implemented without
wait states or extra hardware required for isolation between banks. Also, note
that access time for cycles during bank switching is the same as that for cycles
without bank switching, and, accordingly, full-speed accesses can still be ac-
complished within each bank.

When you use bank switching to implement large multiple-bank memory sys-
tems, an important consideration is address line fanout. Besides parametric
specifications for which account must be made, AC characteristics are also
crucial in memory system design. Wlth large memory arrays, which commonly
require large numbers of address line inputs to be driven in parallel, capacitive
loading of address outputs is often quite large. Because all TMS320C3xtiming
specifications are guaranteed up to a capacitive load of 80 pF, driving greater
loads will invalidate guaranteed AC characteristics. Therefore, it is often nec-
essary to provide buffering for address lines when driving large memory ar-
rays. AC timingsfor buffer performance can then be derated according to man-
ufacturer specifications to accommodate a wide variety of memory array sizes.

The circuit shown in Figure 12-7 illustrates the use of bank switching with Cy-
press Semiconductor's CY7C185 25-1-1s 8K x 8 CMOS static RAM. This circuit
implements 32K 32-bit words of memory with one-wait-state accesses within
each bank.

A wait state is required with this implementation of bank memory because of
the added propagation delay presented by the address bus buffers used in the
circuit. The wait state is not a function of the memory organization of multiple
banks or the use of bank switching. When bank switching is used, memory ac-
cess speeds are the same as without bank switching, once bank boundaries
are crossed. Therefore, no speed penalty is paid when bank switching is used,
except for the occasional extra cycle inserted when bank boundaries are
crossed. Note, however, that if the extra cycle inserted when bank boundaries
are crossed does impact software performance significantly, you can often re-
structure code to minimize bank boundary crossings, thereby reducing the ef-
fect of these boundary crossings on software performance.

Primary Bus Interface

The wait state for this bank memory is generated by using the wait-state gener-
ator circuit presented in the previous section. Because A23 is the signal that
enables the entire bank memory system, the inverted version of this signal is
ANDed with STRB to derive a one-wait-state device select. This signal is then
connected in the circuit along with the other one-wait-state device selects.
Thus, any time a bank memory access is made, one wait state is generated.

Each of the four banks in this circuit is selected by using a decode of A1 &A1 3
generated by the 74AS138 (see Figure 12-8). With the BNKCMPR register
set to OBh, the banks will be selected on even 8K-word boundaries starting at
location 080A000h in external memory space.

Figure 12-7. Bank Switching for Cypress Semiconductor's C V C 185

BANKSELO
BSTRB
B F m

BANKSEU

BANKSEW

Hardware Applications 12-15

Primary Bus Interface

Figure 12-8. Bank Memory Control Logic

74ALS2541

74AS138 9
A15 -
A14 -
A13-A

A 2 3 - ~ 1

-
G2B m3--

c y1
y2

Y4
Y5
Y6

-
G2A Y8

+ BANKSELO
+ BANKSELl

~33----BANKSEL2 74AS04 - - BSTRB

n-

Primary Bus Interface

The 74ALS2541 buffers used on the address lines are necessary in this design
because the total capacitive load presented to each address line is a maximum
of 16 x 10 pF or 160 pF (bank memory plus zero-wait-state static RAM), which
exceeds the TMS320C3x rated capacitive loading of 80 pF. Using the
manufacturer's derating curves for these devices at a load of 80 pF (the load
presented by the bank memory) predicts propagation delays at the output of
the buffers of a maximum of 16 ns. The access time of a read cycle within a
bank of the memory is therefore the sum of the memory access time and the
maximum buffer propagation delay, or 25 + 16 = 41 ns, which, since it falls be-
tween 30 and 90 ns, requires one wait state on the TMS320C3x-33.

The 74ALS2541 buffers offer one additional system-performance enhance-
ment in that they include 25-ohm resistors in series with each individual buffer
output. These resistors greatly improve the transient response characteristics
of the buffers, especially when driving CMOS loads such as the memories
used here. The effect of these resistors is to reduce overshoot and ringing,
which is common when driving predominantly capacitive loads such as
CMOS. The result is reduced noise and increased immunity to latch-up in the
circuit, which in turn results in a more reliable memory system. Having these
resistors included in the buffers eliminates the need to put discrete resistors
in the system, which is often required in high-speed memory systems.

This circuit cannot be implemented without bank switching because data out-
put's turn-on and turn-off delays cause bus conflicts. Here, the propagation
delay of the 74AS138 is involved only during bank switches, when there is suf-
ficient time between cycles to allow new chip selects to be decoded.

The timing of this circuit for read operations using bank switching is shown in
Figure 12-9. With the BNKCMPR register set to OBh, when a bank switch oc-
curs, the bank address on address lines ,423-A1 3 is updated during the extra
HI cycle while STRB is high. Then, after chip-select decodes have stabilized
and the previously selected bank has disabled its outputs, STRB goes low for
the next read cycle. Further accesses occur at normal bus timings with one
wait state, as long as another bank switch is not necessary. Write cycles do
not require bank switching due to the inherent address setup provided in their
timings.

Hardware Applications 12-17

Primary Bus Interface

Figure 12-9. Timing for Read Operations Using Bank Switching

I I
A23-A13 Valid

I I

A1 2-A0 Valid
I I
I

-
STRB

t 2 I

I
BANKSELO

BANKSELl

D3 1 -DO Bank 0 on Bus Bank 1 on Bus

This timing is summarized in Table 12-1

Table 12- 1. Bank Switching Interface Timing

Timer Interval Event Time Period

t l H I falling to address validISTRB rising 14 ns

t2 Address valid to select delay 10 ns

t3 Memory disable from STRB 10 ns

t4 H I falling to STRB 10 ns

t5 STRB to select delay 4.5 ns

t6 Memory output enable delay 3 ns

t Timing for the TMS320C3x-33

Exmnsion Bus Interface

12.3 Expansion Bus Interface

The TMS320C30's expansion bus interface provides a second complete par-
allel bus, which can be used to implement data transfers concurrently with (and
independently of) operations on the primary bus. The expansion bus com-
prises two mutually exclusive interfaces controlled by the MSTRB and
IOSTRB signals, respectively. This subsection discusses interface to the ex-
pansion bus using IOSTRB cycles; MSTRB cycles are essentially equivalent
in timing to primary bus cycles and are discussed in Section 12.2, beginning
on page 12-4. This section applies to TMS320C30 devices.

Unlike the primary bus, both read and write cycles on the 110 portion of the ex-
pansion bus are two H1 cycles in duration and exhibit the same timing. The
XR/FS signal is high for reads and low for writes. Since I10 accesses take two
cycles, many peripherals that require wait states if interfaced either to the pri-
mary bus or by using MSTRB can be used in a system without the need for wait
states. Specifically, in cases where there is only one device on the expansion
bus, devices with address access times greater than the 30 ns required by the
primary bus, but less than 59 ns, can be interfaced to the I10 bus of the
TMS320C30-33 without wait states.

12.3.1 AID Converter Interface

AJD and DIA converters are commonly required in DSP systems and interface
efficiently to the I10 expansion bus. These devices are available in many
speed ranges and with a variety of features. While some might require one or
more wait states on the I10 bus, others can be used at full speed.

Figure 12-10 illustrates a TMS320C30 interface to an Analog Devices
AD1 678 analog-to-digital converter. The AD1678 is a 12-bit, 5-p.9 converter
that allows sample rates up to 200 kHz and has an input voltage range of 10
volts, bipolar or unipolar. The converter is connected according to manufactur-
er's specifications to provide 0- to t10-volt operation. This interface illustrates
a common approach to connecting devices such as this to the TMS320C30.
Note that the interface requires only a minimum amount of control logic.

Hardware Applications 12-19

Expansion Bus Interface

Figure 12- 10. Interface to AD 1678 A/D Converter

XD Bus) -
The AD1 678 is a very flexible converter and is configurable in a number of dif-
ferent operating modes. These operating modes include byte or word datafor-
mat, continuous or noncontinuous conversions, enabled or disabled chip-se-
lect function, and programmable end-of-conversion indication. This interface
utilizes 12-bit word data format, rather than byte format, to be compatible with
the TMS320C3x. Noncontinuous conversions are selected so that variable
sample rates can be used; continuous conversions occur only at a rate of 200
kHz. With noncontinuous conversions, the host processor determines the con-
version rate by initiating conversions through write operations to the converter.

Expansion Bus Interface

The chip-select function is enabled, so the chip-select input is required to be
active when accessing the device. Enabling the chip select function is neces-
sary to allow a mechanism for the AD1 678 to be isolated from other peripheral
devices connected to the expansion bus. To establish the desired operating
modes, the SYNC and 12/8 inputs to the converter are pulled high and EOCEN
is grounded, as specified in the AD1678 data sheet.

In this application, the converter's chip select is driven by XA12, which maps
this device at 804000h in 110 address space. Conversions are initiated by writ-
ing any data value to the device, and the conversion results are obtained by
reading from the device after the conversion is completed. To generate the de-
vice's start conversion (SC) and output enable (m) inputs, IOSTRB is ANDed
with X R ~ . Therefore, the converter is selected whenever XA12 is low; is
driven when reads are performed, while SC is driven when writes are per-
formed.

As with many AID converters, at the end of a read cycle the AD1 678 data out-
put lines enter a high-impedance state. This occurs after the output enable
(m) or read control line goes inactive. Also common with these types of de-
vices is that the data output buffers often require a substantial amount of time
to actually attain a full high-impedance state. When used with the
TMS320C30-33, devices must have their outputs fully disabled no later than
65 ns following the rising edge of IOSTRB because the TMS320C30 will begin
driving the data bus at this point if the next cycle is a write. If this timing is not
met, bus conflicts between the TMS320C30 and the AD1 678 might occur, po-
tentially causing degraded system performance and even failure due to dam-
aged data bus drivers. The actual disable time for the AD1 678 can be as long
as 80 ns; therefore, buffers are required to isolate the converter outputs from
the TMS320C30. The buffers used here are 74LS244s that are enabled when
the AD1678 is read and turned off 30.8 ns following IOSTRB going high.
Therefore, the TMS320C30-33 requirement of 65 ns is met.

When data is read following a conversion, the AD1 678 takes 100 ns after its -
OE control line is asserted to provide valid data at its outputs. Thus, including
the propagation delay of the 74LS244 buffers, the total access time for reading
the converter is 11 8 ns. This requires two wait states on the TMS320C30-33
expansion I10 bus.

The two wait states required in this case are implemented using software wait
states; however, depending on the overall system configuration, it might be
necessary to implement a separate wait-state generator for the expansion bus
(refer to subsection 12.2.2 on page 12-9). This would be the case if multiple
devices that required different numbers of wait states were connected to the
expansion bus.

Hardware Appiications 12-21

Expansion Bus Interface

Figure 12-11 shows the timing for read operations between the
TMS320C30-33 and the AD1 678. At the beginning of the cycle, the address
and X R m lines become valid t j = 10 ns following the falling edge of HI. Then,
after tp = 10 ns from the next rising edge of HI, IOSTRB goes low, beginning
the active portion of the read cycle. After t3 = 5.8 ns (the control logic propaga-
tion delay), the signal goes low, asserting the input to the ADI 678. The
'74LS244 buffers take tq = 30 ns to enable their outputs, and then, following
the converters access delay and the buffer propagation delay (t5 = 100 t 18
= 11 8 ns), data is provided to the TMS320C30. This provides approximately
46 ns of data setup before the rising edge of IOSTRB. Therefore, this design
easily satisfies the TMS320C30-33's requirement of 15 ns of data setup time
for reads.

Figure 12- 1 1. Read Operations Timing Between the TMS320C30 and AD 1678

I . I
XA12-XAO X

IOSTRB

-
IOR

READ0
DATA

Unlike the primary bus, read and write cycles on the I10 expansion bus are
timed the same with the exception that XW- is high for reads and low for
writes and that the data bus is driven by the TMS320C30 during writes. When
writing to the AD1 678, the '74LS244 buffers do not turn on and no data is trans-
ferred. The purpose of writing to the converter is only to generate a pulse on
the converter's SC input, which initiates a conversion cycle. When a conver-
sion cycle is completed, the AD1 678's EOC output is used to generate an inter-
rupt on the TMS320C30 to indicate that the converted data can be read.

It should be noted that for different applications, use of TLC1225 or TLC1550
N D converters from Texas Instruments can be beneficial. The TLC1225 is a
self-calibrating 12-bit-plus-sign bipolar or unipolar converter, which features
10-ps conversion times. The TLC1550 is a 10-bit, 6-ps converter with a high-
speed DSP interface. Both converters are parallel-interface devices.

Exmnsion Bus Interface

12.3.2 DIA Converter Interface

In many DSP systems, the requirement for generating an analog output signal
is a natural consequence of sampling an analog waveform with an AJD conver-
ter and then processing the signal digitally internally. Interfacing DIA conver-
ters to the TMS320C30 on the expansion I/O bus is also quite straightforward.

As with AID converters, DIA converters are also available in a number of vari-
eties. One of the major distinctions between various types of DIA converters
is whether or not the converter includes both latches to store the digital value
to be converted to an analog quantity, and the interface to control those
latches. With latches and control logic included with the converter, interface
design is often simplified; however, internal latches are often included only in
slower D/A converters.

Because slower converters limit signal bandwidths, the converter used in this
design was selected to allow a reasonably wide range of signal frequencies
to be processed, and to illustrate the technique of interfacing to aconverter that
uses external data latches.

Figure 12-12 shows an interface to an Analog Devices AD565A digital-to-
analog converter. This device is a 12-bit, 250-ns current output DAC with an
on-chip 10-volt reference. Using an offchip current-to-voltage conversion cir-
cuit connected according to manufacturers specifications, the converter ex-
hibits output signal ranges of 0 to +I 0 volts, which is compatible with the con-
version range of the AID converter discussed in the previous section.

Hardware Applications 12-23

Expansion Bus Interface

Figure 12-12. Interface Between the TMS320C30 and the AD565A

XD Bus

Vcc -1 REF OUT

REF. IN
REF. GND

74LS377 10 v
SPAN

'ID 1 Q . 2
5
6
9

U25 12

15
16
19

-
CLK EN 7 I

Bit 12 (LSB)

11
10 DACOUT
9 Analog

1

a
AGND

Because this DAC essentially performs continuous conversions based on the
digital value provided at its inputs, periodic sampling is maintained by periodi-
cally updating the value stored in the external latches. Therefore, between
sample updates, the digital value is stored and maintained at the latch outputs
that provide the input to the DAC. This results in the analog output remaining
stable until the next sample update is performed.

XD8

/ XD9
'XD10
' ~ ~ 1 1

low

74LS377

-

-
-

3
4
7

8

1

2
Bit 1 (MSB)

Power
GND

- XA12

U26

-
CLK EN

2

5
6
9

-+b

Expansion Bus Interface

The external data latches used in this interface are174LS377 devices that have
both clock and enable inputs. These latches serve as a convenient interface
with the TMS320C30; the enable inputs provide a device select function, and
the clock inputs latch the data. Therefore, with the enable input driven by in-
verted XA12 and the clock input by m, which is the AND of IOSTRB and
X R ~ , data will be stored in the latches when a write is performed to I10 ad-
dress 805000h. Reading this address has no effect on the circuit.

Figure 12-1 3 shows a timing diagram of a write operation to the DIAconverter
latches.

Figure 12-13. Write Operation to the D/A Converter Timing Diagram

Because the write is actually being performed to the latches, the key timings
for this operation are the timing requirementsfor these devices. For proper op-
eration, these latches require simply a minimal setup and hold time of data and
control signals with respect to the rising edge of the clock input. Specifically,
the latches require a data setup time of 20 ns, enable setup of 25 ns, disable
setup of 10 ns, and data and enable hold times of 5 ns. This design provides
approximately 60 ns of enable setup, 30 ns of data setup, and 7.2 ns of data
hold time. Therefore, the setup and hold times provided by this design are well
in excess of those required by the latches. The key timing parameters for this
interface are summarized in Table 12-2.

Hardware Applications 12-25

Expansion Bus Interface

Table 12-2. Key Timing Parameter for D/A Converter Write Operation

Time n m ~
Interval Event Periodt

t 1 H I falling to address valid

t2 XA12 to delay

t3 H I rising to falling 10 ns

t4 IOSTRB to IOW delay 5.8 ns

t5 Data setup to 30 ns

b Data hold from IOW 7.2 ns

t Timing for the TMS320C30-33

System Control Functions

12.4 System Control Functions
Several aspects of TMS320C3x system hardware design are critical to overall
system operation. These include such functions as clock and reset signal gen-
eration and interrupt control.

12.4.1 Clock Oscillator Circuitry
You can provide an input clock to the TMS320C3x either from an external clock
input or by using the onboard oscillator. Unless special clock requirements ex-
ist, the onboard oscillator is generally a convenient method for clock genera-
tion. This method requires few external components and can provide stable,
reliable clock generation for the device.
Figure 12-1 4 shows the external clock generator circuit designed to operate
the TMS320C3x at 33.33 MHz. Since crystals with fundamental oscillation fre-
quencies of 30 MHz and above are not readily available, a parallel-resonant
third-overtone crystal is used with crystal frequency of 13 MHz.

Figure 12- 14. Crystal Oscillator Circuit

6

In a third-overtone oscillator, the crystal fundamental frequency must be
attenuated so that oscillation is at the third harmonic. This is achieved with an
LC circuit that filters out the fundamental, thus allowing oscillation at the third
harmonic. The impedance of the LC circuit must be inductive at the crystal fun-
damental and capacitive at the third harmonic. The impedance of the LC circuit
is represented by

Therefore, the LC circuit has a 0 at

Hardware Applications 12-27

System Control Functions

At frequencies significantly lower than wp the l/(wC) term in (3) becomes the
dominating term, while oL can be neglected. This is expressed as

forw < wp

In (5) , the LC circuit appears conductive at frequencies lower than wp On the
other hand, at frequencies much higher than wp the oL term is the dominant
term in (3), and 1I(oC) can be neglected. This is expressed as

z(w) = jwL forw < w,
(3)

The LC circuit in (6) appears increasingly inductive as the frequency increases
above w p This is shown in Figure 12-1 5, which is a plot of the magnitude of
the impedance of the LC circuit of Figure 12-1 4 versus frequency.

Figure 12-15. Magnitude of the Impedance of the Oscillator LC Network

Svstem Control Functions

Based on the discussion above, the design of the LC circuit proceeds as fol-
lows:

1) Choose the pole frequency u p slightly above the crystal fundamental.
2) The circuit now appears inductive at the fundamental frequency and ca-

pacitive at the third harmonic.

In the oscillator of Figure 12-1 4 on page 12-27, choose fp = 13 MHz, which
is slightly above the fundamental frequency of the crystal. Choose C = 15 pF.
Then, using equation (4), L = 10 pH.

12.4.2 Reset Signal Generation

The reset input controls initialization of internal TMS320C3x logic and also
causes execution of the system initialization software. For proper system ini-
tialization, the reset signal must be applied for at least ten H I cycles, i.e., 600
ns for a TMS320C3x operating at 33.33 MHz. Upon power-up, however, it can
take 20 ms or more before the system oscillator reaches a stable operating
state. Therefore, the power-up reset circuit should generate a low pulse on the
reset line for 100 to 200 ms. Once a proper reset pulse has been applied, the
processor fetches the reset vector from location 0, which contains the address
of the system initialization routine. Figure 12-1 6 shows acircuit that will gener-
ate an appropriate power-up reset circuit.

Figure 12- 16. Reset Circuit

Hardware Applications 12-29

Svstem Control Functions

The voltage on the reset pin (RESET) is controlled by the R1 C1 network. After
a reset, this voltage rises exponentially according to the time constant R1 C1,
as shown in Figure 12-1 7.

Figure 12- 1 7. Voltage on the TMS320C30 Reset Pin

Voltage I

The duration of the low pulse on the reset pin is approximately t l , which is the
time it takes for the capacitor C1 to be charged to 1.5 V. This is approximately
the voltage at which the reset input switches from a logic 0 to a logic 1. The
capacitor voltage is expressed as

where t = R1 C1 is the reset circuit time constant. Solving equation (7) for t re-
sults in

Setting the following:

results in t = 167 ms. Therefore, the reset circuit of Figure 12-1 6 provides a
low pulse of long enough duration to ensure the stabilization of the system os-
cillator.

System Control Functions

Note that if synchronization of multiple TMS320C3xs is required, all proces-
sors should be provided with the same input clock and the same reset signal.
After power-up, when the clock has stabilized, all processors can be synchro-
nized by generating a falling edge on the common reset signal. Because it is
the falling edge of reset that establishes synchronization, reset must be high
for at least ten H I cycles initially. Following the falling edge, reset should re-
main low for at least ten HI cycles and then be driven high. This sequencing
of reset can be accomplished using additional circuitry based on either RC
time delays or counters.

Hardware Applications -1 2-31

Serial-Port Interface

12.5 Serial-Port Interface

For applications such as modems, speech, control, instrumentation, and ana-
log interface for DSPs, acomplete analog-to-digital (ND) and digital-to-analog
(DIA) inputloutput system on a single chip might be appropriate. The
TLC32044 analog interface circuit (AIC) integrates a bandpass, switched-ca-
pacitor, antialiasing input filter, 1 4-bit resolution AID and D/A converters, and
a low-pass, switched-capacitor, output-reconstruction filter, all on a single
monolithic CMOS chip. The TLC32044 offers numerous combinations of mas-
ter clock input frequencies and conversion/sampling rates, which can be
changed via digital signal processor control.

Four serial port modes on the TLC32044 allow direct interface to TMS320C3x
processors. When the transmit and receive sections of the AIC are operating
synchronously, it can interface to two SN54299 or SN74299 serial-to-parallel
shift registers. These shift registers can then interface in parallel to the
TMS320C30, to other TMS320 digital processors, or to external FIFO circuitry.
Output data pulses inform the processor that data transmission is complete or
allow the DSP to differentiate between two transmitted bytes. Aflexible control
scheme is provided so that the functions of the AIC can be selected and ad-
justed coincidentally with signal processing via software control. Refer to the
TLC32044 data sheet for detailed information.

When you interface the AIC to the TMS320C3x via one of the serial ports, no
additional logic is required. This interface is shown in Figure 12-1 8. The serial
data, control, and clock signals connect directly between the two devices, and
the AIC's master clock input is driven from TCLKO, one of the TMS320C3x's
internal timer outputs. The AIC's WORDJBYTE input is pulled high, selecting
16-bit serial port transfers to optimize serial port data transfer rate. The
TMS320C3x's XFO pin, configured as an output, is connected to the AIC's re-
set (w) input to allow the AIC to be reset by the TMS320C3x under program
control. This allows the TMS320C3x timer and serial port to be initialized be-
fore beginning conversions on the AIC.

Serial-Port Interface

Figure 12-1 8. AIC to TMS320C30 Interface

TMS320C30 TLC32044

FSXO
DXO

FSRO
DRO

CLKXO

CLKRO - 1
TCLKO

XFO
,

G2

- IN+
FSX IN-
DX -
FSR
DR
SHIFT CLK

VDD
MSTRCLK vCC+

VCG + 5 v
AGND
AGND

I *
DGND

To provide the master clock input for the AIC, the TCLKO timer is configured
to generate a clock signal with a 50% duty cycle at a frequency of f(H1)14 or
4.1 67 MHz. To accomplish this, the global control register for timer 0 is set to
the value 3Cl h, which establishes the desired operating modes. The period
register for timer 0 is set to 1, which sets the required division ratio for the H I
clock.

To properly communicate with the AIC, the TMS320C30 serial port must be
configured appropriately by initializing several TMS320C30 registers and
memory locations. First, reset the serial port by setting the serial port global
control register to 21 70300h. (The AIC should also be reset at this time. See
description below of resetting the AIC viaXFO.) This resets the serial port logic,
configures the serial port operating modes, including data transfer lengths,
and enables the serial port interrupts. This also configures another important
aspect of serial port operation: polarity of serial port signals. Because active
polarity of all serial port signals is programmable, it is critical to set appropriate-
ly the bits in the serial port global control register that control the polarity. In this
application, all polarities are set to positive except FSX and FSR, which are
driven by the AIC and are true low.

The serial port transmit and receive control registers must also be initialized
for proper serial port operation. In this application, both of these registers are
set to I l l h, which configures all of the serial port pins in the serial port mode,
rather than the general-purpose digital I10 mode.

Hardware Applications 12-33

Serial-Port Interface

When the operations described above are completed, interrupts are enabled,
and, provided that the serial port interrupt vector(s) are properly loaded, serial
port transfers can begin after the serial port is taken out of reset. You can do
this by loading E170300h into the serial port global control register.

To begin conversion operations on the AIC and subsequent transfers of data
on the serial port, first reset the AIC by setting XFO to 0 at the beginning of the
TMS320C3x initialization routine. Set XFO to 0 by setting the TMS320C3x IOF
register to 2. This sets the AIC to a default configuration and halts serial port
transfers and conversion operations until reset is set high. Once the
TMS320C3x serial port and timer have been initialized as described above,
set XFO high by setting the IOF register to 6. This allows the AIC to begin oper-
ating in its default configuration, which in this application is the desired mode.
In this mode, all internal filtering is enabled, sample rate is set at approximately
6.4 kHz, and the transmit and receive sections of the device are configured to
operate synchronously. This mode of operation is appropriate for a variety of
applications; if a 5.1 84-MHz master clock input is used, the default configura-
tion results in an 8-kHz sample rate, which makes this device ideal for speech
and telecommunications applications.

In addition to the benefit of a convenient default operating configuration, the
AIC can also be programmed for a wide variety of other operating configura-
tions. Sample rates and filter characteristics can be varied, and numerous con-
nections in the device can be configured to establish different internal architec-
tures by enabling or disabling various functional blocks.

To configure the AIC in afashion different from the default state, you must first
send the device a serial data word with the two LSBs set to 1. The two LSBs
of a transmitted data word are not part of the transferred data information and
are not set to 1 during normal operation. This condition indicates that the next
serial transmission will contain secondary control information, not data. This
information is then used to load various internal registers and specify internal
configuration options. Four different types of secondary control words are dis-
tinguished by the state of the two LSBs of the transferred control information.
Note that each transferred secondary control word must be preceded by a data
word with the two LSBs set to 1.

The TMS320C3x can communicate with the AIC either synchronously or
asynchronously, depending on the information in the control register. The op-
erating sequence for synchronous communication with the TMS320C30
shown in Figure 12-1 9 is as follows:

1) The FSX or FSR pin is brought low.
2) One 16-bit word is transmitted, or one 16-bit word is received.
3) The FSX or FSR pin is brought high.
4) The or EODR pin emits a low-going pulse.

Serial-Port Interface

Figure 12-1 9. Synchronous Timing of TLC32044 to TMS320C3x

SHIFT CLK

--
FSR. FSX '-\ ,- f-

DX D2)(D l

--
EODR, EODX

-
For asynchronous communication, the operating sequence is similar, but FSX
and i?% do not occur at the same time (see Figure 12-20). After each receive
and transmit operation, the TMS320C30 asserts an internal receive (RINT)
and transmit (XINT) interrupt, which can be used to control program execution.

Figure 12-20. Asynchronous Timing of TLC32044 to TMS320C30

-
FSR

Hardware Applications

Low-Power-Mode lnterrupt Interface

12.6 Low-Power-Mode lnterrupt Interface

This section explains how to generate interrupts when the IDLE2 power-down
mode is used.

The execution of the IDLE2 instruction causes the H I and H3 processor clocks
to be held at a constant level until the occurrence of an external interrupt. To
use the TMS320C31 IDEL2 power management feature effectively, interrupts
must be generated with or without the presence of the H1 clock. For normal
(non-IDLE2) operation, however, the interrupt inputs must be synchronized
with the falling edge of the HI clock. An interrupt must satisfy the following
conditions:

C] It must meet the setup time on the falling edge of HI , and
It must be at least one cycle and less than two cycles in duration.

For an interrupt to be recognized during IDLE2 operation and turn the clocks
back on, it must first be held low for one H I cycle. The logic in Figure 12-21
can be used to generate an interrupt signal to the TMS320C31 with the correct
timing during non-IDLE2 and IDLE2 operation. Figure 12-21 shows the inter-
rupt circuit, which uses a 16R4 PLD to generate the appropriate interrupt sig-
nal.

Figure 12-21. Interrupt Generation Circuit for Use With IDLE2 Operation

Example 12-1 shows the PLD equations for the 16R4 using the ABELTM lan-
guage. This implementation makes the following assumptions regarding the
interrupt source:

Q The interrupt source is at least one HI cycle in duration. One H I cycle is
required to turn the H1 clock on again.

Q The interrupt source is a low-going pulse or a falling edge. If the interrupt
source stays active for more than one ti1 cycle, it is regarded as the same
interrupt request and not a new one.

Low- Power- Mode Interrupt Interface

Notice that the interrupt is driven active as soon as the interrupt source goes
active. It goes inactive again on detection of two H3 rising edges. These two
rising edges ensure that the interrupt is recognized during normal operation
and after the end of IDLE2 operation (when the clocks turn on again). The inter-
rupt goes inactive after the two H3 clocks are counted and does not go inactive
again until after the interrupt source again goes inactive and returns to active.

Example 12- 1. State Machine and Equations for the Interrupt Generation 16R4 PLD

MODULE INTERRUPT-GENERATION
TITLE' INTERRUPT-GENERATION FOR IDLE2 AND NON-IDLE2 TMS320C31A

c3xu5 device 'P16R4';

"inputs
h 3 Pin 1;
intsrc- Pin 2; "Interrupt source

"output
intx- Pin 12; "Interrupt input signal to the TMS320C31

sync-src-Pin 14; "Internal signal used to synchronize the
"input to the H1 clock

s me- Pin 15; "Keeps track if the new interrupt source
"has occurred. If active, no new interrupt
"has occurred.

"This logic makes the following assumptions:
"The duration of the interrupt source is at least one H1
"cycle in duration. It takes one H1 cycle to turn the H1
"clock on again.

"The interrupt source is pulse- or level-triggered. If the
"source stays active after being asserted, it is regarded
"as the same interrupt request and not a new one.

"Name Substitutions for Test Vectors and Equations

source = lintsrc-;
sync = Isync-src-;
samesrc = Isme-;
c3xint = 1 intx-;

"state bits
outstate = [smesrc,sync];

idle = ^boo;
sync-st = ^b01; "synchronize state
wait = ^b10; "wait for interrupt source to go inactive

Hardware Applications 12-37

Low-Power-Mode Interrupt Interface

state-diagram outstate

state idle:
if (source) then sync-st
else idle;

state sync-st:
if (source) then wait
else idle:

state wait:
if (source) then wait
else idle ;

equations
lintx- = (source # sync) & Isamesrc;

"Test interrupt generation logic
test-vectors
([he, source] -> [outstate1c3xint]
[CI L] -> [idle, L
[L, H] -> [idle, H
[CI H I-> [sync-st, H
[CI L] -> [idle, L
[CI L] -> [idle, L
LI H] -> [idle, H

[LI H] -> [idle, H
[CI H I - > [sync-st, H
[CI L] -> [idle, L
[CI H I-> [sync-st, H
[CI H] -> [wait, L
[c, H] -> [wait, L
[CI L] -> [idle, L
[LI H] -> [idle, H
[LI H] -> [idle, H
[LI H] -> [idle, H
end interrupt-generation

1
1; "check start from idle
1; "test normal interrupt operation
1 ;
I;
I;
1; "test coming out of idle2 operation
I ;
I;
I;
1; "test same source

I ;
1; "test idle2 operation
I ;
I ;

XDS Taruet Design Considerations

12.7 XDS Target Design Considerations

12.7.1 Designing Your MPSD Emulator Connector (12-Pin Header)

The 'C3x uses a modular port scan device (MPSD) technology to allow com-
plete emulation via a serial scan path of the 'C3x. To communicate with the
emulator, your targetsystem must have a 12-pin header(2 rows of 6 pins) with
the connections that are shown in Figure 12-22.To use the target cable, sup-
ply the signals shown in Table 12-3 to a 12-pin header with pin 8 cut out to pro-
vide keying. For the latest information, refer to the JTAG/MPSD Emulation
Technical Reference (literature number SPDU079).

Figure 12-22. 12- Pin Header Signals and Header Dimensions

EMUI~-1 GND

Pin-to-pin spacing, 0.1 00 in. (X,Y)
Pin width: 0.025-in. square post
Pin length: 0.235-in. nominal

~ 3 1 1 1 1 2 l G N D

t These signals should always be pulled up with separate 20-kQ resistors to VCC.
$ While the corresponding female position on the cable connector is plugged to prevent improper

connection, the cable lead for pin 8 is present in the cable and is grounded as shown in the
schematics and wiring diagrams in this document.

Table 124.12-Pin Header Signal Descriptions and Pin Numbers

XDS510 'C30 'C31
Slanai Description Pin Number Pin Number

--

EMU0 Emulation pin 0

EMU1 Emulation pin 1 E l5 125

EMU2 Emulation pin 2 F13 126

EMU3 Emulation pin 3 El4 123

PD Presence detect. Indicates that the emulation cable is con-
nected and that the target is powered up. PD should be tied to
VCC in the target system.

Although you can use other headers, recommended parts include:

straight header, unshrouded DuPont Connector Systems
part numbers: 6561 0-1 12

65611-112
37996-1 12
67997-1 12

Hardware Applications 12-39

XDS Target Design Considerations

Figure 12-23 shows a portion of logic in the emulator pod. Note that 3 3 4 re-
sistors have been added to the EMUO, EMU1, and EMU2 lines; this minimizes
cable reflections.

Figure 12-23. Emulator Cable Pod Interface

GND (Pins

74LVr240

EMU1

33 52
EMUO

33 52 - EMU2

180 52

EMU3 (Pin 9)

180 52

H3 (Pin 1 1) -

PD (VCC Pin 7) U

12.7.2 MPSD Emulator Cable Signal Timing

(Pin 1)

(Pin 2)

(Pin 3)

Figure 12-24 shows the signal timings for the emulator pod. Table 12-4 de-
fines the timing parameters. The timing parameters are calculated from values
specified in the standard data sheets for the emulator and cable pod and are
for reference only. Texas Instruments does not test or guarantee these timings.

XDS Target Design Considerations

Figure 12-24. Emulator Cable Pod Timings

EMUO '-)(-'

EMU1

Table 12-4. Emulator Cable Pod Timing Parameters

No. Reference Description Mln Max Unit

1 tH3 rnin H3 period 35 200 nS
t ~ 3 max

2 t ~ 3 high rnin H3 high pulse duration 15 ns

3 tH3 low rnin H3 low pulse duration 15 ns

4 td (EMUO, 1,2) EMUO, 1, 2 valid from H3 low 7 23 ns

5 tsu (EMUS) EMU3 setup time to H3 high 3 ns
6 thd (EMU31 EMU3 hold time from H3 high 11 ns

12.7.3 Connections Between the Emulator and the Target System

It is extremely important to provide high-quality signals between the emulator
and the 'C3x on the target system. In many cases, the signal must be buffered
to produce high quality. The need for signal buffering can be divided into three
categories, depending on the placement of the emulation header:

No signals buffered. In this situation, the distance between the emulation
header and the 'C3x should be no more than two inches. (See
Figure 12-25.)

Hardware Applications 12-41

XDS Target Design Considerations

Figure 12-25. Signals Between the Emulator and the 'C3x With No Signals Buffered

iJ Transmission signals buffered. In this situation, the distance between
the emulation header and the 'C3x is greater than two inches but less than
six inches. The transmission signals, H3 and EMU3, are buffered through
the same package. (See Figure 12-26.)

2 inches or less

"cc

Figure 12-26. Signals Between the Emulator and the 'C3x With Transmission Signals
Buffered

TMS320C3x

EMU0

EMU1

EMU2

EMU3

H3

-

Emulator Header

Emulator Header , PD
EMU0

'-
l1

EMU1

EMU2

EMU3

H3

- GND

XDS Target Design Considerations

Q All signals buffered. The distance between the emulation header and the
'C3x is greater than 6 inches but less than 12 inches. All 'C3x emulation
signals, EMUO, EMU1, EMU2, EMU3, and H3, are buffered through the
same package. (See Figure 12-27.)

Figure 12-27. All Signals Buffered

+ 6 to 12 inches --+

H3 Buffer Restrictions

Don't connect any devices be-
tween the buffered H3 output
and the header! Otherwise,
you will degrade the quality
of the signal.

I I

12.7.4 Mechanical Dimensions for the 12-Pin Emulator Connector

The 'C3x emulator target cable consists of a three-foot section of jacketed
cable, an active cable pod, and a short section of jacketed cable that connects
to the target system. The overall cable length is approximately three feet, ten
inches. Figure 12-28 and Figure 12-29 show the mechanical dimensions for
the target cable pod and short cable. Note that the pin-to-pin spacing on the
connector is 0.100 inches in both the X and Y planes. The cable pod box is
nonconductive plastic with four recessed metal screws.

Emulator Header , PD
EMU0

EMU1

EMU2

EMU3

H3

TMS320C3x

EMU0

EMU1

EMU2

EMU3

H3

Hardware Applications 12-43

GND

,

5 ,

l 1

XDS Target Design Considerations

Refer to Figure 12-29.

Note: All dimensions are in inches and are nominal unless otherwise specified.

XDS Target Design Considerations

Figure 12-29. 12- Pin Connector Dimensions

Cable

Cable

I

\ Connector, A Side View

Connector, Front View

Pin 1 , 3, 5, 7, 9, 11 Pin 2,4, 6, 8, 10, 12

Note: All dimensions are in inches and are nominal unless otherwise specified.

12.7.5 Diagnostic Applications

For system diagnostics applications, or to embed emulation compatibility on
your target system, you can connect a 'C3x device directly to a TI ACT8990
test bus controller (TBC) as shown in Figure 12-30. The TBC is described in
the Texas Instruments Advanced Logic and Bus Interface Logic Data Book (lit-
erature number SCYD001). A TBC can connect to only one 'C3x device.

Hardware Applications 12-45

XDS Taraet Desian Considerations

Figure 72-30. TBC Emulation Connections for 'C3x Scan Paths

Notes: 1) In a 'C3x design, the TBC can connect to only one 'C3x device.

2) The 'C3x device's H I clock drives TCKl on the TBC. This is different from the
emulation header connections where H3 is used.

22 kn 22 kQ

-

TMSl

TDO

TCKO

C3x

EMU0

EMU1

EMU2

EMU4

- -
* -

-
H I (Clock)

EMU3

EMU5

EMU6

TCKl

TDlO

TDll

TMSYEVNTO

TMS3lEVNT1

TMS4lEVNT2

TMS51EVNT3

-
- -

-
-
-
-

TMS320C3x Signal Descriptions
and Electrical Characteristics

This chapter covers the TMS320C3x pinouts, signal descriptions, and
electrical characteristics.

Major topics discussed in this chapter are as follows:

Topic Page

Pinout and Pin Assignments

13.1 Pinout and Pin Assignments

13.1 .I TMS320C30 Pinouts and Pin Assignments

The TMS320C30 digital signal processor is available in a 181 -pin grid array
(PGA) package. Figure 13-1 and Figure 13-2 show the pinout for this pack-
age. Figure 13-3 shows the mechanical layout. Table 13-1 shows the
associated pin assignments alphabetically; Table 13-2 shows the pin assign-
ments numerically.

Pinout and Pin Assignments

Figure 13-1. TMS320C30 Pinout (Top View)

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

H3 D2 D3 07 Dl0 Dl3 Dl8 Dl7 D l9 022 D25 D28 XAO XA1 XA5
n n n n n n n n n n n n n n n
V V V V V V V V V V V V V V V

X2ICWNCVss H1 M D8 Dl1 Dl5 Dl8 D20 D24 D27 D31 XA4 ~VSS XA8
n n n n n n n n n n n n n n n
V V V V V V V V V W V V V V V

EMUS X1 DVSS DO D5 DQ Dl4 VSS D21 D26 D30 XA3 DVSS XA7 XAlO
h n n n n n n n n n n n h n n
W V V V V V V V V V V V V V V

Vgep DDVDD D l D6 Dl2 VDD D23 D29 XA2 ADVDD XAB XA11 M C W ~
n n n n n n n n n m n n n n n
W V V V V V V V V V V V V U V - --

RDY HOLDA MSTRB ~ S U B S LOCATOR DDVDD XA8 XA12 EMU3 EMU1

n n n n n n fi n n n
V V V V V V V V V V ----

RESET STRB HOLD IOSTRB E M U ~ / ~ EMU2 EMU0 A0

n n n n n n n n
V V V V V U U V

-
IACK XFO W 1 @ A1 A2 A3 A4

n n n n n n n n
V V V V V V V Y

- -
INTI INTO VSS VDD MDVDD TMS320C30 ~ V D D VDD VSS A8 A5
n n n n n Top View n n n n n
V V V V V V V V V V

- -
INT2 INT3 RSVO RSVl A l l AQ A8 A7

n n n n n n n n
V V V V V V V V

RSV2 RSV3 RSVS RSW A17 A14 A12 A10

n n n n n n n n
V V V V V V V V

RSV4 RSV8 RSV9 C M 1 IODVDD A22 A18 A15 A13

n n n n n n n n n
U V V V V V V V V

RSV8 RSVIO FSRI PDVDD CLKXO EMU6 XD5 VDD XD18 XD22 XD27 IODVDD A21 A19 A18

m n n n n n n n n n n n n n n
W W ~ V ~ ~ V Y Y Y V V V V V

DR1 CLKX1 DVSS C M O TCLKl XD2 XD7 VSS XD14 XD19 XD23 XD28 DVSS A23 &?0

n n n n n n n n n h n n n h n
~ V ~ V ~ V U V W ~ V V V V U

FSX1 DX1 FSRO TCLKO XD1 XD4 XD8 XDlO XD13 XD17 XD20 XD24 XD23 CVSS XD31
n n n n n n n n n n n n n n n
~ ~ ~ V ~ V ~ V ~ V V V V V V

DRO FSXO DXO XDO XD3 XD6 XD9 XDl l XD12 XD15 XDl8 XD21 XD25 XD26 XD30

n n n n n n n n n n n n n n h
~ ~ V ~ ~ V V ~ Y Y V V V V W

TMS320C3x Signal Descriptions and Electrical Characteristics 13-3

Pinout and Pin Assianments

Figure 13-2. TMS320C30 Pinout (Bottom View)

1 5 1 4 13 1 2 1 1 10 9 8 7 6 5 4 3 2 1

XA5 XA1 XAO D26 D25 D22 D l 9 D l 7 D l 6 D l 3 D l 0 D7 D3 D2 H3
XA6 IVSS XA4 031 D27 D24 D20 D l 6 D l 5 D l1 D6 D4 H I CVssX2/CLKIN

XA10 XA7 DVSS XA3 D30 D26 D21 VSS D l 4 D9 D5 DO DVSS X I EMU5
M C I ~ X A l l XA9 ADVDD XA2 D29 D23 VDD D l 2 D6 D l DDVDD V B B ~ XRDY xF@

-- -
EMU1 EMU3 XA12 XA6 DDVDD LOCATOR VSUBS MSTRB HOLDA RDY

A0 EMU0 EMU2 E M U ~ I ~

IOSTRB HOLD STRB RESET

-
A4 A3 A2 A1 Rm W 1 WO lACK

. . a . . . * .
TMS320C30 - -

A5 1.6 VSS VDD ~ V D D MDVDD VDD vss INTO INTI
Bottom View e

- -
A7 A6 A9 A l l RSV1 RSVO INT3 INT2
A10 A12 A14 A17 RSW RSVS RSV3 RSV2
A13 A15 A16 A22 IODVDD CLKRI RSV9 RSV6 RSV4
A16 A19 A21 IODVDD XD27 XD22 XD16 VDD XD5 EMU6 CLK%O PDVDD FSR1 RSVIO RSV6
A20 A23 DVSS XD28 XD23 XD19 XD14 VSS XD7 XD2 TCLKI C W O DVSS C M 1 DR1

XD31 CVSS XD29 XD24 XD20 XD17 XD13 XDlO XD6 XD4 XD1 TCLKO FSRO DX1 FSXl
XD30 XD26 XD25 XD21 XDl6 XD15 XD12 XD11 XD9 XD6 XD3 XDO DXO FSXO DRO

Pinout and Pin Assignments

Figure 13-3. TMS320C30 18 I -Pin PGA Dimensions--GEL Package

Parameter OCMl

ROJC 2.0 -----
ROJA 21.8

R ~ J A N/A
ROJA N/A
R ~ J A N/A
ROJA NIA
R ~ J A N/A

TMS320C3x Signal Descriptions and Electrical Characteristics 13-5

Air Flow
LFPM

NIA --------
0

200
400
600
800
1 000

Thermal Resistance Characteristics

40.38 (1.590)
39.62 (1.560)

40.38 (1.590)
39.62 (1.560)

+

2.92 (.115) (181 Places)

2,54 (0.100) T.P. 7

L
K
J

35.86 (1.412) H
35.26 (1.388) G

L F

e

R @ @ @ @ @ @ @ @ @ @ @ @ @ @ @
P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0000 0 0000
0000 Bottom 0000
0000 view 0000
00000 00000
0 0 0 0 Locator 0 0 0 0
0000 c 0000

E 0 0 0 0 0 0 0000
D 0 0 0 0 0 0 0 0 0 ~ ~ 0 ~ 0 0
C @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ 2,54 (0.100) TYP

000000000000008
A @ 0 0 0 0 0 0 0 0 0 0 0 0 0 @ .

1 2 3 4 5 6 7 8 9 101112131415
7

All linear dimensions are in millimeters and parenthetically in inches.

Pinout and Pin Assignments

D23 D9
D24 B10
D25 A1 1
D26 C10
D27 B l l

D28 A1 2
D29 D l 0
D30 C11
D31 B12

Table 13-1. TMS320C30-PGA Pin

Signal Pin

A0 F15
A1 G I2
A2 GI3
A3 G I4
A4 GI5

D7 A4 (1 EMU6 M6
t ADVDD, CVSS, DDVDD, DVSS, IODVDD, ~VSS

device.

Signal Pin
D8 85
D9 C6
D l 0 A5
Dl1 B6
D l 2 D7

CLKRO N4
CLKRI L4
CLKXO M5

ssignments (~lphabetical)?

DRO R 1
DR1 N1
DVss C3

Signal

FSRO
FSRl I FSXO R2

FSXI P 1
H I 83
H3 A1
HOLD F3
HOLDA E2

-
INTI - H I
INT2 - J1
I NT3 J2
IODVDD L8

IODVDD MI2
IOSTRB F4

~VSS 81 4
LOCATOR E5
M C / ~ D l 5
MDVDD H5
MSTRB E3
PDVDD M4 -
RDY E 1
RESET F1
RSVO J3
RSVl J4
RSV2 K1
RSV3 K2
RSV4 L1
RSV5 K3
RSV6 L2
RSV7 K4
RSV8 M 1
RSV9 L3
RSVI 0 M2
RIW G4
STRB F2
TCLKO P4
TCLKl N 5

-
IACK -
INTO H2

X2/CLKIN B1
XAO A1 3
XA1 A1 4
XA2 Dl1

XA3 C12
XA4 B13
XA5 A1 5
XA6 81 5
XA7 C14

- -
V~~~~ E4
X I C2

XA8 E l 2
XA9 D l 3
XAIO C15
XA11 D l 4
XA12 E l 3
XDO R4
XD 1 P5
XD2 N 6
XD3 R5
XD4 P6
XD5 M7
XD6 R6
XD7 N7
XD8 P7
XD9 R7
XD10 P8
X D l l R8
XD12 R9
XD13 P9
XD14 N9

XD16

1 XD17 P I 0
XD18 R l l

I XD19 N10
XD20 P I 1
XD21 R12
XD22 M I0
XD23 N11
XD24 P I 2

XD25 R13
XD26 R14
XD27 MI1
XD28 N12
XD29 P I 3

XD30 R15
XD31 P I 5
XFO G2
XF1 G3
XRDY D2
X R ~ D I

IDVDD, PDVDD, VDD, and VSS pins are on acorr on plane internal to the

Pinout and Pin Assignments

device.

Table 13-2.

Slgnal Pln
H3 A1
D2 A2
D3 A3
D7 A4
D l 0 A5

D l 3 A6
D l 6 A7
D l 7 A8
D l 9 A9
D22 A10
D25 A l l
D28 A12
XAO A13
XA1 A14
XA5 A15
X2/CLKIN B1
CVSS 82
H1 83
D4 84
D8 B5

D l 1 B6
D l 5 87
D l 8 B8
D20 B9
D24 B10
027 B11
D31 B12
XA4 813
~"SS 814
XA6 815
EMU5 C1
X I C2
DVSS C3
DO C4
05 C5
D9 C6
D l 4 C7

VSS C8
D21 C9
D26 C10

7 ADVDD, CVSS, DDVDD,

TMS32OC3x Signal Descriptions and Electrical Characteristics 13-7

TMS320C30-PGA Pin

Signal Pin
D30 C11
XA3 C12
DVSS C13
XA7 C14
XAlO C15

X R ~ D l
XRDY D2

VBBP D3
DDVDD D4
D l 135
D6 D6
D l 2 D7

VDD D8
D23 D9
D29 D l 0
XA2 Dl1
ADVDD D l 2
XA9 D l 3
XA11 D l 4
M C / ~ D l 5 -
RDY E 1
HOLDA E2
MSTRB E3

v~~~~ E4
LOCATOR E5
DDVDD E8
XA8 E l 2
XA12 E l3
EMU3 E l 4
EMU1 E l 5
RESET F1 -
STRB F2
HOLD F3
IOSTRB F4
 EMU^/^ F12
EMU2 F13
EMU8 F14
A0 - F15
IACK G I
XFO G2
DVSS, IODVDD, IVSS, and

Assignments

Slgnal Pln
XF1 G3
RIVV G4
A1 GI2
A2 GI3
A3 GI4
A4 GI5 -
INTI H I -
INTO H2

VsS H3
VDD H4
MDVDD H5
A D V D ~ HI1
VDD H I 2
VSS HI3
A6 HI4
A5 HI5 - - INT2 J 1
INT3 J2
RSVO J3
RSVl J4

A1 1 J12
A9 J13
A8 J14
A7 J15
RSV2 K1
RSV3 K2
RSV5 K3
RSV7 K4
A17 K12
A14 K13

A1 2 K14
A10 K15
RSV4 L1
RSV6 L2
RSV9 L3
CLKRI L4
10DVDD L8
A22 L12
A18 L13
A15 L14

MDVDD, PDVDD, VDD,

(Numerical)t

Signal Pin
A13 L15
RSV8 M I
RSV10 M2
FSRl M3
PDVDD M4

CLKXO M5
EMU6 M6
XD5 M7

VDD M8
XD16 M9
XD22 MI0
XD27 MI1
10DVDD MI2
A20 MI3
A19 MI4
A16 MI5
DRI N1
CLKXl N2
DVSS N3
CLKRO N4
TCLKI N5
XD2 N6
XD7 N7

Vss N8
XD14 N9
XD19 N10
XD23 N11
XD28 N12
DVsS N13
A23 N14

A21 N15
FSX1 P 1
DX1 P2
FSRO P3
TCLKO P4
XD1 P5
XD4 P6
XD8 P7
XD10 P8
XD13 P9
VSS pins are on a common

Signal Pln
XD17 P I 0
XD20 P I 1
XD24 P I 2
XD29 P I 3
CVSS P I 4
XD31 P I 5
DRO R1
FSXO R2
DXO R3
XDO R4
XD3 R5
XD6 R6
XD9 R7
XD11 R8
XD12 R9
XD15 R10
XD18 R11
XD21 R12
XD25 R13
XD26 R14

XD30 R15

plane internal to the

Pinout and Pin Assignments

13.1.2 TMS320C30 PPM Pinouts and Pin Assignments

The TMS320C30 PPM device is packaged in a 208-pin plastic quad flat pack
(PQFP) JDEC standard package. Figure 13-4 shows the pinouts for this pack-
age, and Figure 13-5 shows the mechanical layout. Table 13-3 shows the as-
sociated pin assignments alphabetically; Table 13-4 shows the assignments
numerically.

Figure 134 . TMS320C30 PPM Pinout (Top View)

Pinout and Pin Assiqnments

Figure 13-5. TMS320C30 PPM 208-Pin Plastic Quad Flat Pack-PQL Package

Notes: 1) All linear dimensions are in millimeters and parenthetically in inches.

2) This drawing is subject to change without notice.

3) Contact a field sales office to determine if a tighter coplanarity requirement is available for this package.

TMS320C3x Signal Descriptions and Electrical Characteristics 13-9

Pinout and Pin Assignments

Table 13-3. TMS320C30-PPM Pin Assignments (~1phabetical)t

t ADVDD, CVSS, DDVDD, DVSS, IODVDD, IVSS, MDVDD, PDVDD, VDD, andVss pins are on acommon plane internal tothe
device.

Signal Pin
A0 139
A1 138
A2 137
A3 136
A4 135
A5 134
A6 129
A7 128
A8 127
A9 126
A1 0 125
A1 1 124
A1 2 123
A1 3 122
A1 4 119

A1 5 118
A1 6 117
A1 7 116
A1 8 115
A1 9 114
A20 113
A21 112
A22 Ill
A23 110
ADVDD 120
ADVDD 121
ADVDD 157
ADVDD 158
CLKRO 57
CLKRI 47
CLKXO 58
CLKXl 48

CVSS 3
CVSS 4
CVSS 107
CVSS 108
DO 203
D l 202
D2 201
D3 200
D4 199
D5 198

Signal Pin
D6 197
0 7 196
D8 195
D9 194
D l 0 193
D l1 192
D l 2 191
D l 3 190
D l 4 189
D l 5 188
D l 6 187
D l 7 186
D l 8 480
D l 9 179
D20 178

D21 177
D22 176
D23 175
D24 174
D25 173
D26 170
D27 169
D28 168
D29 167
D30 166
D31 165
DDVDD 171
DDVDD 172
DDVDD 206
DDVDD 207
DRO 55
DRI 45

DVSS 1
DVSS 2
DVSS 5 1
DVSS 52
DVSS 105
DVSS 106
DVSS 155
DVSS 156
DXO 60
DX1 50

Signal Pin
EMU0 140
EMU1 141
EMU2 142
EMU3 143
 EMU^/^ 144
EMU5 9
EMU6 63
FSRO 56
FSRI 46
FSXO 59
FSXl 49
H I 204
H3 205
HOLD 15
HOLDA 14 -
IACK - 24
INTO - 25
INTI 31 -
INT2 - 32
INT3 33
10DVDD 67
10DVDD 68
10DVDD 102
10DVDD 103
lVss 153
lVss- 154
MCIMP 145
MDVDD 16
MDVDD 17
MSTRB 11
NC 28
NC 79
N C 104
N C 183
N C 208
PDVDD 53
PDVDD 54 -
RDY 18
RESET 21
RSVO 34
RSVI 35
RSV2 36

Signal Pin
RSV3 37
RSV4 38
RSV5 39
RSV6 40
RSV7 4 1
RSV8 42
RSV9 43
RSV10 44
~m 20 -
STRB 19
TCLKO 6 1
TCLKI 62

VBBP 8
VDD 26
VDD 27

VDD 77

VDD 78
V~~ 130
VDD 131
VDD 181
VDD 182

VSS 29
VSS 30
VSS 80
Vss 8 1
Vss 132
VsS 133
VSS 184
VSS 185

v s ~ ~ ~ 7
X I 6
X2/CLKIN 5
XAO 164
XA1 163
XA2 162
XA3 161
XA4 160
XA5 159
XA6 152
XA7 151
XA8 150
XA9 149

Signal Pin
XAlO 148
X A l l 147
XA12 146
XDO 64
XD1 65
XD2 66
XD3 69
XD4 70
XD5 71
XD6 72
XD7 73
XD8 74
XD9 75
XD10 76
XD11 82

XD12 83
XD13 84
XD14 85
XD15 86
XD16 87
XD17 88
XD18 89
XD19 90
XD20 91
XD21 92
XD22 93
XD23 94
XD24 95
XD25 96
XD26 97
XD27 98
XD28 99
XD29 100
XD30 101
XD31 109
XFO 23
XF1 22
XRDY 10
X R ~ 13
XSTRB 12

Pinout and Pin Assignments

Table 13-4. TMS320C30-PPM Pin Assignments (~urnerical't

Pin Signal
1 DVss
2 DVss
3 cvss
4 cvss
5 X2
6 XI
7 v~~~~
8 VBBP
9 EMU5 -
10 XRDY

11 MSTRB
12 XSTRB
13 XW
14 HOLDA -
15 HOLD

MDVDD -
RDY -
STRB
R r n
RESET
XF1
XFO -
IACK -
i NTO

27 VDD
28 NC

29 vss
30 vss -
31 iNTl -
32 iNT2 -
33 INT3
34 RSVO
35 RSVl
36 RSV2
37 RSV3
38 RSV4
39 RSV5
40 RSV6
41 RSV7
42 RSV8

Pin Signal
43 RSV9
44 RSV10
45 DR1
46 FSRl
47 CLKR1
48 CLKX1
49 FSX1
50 DX1
51 DVSS
52 DVSS
53 PDVDD
54 PDVDD
55 DRO
56 FSRO
57 CLKRO
58 CLKXO
59 FSXO
60 DXO
61 TCLKO
62 TCLK1
63 EMU6
64 XDO
65 XD1
66 XD2

70 XD4
71 XD5
72 XD6

73 XD7
74 XD8
75 XD9
76 XDlO

77 VDD
78 VDD
79 NC

80 Vss
81 Vss
82 XDl l
83 XD12
84 XD13

Pin Signal
85 XD14

124 A l l
125 A10

Pin Signal
127 A8

147 XA l l
148 XA10
149 XA9
150 XA8
151 XA7
152 XA6
153 lVss
154 lVss
155 DVSS
156 DVSS

157 ADVDD
158 ADVDD
159 XA5
160 XA4
161 XA3
162 XA2
163 XA1
164 XAO
165 D31
166 D30
167 029
168 028

Pin Slgnal
169 D27
170 D26
171 DDVDD
172 DDVDD

-

t ADvDD, CVSS, DDVDD, DVSS, IODVDD, IVSS, MDVDD, PDVDD, VDD, and VSS pins are on acommon plane internal tothe
device.

TMS320C3x Signal Descriptions and Electrical Characteristics 13-11

Pinout and Pin Assianments

13.1.3 TMS320C31 Pinouts and Pin Assignments

The TMS320C31 device is packaged in a 132-pin plastic quad flat pack
(PQFP) JDEC standard package. Figure 13-6 shows the pinoutsforthis pack-
age, and Figure 13-7 shows the mechanical layout. Table 13-5 shows the as-
sociated pin assignments alphabetically; Table 1 3 4 shows the pin assign-
ments numerically.

Figure 13-6. TMS320C3 1 Pinout (Top View)

] FSXO

I vss
] CLKXO
] CLKRO
] FSRO

I vss
] DRO
-Jim
3 INT2

] XF1

I VDD
] XFO
] RESET

I E
] STRB
]RDY
I=
] HOLD
IHoLDA
I X l
] XZlCLKlN

I vss
I vss
I vss

Pinout and Pin Assignments

Figure 13-7. TMS320C3 1 132- Pin Plastic Quad Flat Pack-PQL Package

TMS320C3x Signal Descriptions and Electrical Characteristics 13-1 3

Thermal Resistance Characteristics

Parameter

~ J C
-----,--

R ~ J A
R ~ J A
R ~ J A
R ~ J A
ReJA
R ~ J A

All linear dimensions are in millimeters and parenthetically in inches.

--

"C/W

11.0

49.0
35.5
28.0
23.5
21.6
20.0

Air Flow
L F ~ ~

NIA ------
0

200
400
600
800
1000

Pinout and Pin Assignments

Table 13-5. TMS320C3 1 Pin Assignments (A1phabetical)t

Signal Pin

A0 29
A 1 28
A2 27
A3 26
A4 25
A5 24
A6 23
A7 22
A8 2 1
A9 20
A1 0 19
A1 1 18
A1 2 17
A1 3 16
A1 4 15

A20 9
A21 8
A22 7
A23 6
CLKRO 5
CLKXO 4
DO 3
D l 2
D2 1
D3 130

t vDD and VSS pins are

Signal Pin

D4 76
D5 75
D6 74
D7 73
D8 68
D9 67
D l 0 64
D l 1 63
D l 2 62
D l 3 60

D l 4 58
D l 5 56
D l 6 55
D l 7 54
D l 8 53
D l 9 52
D20 50
D21 48
D22 47
D23 46
D24 45
D25 44
D26 43
027 41
D28 39
029 38
D30 34
D3 1 3 1
DRO 1 08
DXO 11 6

)n a common plane inte

Signal Pin
EMU0 124
EMU1 125
EMU2 126
EMU3 123
FSRO 110
FSXO 114
H I 81
H3 82
HOLD 90
HOLDA 89 -
IACK - 99
INTO - 100
INTI 103 -
INT2 106 -
INT3 107
M C B L / ~ 127 -
RDY 92
RESET 95
~ r n - 94
SHZ 11 8

STRB 93
TCLKO 120
TCLK1 122

VDD 6
VDD 15
VDD 24
VDD 32
VDD 33

~ a l to the device.

Signal Pin

VDD 40
VDD 49
VDD 59
VDD 65

Signal Pin

v~~ 84
"SS 85
VSS 86
Vss 101

Vss 11 3
v~~ 117
Vss 11 9
v~~ 128
X I 88
X2/CLKIN 87
XFO 96
XF1 98

Pinout and Pin Assignments

Table 13-6. TMS320C3 1 Pin Assignments (Numerica1)t

tvDD and VSS pins are on a common plane internal to the device.

Pln Signal

1 A21
2 A20

3 VSS
4 VSS
5 A1 9

6 VDD
7 A1 8
8 A1 7
9 A1 6
10 A15
11 A14
12 A13
13 A12
14 A l l

15 VDD
16 A10

17 VSS
18 A9

19 Vss
20 A8
21 A7
22 A6
23 A5

24 VDD
25 A4
26 A3
27 A2
28 A1
29 A0

30 VSS

TMS320C3x Signal Descriptions and Electrical Characteristics 13-1 5

Pin Signal
121 VDD
122 TCLKI
123 EMU3
124 EMU0
125 EMU1
126 EMU2
127 M C B U ~
128 Vss
129 A23
130 A22
131 VDD
132 VDD

Pin Signal

31 D31

32 VDD
33 V~~
34 D30

35 VSS
36 VSS
37 VSS
38 D29
39 D28

40 VDD
41 D27

42 VSS
43 D26
44 D25
45 D24
46 D23
47 D22
48 D21

49 VDD
50 D20

51 VSS
52 D l9
53 D l8
54 D l 7
55 D l6
56 D l5

57 VSS
58 D l4

59 VDD
60 D l3

Pin Signal

61 VSS
62 D l2
63 Dl1
64 D l 0

65 VDD
66 VDD
67 D9
68 D8

69 VSS
70 VSS
71 VSS
72 D7
73 D6

74 VDD
75 D5
76 D4
77 03
78 D2
79 DI
80 DO
81 H I
82 H3

83 VDD
a4 VSS
85 VSS
86 VSS
87 X2JCLKIN
88 X I
89 HOLDA -
90 HOLD

Pin Signal

91 VDD -
92 RDY
93 STRB
94 R/%
95 RESET
96 XFO

97 VDD
98 XF1 -
99 IACK -
100 INTO

101 Vss
102 Vss -
103 lNTl

104 VDD
105 VDD -
106 INT2 -
107 INT3
108 DRO
109 Vss
110 FSRO
111 CLKRO
112 CLKXO
113 Vss
114 FSXO
115 VDD
116 DXO
117 VsS
118 SHZ
119 Vss
120 TCLKO

Signal Descriptions

13.2 Signal Descriptions

13.2.1 TMS320C30 Signal Descriptions

Table 13-7 describes the signals that the TMS320C30 device uses in the
microprocessor mode. It lists the signalJport1bit name; the number of pins allo-
cated; the input (I), output (0), or high-impedance state (2) operating modes;
a brief description of the signal's function; and the condition that places an out-
put pin in high impedance. A line over a signal name (for example, RESET)
indicates that the signal is active (low) (true at a logic 0 level). Pins labeled NC
are not to be connected by the user. The signals are grouped according to
function.

Signal Descriptions

Table 13-7, TMS320C30 Signal Descriptions

Condition When
Slgnai/Port # Pins I/O/Zt Description Signal Is In High Z*

Primary Bus Interface (61 Pins)

D31-DO 32 I/O/Z 32-bit data port of the primary bus interface S H R

A23-A0 24 O/Z 24-bit address port of the primary bus inter- S H R
face

R ~ W 1 O/Z Readtwrite signal for primary bus interface. This S H R
pin is high when a read is performed and low
when a write is performed over the parallel inter-
face.

STRB 1 O/Z External access strobe for the primary bus S H
interface

-
RDY 1 I Ready signal. This pin indicates that the exter- S

nal device is prepared for a primary bus inter-
face transaction to complete.

HOLD 1 1 - Hold signal for primary bus interface. When
HOLD is a logic low, any ongoing transaction is
co9leted. The A23-AO, D31-DO, STRB, and
R/W signals are placed in a high-impedance
state, and all transactions over the primary bus
interface are held until HOLD becomes a logic
high or the NOHOLD bit of the primary bus con-
trol register is set.

HOLDA 1 O/Z Hold acknowledge signal for primary bus inter- S
face. This signal is generated in response to a
logic low on HOLDS signals that 1423-AO, D31-
DO, STRB, and R/W are placed in a high-impe-
dance state and that all transactions over the
bus will be held. HOLDAwill be high in response
to a logic high of HOLD or when the NOHOLD
bit of the primary bus control register is set.

- --

Expansion Bus Interface (49 Pins)

XD3 1 -XDO 32 I/O/Z 32-bit data port of the expansion bus interface S R

XAI 2-XAO 13 O/Z 13-bit address port of the expansion bus inter- S R
face

x R ~ 1 O/Z Readtwrite signal for expansion bus interface. S R
When a read is performed, this pin is held high;
when a write is performed, this pin is low.

MSTRB 1 O/Z External memory access strobe for the expan- S
sion bus interface

t Input (I), output (O), high-impedance state (Z)
$ S = SHZ active, H = active, R = RESET active

TMS320C3x Signal Descriptions and Electrical Characteristics 13-1 7

Signal Descriptions

Table 13-7. TMS320C30 Signal Descriptions (Continued)
Condition When

Signai/Port # Pins I/ORt Description Slgnal Is In High Z*

Expansion Bus Interface (49 Pins) (Continued)

IOSTRB 1 O/Z External I/O access strobe for expansion bus S
interface

XRDY 1 I Ready signal. This pin indicates that the exter-
nal device is prepared for an expansion bus in-
terface transaction to complete.

Control Signals (9 Pins)

RESET 1 I Reset. When this pin is a logic low, the device is
 laced in the reset condition. After reset be-
comes a logic high, execution begins from the
location specified by the reset vector.

--
INT3-INTO 4 I External interrupts
- -
IACK 1 OIZ Interrupt acknowledge signal. IACK is set to 1 S

(logic high) by the IACK instruction. This can be
used to indicate the beginning or end of an in-
terrupt service routine.

M C / ~ 1 I Microcomputer/microprocessor mode pin

XF1, XFO 2 I/O/Z External flag pins. They are used as general- S R
purpose I10 pins or to support interlocked pro-
cessor instructions.

Serial Port 0 Signals (6 Pins)

CLKXO 1 I/O/Z Serial port 0 transmit clock. Serves as the serial S R
shift clock for the serial port 0 transmitter.

DXO 1 I/o/Z Data transmit output. Serial port 0 transmits se- S R
rial data on this pin.

FSXO 1 I/O/Z Frame synchronization pulse for transmit. The S R
FSXO pulse initiates the transmit data process
over pin DXO.

CLKRO 1 I/O/Z Serial port 0 receive clock. Serves as the serial S R
shift clock for the serial port 0 receiver.

DRO 1 I/O/Z Data receive. Serial port 0 receives serial data S R
via the DRO pin.

FSRO 1 I/O/Z Frame synchronization pulse for receive. The S R
FSRO pulse initiates the receive data process
over DRO.

t Input (I), output (O), high-impedance state (Z) * S = SHZ active, H =HOLD active, R = RESET active

13-18

Signal Descriptions

Table 13-7, TMS320C30 Signal Descriptions (Continued)
Conditlon When

Signal/Port # Pins i/O/Zt Description Signal Is i n High b

Serlal Port 1 Slgnals (6 Plns)

CLKXl 1 I/O/Z Serial port 1 transmit clock. Serves as the seri- S R
al shift clock for the serial port 1 transmitter.

CLKRl

1 I/O/Z Data transmit output. Serial port 1 transmits S R
serial data on this pin.

1 I/O/Z Frame synchronization pulse for transmit. The S R
FSXl pulse initiates the transmit data process
over pin DX1.

1 I/O/Z Serial port 1 receive clock. Serves as serial S R
shift clock for the serial port 1 receiver.

1 I/O/Z Data receive. Serial port 1 receives serial data S R
via the DR1 pin.

FSR1 1 I/O/Z Frame synchronization pulse for receive. The S R
FSRl pulse initiates the receive data process
over DR1.

Timer 0 Signals (1 Pin)
- - - - - - -

TCLKO 1 I/O/Z Timer clock. As input, TCLKO is used by timer 0 S R
to count external pulses. As output pin, TCLKO
outputs pulses generated by timer 0.

Timer 1 Signals (1 Pin)

TCLKl 1 I/O/Z Timer clock. As input, TCLKl is used by timer 1 S R
to count external pulses. As output pin, TCLKl
outputs pulses generated by timer 1.

- - ---

Supply and Osclllator Slgnals (29 Pins)

VDDB-VDDO 4 I Four t5-V supply pins 5
10DVD~ll IODVDD~ 2 I TWO t5-V supply pins 5

ADVDD~, ADVDDO 2 I Two t5-V supply pins 5

PDVDD 1 I One t5-V supply pin 5
t Input (I), output (O), high-impedance state (Z)
$ S = SHZ active, H = HOLD active, R = RESET active
§The recommended decoupling capacitor is 0.1 WF.

TMS320C3x Signal Descriptions and Electrical Characteristics 1 3-1 9

Signal Descripfions

Table 13-7. TMS320C30 Signal Descriptions (Continued)
Condition When

SlgnalIPort # Pins IIORt Description Slgnal Is in High Z*

Supply and Oscillator Signals (29 Pins) (Continued)

DDVDD~, DDVDDO 2 I Two t5-V supply pins 9

MDVDD 1 I One t5-V supply pin §

v ~ ~ 3 - v ~ ~ ~ 4 I Four ground pins

DVSS~-DVSSO 4 I Four ground pins

C V s s l ~ ~ V S S O 2 I Two ground pins

~VSS 1 I One ground pin

VBBP 1 NC VBB pump oscillator output

v~~~~ 1 I Substrate pin. Tie to ground.

1 0 Output pin from internal oscillator for the crystal.
If crystal not used, pin should be left uncon-
nected.

X2lCLKIN 1 I Input pin to internal oscillator from a crystal or a
clock

1 O K External HI clock-has a period equal to twice S
CLKIN.

1 O K External H3 clock-has a period equal to twice S
CLKIN.

t Input (I), output (O), high-impedance state (2)
$ S = SHZ active, H =m active, R = RESET active
5 Follow the connections specified for the resewed pins. 18- to 22-kQ pull-up resistors are recommended. All +5-volt supply pins

must be connected to a common supply plane, and all ground pins must be connected to a common ground plane.

Signal Descriptions

Table 13-7. TMS320C30 Signal Descriptions (Continued)
Condition When

SlgnallPort # Pins VO/Zt Description Slgnal Is In High Z*

Reserved (18 Pins) 5

EMU2-EMU0 3 I Reserved. Use pull-ups to +5 volts. See Sec-
tion 12.7 on page 12-39.

EMU3 1 0 Reserved. See Section 12.7 on page 12-39.

 EMU^/^ 1 I Shutdown high impedance. An active low shuts
down the TMS320C30 and places all pins in a
high-impedance state. This signal is used for
board-level testing to ensure that no dual drive
conditions occur. CAUTION: An active low on
the SHZ pin corrupts TMS320C30 memory and
a s t e r contents. Reset the device with an
SHZ=1 to restore it to a known operating condi-
tion.

EMU6, EMU5 2 NC Reserved.

RSV10-RSV5 6 110 Reserved. Use pull-ups on each pin to +5 volts.

RSV4-RSVO 5 I Reserved. Tie pins directly to +5 volts.

Locator (1 Pin)

Locator 1 NC Resewed. See Figure 13-1 on page 13-3 and
Table 13-1 on page 1 3-6.

3 Input (I), output (O), high-impedance state (2) * S = SHZ active, H = active, R = RESET active
5 Follow the connections specified for the reserved pins, 18- to 22-kQ pull-up resistors are recommended. All +5-volt supply pins

must be connected to a common supply plane, and all ground pins must be connected to a common ground plane.

TMS320C3x Signal Descriptions and Electrical Characteristics 13-21

13.2.2 TMS320C31 Signal Descriptions

Table 13-8 describes the signals that the TMS320C31 device uses in the
microprocessor mode. They are listed according to the signal name; the num-
ber of pins allocated; the input (I), output (0), or high-impedance state (Z) op-
erating modes; a brief description of the signal's function; and the condition
that places an output pin in high impedance. A line over a signal name (for ex-
ample, RESET) indicates that the signal is active (low) (true at a logic 0 level).

Table 13-8. TMS320C3 1 Signal Descriptions
Condition When

SIgnallPort # Pins I/O/Zt Description Slgnal Is In High Z*

Primary Bus Interface (61 Pins)

32 I/O/Z 32-bit data port S H R

A23-A0 24 O/Z 24-bit address port S H R
-
HOLD 1 I Hold signal. When HOLD is a logic low, any on-

going t r a n w o n is completed. The ,423-AO,
D31-DO, STRB, and R/W signals are placed in
a high-impedance state, and all transactions
over the primary bus interface are held until
HOLD becomes a logic high or until the NO-
HOLD bit of the primary bus control register is
set.

HOLDA 1 OIZ Hold acknowledge signal. This signal is gener- S
ated in response to a logic I o w H O L D . Ilsig-
nals that A23-AO, D31-DO, STRB, and R/W are
placed in a high-impedance state and that all
transactions over the bus will be held. HOLDA
will be high in response to a logic high of HOLD
or until the NOHOLD bit of the primary bus con-
trol register is set.

RAT' 1 OIZ Readlwrite signal. This pin is high when a read S H R
is performed and low when a write is performed
over the parallel interface.

-
RDY 1 I Ready signal. This pin indicates that the exter-

nal device is prepared for a transaction comple-
tion.

STRB 1 O/Z External access strobe S H

t Input (I), output (O), high-impedance (2) state
$ S = SHZ active, H = HOLD active, R = RESET active

Sianal Des~f i~t ions

Table 13-8. TMS320C3 1 Signal Descriptions (Continued)

Slgnal/Port # Plns I/O/Zt Descrlptlon
Condltlon When
Signal Is In Hlgh Z*

Control Signals (10 Plns)
--
INT3-INTO 4 I External interrupts
-
IACK

-
1 012 Interrupt acknowledge signal. IACK is set to 1 S

by the IACK instruction. This can be used to in-
dicate the beginning or end of an interrupt ser-
vice routine.

M C B I J ~ 1 I Microcomputer boot loader/microprocessor
mode pin

RESET 1 I Reset. When this pin is a logic low, the device is
placed in the reset condition. When reset be-
comes a logic 1, execution begins from the loca-
tion specified by the reset vector.

-
SHZ 1 I Shut down high Z. An active (low) shuts down

the TMS320C31 and places all pins in a high-
impedance state. This signal is used for board-
level testing to ensure that no dual drive condi-
tions occur. CAUTION: An active (low) on the
SHZ pin corrupts TMS320C31 memory andreg-
ister contents. Reset the device with an SHZ = 1
to restore it to a known operating condition.

XF1, XFO 2 I/OR External flag pins. These are used as general- S R
purpose I/O pins or to support interlocked pro-
cessor instructions.

Serial Port 0 Signals (6 Pins)
-- -- --

CLKRO 1 I/O/Z Serial port 0 receive clock. This pin serves as S R
the serial shift clock for the serial port 0 receiver.

CLKXO 1 I/O/Z Serial port 0 transmit clock. Serves as the serial S R
shift clock for the serial port 0 transmitter.

DRO 1 I/O/Z Data receive. Serial port 0 receives serial data S R
via the DRO pin.

DXO 1 I/O/Z Data transmit output. Serial port 0 transmits se- S R
rial data on this pin.

FSRO 1 I/O/Z Frame synchronization pulse for receive. The S R
FSRO pulse initiates the receive data process
over DRO.

7 Input (I), output (O), high-impedance state (Z)
$ S = SHZ active, H = active, R = RESET active

TMS320C3x Signal Descriptions and Electrical Characteristics 13-23

Signal Descriptions

Table 13-8. TMS320C3 1 Signal Descriptions (Continued)

SIgnallPort # Pins i/O/Zt Description
Condition When
Signal is in Hlgh Z*

Serial Port 0 Slgnals (6 Plns) (Continued)

FSXO 1 IIOIZ Frame synchronization pulse for transmit. The S R
FSXO pulse initiates the transmit data process
over pin DXO.

Timer Slgnals (2 Plns)

TCLKO 1 I/O/Z Timer clock 0. As an input, TCLKO is used by S
timer 0 to count external pulses. As an output
pin, TCLKO outputs pulses generated by timer
0.

TCLK1 1 IIOIZ Timer clock 1. As an input, TCLKO is used by S
timer 1 to count external pulses. As an output
pin, TCLKI outputs pulses generated by timer
1.

Supply and Oscillator Signals (49 Pins)
p~~ - --

1 012 External H I clock. This clock has a period S
equal to twice CLKIN.

1 OIZ External H3 clock. This clock has a period S
equal to twice CLKIN.

VDD 20 I +5-VDc supply pins. AII pins must be con-
nected to a common supply plane. §

VSS 25 I Ground pins. All ground pins must be con-
nected to a common ground plane.

1 012 Output pin from the internal crystal oscillator. If
a crystal is not used, this pin should be left un-
connected.

X2lCLKI N 1 I The internal oscillator input pin from a crystal or
a clock.

Reserved (4 Pins)

EMU2-EMU0 3 I Reserved. Use 20-kQ pull-up resistors to t5
volts.

EMU3 1 0 Reserved.

t Input (I), output (O), high-impedance state (Z) * S = SHZ active, H = active, R = RESET active
5 The recommended decoupling capacitor value is 0.1 pF.
7 Follow the connections specified for the reserved pins. 18- to 22-kfi pull-up resistors are recommended. All +5-volt supply pins

must be connected to a common supply plane, and all ground pins must be connected to a common ground plane.

Electrical Specifications

13.3 Electrical Specifications

Table 13-9, Table 13-1 0, Table 13-1 1, and Figure 13-8 show the electrical
specifications for the TMS320C3x.

Table 13-9.Absolute Maximum Ratings Over Specified Temperature Range
ConditionICharacteristic I 'C30/'C31 Range I 'LC31 Range

Supply voltage range, VDD

Input voltage range 1 -0.3 V to 7 V I -0.3 V to 5 V

Output voltage range I -0.3 V to 7 V I -0.3 V to 5 V

Continuous power dissipation (worst case) 3.1 5 W for TMS320C30-33 1 1.7 W for TMS320C3193 I (See Note 3)

Operating case temperature range

1.1 W
(See Note 3)

Storage temperature range 1 -55 "C to 1 50°C 1 -55 "C to 150°C

TMS320C30GEL 0" C to 85 OC
TMS320C31 PQL 0" C to 85 "C
TMS320C31 PQA -40 " C to + 125 "C

Notes: 1) All voltage values are with respect to VSS.

0°C to 85°C

2) Stresses beyond those listed above may cause permanent damage to the device. This is a stress rating only;
functional operation of the device at these or any other conditions beyond those indicated in Table 13-1 0 is not im-
plied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

3) Actual operating power will be less than stated. These values were obtained under specially produced worst-case
test conditions, which are not sustained during normal device operation. These conditions consist of continuous
parallel writes of a checkerboard pattern to both primary and expansion buses at the maximum rate possible. See
nominal (IDD) current specification in Table 13-11.

TMS320C3x Signal Descriptions and Electrical Characteristics 13-25

Electrical Specifications

VSs Supply voltages (CVss, etc.) 0 I 0 I

Table 13- 10. Recommended Operating Conditions

VIH High-level input voltage 1

Parameter

VDD Supply voltages (DDVDD, etc.)

VIL Low-level input voltage 0.8 1-0.3t 0.6 1

'C3O/'C31 'LC3133

Min Nom Max Min Nom Max

4.75 5 5.25 3.13 3.3 3.47

loH High-level output current I -300 1 -300 1
loL Low-level output current I * 1 1

VTH CLKlN high-level input voltage 2.6 VDD
for CLKlN + 0.3t

T Operating case temperature
range

t Guaranteed from characterization but not tested

Note: All voltage values are with respect to VSS. All input and output voltages except those for CLKlN are TTL compatible.
CLKlN can be driven by a CMOS clock.

0

Electrical Specifications

Table 13- 1 1. Electrical Characteristics Over Specified Free-Air Temperature Ranget

t All input and output voltage levels are TTL compatible. * All nominal values are at VDD = 5 V, TA = 25°C.
5 For 'C30 PPM: Vo~(max)=O.B V, except for the following:

Vo~(max)=l V for A(O-31)
Vo~(max)=O.S V for XA(O-12), D(O-31)
Vo~(max)=O.7 V for m, m, m, FSXO/I, CLKXOI1,
CLKROI1, DXO/1 Rm, X R m

7 Pins with internal pull-up devices: m-m, MCIW, RSV10-RSVO. Although RSVl 0-RSVO have internal pullup devices,
external pullups should be used on each pin as described in Table 13-7 beginning on page 13-17.

~ c t u a l operating current will be less than this maximum value. This value was obtained under specially produced worst-case
test conditions, which are not sustained during normal device operation. These conditions consist of continuous parallel writes
of acheckerboard pattern to both primary and expansion buses at the maximum rate possible. See Calculation of TMS320C30
Power Dissipation, Appendix D.

1 1 f, is the input clock frequency. The maximum value is 40 MHz.
"Guaranteed by design but not tested

TMS320C3x Signal Descriptions and Electrical Characteristics 13-27

Unlt

V

v

PA

PA

PA

mA

mA

pF

pF

Electrlcal Characterlstlc

VOH High-level output voltage (VDD = Min, lo^ =
Max)

vOL§ Low-level output voltage (VDD = Min, lo^ =
Max)

Iz Three-state current (V D ~ = Max)

11 Input current (VI = VSs to VDD)

iIp Input current (Inputs with internal pull-ups) 7

ICC Supply current (TA = 'C30-33
25" C, V D - Max, fx 'C30-27
= ~ a x) # R - '(230-40

'C31-27
'C31-33
'C31-33 (ext, temp)
'C31-40
'C3 1 -50
'C30 PPM

IDD Supply current, standby; IDLE2, clocks shut
off

Ci Input capacitance All inputs except
CLKIN

CLKlN

Co Output capacitance

'C30/'C31

M in Nom* Max

2.4 3

0.3 0.6

-20 20

-1 0 10

-400 20

200 600
175 500
170 600
120 260
150 325
150 325
160 390
200 425
170 600

50

15"

25

20"

'LC31 -33

M ln om* Max

2.0

0.4

-20 20

-10 1 0

-400 1 0

120 300

21

1

25

20"

Electrical Specifications ,

Figure 13-8. Test Load Circuit

Tester Pin
Electronics

Where: IOL = 2.0 mA (all outputs)
IOH = 300 pA (all outputs)
VLoad = 2.1 5 V
CT = 80 pF typical load circuit capacitance

Output
Under
Test

Signal Transition Levels

13.4 Signal Transition Levels

13.4.1 lTL-Level Outputs

TTL-compatible output levels are driven to a minimum logic-high level of 2.4
volts and to a maximum logic-low level of 0.6 volt. Figure 13-9 shows the TTL-
level outputs.

Figure 13-9. TL-Leve l Outputs

TTL-output transition times are specified as follows:

0 For a high-to-low transition, the level at which the output is said to be no
longer high is 2.0 volts, and the level at which the output is said to be low
is 1.0 volt.

0 For a low-to-high transition, the level at which the output is said to be no
longer low is 1.0 volt, and the level at which the output is said to be high
is 2.0 volts.

13.4.2 lTL-Level Inputs

Figure 13-1 0 shows the TTL-level inputs.

Figure 13-1 0. TTL-Level Inputs

TTL-compatible input transition times are specified as follows:

For a high-to-low transition on an input signal, the level at which the input
is said to be no longer high is 2.0 volts, and the level at which the input is
said to be low is 0.8 volt.

For a low-to-high transition on an input signal, the level at which the input
is said to be no longer low is 0.8 volt, and the level at which the input is said
to be high is 2.0 volts.

TMS320C3x Signal Descriptions and Electrical Characteristics 13-29

13.5 Timing

Timing specifications apply to the TMS320C30 and TMS320C31.

13.5.1 X2/CLKIN, HI , and H3 Timing

Table 13-1 2 defines the timing parameters for the X2/CLKIN, HI, and H3 in-
terface signals. The numbers shown in parentheses in Figure 13-11 and
Figure 13-1 2 correspond with those in the No. column of Table 13-1 2. Refer
to the RESET timing in Figure 13-23 on page 13-48 for CLKlN to H1/H3 delay
specification.

Table 13- 12. Timng Parameters for xZ/CU(IN, H 1, and HS

No. Name Descr i~t ion

tf (C I) CLKlN fall time

~ (C I L) CLKlN low pulse
duration
~ (c I) = min

~ (C I H) CLKlN high pulse
duration
~ (c I) = min

tr(~1) CLKlN rise time

~ (c I) CLKlN cycle time

tf (HI HI/H3 fall time

H1/H3 low pulse
tw(HL) duration

~,,,(HH) HI/H3 high pulse
duration

t r (~) HI/H3 rise time

~(HL-HH) Delay from H I (H3)
low to H3(H1) high

k (~) H11H3 cycle time

-
Unit -
ns

t Guaranteed from characterization but not tested
$ Guaranteed by design but not tested

p = tc(CI)

Figure 13- 1 1. Timing for X2KL KIN

Figure 13- 12. Timing for H 1/H3

TMS320C3x Signal Descriptions and Electrical Characteristics 13-31

Timing

13.5.2 Memory Read~Write Timing

Table 13-1 3 defines memory readlwrite timing parameters for (M)STRB. The
numbers shown in parentheses in Figure 13-13 and Figure 13-14 corre-
spond with those in the No. column of Table 13-1 3.

Timing

Table 13- 13. Timing Parameters for a Memory ((M)STRB) = 0) ReaWrite

$ Guaranteed by design but not tested
5 For 'C30 PPM, &-J(H~L-(M)SL) (max)=7ns

TMS320C3x Signal Descriptions and Electrical Characteristics 13-33

Unit

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

No. Name Descrlptlon

(11) &~(H~L-(M)SL) H I low to (M)STRB
low delay

(12) ~~(H~L-(M)sH) HIlowto(M)STRB
high delay

(13.1) ~ ~ (H ~ H - R w L) H l h i g h t o ~ m l o w
delay

(13.2) ~(H~H-XRWL) H I high to X R ~
low delay

(14.1) ~(HIL-A) Hl lowtoAval id
delay

(1 4.2) b (~ 1 L-XA) H I low to XAvalid
delay

(I5.l) ~ U (D) R D setup before H I
low (read)

5e2) ~u(XD)R XD setup before H I
low (read)

(16) ~~((x)D)R M D hold time after
H I low (read)
-

(17.1) ~SU(RDY) RDY setup before
H I high

(17.2) ~SURRDY) XRDY setup before
H I high

(X)RDY hold time (I8) t h (Do~~Y) atter high

(1 9) b (~ 1 H-MRWH) H I high to M R m
high (write) delay

(20) ~V(MD)W M D valid after H I
low (write)

(21) ~ (M D) W O D hold time after
H I high (write)

'C30-27
'C31-27

Mln Max

0* 13

0* 13

0* 13

O* 19

0* 16

0* 12

18

21

0

10

11

0

13

25

O*

'C30-33
'C31-33
'LC31

Mln Max

0* 10

0* 10

0* 10

0* 15

0* 14

0* 10

16

18

0

8

9

0

10

20

O*

'C30-40
'C3140

Mln Max

0* 68

0* 6

0* 9

0* 13

0* 11

0* 9

14

16

0

8

9

0

9

17

O*

'C31-50

Mln Max

0* 4

0* 4

0* 7

O* 9

10

0

6

0

7

14

O*

Table 13- 13. Timing Parameters for a Memory ((M)STRB) = 0) ReactnNite (Continu@

t Guaranteed from characterization but not tested
*Guaranteed by design but not tested
8 For 'C30 PPM, t d (~ 1 L-(M)SL) (max)=7ns

No. Name Description

(22.1) td (H 1 H-A) H1 high to A valid
on back-to-back
write cycles (write)
delay

(22.2) t d (~ ~ H-XA) HI high to XA valid
on back-to-back
write cycles (write)
delay

(26) t d (, t - p) ~ ~ ~) (X) delay from
A valid delay

Figure 13-13. Timing for Memory ((M)STRB = 0) Read

Note: (M)STRB will remain low during back-to-back read operations.

'C30-27
'C31-27

Min Max

23

32

10t

'C31-50

Min Max

12

6

'C30-33
'C31-33
'LC31

Mln Max

18

25

8t

-

Unit

ns

ns

ns

'C30-40
'C31-40

Min Max

15

21

7 t

Timing

Figure 13-14. Timing for Memory ((M)STRB = 0) Write

Table 13-1 4 defines memory read timing parameters for IOSTRB. The num-
bers shown in parentheses in Figure 13-1 5 and Figure 13-1 6 correspond
with those in the No. column of Table 13-14 and Table 13-1 5.

Table 13-14. Timina Parameters for a Memorv / IOSTRB = 0) Read

(12.1) t d (~ 1 H-IOSH) H l high to IOSTRB high delay I 0 t 13 I 0 t 10 I o t 9

- . ,
No. Name Description

(11.1) ~(H~H- IOSL) H I high to low delay

(1 5.3) ~SU(XD)R XD setup before HI high 1 l9 1 l5

(13.1) ~ (H~L-XRWH) H I low to X R ~ high delay

(14.3) t d (~ i ~ - x , q H I low to XA valid delay

(16.1) ~ ~ (x D) R XD hold time after H I high 1 0 1 o

'C30-27

Min Max

0t 13

(17.3) ~SU(XRDY) XRDY setup before HI high 11 I 9

0 t 13

0 t 13

'C30-33

Min Max

0 t 10

TMS320C3x Signal Descriptions and Electrical Characteristics

'C30-40

Min Max

0t 9

O* 10

0 t 10

(18.1) ~ ~ (X R D Y ~ XRDY hold time after HI high

0 t 9

O* 9

t Guaranteed by design but not tested

0 0 0

Timing

Figure 13-1 5. Timing for Memory (IOSTRB = 0) Read

3

I (ll.l)+q (1 2 1 I

I
I

IOSTRB I I
I I I

XD

-
(X) RDY

Timing

Figure 13-16. Timing for Memory (IOSTRB = 0) Write

(X) RDY

Table 13-1 5 defines memory write timing parameters for IOSTRB. The num-
bers shown in parentheses in Figure 13-1 5 and Figure 13-16 correspond
with those in the No. column of Table 13-1 4 and Table 13-1 5.

Table 13-15. Timing Parameters for a Memory (IOSTRB = 0) Write

t Guaranteed by design but not tested

No. Name Description

(23) b(Hl L - ~ ~ ~ ~) H i low to X R ~ low delay

(24) ~V(XD)W XD valid after H I high

(25) t h (~ ~) ~ XD hold time after H I low

TMS320C3x Signal Descriptions and Electrical Characteristics 13-37

'C30-27

Mln Max

0 t 19

38

0

'C30-33

Mln Max

0 t 15

30

0

'c30-40

Mln Max

0 t 13

25

0

Unit

ns

ns

ns

13.5.3 XFO and XF1 Timing When Executing LDFl or LDll

Table 13-1 6 defines the timing parameters for XFO and XF1 during execution
of LDFl or LDII. The numbers shown in parentheses in Figure 13-17 corre-
spond with those in the No. column of Table 13-1 6.

Timing

Table 13-16. Timing Parameters for XFO and XFl When Eecuting LDFl or LDll

Figure 13- 1 7. Timing for XFO and XF1 When Executing LDFI or LDll

No. Name Description

(1) ~ ~ (H ~ H - X F ~ L) H3 high to XFO low delay

(2) t su (X~ l) XF1 setup before H I low

(3) ~~(xFI) XF1 hold time after H I low

Fetch
I LDFl or LDll I Decode I Read I Execute I

H3

(X)A

(X) D

()RDYx

XFO Pin

XF1 Pin

'C30-27
'C31-27

Mln Max

19

13

0

TMS320C3x Signal Descriptions and Electrical Characteristics

'C30-33
'C31-33
'LC31

Min Max

15

10

0

'C3040
'C3140

Mln Max

13

9

0

'C31-50

Min Max

12

9

0

Unit

ns

ns

ns

Timing

13.5.4 XFO Timing When Executing STFl and STll

Table 13-1 7 defines the timing parameters for the XFO and XF1 pins during
execution of STFl or STII. The number shown in parentheses in Figure 13-1 8
corresponds with the number in the No. column of Table 13-1 7.

Table 13-1 7. Timing Parameters for XFO When Executing STFl or ST11

XFO is always set high at the beginning of the execute phase of the interlock
store instruction. When no pipeline conflicts occur, the address of the store is
also driven at the beginning of the execute phase of the interlock store instruc-
tion. However, if a pipeline conflict prevents the store from executing, the ad-
dress of the store will not be driven until the store can execute.

Figure 13-1 8. Timing for XFO When Executing an STFl or STll

Fetch
I STFl or STll I Decode I Read

H3

I

'C30-33
'c31-33
'LC31

Min Max

15

'C30-40
'C31-40

Mln Max

13

No. Name Description

(1) t d (~ 3 ~ - ~ ~ ~ ~) H3 high to XFO high delay

M D

(X) R DY

XFO Pin

'C30-27
'C31-27

Min Max

19

'c31-50

Min Max

12

Unit

ns

13.5.5 XFO and XF1 Timing When Executing SlGl

Table 13-1 8 defines the timing parameters for the XFO and XF1 pins during
execution of SIGI. The numbers shown in parentheses in Figure 13-1 9 corre-
spond with those in the No. column of Table 13-1 8.

(1) ~~ (H~H-XFOL) H3 high to XFO low delay 12

(2) ~~ (H~H-XFOH) H3 high to XFO high delay

(3) ku(x~1) XF1 setup before H I low

(4) t h (~ ~ l)

Table 13-1 8. Timing Parameters for XFO and XFl When Executing SlGl

Figure 13- 19. Timing for XFO and XF 1 When Executing SlGl

No. Name Description

Fetch

I SlGl I Decode 1 Read 1 Execute I
H3

H I

(3) --Y k-
XFO

I I
I 1
I I

'C30-27
'C31-27

Min Max Unlt -
ns

TMS320C3x Signal Descriptions and Electrical Characteristics 13-41

'C31-50

Mln Max

'C30-33
'C31-33
'LC31

Min Max

'C30-40
'C31-40

Min Max

Timing

13.5.6 Loading When the XF Pin Is Configured as an Output

Table 13-1 9 defines the timing parameter for loading the XF register when the
XF pin is configured as an output. The number shown in parentheses in
Figure 13-20 corresponds with the number in the No. column of Table 13-1 9.

Table 13-19. Timing Parametes for Loading the XF Register When Configured as an Ouput
Pin

Figure 13-20. Timing for Loading XF Register When Configured as an Output Pin
Fetch Load

I Instruction I Decode I Read I Execute I

No. Name Description

(1) ~"(H~H-xF) H3 high to XF valid

OUTXF
Bit

'C3040
'C3140

Min Max

13

-4 p- (1)

XF Pin

'C30-27
'C31-27

Min Max

19

'C30-33
'C31-33
'LC31

Min Max

15

'C31-50

Min Max

12

Unit

ns

Timing

13.5.7 Changing the XF Pin From an Output to an lnput

Table 13-20 defines the timing parameters for changing the XF pin from an
output pin to an input pin. The numbers shown in parentheses in Figure 13-21
correspond with those in the No. column of Table 13-20.

Table 13-20. Timing Parameters of XF Changing From OuQut to lnput Mode

(1) ~ ~ (H ~ ~ x F o I) XF hold after H3 high

(2) ku(xF) XF setup before HI low

Figure 13-21. Timing for Change of XF From Output to lnput Mode

Unit

(3) th(xF) XF hold after HI low

'C31-50

Min Max No. Name Descri~tion

19

13

I I I I
H 1

-
IOXF

Bit
I

I

t For 'C30 PPM, tn(H3&XF01) (max)=14ns

o

Execute
Load of IOF

XF Pin

'C30-27
'C31-27

Mln Max

15

10

INXF Bit

o

H3

Buffers Go
From Output

'Data \
Sam~led 9 I

'C30-33
'c31-33
'LC31

Min Max

13t

9

Data
Seen

'C30-40
'C31-40

Mln Max

o

to Output Seen in IOF
Synchronizer

Delay

TMS320C3x Signal Descriptions and Electrical Characteristics 13-43

12

9

Value on Pin

ns

ns

o ns

Timing

13.5.8 Changing the XF Pin From an input to an Output

Table 13-21 defines the timing parameter for changing the XF pin from an in-
put pin to an output pin. The number shown in parentheses in Figure 13-22
corresponds with the number in the No. column of Table 13-21.

Figure 13-22. Timing for Change of XF From Input to Output Mode

Table 13-21. Timing Parameters of XF Changing From lnput to O@ut Mode

I
Execution of
Load of IOF I

No. Name Description

(1) ~~(H~H-XFIO) H3 high to XF switching
from input to output delay

XF Pin P

'C30-40
'C31-40

Min Max

17

I

I I
I

'C30-27
'C31-27

Min Max

25

-
IOXF

Bit

'c31-50

Mln Max

17

'C30-33
'C31-33
'LC31

Min Max

20

I
I

Unit

ns

I

Timing

13.5.9 Reset Timlng

RESET is an asynchronous input that can be asserted at any time during a
clock cycle. If the specified timings are met, the exact sequence shown in
Figure 13-23 on page 13-48 will occur; otherwise, an additional delay of one
clock cycle is possible.

The asynchronous reset signals include XFO/1, CLKXO/1, DXO/1 , FSXO/1 P

CLKRO/1, DROII , FSRO/1, and TCLKOI1.

Table 13-22 ('C30) and Table 13-23 ('C31) define the timing parameters for
the -signal. The numbers shown in parentheses in Figure 13-23 corre-
spond with those in the No. column of Table 13-22 or Table 13-23.

Resetting the device initializes the primary and expansion bus control regis-
ters to seven software wait states and therefore results in slow external ac-
cesses until these registers are initialized.

Note also that is an asynchronous input and can be asserted during
reset.

TMS320C3x Signal Descriptions and Electrical Characteristics 13-45

Timing
L

Table 13-22. Timing Parameters for RESET for the TMS320C30

No. -
(1)

Name Description

 RESET) Setup for RESET before
CLKIN low

~(CLKINH-HI H) CLKlN high to H I high delay*

~(CLKINH-HI L) CLKlN high to H1 low delay*

~(RESETH-H 1 L) Setup for RESET high
before H I low and after 10 HI
clock cycles

~(CLKINH-H~L) CLKlN high to H3 low delay*

~(CLKINH-H~H) CLKlN high to H3 high delay*

H1 high to M D disabled (high
impedance)

bis(H3H-(X)~) H3 high to M A disabled (high
impedance)

~(H~H-CONTROLH) H3 high to control signals high
delay

b (~ 1 H-RWH) HI high to ~m high delay

b (H 1 H-IACKH) H I high to lACK high delay

RESET low to asynchronous-
ly reset signals disabled (high
impedance)

1 Min Max I Unlt

'C30-27

Min Max

t Characterized but not tested * See Figure 13-24 for temperature dependence for the 33-MHz TMS320C30. See Figure 13-25 for temperature dependence
for the 40-MHz TMS320C30.
p =tc(cl)

'C30-33

Min Max

28 P ~ S 10 pt

Table 13-23. Timing Parameters for ~ E T for the TMS32OC31

TMS320C3x Signal Descriptions and Electrical Characteristics 13-47

-

No. Name Description

(I) t s u (~ ~ ~ ~ ~) Setup for RESEt
before CLKlN low

PI1 ~(CLKINH-HIH) CLKlN highto H I
high delay 8s

(2.2) ~(CLKINH-HI L) CLKlN highto H I
low delay §#

(3) ~~~(RESETH-HIL) Setup for RESET
high before H I
low and after 10
H I clock cycles

(5.1) ~(CLKINH-H~L) CLKlNhightoH3
low delay §#

(5.2) ~(CLKINH-H~H) CLKlNhightoH3
high delay

(8) b i s (H l ~ - &) ~) H I high to D
disabled (high
impedance)

(9) bis(H3H-(X)A) H3 high to A
disabled (high
impedance)

(I0) ~(H~H-CONTROLH) H3 high to
control signals
high delay

(I2) b (~ 1 H-RWH) H I high to ~m
high delay

(I3) b (~ 1 H-IACKH) H I high t o m
high delay

(I4) ~~~(RESETL-ASYNCH) RESET low to
asynchronously
reset signals dis-
abled (high im-
pedance)

t Characterized but not tested * 14 ns for the extended temperature 'C31-33
5 See Figure 13-25 for temperature dependence for the TMS320C31-27, TMS320C31-33, and the extended-temperature

TMS320C31-33.
n p =tc(CI)
#See Figure 13-26 for temperature dependence for the TMS320C31-50.

'C31-27

Min Max

28 P ~ V

2 12

2 12

13

2 12

2 12

19t

13t

13t

13t

13t

31 t

'C31-33
'LC31

Mln Max

10 P ~ V

2 12*

2 12*

10

2 12*

2 12*

15t

10t

10t

10t

10t

25t

'C31-40

Mln Max

10 P ~ V

2 12

2 12

9

2 12

2 12

13t

9 t

9 t

9 t

9 t

21 t

'C31-50

Min Max

10 P ~ T

2 10

2 10

7

2 10

2 10

12t

8 t

8 t

8 t

8 t

17t

Unit

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

Timing

Figure 13-23. Timing for RESET

CLKIN 1 I 1
- 9 * (I l l i
RESET X I I , +

. .
M A I

(Notes 2,7) 1 I

Control I
Signals

I

(Note 3) 1 7 I
J k n l) I

.. .- ~

Asynchronous (14)
Reset Signals 3

(Note 4)

Notes: 1) (X)D includes D31-DO and XD31-XDO.

2) @)A includes A23-A0 and XA12-XAO.
3) Control signals include m, m, and m.
4) Asynchronously reset signals include XFO/l, CLKXO/l, DXO/l, FSXOll, CLKRO/l , DRO/l, FSROIl, and TCLK011.

5) RESET is an asynchronous input and can be asserted at any point during a clock cycle. If the specified timings are
met, the exact sequence shown will occur; otherwise, an additional delay of one clock cycle is possible.

6) Note that the R m and X R m outputs are placed in a high-impedance state during reset and can be provided with
a resistive pull-up, nominally 1 El-22 kQ, if undesirable spurious writes could be caused when these outputs go low.

7) In microprocessor mode, the reset vector is fetched twice, with seven software wait states each time. In microcom-
puter mode, the reset vector is fetched twice, with no software wait states.

Timing

Figure 13-24. CL KIN to H 1/H3 as a Function of Temperature

o ? , , , , , , , I I I I , , , , , , , , ,

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

Case Temperature (CO)

Figure 13-25. CLKlN to H 1/H3 as a Function of Temperature

22 TMS320C31-27

20 TMS320C31-33

18 TMS320C31-33 (extended temperature)
V)

E. 16 TMS320C30-40

14 4.75 v s VDD s 5.25 V

F 12

10 g 8

6

4

2

0

105110 115120125

Case Temperature (CO)

TMS320C3x Signal Descriptions and Electrical Characteristics 1 3-49

Timing

Figure 13-26. CLKlN to H 1/H3 as a Function of Temperature

Case Temperature (CO)

Timing

13.5.10 SHZ Pin Timing

Table 13-24 defines the timing parameters for the SHZ pin. The numbers
shown in parentheses in Figure 13-27 correspond with those in the No. col-
umn of Table 13-24.

Table 13-24. Timing Parameters for the Pin

No. Name Description
-

(1) h i s (s ~ z) SHZ low Gll 0, 110 pins disabled
(high impedance)
-

(2) L,(SHZ) SHZ high to all 0, I10 pins enabled I 0t 2 ~ t * I ns
(active)

t Characterized but not tested
*P = ~ (c I)

Figure 13-27. Timing for Pin

All I/O Pins \-

Note: nabl ling =destroys ~ ~ S 3 2 0 C 3 x register and memory contents. Assert SHZ = 1 and reset the TMS320C3x to restore
it to a known condition.

TMS320C3x Signal Descriptions and Electrical Characteristics 13-51

Timing

13.5.11 lnterrupt Response Timing

Table 13-25 defines the timing parameters for the INT signals. The numbers
shown in parentheses in Figure 13-28 correspond with those in the No. col-
umn of Table 13-25.

t Characterized but not tested * P = tc (H)

--
Table 13-25. Timing Parameters for IN T3-IN TO

The interrupt (mv pins are asynchronous inputs that can be asserted at any
time during a clock cycle. The TMS320C3x interrupts are level-sensitive, not
edge-sensitive. Interrupts are detected on the falling edge of H1. Therefore,
interrupts must be set up and held to the falling edge of H1 for proper detection.
The CPU and DMA respond to detected interrupts on instruction fetch bound-
aries only.

For the processor to recognize only one interrupt on a given input, an interrupt
pulse must be set up and held to:

Unit

ns

ns

A minimum of one H I falling edge, and
0 No more than two H I falling edges.

No. Name Descrlptlon
--

(1) b U (, ~ ~) INT3-INTO setup before H I
low

(2) t w (l ~ ~) lnterrupt pulse duration to
guarantee only one interrupt

The TMS320C3x can accept an interrupt from the same source every two H I
clock cycles.

'C30-33
'c31-33
'LC31

Min Max

15

P 2 ~ t *

'C30-27
'C31-27

Mln Max

19

P 2 ~ t *

If the specified timings are met, the exact sequence shown in Figure 13-28 will
occur; otherwise, an additional delay of one clock cycle is possible.

13-52 TMS320C3x User's Guide

'C30-40
'C31-40

Min Max

13

P 2 ~ t *

'C31-50

Min Max

10

P 2 ~ t *

Timing

Figure 13-28. Timing for m3-INTO Response

Interrupt
Vector Read

Fetch First
Instruction of

Service Routine I I

I I I I
INT3 -INTO I I I I I

Flag I I I
I I I I
I I I I

ADDR

Data

TMS320C3x Signal Descriptions and Electrical Characteristics 13-53

Timing
I

13.5.12 Interrupt Acknowledge Timing
-

The IACK output goes active on the first half-cycle (HI rising) of the decode
phase of the IACK instruction and goes inactive at the first half-cycle (HI rising)
of the read phase of the IACK instruction.

-
Table 13-26 defines the timing parameters for the IACK signal. The numbers
shown in parentheses in Figure 13-29 correspond with those in the No. col-
umn of Table 13-26.

Figure 13-29. Timing for EK

Table 13-26. Timing Parameters for TK

Fetch IACK Decode IACK ~ACK Data 1 Instruction I Instruction I Read I I
H3

-
IACK

No. Name Description
-

(1) t d (~ l ~ - ~ ~ ~ ~ ~) HI high to IACK low delay
-

(2) ~~(H~H-IACKH) HI high to IACK high delay

ADDR

Data

Note: The lACK output is active for the entire duration of the bus cycle and is therefore extended if the bus cycle utilizes wait
states.

Unit

ns

ns

'C30-40
'(231-40

Min Max

9

9

'C30-27
'C31-27

Min Max

13

13

'C31-50

Min Max

7

7

'C30-33
'C31-33
'LC31

Min Max

10

10

Timing

13.5.1 3 Data Rate Timing Modes

Unless otherwise indicated, the data rate timings shown in Figure 13-30 and
Figure 13-31 are valid for all serial port modes, including handshake. For a
functional description of serial port operation, refer to subsection 8.2.12 on
page 8-30.

Table 13-27 defines the serial port timing parameters for eight 'C3x devices.
The numbers shown in parentheses in Figure 13-30 and Figure 13-31 corre-
spond with those in the No. column of Table 13-27.

Figure 13-30. Timing for Fixed Data Rate Mode

I I I I I

DX Bit n-1 x Bit n-2 " Bit 0
I I I

FSR

Notes: 1) Timing diagrams show operations with CLKXP = CLKRP = FSXP = FSRP = 0.

2) Timing diagrams depend on the length of the serial port word, where n = 8, 16,24, or 3 2 bits, respectively.

TMS320C3x Signal Descriptions and Electrical Characteristics 13-55

Timing

Figure 13-31. Timing for Variable Data Rate Mode

I

I

5 - C -
(1 5) ++I

Bit n-2)(Bit n-3 T F . ,
FSR

Notes: 1) Timing diagrams show operation with CLKXP = CLKRP = FSXP = FSRP = 0.

2) Timing diagrams depend on the length of the serial port word, where n = 8, 16, 24, or 32 bits, respectively.

3) The timings that are not specified expressly for the variable data rate mode are the same as those that are specified
for the fixed data rate mode.

Timing

Table 13-27. Serial-Port Timing Parameters

No. Name Descrlptlon

TMS320C30-27/TMS320C31-27

Min Max

H I high to internal C L W R delay

Unlt

C L W R cycle time C L W R ext

CLIWR int

C L W R highbow pulse C L W R ext
duration

C L W R int

C L W R rise time

C L W R fall time

CLKX to DX valid delay CLKX ext

CLKX int

DR setup before CLKR ex!

CLKR low CLKR int

DR hold from CLKR ext

CLKR low CLKR int

CLKX to internal CLKX ext

CLKX int

CLKR ext

FSX highllow delay

FSR setup before CLKR
low

CLKR int

C L W R ext FSWR input hold from
C L W R low

C L W R int

CLKX ext External FSX setup be-
fore CLKX

CLKX int

CLKX to first DX bit, FSX CLKX ext
precedes CLKX high
delay

CLKX int

FSX to first DX bit, CLKX precedes FSX
delay

CLKX high to DX high impedance following
last data bit delav

t Guaranteed by design but not tested * Not tested

TMS320C3x Signal Descriptions and Electrical Characteristics 13-57

Table 13-27. Serial-Port Timing Parameters (Continued)

No. Name Descrlptlon

(1) C ~ (H ~ ~ C K) H I high to internal C L W R delay

Mln Max I Unit

(2) ~ (S C K) CLWR cycle time CLWR ext 1 k(H)*.6t I ns
CLWR int 1 k(~)xz~ k (H)&=* I

C L W R highllow pulse C L W R ext
(3) h(scK) duration C L W R int

(4) ~~(scK) C L W R rise time

(5) ~~(scK) C L W R fall time

(6) ~ (D x) CLKX to DX valid delay CLKX ext
CLKX int

DR setup before CLKR ext

CLKR low CLKR int

DR hold from CLKR ext

CLKR low CLKR int

CLKX to internal CLKX ext
FSX highllow delay CLKX int

FSR setup before CLKR ext
CLKR low CLKR int

FSNR input hold from C L W R ext
C L W R low C L W R int

External FSX setup be- CLKX ext
fore CLKX CLKX int

CLKX to first DX bit, FSX CLKX ext
precedes CLKX high CLKX int
delay

FSX to first DX bit, CLKX precedes FSX
delay

CLKX hi h to DX high impedance following last
(' 5, data bit 8elaY

17t I ns
I

t Guaranteed by design but not tested * Not tested

TMS320C3x Signal Descriptions and Electrical Characteristics 13-59

Timina

(3) t w o C L W R hightlow pulse dura- C L W R ext
tion C L W R int

Table 13-27. Serial-Port Timing Parameters (Continued)

(4) ~~(scK) C L W R rise time

(5) ~~(scK) C L W R fall time

No. Name Descrlptlon

(1) b (H 1 - ~ ~ ~ H I high to internal C L W R delay

(2) ~ (S C K) C L W R cycle time C L W R ext
C L W R int

(6) ~ (D x) CLKX to DX valid delay CLKX ext
CLKX int

(7) ~ U (D R) DR setup before CLKR low CLKR ext
CLKR int

TMS320C31-50

Min Max

10

L(H) x 2.6t k (~) x 232$
k (~) x 2

(8) ~ (D R) DR hold from CLKR low
CLKR int

Unit

ns

ns

(9) ~ (F S X) CLKX to internal FSX high/ CLKX ext I 22
low delay CLKX int 15

(lo) ~,(FSR) FSR setup before CLKR low CLKR ext 7
CLKR int I

(11) th (~s) FSWR input hold from
C L W R low

(12) External FSX setup before CLKX ext -[tc(~)-8] [~(sC1(112]-1 0f 1 ns
CLKX CLKX int

(1 3) ~ (C H - D X) ~ CLKX to first DX bit, FSX pre- CLKX ext
cedes CLKX high delay CLKX int

-[tc(H)-21] k (scqMS
24
14

(14) ~ (F S X - D X) ~ FSX to first DX bit, CLKX precedes FSX

f Assured by design but not tested * Not tested

1 ns
24

delay 1 ns
ns CLKX high to DX high impedance following

b(Dxn last data bit delay
14t

HOLD is an asynchronous input that can be asserted at any time during a clock
cycle. If the specified timings are met, the exact sequence shown in
Figure 13-32 will occur; otherwise, an additional delay of one clock cycle is
possible.

Table 13-28 defines the timing parameters for the and signals.
The numbers shown in parentheses in Figure 13-32 correspond with those in
the No. column of Table 13-28.

The NOHOLD bit of the primary bus control register (see subsection 7.1 .I on
page 7-3) overrides the HOLD signal. When this bit is set, the device comes
out of hold and prevents future hold cycles.

Asserting HOLD prevents the processor from accessing the primary bus. Pro-
gram execution continues until a read from or a write to the primary bus is re-
quested. In certain circumstances, the first write will be pending, thus allowing
the processor to continue until a second write is encountered.

Figure 13-32. Timing for =D/HOL DA

H 1

I I I -w k l)
-

I
HOLD

-
HOLDA

-
STRB

I
wt- (11)

m I I,
I

I 'l

I
A

D

- -
Note: HOLDA will go low in response to HOLD going low and will continue to remain low until one H I cycle after HOLD goes

back high, as shown in Figure 13-32.

TMS320C3x Signal Descriptions and Electrical Characteristics 13-61

Table 13-28. Timing Parameters for ~ / H O L D A

(3) t V (~ 0 u q HOLDA valid
after H 1 low 1 ° * l4 1°* lo

(1) HOLD) HOLD setup
before H1 low

(4) b(H0LD5) HOLD low du- 1 %(H) 1 &(HI
ration

'C30-33
'C31-33
'LC31

Mln Max No. Name Description

(6) ++qHoroq HOLDA O W du- 1 &-st 1 iH -a t
ration

'C30-27
'C31-27

Min Max

19

(7) ~(HIL-SH)H) H1! to
STRB high for
a delay lo* l3 lo*

15

(8) t d i s (~ 1 ~ 4) EL!!! to lo* 1 3 t I 0 * 10t
STRB disabled
(high-impe-
dance state)

(9) kn(H1 LS) !!&!low
STRB enabled
(active)

(1 0) $J~(H~L-RW) H1 low to RAV
disabled (high-
impedance
state)

(1 1) t e n (H 1 L ~ H1 IOW to ~m
enabled (ac-
tive)

(1 2) t d i s (~ l ~ + y H I low to ad-
dress disabled
(high-impe-
dance state)

(13) bn(~lL+y H I low to ad-
dress enabled
(valid)

(1 5) ~ (H ~ H - Q HI high to data 1 O* 13t 1 O* 10t
disabled (high-
impedance
state) I I

Min Max Min Max

t Characterized but not tested * Not tested
5 m i s an asynchronous input and can be asserted at any point during aclock cycle. If the specified timings are met, the exact

sequence shown will occur; otherwise, an additional delay of one clock cycle is possible.

-
- Unit

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

13.5.1 5 General-Purpose I10 Timing

Peripheral pins include CLKXOII, CLKRO11, DXO11, DROI1, FSXO11, FSRO11,
and TCLKO11. The contents of the internal control registers associated with
each peripheral define the modes for these pins.

13.5.15.1 Peripherai Pin l/O Timing

Table 13-29 defines peripheral pin general-purpose I10 timing parameters.
The numbers shown in parentheses in Figure 13-33 correspond with those in
the No. column of Table 13-29.

No. Name Description 1 Min Max 1 Min Max 1 Min Max

Table 13-29. Timing Parameters for Peripheral Pin General-Purpose I/O

(2) ~ ~ (G P I O H ~ 1) General-purpose input hold
time after H I low l o l o lo

'C30-40
'C31-40

'C30-27
'C31-27

(1) k U (~ p ~ 0 ~ 1 L) General-purpose input setup
before H I low

(3) t q ~ p 1 0 ~ 1 H) General-purpose output 1 l9 1 l5 1 13
delay after H I high

'C30-33
'C31-33
'LC31

15

Note: Peripheral pins include CLKXOI1 , CLKROI1 ,DXO/~, DROI1, F S X O ~ , FSROIl, and TCLKOI1 .The modes of these pins are
defined by the contents of internal control registers associated with each peripheral.

Figure 13-33. Timing for Peripheral Pin General-Purpose I/O

H 1

(2) 1
(1) I (3) -h -4 I (3)

I n -
Peripheral)(-i--+:r$-,

Pin

13.5.15.2 Changing the Peripherai Pin I/O Modes

Table 13-30 and Table 13-31 show the timing parameters for changing the
peripheral pin from a general-purpose output pin to a general-purpose input
pin and vice versa. The numbers shown in parentheses in Figure 13-34 and
Figure 13-35 correspond to those shown in the No. column of Table 13-30
and Table 13-31, respectively.

TMS320C3x Signal Descriptions and Electrical Characteristics 13-63

Timing

Table 13-30. Timing Parameters for Peripheral Pin Changing From General-Purpose Oulput
to lnput Mode
- - -- -

Table 1 3 3 1. Timing Parameters for Peripheral Pin Changing From General-Purpose lnput to
Output Mode

No. Name Description

) t h (~ 3 ~) Hold after H I high

(2) t s u (~ p 1 o ~ 1 ~ Peripheral pin setup before
H l low

(3) ~ ~ (G P I O H ~ L Peripheral pin hold after H I
low

Figure 1334. Timing for Change of Peripheral Pin From General-Purpose Output to
lnput Mode

No. Name Description

(1) t d (~ p 1 0 ~ 1 ~) H I high to peripheral pin
switching from input to out-
put delay

'C30-27
'C31-27

Min Max

19

13

0

10
I I

Control Bit I
J w - ~ i \ I I I

'c31-50

Min Max

10

9

0

'C30-27
'C31-27

Min Max

19

Execution of
Store of

Peripheral
Control

Register

Peripheral
Pin

'C30-33
'C31-33
'LC31

Min Max

15

10

0

Unit

ns

ns

ns

Data Bit

'C30-40
'C3140

Min Max

13

9

0

'C30-33
'C31-33
'LC31

Min Max

15

H3

Buffers Go
From Output

to lnput

'C30-40
'C3140

Min Max

13

Synchronizer Delay

Value on Pin
Seen in

Peripheral
Control
Register

'C31-50

Min Max

10

Unit

ns

Figure 13-35. Timing for Change of Peripheral Pin From General-Purpose Input to
Output Mode

Execution of Store
of Peripheral Control

Register

10
Control

Bit

Peripheral
Pin

TMS320C3x Signal Descriptions and Electrical Characteristics

13.5.16 Timer Pin Timing

Valid logic-level periods and polarity are specified by the contents of the inter-
nal control registers.

Table 13-32 and Table 13-33 define the timing parameters for the timer pin.
The numbers shown in parentheses in Figure 13-36 correspond with those in
the No. column of Table 13-32 and Table 13-33.

Table 13-32. Timing Parameters for Timer Pin

Guaranteed by design but not tested
*Timing parameters 1 and 2 are applicable for a synchronous input clock. Timing parameters 4 and 5 are applicable for an

asynchronous input clock.

No. Name ~escrlptlon*

(1) ~ , ,~CU<H~L TCLK ext TCLK
setup before ext
H l low

(2) t h f l c ~ , ~ TCLKext TCLK
hold after ext
H l low

(3) ~ ~ c u (H ~ H) HI high to TCLK
TCLK int int
valid delay

(4) t,.vcug TCLK cycle TCLK
time ext

TcLK
int

(5) t,,,vcug TCLK high/ TCLK
low pulse ext
duration

T C w
int

'C30-27/'C31-27

Mln Max

15

0

13

k(~lx2.6t

'c(~)x2 k(H)d3'+

t,-(H)+12t

l'?qc@I-15 k(~c@I+5

'C30-33/'C31-33

Mln Max

12

0

10

' c (~)d .6 t

k (H)d k(H) x232t

k(~)+12+

k(~c@I-15 k(~c@I+5

Unit

ns

ns

ns

ns

ns

ns

ns

Table 13-33. Timing Parameters for Timer Pin

(1) t s u v ~ ~ l ~) TCLK ext set- TCLK
up before H1 ext
low

No. Name Descrlptlon*

(2) t h v c m 1 L) TCLK ext hold TCLK
after H1 low ext

'C30-4O/'C31-40

Mln Max

(3) ~ W U < H ~ H) H1 high to TCLK
TCLK int valid int
delay

(4) ~ ~ C U Q TCLK cycle
time

TCLK
int

(5) ~,,~cuQ TCLK high/ TCLK
low pulse du- ext
ration

int TcLK I

Mln Max
-
Unit -
ns

t Guaranteed by design but not tested
*Timing parameters 1 and 2 are applicable for a synchronous input clock. Timing parameters 4 and 5 are applicable for an

asynchronous input clock.

Figure 13-36. Timing for Timer Pin

Peripheral
Pin X

L

TMS320C3x Signal Descriptions and Electrical Characteristics

Instruction O~codes

The opcode fields for all TMS320C3x instructions are shown in Table A-1 . Bits
in the table marked with a hyphen are defined in the individual instruction de-
scriptions (see Chapter 10). Table A-1 , along with the instruction descriptions,
fully defines the instruction words. The opcodes are listed in numerical order.
Note that an undefined operation may occur if an illegal opcode is executed.

Instruction Opcodes

Table A- 1. TMS320C3x Instruction Opcodes

INSTRUCTION 31 30 29 28 27 26 25 24 23

ABSF 0 0 0 0 0 0 0 0 0

ABSl

ADDC

ADDF 0 0 0 0 0 0 0 1 1

ADD1 0 0 0 0 0 0 1 0 0

AND 0 0 0 0 0 0 1 0 1

ANDN 0 0 0 0 0 0 1 1 0

ASH 0 0 0 0 0 0 1 1 1

CMPF

CMPl

FIX

FLOAT

IDLE

IDLE2

LDE

LDF

LDFl 0 0 0 0 0 1 1 1 4

LDI 0 0 0 0 1 0 0 0 0

LDll 0 0 0 0 1 0 0 0 1

LDM

LDP

LSH 0 0 0 0 1 0 0 1 1
LOPOWER 0 0 0 1 0 0 0 0 1
MAXSPEED 0 0 0 1 0 0 0 0 1

MPYF 0 0 0 0 1 0 1 0 0

MPYI 0 0 0 0 1 0 1 0 1

NEGB 0 0 0 0 1 0 1 1 0

NEGF 0 0 0 0 1 0 1 1 1

NEGl 0 0 0 0 1 1 0 0 0

Instruction Opcodes

Table A-1. TMS320C3x Instruction Opcodes (Continued)

INSTRUCTION 31 30 29 28 27 26 25 24 23

NOP 0 0 0 0 1 1 0 0 1
NORM 0 0 0 0 1 1 0 1 0
NOT 0 0 0 0 1 1 0 1 1
POP 0 0 0 0 1 1 1 0 0
POPF 0 0 0 0 1 1 1 0 1
PUSH 0 0 0 0 1 1 1 1 0
PUSHF 0 0 0 0 1 1 1 1 1
OR 0 0 0 1 0 0 0 0 0
RND 0 0 0 1 0 0 0 1 0
ROL 0 0 0 1 0 0 0 1 1
ROLC 0 0 0 1 0 0 1 0 0
ROR 0 0 0 1 0 0 1 0 1
RORC 0 0 0 1 0 0 1 1 0
RPTS 0 0 0 1 0 0 1 1 1
STF 0 0 8 1 0 1 0 0 0
STFl 0 0 0 1 0 1 0 0 1
ST1 0 0 0 1 0 1 0 1 0
ST1 l 0 0 0 1 0 1 0 1 1
SlGl 0 0 0 1 0 1 1 0 0
SUBB 0 0 0 1 0 1 1 0 1
SUBC 0 0 0 1 0 1 1 1 0
SUBF 0 0 0 1 0 1 1 1 1
SUB1 0 0 0 1 1 0 0 0 0
SUBRB 0 0 0 1 1 0 0 0 1
SUBRF 0 0 0 1 1 0 0 1 0
SUBRl 0 0 0 1 1 0 0 1 1

TSTB 0 0 0 1 1 0 1 0 0

XOR 0 0 0 1 1 0 1 0 1

IACK 0 0 0 1 1 0 1 1 0
ADDC3 0 0 1 0 0 0 0 0 0
ADDF3 0 0 1 0 0 0 0 0 1
ADD13 0 0 1 0 0 0 0 1 0
AND3 0 0 1 0 0 0 0 1 1
ANDN3 0 0 1 0 0 0 1 0 0
ASH3 0 0 1 0 0 0 1 0 1
CMPF3 0 0 1 0 0 0 1 1 0
CMP13 0 0 1 1 0 0 0 1 1 1

Instruction Opcodes A-3

Instruction Omodes

Table A- 1. TMS320C3x Instruction Opcodes (Continued)

INSTRUCTION 31 30 29 28 27 26 25 24 23

LSH3 0 0 1 0 0 1 0 0 0

LDFcond 0 1 0 0 - - - - -
LD l cond 0 1 0 1 - - - - -

CALL

RPTB

SWI

~ c o n d (~) t 0 1 1 0 1 0 - - -
D~cond(D)t 0 1 1 0 1 1 - - -
CALLcond 0 1 1 1 0 0 - - -
TRAPcond 0 1 1 1 0 1 0 - -
RETl cond 0 1 1 1 1 0 0 0 0

RETScond 0 1 1 1 1 0 0 0 1

t Opcode same for standard and delayed instructions.

Instruction Opcodes

Table A- 1. TMS320C3x Instruction Opcodes (Concluded)

INSTRUCTION 31 30 29 28 27 26 26 24 23

MPY1311SUB13 1 0 0 0 1 1 0 0 -
1 0 0 0 1 1 0 1 -
1 0 0 0 1 1 1 0 -

XOR311STI 1 1 1 0 1 1 1 - -
Reservedforreset, 0 1 1 1 1 1 1 1 1
traps, and interrupts

Instruction Opcodes A-5

Development SupportlPart Ordering Information

This appendix provides development support information, device part num-
bers, and support tool ordering information for the TMS320C3x generation.

Each TMS320C3x support product is described in the TMS320 Family Devel-
opment Support Reference Guide (literature number SPRUOl l).ln addition,
more than 100 third-party developers offer products that support the TI
TMS320 family. For more information, refer to the TMS320 Third-Party Refer-
ence Guide (literature number SPRU052).

For information on pricing and availability, contact the nearest TI field sales of-
fice or authorized distributor.

This appendix discusses the following major topics:

Topic Page

TMS320C3x Development Support Tools

B.l TMS320C3x Development Support Tools

Texas Instruments offers an extensive line of development tools for the
TMS320C3x generation of DSPs, including tools to evaluate the performance
of the processors, generate code, develop algorithm implementations, and ful-
ly integrate and debug software and hardware modules.

The following products support development of 'C3x applications:

Code Generation Tools

Q Optimizing ANSl C compiler. Translates ANSl C language directly into
highlyoptimized assembly code. You can then assemble and link this code
with the TI assembler/linker, which is shipped with the compiler. It supports
both 'C3x and 'C4x assembly code. This product is currently available for
PC (DOS, DOS extended memory, and 0S/2), VAXNMS, and SPARC
workstations. Refer to the TMS320 Floating-Point DSP Optimizing C
Compiler User's Guide (SPRU034) for detailed information.

Assembler/linker. Converts source mnemonics to executable object code.
It supports both 'C3x and 'C4x assembly code. This product is currently
available for PC (DOS, DOS extended memory, and OS/2). The 'C3xlC4x
assembler for the VAXNMS and SPARC workstations is only available as
part of the optimizing 'C3xlC4x compiler. Refer to the TMS320 Floating-
Point DSP Assembly Language Tools User's Guide (SPRU035) for de-
tailed information.

System Integration and Debug Tools

Simulator. Simulates via software the operation of the 'C3x and can be
used in C and assembly software development. This product is currently
available for PC (DOS and Windows) and SPARC workstations. Refer to
the TMS32OC3x C Source Debugger User's Guide (SPRU054) for de-
tailed information.

XDS510 emulator. Performs full-speed in-circuit emulation with the 'C3x,
providing access to all registers as well as to internal and external memory.
It can be used in C and assembly software development and has the capa-
bility of debugging multiple processors. This product is currently available
for PC (DOS, Windows, and OSl2) and SPARC workstations. This product
includes the emulator board (emulator box, power supply, and SCSl con-
nector cables in the SPARC version), the 'C3x C source debugger soft-
ware, and the JTAG cable.

TMS320C3x Development Support Tools

Because 'C3x and 'C5xXDS51O emulators also come with the same emu-
lator board (or box), you can buy the 'C3x C source debugger software as a
separate product called 'C3x C Source Debugger Conversion Software.
This enables you to debug 'C3QC4QC5x applications with the same
emulator board. The emulator cable that comes with the 'C5x XDS510
emulator is not compatible with the 'C3x. You need a JTAG emulation con-
version cable. Refer to the TMS320C3x C Source Debugger User's Guide
(SPRU053) for detailed information on the 'C3x emulator.

Evaluation module (EVM). Each EVM comes complete with a PC halfcard
and software package. The EVM board contains the following:

H A TMS320C30 and a 33-MFLOPS, 32-bit floating-point DSP

H A 16K-word, zero-state SRAM, allowing coding of most algorithms di-
rectly on the board

H A speakerlmicrophone-ready analog interface for multimedia,
speech, and audio applications development

A multiprocessor serial port interface for connecting to multiple EVMs

A host port for PC communications

The system also comes with all the software required to begin applications
development on a PC host. Equipped with a C and assembly language
source level debugger for the DSP, the EVM has a window-oriented,
mouse-driven interface that enables the downloading, executing, and de-
bugging of assembly code or C code.

The TMS320C3x assembler~linker is also included with the EVM. For us-
ers who prefer programming in a high-level language, an optimizing ANSI
C compiler and Ada compiler are offered separately.

Development SupporUPart Ordering Information 8-3

TMS320C3x Development Support Tools

Emulation porting kit (EPW. Enables you to integrate emulation technolo-
gy directly into your system without the need of an XDS510 board. This
product is intended to be used by third parties and high-volume board
manufacturers and requires a licensing agreement with Texas Instru-
ments. The kit contains host (or PC) source and object code, which lets
you tailor 'C30 EVM-like capabilities to your TMS320C3x system via the
SM74ACT8990 test bus controller (TBC). The EPK can be used in such
applications as program download for system self-test and initialization or
system emulation and debug to feature resident emulation support. EPK
software includes the TI high-level language (HLL) debugger in object as
well as source code for the TBC communication interface. The HLL code
is the windowed debugger found with many TI DSP simulators, evaluation
modules (EVMs), and emulators. With the EPK, the HLL user interface
can be ported directly to the system board. The source code for the TBC
communication interface consists of such commands as readlwrite,
memory run, stop, and reset that communicate with the TMS320C3x de-
vice. Using the EPK reduces system and development cost and speeds
time to market. For more information on the kit, call the DSP hotline at
(71 3) 274-2320.

B.1.1 TMS320 Third Parties

The TMS320 family is supported by product and service offerings from more
than 100 independent vendors and consultants, known as third parties. These
support products take various forms (both software and hardware) from cross-
assemblers, simulators, and DSP utility packages to logic analyzers and emu-
lators. Additionally, TI third parties offer more than 150 algorithms that are
available for license through the TMS320 software cooperative. These algo-
rithms can greatly reduce development time and decrease time to market. The
expertise of those involved in support services ranges from speech encoding
and vector quantization to softwarelhardware design and system analysis.

For a more detailed description of services and products offered by third par-
ties, refer to the TMS320 Third Party Support Reference Guide (literature
number SPRU052) and the TMS320 Software Cooperative Data Sheet Pack-
et (literature number SPRT111). Call the Literature Response Center at (800)
477-8924 to request a copy.

TMS320C3x Development Support Tools

8.1.2 TMS320 Llterature

Extensive DSP documentation is available; this includes data sheets, user's
guides, and application reports. In addition, DSP textbooks that aid research
and education have been published by Prentice-Hall, John Wiley and Sons,
and Computer Science Press. To order literature or to subscribe to the DSP
newsletter Details on Signal Processing (for up-to-date information on new
products and services), call the Literature Response Center at (800)
477-8924.

8.1.3 DSP Hotline

For answers to TMS320 technical questions on device problems, develop-
ment tools, documentation, upgrades, and new products, you can contact the
DSP hotline via:

Cj Phone at (71 3)274-2320 Monday through Friday from 8:30 a.m. to 500
p.m. central time

Cj Fax at (71 3)274-2324

Cj Electronic mail at 4389750@mcimail.com.

Q European fax at 33-13070-1 032

Cj Semiconductor Product Information Center (PIC) at (214) 644-5580

To ask about third-party applications and algorithm development packages,
contact the third party directly. Refer to the TMS320 Third-Party Support Ref-
erence Guide (literature number SPRU052) for addresses and phone
numbers.

Extensive DSP documentation is available; this includes data sheets, user's
guides, and application reports. Call the hotline at (800) 477-8924for informa-
tion on literature that you can request from the Literature Response Center.

The DSP hotline does not provide pricing information. Contact the nearest TI
field sales office or the TI PIC for prices and availability of TMS320 devices and
support tools.

8.1.4 Bulletin Board Service (BBS)

The TMS320 DSP Bulletin Board Service (BBS) is a telephone-line computer
service that provides information on TMS320 devices, specification updates
for current or new devices and development tools, silicon and development
tool revisions and enhancements, new DSP application software as it be-
comes available, and source code for programs from any TMS320 user's
guide.

Development Support/Part Ordering Information 8-5

TMS320C3x Development Support Tools

You can access the BBS via the following:

a Modem: (300-, 1200-, or 2400-bps) dial (713)274-2323. Set your modem
to 8 data bits,l stop bit, no parity.

Internet: Use anonymous ftp to ti.com (Internet port address 192.94.94.1).
The BBS content is located in the subdirectory called mirrors.

To find out more about the BBS, refer to the TMS320 Family Development
Support Reference Guide (literature number SPRUO11).

8.1.5 Technical Training Organization (T O) TMS320 Workshop

The TMS320C3x DSP design workshop is tailored for hardware and software
design engineers and decision-makers who will be designing and utilizing the
TMS320C3x generation of DSP devices. Hands-on exercises throughout the
course give participants a rapid start in utilizing TMS320C3x design skills. Mi-
croprocessorlassembly language experience is required. Experience with dig-
ital design techniques and C language programming experience is desirable.
The following topics are covered in the TMS320C3x workshop:

TMS320C3x architecturelinstruction set
Use of the PC-based TMS320C3x software simulator and EVM

0 Floating-point and parallel operations
Q Use of the TMS320C3x assembler~linker
a C programming environment
Q System architecture considerations

Memory and I10 interfacing
0 TMS320C3x development support

For registration, pricing, or enrollment information on this and other TTO
TMS320 workshops, call (800) 3365236, ext. 3904.

TMS320C3x Part Orderjn~ Information

8.2 TMS320C3x Part Ordering lnformation

This section provides the device and support tool part numbers. Table B-1
lists the part numbers for the TMS320C30 and TMS320C31; Table 5 2 gives
ordering information for TMS320C3x hardware and software support tools. An
explanation of the TMS320 family device and development support tool prefix
and suffix designators follows the two tables to assist in understanding the
TMS320 product numbering system.

Table 5 1 . TMS320C3x Digital Signal Processor Part Numbers

Operating
Frequency

Typical Power
Dlsslpatlon Device Technology

0.8-pm CMOS

0.8-pm CMOS

0.8-pm CMOS

0.8-pm CMOS

0.8-pm CMOS

0.8-pm CMOS

0.8-pm CMOS

0.8-pm CMOS

0.8-pm CMOS

0.8-pm CMOS

Package Type

33 MHz

27 MHz

40 MHz

40 MHz

33 MHz

27 MHz

40 MHz

33 MHz

50 MHz

28 MHz

Ceramic 181 -pin PGA

Ceramic 181 -pin PGA

Ceramic 181 -pin PGA

Plastic 208-pin QFP

TMS320C31 PQUPQA Plastic 132-pin QFP

Plastic 132-pin QFP

Plastic 132-pin QFP

TMS320LC31 PQL Plastic 132-pin QFP

Plastic 132-pin QFP

Ceramic 141 -pin PGA
Ceramic 132-pin QFP
Ceramic 141 -pin PGA
Ceramic 132-pin PGA

33 MHz Ceramic 181 -pin PGA
Ceramic 196-pin QFP

0.8-pm CMOS

0.8-pm CMOS 28 MHz Ceramic 181 -pin PGA
Ceramic 196-pin QFP

25 MHz Ceramic 181 -pin PGA
Ceramic 196-pin QFP

0.8-pm CMOS

Development SupporVPart Ordering Information 8-7

TMS320C3x Part Ordering lnfonnation

Table 8-2. TMS320C3x Support Tool Part Numbers

Tool Descrlptlon Operatlng System Part Number

(a) Software

C Compiler 81 Macro Assembler1 Linker V W M S TMDS3243255-08
PC-DOSIMS-DOS TMDS3243855-02

AssemblerIUnker

Simulator

Tartan Floating-Point Library

SPARC (Sun O S) ~ TMDS3243555-08
PC-DOSIMS-DOS; OS12 TMDS3243850-02

VAX VMS TM DS3243251-08
PC-DOSIMS-DOS TMDS3243851-02
SPARC (SUN 0S)t TMDS3243551-09

PC-DOS 320 FLO-PC C30
SPARC (Sun 0s) 320 FLO-Sun-C30

Digital Filter Design Package PC-DOS DFDP

Tartan C t t CompilerIDebugger PC-DOS; OSl2, Wiredown TAR-CCM-PC-C3x
SPARC (Sun 0s) TAR-CCM-SP-C3x

Tartan C t t Compiler PC-DOS; OSl2, Wiredown TAR-SIM-PC-C3x
SPARC (Sun 0s) TAR-SI M-SP-C3x

TMS320C3x Emulation Porting Kit TMSX3240030

(b) Hardware

XDS51O Emulator PCIMS-DOS TMDS3260131

Evaluation Module (EVM) PC-DOSIMS-DOS TMDX3260030
t Note that SUN UNlX supports TMS320C3x software tools on the 68000 family-based SUN9 series workstations and on the

SUN4 series machines that use the SPARC processor, but not on the SUN-3861 serles of workstations.

8.2.1 Device and Development Support Tool Prefix Designators
Prefixes to TI part numbers designate phases in the product's development
stage for both devices and support tools, as shown in the following definitions:

Device Development Evolutionary Flow

Q TMX: Experimental device that is not necessarily representative of the fi-
nal device's electrical specifications

TMP: Final silicon die that conforms to the device's electrical specifica-
tions but has not completed quality and reliability verification

Q TMS: Fully qualified production device

Support Tool Development Evolutionary Flow

Q TMDX: Development support product that has not yet completed Tl's in-
ternal qualification testing for development systems

IJ TMDS: Fully qualified development support product

TMS320C3x Part Orderins lnformation

TMX and TMP devices and TMDX development support tools are shipped with
the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

1

Note: Prototype Devices

TI recommends that prototype devices (TMX or TMP) not be used in produc-
tion systems because their expected end-use failure rate is undefined but
predicted to be greater than standard qualified production devices.

TMS devices and TMDS development support tools have been fully character-
ized, and their quality and reliability have been fully demonstrated. Tl's stan-
dard warranty applies to TMS devices and TMDS development support tools.

TMDX development support products are intended for internal evaluation pur-
poses only. They are covered by Ti's Warranty and Update Policy for Micropro-
cessor Development Systems products; however, they should be used bycus-
tomers only with the understanding that they are developmental in nature.

8.2.2 Device Suffixes

The suffix indicates the package type (for example, N, FN, or GE) and temper-
ature range (for example, L).

Figure 51 presents a legend for reading the complete device name for any
TMS320 family member.

Development SupporVPart Ordering Information B-9

TMS320C3x Part Ordering Information

Figure 6-1. TMS320 Device Nomenclature
TMS 320 C 30 GE L

Pnflx

TMX = Experimental Device
TMP = Prototype Device
TMS = Qualified Device
SMJ = MIL-STD-883C

Devlco ~ a r n l l ~
320 = TMS320 Family

Twhnology A
C 3 CMOS
E = CMOS EPROM
P = OTPEPROM
No Letter = NMOS

Devlcr
I st-generation DSP:

10
14
15
16
I 7

2nd-generation DSP:
20
25
26

3rd-generation DSP:
30
31

4thgeneration DSP:
40

5thgeneration DSP:
50
51

I P*cbgr Typo

N = Plastic DIP
JD = Ceramic DIP Side-Brazed
FN = Plastic Leaded CC
60 = Ceramic POA
FJ = Ceramic Leaded CC
FD = Leadless Ceramic CC
FZ = Ceramic Leaded CC
GE x Ceramic PGA, Glase Seal
HU = Ceramic Quad Flatpeck
HT = Ceramic Quad Flatpack

(gull wing)
PQ = Plastic Quad Flatpack

See electrical specifications for TMS320C31 PQA case temperature ratings.

Quality and Reliability

The quality and reliability of Texas Instruments (TI) microprocessor and
microcontroller products, which include TMS320 digital signal processors, re-
lies on feedback from the following:

0 Our customers,

!J Our total manufacturing operation from front-end wafer fabrication to final
shipping inspection, and

0 Product quality and reliability monitoring.

Our customer's perception of quality is the governing criterion for judging per-
formance. This concept is the basis for TI Corporate Quality Policy, which is
as follows:

"For every product or service we offer, we shall define the requirements that
solve the customer's problems, and we shall conform to those requirements
without exception."

Texas Instruments has developed a leadership reliability qualification system,
based on years of experience with leading-edge memory technology and on
years of research into customer requirements. To achieve constant improve-
ment, programs that support that system respond to customer input and inter-
nal information.

This appendix presents the following major topics:

Topic Page

Reliability Stress Tests

Reliability Stress Tests

Accelerated stress tests are performed on new semiconductor products and
process changes to qualify them and ensure excellence in product reliability.
The following test environments are typical:

Q High-temperature operating life
0 Storage life
Q Temperature cycling
Q Biased humidity

Autoclave
Q Electrostatic discharge
Q Package integrity
Q Electromigration
Q Channel-hot electrons (performed on geometries less than 2.0 pm)

Typical events or changes that require internal requalification of a product in-
clude the following:

Q New die design, shrink, or layout

C] Wafer process (baseline/wntrol systems, flow, mask, chemicals, gases,
dopants, passivation, or metal systems)

Q Packaging assembly (baseline control systems or critical assembly equip-
ment)

Q Piece parts (such as lead frame, mold compound, mount material, bond
wire, or lead finish)

0 Manufacturing site

TI reliability control systems extend beyond qualification. Total reliability wn-
trols and management include product reliability monitoring as well as final
product release controls. MOS memories, utilizing high-density active ele-
ments, serve as the leading indicator in wafer-process integrity at TI MOS fab-
rication sites, enhancing all MOS logic device yields and reliability. TI places
more than several thousand MOS devices per month on reliability tests to en-
sure and sustain built-in product excellence.

Table C-1 lists the microprocessor and microcontroller reliability tests, the du-
ration of the test, and sample size. Table C-2 contains definitions and descrip-
tions of terms used in those tests.

Reliabilitv Stress Tests

Table GI. Microprocessor and Microcontroller Tests

Sample S l u
Test Duratlan Plastic Ceramic

Operating life, 125" C, 5.0 V

Storage life, 150" C

Biased humidity, 85' Cl85 percent
RH, 5.0 V

Autoclave, 121" C, 1 ATM

Temperature cycle, -65 to 150' C

Temperature cycle, 0 to 125" C

Thermal shock,-65 to 150' C

Electrostatic discharge, t 2 kV

Latch-up (CMOS devices only)

Mechanical sequence

Thermal sequence

ThermaVmechanical sequence

PlND

Internal water vapor

Solderability

Solder heat

Resistance to solvents

Lead integrity

Lead pull

Lead finish adhesion

Salt atmosphere

Flammability (UL94-VO)

Thermal impedance

1000 hrs 129

1 000 hrs 45t

1000 hrs 77

240 hrs 45

1000 cyc* 77

3000 CYC n

200 CYC n

15

5

t If junction temperature does not exceed plasticity of package
$ For severe environments; reduced cycles for office environments

Quality and Reliability C-3

Reliability Stress Tests

Table G2. Definitions of Microprocessor Testing Terms

Term Deflnitlon/Descrlptlon Ref erencoa

Average Outgoing Quality (AOQ) Amount of defective product in a popu-
lation, usually expressed in terms of
parts per million (PPM).

Storage Life

Biased Humidity

Temperature Cycle

Electrostatic Discharge

Failure in Time (FIT) Estimated field failure rate in number of
failures per billion power-on device
hours; 1000 FITS equal 0.1 percent fail-
ure per 1000 device hours.

Operating Life Device dynamically exercised at a high
ambient temperature (usually 125" C) to
simulate field usage that would expose
the device to a much lower ambient
temperature (such as 55" C). Using a
derived high temperature, a 55°C ambi-
ent failure rate can be calculated.

Device exposed to 150" C unbiased
condition. Bond integrity is stressed in
this environment.

Moisture and bias used to accelerate
corrosion-type failures in plastic pack-
ages. Conditions include 85" C ambient
temperature with 85% relative humidity
(RH). Typical bias voltage is t5V and is
grounded on alternating pins.

Autoclave (Pressure Cooker) Plastic-packaged devices exposed to
moisture at 121" C using a pressure of
one atmosphere above normal pres-
sure. The pressure forces moisture per-
meation of the package and acceler-
ates corrosion mechanisms (if present)
on the device. External package con-
taminants can also be activated and
caused to generate inter-pin current
leakage paths.

Device exposed to severe temperature
extremes in an alternating fashion (-65"
C for 15 minutes and 150" C for 15 min-
utes per cycle) for at least 1000 cycles.
Package strength, bond quality, and
consistency of assembly process are
tested in this environment.

Device exposed to electrostatic
discharge pulses. Calibration is accord-
ing to MIL STD 88% method 3015.6.
Devices are stressed to determine fail-
ure threshold of the design.

Reliability Stress Tests

Thermal Sequence

Table G2, Definitions of Microprocessor Testing Terms (Continued)

Term Deflnltlon/Deecrlption Reference8

Thermal Shock Test similar to the temperature cycle MIL-STD-883C, Method 101 1
test, but involving a liquid-to-liquid
transfer.

Particle Impact Noise Detection A nondestructive test to detect loose
(PIND) particles inside a device cavity.

Mechanical Sequence Fine and gross leak MIL-STD-883C, Method 101 4
Mechanical shock MIL-STD-883C, Method 2002,

1500 g, 0.5 ms, Condition B
PlND (optional) MIL-STD-883C, Method 2020
Vibration, variable frequency MIL-STD-883C, Method 2007,

20g, Condition A
Constant acceleration MIL-STD-883C, Method 2001
Fine and gross leak MIL-STD-883C, Method 1 01 4
Electrical test To data sheet limits

Fine and gross leak MIL-STD-883C, Method 1 01 4
Solder heat (optional) MIL-STD-750C, Method 1 01 4
Temperature cycle MIL-STD-883C, Method 1 01 0,
(1 0 cycles minimum) -65 to + 150 "C, Condition C
Thermal shock MIL-STD-883C, Method 101 1,
(1 0 cycles minimum) -55 to +I25 "C, Condition B
Moisture resistance MIL-STD-883C, Method 1 004
Fine and gross leak MIL-STD-883C, Method 101 4
Electrical test To data sheet limits

ThermalIMechanical Sequence Fine and gross leak MIL-STD-883C, Method 101 4
Temperature cycle MIL-STD-883C, Method 101 0,
(1 0 cycles minimum) -65 to +I50 "C, Condition C
Constant acceleration MIL-STD-883C, Method 2001,

30 kg, Y1 Plane
Fine and gross leak MIL-STD-883C, Method 1014
Electrical test To data sheet limits
Electrostatic discharge MIL-STD-883C, Method 301 5
Solderability MIL-STD-883C, Method 2033
Solder heat MIL-STD-750C, Method 2031,

10 sec
Salt atmosphere MIL-STD-883C, Method 1009,

Condition A, 24 hrs min
Lead pull MIL-STD-883C, Method 2004,
Lead integrity Condition A

MIL-STD-883C, Method 2004,
Condition B1

Electromigration Accelerated stress testing of
conductor patterns to ensure
acceptable lifetime of power-
on operation

Resistance to solvents MIL-STD-883C, Method 201 5

Quality and Reliability C-5

Reliabilitv Stress Tests

Table C-3 lists the TMS320C3x devices, the approximate number of transis-
tors, and the equivalent gates. The numbers have been determined from de-
sign verification runs.

Table C-3. TMS320C3x Transistors

Devlce # Transistors # Gate8

CMOS: TMS320C30 600K-700K 200K

CMOS: TMS320C31 500K400K 1 OOK

t !

Note: MOS SemDconductors

Texas Instruments reserves the right to make changes in MOS semiconduc-
tor test limits, procedures, or processing without notice. Unless prior ar-
rangements for notification have been made, TI advises all customers to re-
verify current test and manufacturing conditions prior to relying on published
data.

I I

TMS320C3 1 PQFP Reflow Soldering Precautions

C.2 TMS320C31 PQFP Reflow Soldering Precautions

Recent tests have identified an industry-wide problem experienced by sur-
face-mounted devices exposed to reflow soldering temperatures. This prob-
lem involves a package-cracking phenomenon sometimes experienced by
large (for example, 132-pin) plastic quad flat pack (PQFP) packages during
surface-mount manufacturing. This phenomenon occurs if the TMS320C31
PQAor PQL is exposed to uncontrolled levels of humidity prior to reflow solder.
This moisture can flash to steam during solder reflow and cause sufficient
stress to crack the package and compromise device integrity. Once the device
is soldered or socketed into the board, no special handling precautions are re-
quired.

To minimize moisture absorption, TI ships the TMS320C31 PQAor PQL in dry
pack shipping bags with a relative humidity (RH) indicator card and moisture-
absorbing desiccant. These moisture-barrier shipping bags will adequately
block moisture transmission to allow shelf storage for 12 months from date of
seal when stored at less than 60% RH and less than 30" C. Devices may be
stored outside the sealed bags indefinitely if stored at less than 25% RH and
less than 30" C.

Once the bag seal is broken, the devices should, within two days of removal,
be reflow soldered and stored at less than 60% RH and less than 30" C. If these
conditions are not met, TI recommends baking the devices in a clean oven at
125" C and 10% maximum RH for 25 hours. This procedure restores the de-
vices to their dry-packed moisture level.

Note: ESD Precautions

Shipping tubes will not withstand the 125" C baking process. Before baking,
transfer the devices to a metal tray or tube. Follow standard ESD precau-
tions.

I J

TI recommends that the reflow process not exceed two solder cycles and that
the temperature not exceed 220" C.

If you have questions or concerns, please contact your local TI representative.

Quality and Reliability C-7

Calculation of TMS320C30 Power Dissipation

The TMS320C30 is a state-of-the-art, high-performance, 32-bit floating-point
digital signal processing (DSP) microprocessor fabricated in CMOS
technology. This device is the first member of the third generation of TMS320
family single-chip DSP microprocessors. Since 1982, when the first-genera-
tion TMS32010 was introduced, the TMS320 family has established itself as
the industry standard for DSP. The TMS320C301s innovative architecture and
specialized instruction set provide high-speed and increased flexibility for DSP
applications. This combination makes it possible to execute up to 40 million
floating point operations per second (MFLOPS).

As device sophistication and levels of integration increase with evolving semi-
conductor technologies, actual levels of power dissipation vary widely and de-
pend heavily on the particular application in which the device is used and the
nature of the program being executed. In addition, due to the inherent charac-
teristics of CMOS technology, power requirements vary according to clock
rates and data values being processed.

This appendix presents the information necessary to determine TMS320C30
power supply current requirements under different operating conditions. With
this information, you can determine the device's power dissipation, which, in
turn, you can use to calculate thermal management requirements.

This appendix discusses the following major topics:

Topic Page

Fundamental Power Dissipation Characteristics

Fundamental Power Dissipation Characteristics

Typically, an IC's (integrated circuit) power specification is expressed as a
function of operating frequency, supply voltage, operating temperature, and
output load. As devices become more complex, the specification must also be
based on device functionality. CMOS devices inherently draw current only dur-
ing switching through the linear region. Therefore, the power supply current
is related to the rate of switching. Furthermore, since the output drivers of the
TMS320C30 are specified to drive direct current (DC) loads, the power supply
current resulting from external writes depends not only on switching rate but
also on the value of data written.

D.l .I Components of Power Supply Current Requirements

There are four basic components of the power supply current:

Quiescent,
0 Internal Operations,
a Internal Bus Operations, and

External Bus Operations

The power supply current consumption depends on many factors. Four are
system-related:

a Operating frequency,
Supply voltage,

a Operating temperature, and
Output load

Several others are also related to TMS320C30 operation, including:

a Duty cycle of operations,
Number of buses used,
Wait states,

a Cache usage, and
a Data value

Fundamental Power Dissipation Characteristics

The total power supply current for the device is described in this equation,
which applies the four basic power supply current components and the depen-
dencies described above:

where

Iq is the quiescent current component,

liops is the current component due to internal operations,

libus is the current component due to internal bus usage, including data value
and cycle time dependencies,

IXbus is the current component due to external bus usage, including data
value, wait state, cycle time, and capacitive load dependencies,

FV is a scale factor for frequency and supply voltage, and

T is a scale factor for operating temperature.

Application of this equation and determination of all of the dependencies are
described in detail in this appendix.

This appendix explains, in detail, how to determine the power supply current
requirement for the TMS320C30. If a less detailed analysis is sufficient, the
minimum, typical, and maximum values can be used to determine a rough esti-
mate of the power supply current requirements. The minimum power supply
current requirement is 11 0 mA. The typical and average current consumption
is 200 mA, as described in the TMS320C30 data sheet, and will be associated
with most algorithms running on the device unless data output is excessive.

If an extremely conservative approach is desired, the maximum value can be
used.

Calculation of TMS320C30 Power Dissipation 0-3

Fundamental Power Dissipation Characteristics

D.1.3 Determining Algorithm Partitioning

Each part of an algorithm behaves differently, depending on its internal and ex-
ternal bus usage. To analyze the power supply current requirement, you must
partition an algorithm into segments with distinct concentrations of internal or
external bus usage. The analysis that follows is applied to each distinct pro-
gram segment to determine the power supply current requirement for that sec-
tion. The average power supply current requirement can then be calculated
from the requirements of each segment of the algorithm.

D.1.4 Test Setup Description

All TMS320C30 supply current measurements were performed on the test set-
up shown in Figure D-1. The test setup consists of a TMS320C3OI8K words
of zero-wait-state Cypress Semiconductor SRAMs (CY7C18625PC), and
RC loads on all data and address lines. A Tektronix Current Probe (P6042)
measures the power supply current in all VDD lines of the device. The supply
voltage on the output load is 2.1 5 V. Unless otherwise specified, all measure-
ments are made at a supply voltage of 5.0 V, an input clock frequency of 33
MHz, a capacitive load of 80 pF, and an operating temperature of 25°C.

Figure D-I. Current Measurement Test Setup

Current Requirement for lnternal Circuitry

D.2 Current Requirement for lnternal Circuitry

The power supply current requirement for internal circuitry consists of three
components: quiescent, internal operations, and internal bus operations.
Quiescent and internal operations are constants, but the internal bus opera-
tions component varies with the rate of internal bus usage and the datavalues
being transferred.

D.2.1 Quiescent

Quiescent refers to the baseline supply current drawn by the TMS320C30 dur-
ing minimal internal activity, such as executing the IDLE instruction or branch-
ing to self. It includes the current required to fetch an instruction from on- or
off-chip memory. The quiescent requirement for the TMS320C30 is 11 0 mA.
Examples of quiescent current include:

0 Maintaining timers and serial ports
0 Executing the IDLE instruction
0 TMS320C30 in HOLD mode pending external bus access
0 TMS320C30 in reset
0 Branching to self

D.2.2 internal Operations

lnternal operations are those that require more current than quiescent activity
but do not include external bus usage or significant internal bus usage. lnternal
operations include register-to-register multiplication, ALU operations, and
branches. They add a constant 55 mA above the quiescent so that the total
contribution of quiescent and internal operations is 165 mA. Note, however,
that internal and/or external bus operations executed via an RPTS instruction
do not contribute an internal operations power supply current component and
hence do not add 55 mA to quiescent current. During an instruction in RPTS,
activity other than the instruction being repeated is suspended; therefore,
power supply current is related only to the operation performed by the instruc-
tion being executed. The next contributing factor to the power supply current
requirement is internal bus operations.

Calculation of TMS320C30 Power Dissipation D-5

Current Requirement for Internal Circuitry

D.2.3 Internal Bus Operations

The internal bus operations include all operations that utilize the internal buses
extensively, such as accessing internal RAM every cycle. No distinction is
made between internal reads (such as instruction or operand fetches from in-
ternal ROM or internal RAM banks) and internal writes (such as operand
stores to internal RAM banks), because internally they are equal. Significant
use of internal buses adds a term to the power supply current requirement that
is data-dependent. Since switching requires more current, moving changing
data at high rates requires higher power supply current.

Pipeline conflicts, use of cache, fetches from external wait-state memory, and
writes to external wait-state memory all affect the internal and external bus
cycles of an algorithm executing on the TMS320C30. Therefore, the internal
bus usage of the algorithm must be determined to accurately calculate power
supply current requirements. The TMS320C30 software simulator and XDS
emulator both provide benchmarking and timing capabilities that allow bus
usage to be determined.

The current resulting from internal bus usage varies roughly exponentially with
transfer rates. Figure D-2 shows internal bus current requirements for trans-
ferring alternating data (AAAAAAAAh to 55555555h) at several transfer rates
(expressed as the transfer cycle time). A transfer rate less than 1 implies multi-
ple accesses per single H I cycle (that is, using direct memory access (DMA),
etc.). Transfer cycle times greater than 1 refer to single-cycle transfers with
one or more cycles between them. The minimum transfer cycle time is one-
third, which corresponds to three accesses in a single H I cycle.

The data set AAAAAAAAh to 55555555h exhibits the maximum current for
these types of operations. Less current is required for transferring other data
patterns, and current values can be derated accordingly as described later in
this subsection.

As the transfer rate decreases (that is, transfer cycle time increases), the in-
cremental IDD approaches 0 mA. Transfer rates corresponding to more than
seven H I cycles do not add any current and are considered insignificant. This
figure represents the incremental IDD due to internal bus operations and is
added to quiescent and internal operations current values.

For example, the maximum transfer rate corresponds to three accesses every
cycle or one-third H1 transfer cycle time. At this rate, 85 mA is added to the
quiescent (11 0 mA) and internal operation (55 mA) current values for a total
of 250 mA.

Current Reauirernent for lnternal Circuitrv

IncrementalFigure D-2 shows the internal bus current requirement when tran-
sferring As, followed by 5s, for various transfer rates. Figure D-3 shows the
data dependence of the internal bus current requirement when the data is oth-
er than As followed by 5s. The trapezoidal region bounds all possible data val-
ues transferred. The lower line represents the scale factor for transferring the
same data. The upper line represents the scale factor for transferring alternat-
ing data (all 0s to all Fs or all As to all 5s, etc.).

Figure 0-2. lnternal Bus Current Versus Transfer Rate

lnternal Bus Rate of Transfer Analysis [As/5s]

Transfer Cycle Time (H 1 Cycles)

Figure 03. lnternal Bus Current Versus Data Complexity Derating Curve

lnternal Bus Data Dependency

Relative Data Complexity

Calculation of TMS320C30 Power Dissipation D-7

Current Requirement for Internal Circuitry

Since the possible permutations of data values is quite large, the extent to
which data varies is referred to as relative data complexity. This term repre-
sents a relative measure of the extent to which data values are changing and
the extent to which the number of bits are changing state. Therefore, relative
data complexity ranges from 0, signifying minimal variation of data, to a nor-
malized value of 1, signifying greatest data variation.

If a statistical knowledge of the data exists, Figure D-3 can be used to deter-
mine the exact power supply requirement according to internal bus usage. For
example, Figure D-3 indicates a 63% scale factor when all Fs are moved inter-
nally every cycle with two accesses per cycle. This scale factor is multiplied
by 55 mA (from Figure D-2, at one-half H I cycle transfer time), yielding 34.65
mA because of internal bus usage. Therefore, an algorithm running under
these conditions requires about 200 rnA of power supply current (1 10 + 55 +
34.65).

Since astatistical knowledge of the data might not be readily available, a nomi-
nal scale factor will suffice. The median between the minimum and maximum
values at 50% relative data complexity yields a value of 0.80. This value will
serve as an estimate of a nominal scale factor. Therefore, you can use this
nominal data scale factor of 80% for internal bus data dependency, adding 44
mA to 11 0 mA (quiescent) and 55 mA (internal operations) to yield 21 0 mA. As
an upper bound, assume worst case conditions of three accesses of alternat-
ing data every cycle, adding 85 mA to 11 0 mA (quiescent) and 55 mA (internal
operations) to yield 250 mA.

Current Requirement for Output Driver Circuitry

D.3 Current Requirement for Output Driver Circuitry

The output driver circuits on the TMS320C30 are required to drive significantly
higher DC and capacitive loads than internal device logic. Therefore, they are
designed to drive larger currents than internal devices. Because of this, output
drivers impose higher supply current requirements than other sections of cir-
cuitry on the device.

Accordingly, the highest values of supply current are exhibited when external
writes are being performed at high speed. During reads, or when the external
buses are not being used, the TMS320C30 is not driving the data bus; this
eliminates the most significant component of output buffer current. Further-
more, in typical cases, only a few address lines are changing, or the whole ad-
dress bus is static. Under these conditions, an insignificant amount of supply
current is consumed. Therefore, when no external writes are being performed
or when writes are performed infrequently, current due to output buffer circuitry
can be ignored.

When external writes are being performed, the current required to supply the
output buffers depends on several considerations. As with internal bus opera-
tions, current required for output drivers depends on the data being transferred
and the rate at which transfers are being made. Additionally, output driver cur-
rent requirements depend on the number of wait states implemented, because
wait states affect rates at which bus signals switch. Finally, current values are
also dependent upon external bus DC and capacitive loading.

External operations involve writes external to the device and constitute the
major power supply current component. The power supply current for the ex-
ternal buses is made up of three components and is summarized in the follow-
ing equation:

where

ibase is the 60-mA baseline Current component

lprim is the primary bus current component

IeXp is the expansion bus current component

The remainder of this section describes in detail the calculation of external bus
current components.

Calculation of TMS320C30 Power Dissipation D-9

Current Requirement for Output Driver Circuitry

D.3.1 Primary Bus

The current due to primary bus writes varies roughly exponentially with both
wait states and write cycle time. Also, current components due to output driver
circuitry are represented as offsets from the baseline value. Since the baseline
value is related to internal current components, negative valuesfor current off-
set are obtained under some circumstances. Note, however, that actual nega-
tive current does not occur.

As previously mentioned, to obtain accurate current values, you must first es-
tablish timing of write cycles on the buses. To determine the rate and timings
at which write cycles to the external buses occur, you must analyze program
activity, including any pipeline conflicts that may exist. Information from this
manual and the TMS320C30 emulator or simulator is useful in making these
determinations. Note that effects from the use of cache must also be ac-
counted for in these analyses because use of cache can affect whether in-
structions are fetched from external memory.

When evaluating external write activity in a given program segment, you must
consider whether a particular level of external write activity constitutes signifi-
cant activity. If writes are being performed at a slow enough rate, they do not
significantly impact supply current requirements; therefore, current due to ex-
ternal writes can be ignored. This is the case, however, only if writes are being
performed at very slow rates on both the primary and the expansion buses. If
writes are being performed at high speed on only one of the two external
buses, you should still use the approach described in this section to calculate
current requirements.

Note that, although you obtain negative incremental current values under
some circumstances, the total contribution for external buses, including base-
line current, must always be positive. The reason is that, when external buses
are used minimally, total current requirements always approach the current
contribution due to internal components, which is solely a function of internal
activity. This places a lower limit on current contributions resulting from the pri-
mary and expansion buses, because the total current due to external buses
is the sum of the 60-mA baseline value and the primary and expansion bus
components. This effect is discussed in further detail in the rest of this subsec-
tion.

Current Requirement for Output Driver Circuitry

When you have established bus-write cycle timing, you can use Figure D-4
to determine the contribution to supply current due to this bus activity.
Figure D-4 shows values of current contribution from the primary bus for vari-
ous numbers of wait states and H I cycles between writes. These characteris-
tics are exhibited when writes of alternating 55555555h and AAAAAAAAh are
being performed at a capacitive load of 80 pF per output signal line. The condi-
tions exhibit the highest current values on the device. The values presented
in the figure represent incremental or additional current contributed by the pri-
mary bus output driver circuitry under the given conditions. Current values ob-
tained from this graph are later scaled and added to several other current
terms to calculate the total current for the device. As indicated in the figure, the
lower curve represents the current contribution for 18 or more cycles between
writes.

Figure W. Primary Bus Current Versus Transfer Rate and Wait States

Primary Bus Analysis [80 pF, AsI5sJ
200 I I I

q = Number of cycles between writes I

Wait States

Note that number of cycles between writes refers to the number of H I cycles
between the active portion of the write cycles as defined in Chapter 13--that
is, between H I cycles when m, m, or IOSTRB and ~m (or ~ m ,
as the case may be) are low. As shown in Figure D-4, the minimum number
of cycles between writes is 1 because with back-to-back writes there is one HI
cycle between active portions of the writes.

To further illustrate the relationship of current and write cycle time, Figure D-5
shows the characteristics of current for various numbers of cycles between
writes for zero wait states. The information on this curve can be used to obtain
more precise values of current if zero wait states are being used and the num-
ber of cycles between writes does not fall on one of the curves in Figure 0-4.

Calculation of TMS320C30 Power Dissipation D-11

Current Requirement for Output Driver Circuitry

Figure D-5. Primary Bus Current Versus Transfer Rate at Zero Wait States

Primary Bus Duty Cycle Analysis [80 pF, As/5s]

H I Cycles Between Writes

Note that, although these graphs contain negative current values, negative
current has not necessarily actually occurred. The negative values exist be-
cause the graphs represent a current offset from a common baseline current
value, which is not necessarily the lowest current exhibited. Using this ap-
proach to depict current contributions due to different components simplifies
current calculations because it allows calculations to be made independently.
Independent calculations are possible because information about relation-
ships between different sections of the device are included implicitly in the in-
formation for each section.

Figure D-4 and Figure D-5 show that the contribution of writes for external
bus activities becomes insignificant if writes are being performed at intervals
of more than 18 cycles. Under these conditions, you should use the incremen-
tal value of-30-mAcurrent contribution due to the primary bus. Note, however,
that you should use a value of -30 mA only if the expansion bus is being used
extensively. This is because the total contribution for external buses, including
baseline current, must always be positive. If the expansion bus is not being
used and the primary bus is being used minimally, the current contribution due
to the primary bus must always be greater than or equal to 20 mA. This ensures
that the correct total current value is obtained when summing external bus
components. Once a current value has been obtained from Figure D-4 or
Figure 0-5, this value can, if necessary, be scaled by a data dependency fac-
tor, as described at the end of this section. This scaled value is then summed
along with several other current terms to determine the total supply current.
Calculation of total supply current is described in detail in Section D.4 on page
D-18.

Current Reouirement for Output Driver Circuitry

D.3.2 Expansion Bus

Currents due to the primary and expansion buses are similar in characteristics
but differ slightly because of several factors, including the fact that the expan-
sion bus has 11 fewer address outputs than the primary bus (1 3 rather than
24). This difference is exhibited in an overall current contribution that is slightly
lower from the expansion bus than from the primary bus.

Accordingly, determination of expansion bus current follows the same basic
premises as determination of the primary bus current. Figure D-6 and
Figure 0-7 show the same current relationships for the expansion bus as
Figure D-4 and Figure D-5 show for the primary bus. Also, since the total ex-
ternal buses' current contributions must be positive, if the primary bus is not
being used and the expansion bus is being used minimally, then the minimum
current contribution due to the expansion bus is -30 mA. Finally, as with the
primary bus, current values obtained from these figures may require scaling
by a data dependency factor, as described in subsection D.3.3 on page D-14.

Figure D-6. Expansion Bus Current Versus Transfer Rate and Wait States

Expansion Bus Analysis [80 pF, As/5s]

L I a = ~urnber of cycles between writes I I I

0 1 2 3 4 5 6 7

Wait States

Calculation of TMS320C30 Power Dissipation 0-13

Current Requirement for Output Driver Circuitry

Figure LI-7. Expansion Bus

H I Cycles Between Writes

D.3.3 Data Dependency

Data dependency of current for the primary and expansion buses is expressed
as a scale factor that is a percentage of the maximum current exhibited by ei-
ther of the two buses. Data dependencies for the primary and expansion buses
are shown in Figure D-8 and Figure D-9, respectively.

These two figures show normalized weighting factors that you can use to scale
current requirements on the basis of patterns in data being written on the exter-
nal buses. The range of possible weighting factors forms a trapezoidal pattern
bounded by extremes of data values. As can be seen from Figure D-8 and
Figure D-9, the minimum current is exhibited by writing all Os, while the maxi-
mum current occurs when writing alternating 55555555h and AAAAAAAAh.
This condition results in a weighting factor of 1, which corresponds to using the
values from Figure 0-4 and/or Figure D-5 directly.

As with internal bus operations, data dependencies for the external buses are
well defined, but accurate prediction of data patterns is often either impossible
or impractical. Therefore, unless you have precise knowledge of data patterns,
you should use an estimate of a median or average value for scale factor. If
you assume that data will be neither 5s and As nor all 0s and will be varying
randomly, a value of 0.85 is appropriate. Otherwise, if you prefer a conserva-
tive approach, you can use a value of 1.0 as an upper bound.

Current Reauirement for Out~ut Driver Circuitry

Regardless of the approach you take for scaling, once you determine the scale
factors for primary and expansion buses, apply these factors to scale the cur-
rent values found by using the graphs in the previous two subsections. For ex-
ample, if a nominal scale factor of 0.85 is used and the system uses zero wait
states with two cycles between accesses on both the primary and expansion
buses, the current contribution from the two buses is as follows:

Primary: 0.85 x 80 mA = 68 mA
Expansion: 0.85 x 40 mA = 34 mA

Figure M. Primary Bus Current Versus Data Complexity Derating Curve

Primary Bus Data Dependency Analysis [80 p q

Calculation of TMS320C30 Power Dissipation D-15

Calculation of Total Supply Current

D.4 Calculation of Total Supply Current

The previous sections have discussed currents contributed by several
sources on the TMS320C30. Because determinations of actual current values
are unique and independent for each source, each current source was dis-
cussed separately. In an actual application, however, the sum of the indepen-
dent contributions from each current determines the total current requirement
for the device. This total current value is exhibited as the total current supplied
to the device through all of the VDD inputs and returned through the VSS con-
nections.

Note that numerous VDD and VSS pins on the device are routed to avariety of
internal connections, not all of which are common. Externally, however, all of
these pins should be connected in parallel to 5 V and ground planes, respec-
tively, with as low impedance as possible.

As mentioned previously, because different program segments inherently per-
form different operations that are often quite distinct from each other, it is typi-
cally appropriate to consider current for each of the different segments inde-
pendently. Once this is done, peak current requirements are readily obtained.
Further, you can use average current calculations to determine heating effects
of power dissipation. In turn, you can use these effects to determine thermal
management considerations.

D.4.1 Combining Supply Current Due to All Components

To determine the total supply current requirements for any given program ac-
tivity, calculate each of the appropriate components and combine them in the
following sequence:

1) Start with 11 0-mA quiescent current requirement.

2) Add 55 rnAfor internal operations unless the device is dormant, as during
execution of IDLE, NOPs, or branches-to-self, or performance of internal
and/or external bus operations using an RPTS instruction (see subsection
D.2.2 on page D-5). Internal or external bus operations executed via
RPTS do not contribute an internal operations power supply current com-
ponent and hence do not add 55 mA to quiescent current. Therefore, cur-
rent components in the next two steps might still be required, even though
the 55 mA is omitted.

Calculation of Total Supply Current

3) If significant internal bus operations are being performed (see subsection
D.2.2 on page D-5), add the calculated current value.

4) If external writes are being performed at high speed (see section D.3 on
page D-9), add 60 mA and then add the values calculated for primary and
expansion bus current components. If only one external bus is being used,
the appropriate incremental current for the unused bus should still be in-
cluded because the current offsets include components required for oper-
ating both buses. Note, however, that, as discussed previously, the total
current contribution for external buses, including baseline, must always be
positive.

The current value resulting from summing these components is the total de-
vice current requirement for a given program activity.

D.4.2 Supply Voltage, Operating Frequency, and Temperature Dependencies

Current dependencies specific to each supply current component (such as in-
ternal or external bus operations) are discussed in subsection 0.1.2 on page
D-2. Supply voltage level, operating temperature, and operating frequency
affect requirements for the total supply current and must be maintained within
required device specifications.

Once the total current for a particular program segment has been determined,
the dependencies that affect total current requirements are applied as a scale
factor in the same manner as data dependencies discussed in other sections.
Figure D-11 shows the relative scale factors to be applied to the supply current
values as a function of both VDD and operating frequency.

Power supply current consumption does not vary significantly with operating
temperature. However, if desired, ascalefactor of 2% normalized IDD per 50°C
change in operating temperature may be used to derate current within the spe-
cified range noted in the TMS320C30 data sheet. This temperature depen-
dence is shown graphically in Figure D-12. Note that a temperature scale fac-
tor of 1.0 corresponds to current values at 25"C, which is the temperature at
which all other references in the document are made.

Calculation of TMS320C30 Power Dissipation D-19

Calculation of Total Supply Current

Figure D- 1 1. Current Versus Frequency and Supply Voltage

 ID^ Versus ~(CLKIN) and Supply Voltage
1.2 r I I I I I I

Figure D-12. Current Versus Operating Temperature Change

Change in Operating Temperature ("C)

Calculation of Total Supply Current

0.4.3 Design Equation

The procedure for determining the power supply current requirement can be
summarized in the following equation:

where

Iq = 110 mA

IIops = 55 mA

l~bus = Dl x f, (see Table D-1)

-
Ixbus - Iprirn + ' ~ X P

with

'base = 60 mA

lprim = D2 x C2 x f2 (see Table D-1)

Iexp = D3 x C3 x f3 (see Table D-1)

N is the scale factor for frequency and supply voltage, and

T is the scale factor for operating temperature.

Table D-1 describes the symbols used in the power supply current equation.
The table displays figure numbers from which the value can be obtained.

Calculation of TMS320C30 Power Dissipation D-21

Calculation of Total SUDDIV Current

Table &I. Current Equation Symbols
Symbol Description GraphNalue

f 1 internal Bus Current Requirement Figure D-2

Ixbus External Bus Operations Current t
External Bus Base Current

Primary Bus Operations Current

Primary Bus Data Scale Factor

Primary Bus Cap Load Scale Factor

Primary Bus Current Requirement

Expansion Bus Operations Current

Expansion Bus Data Scale Factor

Expansion Bus Cap Load Scale Factor

Expansion Bus Current Requirement

Figure D-8

Figure D-10

Figure D-4 or
Figure D-5
t

Figure D-9

Figure D-10

Figure D-6 or
Figure 0-7

RI FreqISupply Voltage Scale Factor Figure D-11

T Temperature Scale Factor Figure D-12

t See equation in subsection D.4.3 on page D-21.

D.4.4 Peak Versus Average Current
If current is observed over the course of an entire program, some segments
will usually exhibit significantly different levels of current required for different
durations of time. For example, a program may spend 80% of its time perform-
ing internal operations, drawing a current of 250 mA, and spend the remaining
20% of its time performing writes at full speed to the expansion bus, drawing
300 rnA.

While knowledge of peak current levels is important in order to establish power
supply requirements, some applications require information about average
current. This is particularly significant if periods of high peak current are short
in duration. Average current can be obtained by performing a weighted sum
of the currents due to the various independent program segments over time.
In the example above, the average current can be calculated as follows:

I = 0.8 x 250 mA + 0.2 x 300 mA = 260 mA
Using this approach, averag@ current for any number of program segments
can be calculated.

Calculation of Total Sumly Current

D.4.5 Thermal Management Considerations

Heating characteristics of the TMS320C30 depend on power dissipation,
which in turn depends on power supply current. When you make thermal man-
agement calculations, you must consider the manner in which power supply
current contributes to power dissipation and to the time constant of the
TMS320C30 package thermal characteristics.

Depending on sources and destinations of current on the device, some current
contributions to IDD do not constitute a component of power dissipation at 5
volts. Accordingly, if you use the total current flowing intoVDD to calculate pow-
er dissipation at 5 volts, you will obtain erroneously large values for power dis-
sipation. Power dissipation is defined as:

(where P is power, I is current, and V is voltage). If device outputs are driving
any DC load to a logic high level, only a minor contribution is made to power
dissipation because CMOS outputs typically drive to a level within a few tenths
of avolt of the power supply rails. If this is the case, subtract these current com-
ponents out of the total supply current value; then calculate their contribution
to power dissipation separately and add it to the total power dissipation (see
Figure D-13). If this is not done, these currents resulting from driving a logic
high level into a DC load will cause unrealistically high power dissipation val-
ues. The error occurs because the currents resulting from driving a logic high
level into a DC load will appear as a portion of the current used to calculate
power dissipation due to VDD at 5 volts.

Figure lF13. Load Currents

TMS320C30 ID"' : k~~ output Driven High

~ ~ ~ 3 2 0 ~ 3 0 I D :,' 4be Output Driven Low

Calculation of TMS320C30 Power Dissipation D-23

Calculation of Total Supply Current

Furthermore, external loads draw supply-only current when outputs are being
driven high, because, when outputs are in the logic 0 state, the device is sink-
ing current that is supplied from an external source. Therefore, the power dissi-
pation due to this current component will not have a contribution through IDD
but will contribute to power dissipation with a magnitude of:

where VOL is the low-level output voltage and IOL is the current being sunk by
the output as shown in Figure D-13. The power dissipation component due
to outputs being driven low should be calculated and added to the total power
dissipation.

When outputs with DC loads are being switched, the power dissipation compo-
nents from outputs being driven high and outputs being driven low are aver-
aged and added to the total device power dissipation. You should calculate
power components due to DC loading of the outputs separately for each pro-
gram segment before you calculate average power.

Note that any unused inputs that are left disconnected may float to a voltage
level that will cause input buffer circuits to remain in the linear region and there-
fore contribute a significant component to power supply current. Accordingly,
any unused inputs should be made inactive by being either grounded or pulled
high if absolute minimum power dissipation is desired. If several unused inputs
must be pulled high, they may be pulled high together through one resistor to
minimize component count and board space.

When you use power dissipation values to determine thermal management
considerations, you should use the average power unless the time duration of
individual program segments is long. The thermal characteristics of the
TMS320C30 in the 181 -pin grid analysis (PGA) package are exponential in na-
ture, with a time constant t = 4.5 minutes. Therefore, when subjected to a
change in power, the temperature of the device package will, after 4.5 minutes,
reach approximately 63% of the total temperature change. Accordingly, if the
time duration of program segments exhibiting high power dissipation values
is short (on the order of a few seconds), you can use average power, calculated
in the same manner as average current (as described in subsection D.4.4 on
page D-22).

Otherwise, you should calculate maximum device temperature on the basis
of the actual time duration of the program segments involved. For example,
if a particular program segment lasts for seven minutes, then, using the expo-
nential function, you can calculate that a device will reach approximately 80%
of the temperature due to the total power dissipation during the program seg-
ment.

Calculation of Total Supply Current

Note that the average power should be determined by calculating the power
for each program segment (including considerations described above) and
performing a time average of these values, rather than simply multiplying the
average current as determined in the previous subsection by VDD.

Specific device temperature calculations are made by using the TMS320C30
thermal impedance characteristics included in Chapter 13.

Calculation of TMS320C30 Power Dissipation D-25

Example Supply Current Calculations

D.5 Example Supply Current Calculations
A Fast Fourier Transform (FFT) represents a typical DSP algorithm. The FFT
code in Section D.8 on page D-30 processes data in the RAM blocks and
writes the result out to zero-wait-state external SRAM on the primary bus. The
program executes out of zero-wait-state external SRAM on the primary bus,
and the TMS320C30's cache is enabled. The entire algorithm consists mainly
of internal bus operations and so includes quiescent and internal operations
in general. At the end of processing, the 1024 results are written out on the pri-
mary bus. Therefore, the algorithm exhibits a higher current requirement dur-
ing the write portion, where the external bus is being used significantly.

D.5.1 Processing

The processing portion of the algorithm is 95% of the total algorithm. During
this portion, the power supply current is required only for the internal circuitry.
Data is processed in several loops that compose a majority of the algorithm.
During these loops, two operands are transferred on every cycle. The current
required for internal bus usage, then, is 55 mA, taken from Figure D-2 on page
D-7. The data is assumed to be random. A data value scale factor of 0.8 is
used from Figure D-3 on page 0-7. This value scales 55 mA, yielding 44 mA
for internal bus operations. Adding 44 mA to the quiescent current requirement
and internal operations current requirement yields a current requirement of
209 mA for the major portion of the algorithm.

D.5.2 Data Output

The portion of the algorithm corresponding to writing out data is approximately
5% of the total algorithm. Again, the data that is being written is assumed to
be random. From Figure D-3 on page D-7 and Figure D-8 on page D-15,
scale factors of 0.80 and 0.85 are used for derating due to data value depen-
dency for internal and primary buses, respectively. During the data dump por-
tion of the code, a load and store are performed every cycle; however, the par-
allel IoadJstore instruction is in an RPTS loop, so there is no contribution due
to internal operations, because the instruction is fetched only once. The only
internal contributions are due to quiescent and internal bus operations.
Figure 0-4 on page D-1 1 indicates a 170-mA current contribution due to back-
to-back zero-wait-state writes, and Figure D-6 on page D-13 indicates a
-80-mA contribution due to the expansion bus being idle (that is, with more
than 18 H I cycles between writes). Therefore, the total contribution due to this
portion of the code is:

Example Supply Current Calculations

0.5.3 Average Current

The average current is derived from the two portions of the algorithm. The pro-
cessing portion took 95% of the time and required about 21 0 mA, and the data
dump portion took the other 5% and required about 280 mA. The average is
calculated as:

From the thermal characteristics specified in Chapter 13, it can be shown that
this current level corresponds to a case temperature of 43°C. This temperature
meets the maximum device specification of 85°C and hence requires no
forced air cooling.

D.5.4 Experimental Results

A photograph of the power supply current for the FFT is shown Section D.7 on
page 0-29. During the FFT processing, the measured current varied between
180 and 220 mA. The peak of the current during external writes was 270 mA,
and the average current requirement, as measured on a digital multimeter,
was 200 mA. The calculations yielded results that were extremely close to the
actual measured power supply current.

Calculation of TMS320C30 Power Dissipation D-27

Summary

D.6 Summary

An accurate power supply current requirement for the TMS320C30 cannot be
expressed simply in terms of operating frequency, supply voltage, and output
load capacitance. The specification must be more complete and depends on
device functionality and system parameters. The current components related
to device functionality are due to quiescent current, internal operations, inter-
nal bus operations, and external bus operations. Those related to system pa-
rameters are due to operating frequency, supply voltage, output load capaci-
tance, and operating temperature. The typical power supply current require-
ment is 200 mA, and the minimum, or quiescent, is 11 0 mA.

This application report presents information required to determine power sup-
ply specifications. Specifications are based on an algorithm's use of internal
and external buses on the TMS320C30. As devices become more complex,
the calculation of power dissipation becomes more critical.

Photo of IDD for FFT

D.7 Photo of IDD for FFT

Input Clock Frequency = 33 MHz
Voltage Level = 5.0 VDD

Calculation of TMS320C30 Power Dissipation D-29

FFTAssembly Code

0.8 FFT Assembly Code

. GLOBL . GLOBL . GLOBL . GLOBL
SINTAB :

.WORD
RAM0 :

.WORD
OUTBUF :

e WORD

FFT: LDP

FFT
N
M
SINE

SINE

809800h

800h

; setup

; processing portion:
; quiescent, internal and
; bus operations

LDI N, IRO
LSH -1, IRO

; LENGTH-TWO BUTTERFLIES

LD I @RAMO,ARO
LDI IRO , RC
SUB1 1,RC

RPTB BLK 1
ADDF *tAROI*AROtt,RO
SUBF *mot*-AR0,Rl

BLKl STF RO , *-ARO
1 I STF R1, *mot+

; FIRST PASS OF THE DO-20 LOOP (STAGE K=2 IN DO-10 LOOP)

LD I @RAMO,ARO
LDI 2, IRO
LD I N,RC
LSH -2 , RC
SUB1 1,RC

RPTB BLK2
ADDF *+ARO(IR~),*AROtt(IRO),RO
SUBF *mot*-ARO(IRO),Rl
NEGF * tARO , RO

I I STF RO , *-ARO (IRO)
BLKZ STF Rl,*ARO++(IRO)
I I SIT RO,*+ARO

; MAIN LOOP (FFT STAGES)

FFTAssemblv Code

LDI
LSH
LDI
LDI
LDI

LOOP LSH
LSH
LSH

N, IRO
-2, IRO
3,R5
1,R4
2 ,R3
-1, IRO
1,R4
1,R3

; INNER LOOP (DC-20 LOOP IN THE PROGRAM)

LDI
INLOP :

LD I
ADDI
LDI
LDI
ADDI
LDI
ADD I
LDI
SUBI
ADD I
LDF
ADDF
SUBF

I I STF
NEGF
NEGF

I I STF
STF

@RAM0 , ARS

IRO , ARO
@SINTAB,ARO
R4, IR1
AR5,ARl
1,ARl
ARl,AR3
R3, AR3
AR3, AR2
2 ,AR2
R3 ,AR2 ,AR4
*ARS++(IRl),RO
*+ARS(IRl),RO,Rl
RO1*++ARS(IR1),RO
R1,*-ARS(IR1)
R 0
*++AR5(IR1)IR1
RO, *AR5
R1, *ARS

; INNERMOST LOOP

LDI
LSH
LD I
SUBI

RPTB
MPYF
MPYF
MPYF

I I ADDF
MPYF
SUBF
SUBF
ADDF

I I STF
ADDF

I I STF
SUBF

N,IRl
-2, IR1
R4 I RC
2,RC

BLK3
AR3,+ARO(IRl),RO
*AR4,*AROIR1
AR4,+ARO(IRl),R1
ROIRlIR2
*AR3,*ARO++(IRO),RO
RO,Rl,RO
*AR2, RO , R1
*AR2, RO, R1
R1, *AR3++
*AR1, R2, R1
R1, 'AR4--
R2, *AR1 ,Rl

Calculation of TMS320C30 Power Dissipation

F!T Assembly Code

I I STF
BLK3 STF

SUB1
ADDI
CMP I
BLTD
ADDI
NOP
NOP

ADDI
CMPI
BLE

DUMP LDI
LDI

LDF
RPTS
LDF

I I STF
STF

LDI

LDI
XOR
ST1

@RAMO,AR5
R4 ,AR5
N, AR5
INLOP
@RAM0 ,AR5

1,R5
M, R5
LOOP

@RAMO,ARO ; data dump portion
@OUTBUF,AR~ ; quiescent, internal bus

*mot+, RO ; ops and primary bus ops
N-2
*ARO+t , RO
RO, *ARl++
RO , *ARl++

@RAMO,ARO ; swap RAM banks
400h,ARO
ARO, *AR1

FFT

SMJ320C3x Digital Signal Processor
Data Sheet

This appendix contains the standalone data sheet for the military version of the
'C3x digital signal processor, the SMJ320C3x Digital Signal Processor.

SM J320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994

Processed to MIL-STD-883, Class B TWO Address Generators With Eight

Operating Temperature Range: Auxiliary Registers and TWO Auxlliary

-55°C to 125°C Register Arithmetic Units

Two 1K x 32-Bit Single-Cycle Dual-Access Zero-Overhead Loops With Single-Cycle

On-Chip RAM Blocks Branches

Validated ADA Compiler Interlocked Instructions for
Muitlprocesslng Support 64-Word x 32-Bit lnstruction Cache

32-Bit lnstruction and Data Words, 24-Bit
32-Bit Barrel Shlfter

Addresses Eight Extended-Precision Registers
(Accumulators)

401 32-Bit Floating-point /Integer Multlpiier
and ALU TWO- and Three-Operand Instructions

Parallel ALU and Multiplier Execution in a Conditional Calls and Returns

Single Cycle Block Repeat Capability

On-Chip Direct Memory Access (DMA) 0.8-pm EPICr" CMOS Technology
Controller for Concurrent I1 0 and CPU
Operation
integer, Floating-Point, and Logical
Operations

SMJ320C30 Key Features
Performance - SMJ320C30-33 (604s Cycle)

33 MFLOPS
16.7 MlPS

- SMJ320C30-28 (70-11s Cycie)
28.6 MFLOPS
14.3 MlPS

One 4K x 32-Bit Single-Cycle Dual-Access
On-Chip ROM Block
Two 32-Bit External Ports (24- and 13-Bit
Address)
TWO Seriai Ports With Support for
8 / 16 124 132-Bit Transfers
Two 32-Bit Timers
Packaging
- 181 -Pin Grid Array Ceramic Package

(GB Suffix)
- 196-Pin Quad Flat Pack With

Nonconductive Tie-Bar (HFG Suffix)
- 244-Pad JEDEC Standard TAB Frame
SMD Approval for 28- and 33-MHz Versions

SMJ320C31 Key Features
Performance
- SMJ320C31-40 (50-11s Cycle)

40 MFLOPS
20 MlPS

- SMJ320C31-33 (60-11s Cycie)
33.3 MFLOPS
16.7 MlPS

- SMJ320C31-27 (74-11s Cycie)
27 MFLOPS
13.5 MlPS

Flexible Boot Program Loader
One Serial Port to Support
81 16124132-Bit Transfers
One 32-Bit Data Bus (24-Bit Address)
Packaging
- 132-Pin Ceramic Quad Fiat Pack With

Nonconductive Tie-Bar (HFG Sufflx) - 141 -Pin Staggered Grld Array
(GFA Sufflx)

- 244-Pad JEDEC-Standard TAB Frame
SMD Approval for 27- and 33-MHz Versions

EPIC is a trademark of Texas Instruments Incorporated.

m W ~ N DATA Mormldon b cvr~nt r of Copyright @ 1994, Texas instruments Incorporated
~oductl contwm to wclfie~tioru per w t m r of ~%'k%m%
a d r d w m W . ProducU~ pocwlng dwr MI nraurdly Insludr
tntlq of 111 pIrImr(m

INSTRUMENTS
POST OFFICE BOX 1443 HOUSTON, TEXAS n251-1443 E-3

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994

SMJ320C30.. . GB PACKAGE SMJ320C31 ... GFA PACKAGE
(BOTTOM VIEW) (BOTTOM VIEW)

A B C D E F G H J K L M N P R

SMJ320C30.. . HFG PACKAGE
(TOP VIEW)

NOTE: Refer to mechanical data section for TAB drawing.

B D F H K M P T V
A C E G J L N R U W

SMJ320C31 ... HFG PACKAGE
(TOP VIEW)

INSTRUMENTS
POST OFFICE BOX 1443 ' HOUSTON, TEXAS 77251-1443

SM J320C3x
DIGITAL SIGNAL PROCESSOR

SGUSOl4A- FEBRUARY 1991 -REVISED SEPTEMBER 1894

The SMJ320C3x1s internal busing and special digital signal processing (DSP) instruction set have the speed
and flexibility to execute up to 33 MFLOPS (million floating-point operations per second). The SMJ320C3x
optimizes speed by implementing functions in hardware that other processors implement through software or
microcode. This hardware-intensive approach provides performance previously unavailable on a single chip.

The emphasis on total system cost has resulted in a less expensive processorthat can be designed into systems
currently using costly bit-slice processors. Also, appropriate selection based on cost and performance is
enhanced by the different processors in the SMJ320C3x line:

SMJ320C30-33: 60-ns single-cycle execution time, 10% supply
SMJ320C30-28: 70-11s single-cycle execution time, 5% supply
SMJ320C31-40: Low cost, reduced overall size, 504s single-cycle execution time, 10% supply
SMJ320C31-33: Low cost, reduced overall size, 60-ns single-cycle execution time, 10% supply
SMJ320C31-27: Low cost, reduced overall size, 74-17s single-cycle execution time, 10% supply

The SMJ320C30 and SMJ320C31 can perform parallel multiply and ALU operations on integer or floating-point
data in a single cycle. Each processor also possesses a general-purpose register file, a program cache,
dedicated auxiliary register arithmetic units (ARAU), internal dual-access memories, one DMA channel
supporting concurrent I/O, and a short machine-cycle time. High performance and ease of use are results of
these features.

General-purpose applications are greatly enhanced by the large address space, multiprocessor interface,
internally and externally generated wait states, external interface ports (two on the SMJ320C30, one on the
SMJ320C31), two timers, serial ports (two on the SMJ320C30, one on the SMJ320C31), and multiple interrupt
structure. The SMJ320C3x supports a wide variety of system applications from host processor to dedicated
coprocessor.

High-level language support is easily implemented through a register-based architecture, large address space,
powerful addressing modes, flexible instruction set, and well-supported floating-point arithmetic.

POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443

SM J320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994

functional block diagram

% TEXAS
IN~TRUMENTS

POST OFFICE BOX 1443 HOUSTON. TEXAS 77251-1443

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUSO14A- FEBRUARY 1991 -REVISED SEPTEMBER 1994

SMJ320C30 Terminal Assignment
I TERMINAL 11 TERMINAL TERMINAL

NUMBER

GB HFG NAME
PKG PKG

R2 7 FSXO

N4 5 CLKRO

M5 6 CLKXO

R1 3 DRO

R3 8 DXO
M3 191 FSR1

P1 194 FSXl

L4 192 CLKRl

N2 193 CLKXl
N1 190 DR1
P2 195 DX1

F14 63 EMU0

E l 5 84 EMU1

F13 65 EMU2

E l 4 66 EMU3

F12 67 EMU4lSHZ

C1 155 EMU5

M6 11 EMU6

83 145 H1
A1 146 H3

C2 152 X1

B l 151 X2lCLKIN
P4 9 TCLKO

N5 10 TCLK1

G2 169 XFO
G3 168 XF1

D3 154 V B B ~

E4 153 VSUBS
H4 123 VDD

D8 73 VDD

M8 74 VDD

H12 124 VDD
N8 27 VSS

A13 107 XAO

A14 106 XA1

Dl1 105 XA2
C12 104 XA3

NOTES: 1. ADVDD, DDVDD, IODVDD, MDVDD, and PDVDD are on a common plane internal to the device.
2. VDD is on a common plane Internal to the device.
3. VSS, CVSS, and IVSS are on a common plane internal to the device.
4. DVSS is on a common plane internal to the device.

NAME

XA4

XA5
XA6

XA7

XA8
XA9
XAlO
X A l l

XA12
RSVO

RSVl

RSV2

RSV3

RSV4

RSV5
RSV6

RSV7
RSV6

RSV9

RSV10

ADVDD
ADVDD

DDVDD

DDVDD
IODVDD
IODVDD

IODVDD

MDVDD

MDVDD

PDVDD

CVss

CVss

V s s

VSS

VSS
XDO

XD1

GB
PKG

813

A15

B15

C14

E l 2

D l 3

C15
D l 4

E l 3

J3

J4
K1

K2

L1
K3

L2

K4

M I

L3

M2

D l 2

HI1
D4

E8

L8

M12

H5

M4

82

P I4
C8

H3

H I 3
R4

P5

INSTRUMENTS
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443

TERMINAL

NUMBER

HFG
PKG

103

102

95
94

93
92

91

90

89
179

180

181

182

183

184

185

186

187

188
189

100
64

114
147

15

16

49
162

163

1

51

52
28

75

76

12
13

NAME

XD2

XD3

XD4

XD5

XD6
XD7

XD8

XD9
XDlO

XD11

XD12

XD13

XD14

XD15

XDl6

XD17

XD18

XD19

XD20

XD21
XD22

XD23

XD24

XD25

XD26

XD27

XD28
XD29

XD30

XD31

DVss

DVSS

DVSS

DVSS

IVSS

lVss

TERMINAL

0 6
PKG

N6

R5

P6

M7

R6

N7

P7
R7

P6
R8

R9

P9
N9

RlO

M9
P I0

R11

N10
PI1

R12

MI0

N11

P12

R13

R14

MI1

N12
PI3

R15

P I 5

C3

C13

N3

N13

B14

NUMBER

HFG
PKG

14

17
18

19

20
21

22

23

24
29

30

31
32

33

34

35

36

37
38

39
40

41

42
43

44

45

46

47

48

53

50

98

148

196

96

97

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

NOTES: 5. CVSS, VSSL, IVSS are on the same plane.
6. AVDQ, DVQD, CVDQ, PVDD are on the same plane.
7. VSUBS connects to die metallization. Tie this terminal to clean ground.

INSTRUMENTS
POST OFFICE BOX 1443 HOUSTON. TEXAS 77251-1443

SM J320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 - RNISED SEPTEMBER 1994

termlnal functions

This section gives signal descriptions for the SMJ320C3x devices in the microprocessor mode. The following
tables list each signal, the number of terminals, and type of operating mode(s) (i.e., input, output, or
high-impedance state as indicated by I, 0, or Z), and a brief function description. All terminals labeled NC are
special functions of the device and should not be connected by the user. A line over a signal name (e.g., RESET)
indicates that the signal is active low (true at logic 0 level). The signals are grouped according to function.

SMJ320C30 Terminal Functions

A23-A0 24

R/W

m% 1
-
RDY 1

m 1

CONDITIONS
WHEN

SIGNAL IS Z TYPE*

TERMINAL

NAME Q M

Hmx 1

-- - -
RESET 1

PRIMARY BUS INTERFACE

D31 -DO 32 1 I /O/Z 132-bit data port of the primary bus interface I S H

O/Z

OIZ

OIZ

I

,

XA12-XAO 13

XR/W
-
MSTRB 1

IOSTRB 1
- .,--. ,

XF1, XFO 2

M P E ~

EXPANSION BUS INTERFACE

XD31 -XDO 32 1 i /O/Z I 32-bit data port of the expansion bus interface I S R
4

O/Z

bus-interface transaction to complete. I
CONTROL SIGNALS

Reset. When RESET is a logic low, the device is in the reset condition. When (

DESCRIPTION

24-bit address port of the primary bus interface

Readlwrite for primary bus interface. RIW is high when a read is performed and low
when a write is performed over the parallel interface.

External access strobe for the primary bus interface

Ready. RDY indicates that the external device is prepared for a primary-bus-interface
transaction to complete.

Hold for primary bus interface. When is a logic low, any ongoing transaction
is completed. A23-AO, D31 -DO, m, and RIW are in the high-impedance state
and all transactions over the primary bus interface are held until becomes a

O/Z

O/Z

O/Z

OIZ

,

S H R

S H

logic high or the NOHOLD bit of the primary-buscontrol register is set. -
Hold acknowledge for primary bus Interface. HOLDA is genera= responseto a
logic low on m. indicates that A23-AO, D31 -DO, STRB, and R G
in the high-impedance state and that ail transactions over the bus are held. HOLDA
is high in response to a logic high of HOLD or when the NOHOLD bit of the
primary-buscontrol register is set.

t I = input, 0 = output, Z = high-impedance state * S = SHZ active, H = HOLD active, R = RESET active

S

13-bit address port of the expansion bus interface

Readlwrite signal for expansion bus inter f~e. When a read is performed, XRIW is
held high; when a write is performed, XRIW is low.

External memory access strobe for the expansion bus interface

External I10 access strobe for the expansion bus interface

Ready signal. XRDY indicates that the external device is prepared for an expansion-

becomes a logic high, execution begins from the location specified by thereset vector.

External inter~pts

interrupt acknowledge. is setto a logic high by the IACKinstruction. This signal
can be used to indicate the beginning or end of an interrupt-service routine.

Microcomputerlmicroprocessor mode

External flags. XF1 and XFO are used as general-purpose 1/05 or to support
interlocked processor instructions.

INSTRUMENTS
POST OFFICE BOX 1443 ' HOUSTON, TEXAS 77261-1443

S R

S R

S

S

R

SM J320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994

INSTRUMENTS
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443

TCLKO

TCLKI

TERMINAL

NAME QN
N P E ~

SMJ320C30 Terminal Functions (Continued)

IIOIZ

I/OlZ

DESCRIPTION

SUPPLY AND OSCILLATOR SIGNALS

-
CONDITIONS

WHEN
SIGNAL IS z TYPES

CLKXO

DXO 1

FSXO

CLKRO 1

DRO 1

FSRO

CLKXl

DX1 1

FSXl

CLKRI 1

DR1 1

FSRl

Timer clock 0. As an input, TCLKO is used by timer 0 to count external pulses. As an
output, TCLKO outputs pulses generated by timer 0.

TIMER 1 SIGNALS

Timer clock 1. As an input, TCLKl is used by timer 1 to count external pulses. As an
output, TCLKl outputs pulses generated by timer 1.

VDD 4

IODVDD 2

ADVDD 2

PDVDD 1

, DDVDD 2
MDVDD 1

VSS 4

DVSS 4

CVSS 2

llO/Z

110/2

I/O/Z

I/O/Z

I/OlZ

I /O/Z

IIO~Z

I/O/Z

I/O/Z

I/OlZ

S R

S R

SERIAL PORT 0 SIGNALS

t I =input, 0 =output, Z = high-impedance state * S = SHZ active, H = HOLD active, R = RESET active
5 Recommended decoupling capacitor is 0.1 bF.

I

I

I

I

I

I

I

I

I

Serial port 0 transmit clock. CLKXO is the serial shift clock for the serial port 0
transmitter.

Data transmit output. Serial port 0 transmits serial data on DXO.

Frame synchronization pulse for transmit. The FSXO pulse initiates the transmit data
process over DXO.

Serial port 0 receive clock. CLKRO is the serial shift clockfor the serial port0 receiver.

Data receive. Serial port 0 receives serial data via DRO.

Frame synchronization pulse for receive. The FSRO pulse initiates the receive data
process over DRO.

.5-vsupplY§

5-V suppiy~

5-vsupplYs

5-v supply§

5-v supply§

5-vsuppiY5

Ground

Ground

Ground

S R

S R

S R

S R

S R

S R

SERIAL PORT 1 SIGNALS

Serial port 1 transmit clock. CLKXl is the serial shift clock for the serial port 1
transmitter.

Data transmit output. Serial port 1 transmits serial data on DX1.

Frame synchronization pulse for transmit. The FSXl pulse initiates the transmit data
process over DX1.

Serial port 1 receive clock. CLKRl is the serial shift clock for the serial port 1 receiver.

Data receive. Serial port 1 receives serial data via DR1.

Frame synchronization pulse for receive. The FSRl pulse initiates the receive data
process over DR1.

S R

S R

S R

S R

S R

S R

TIMER 0 SIGNALS

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

I I I

SUPPLY AND OSCILLATOR SIGNALS (CONTINUED) (see Note 5)

SGUS014A- FEBRUARY 1 QQl -REVISED SEPTEMBER 1894

SMJ320C30 Terminal Functions (Continued)

POSTOFFICE BOX I 4 4 3 ' HOUSTON, TEXAS 77251-1443

CONDrrlONS
WHEN

SIGNAL IS z TYPES

TERMINAL

NAME QTY

lVss 1

VBBP 1

v~~~~ 1

X I ,
X2lCLKIN 1

H I 1

H3 1

 TYPE^

I

NC

I

OIZ

I

012

012

DESCRIPTION

RESERVED§

Ground

VBB pump oscillator output

Substrate terminal. Tie to ground.

Output from the internal oscillator for the crystal. If a crystal is not used, X I should
be left unconnected.

Input to the internal oscillator from the crystal or a clock

External H I clock. H I has a period equal to twice CLKIN.

External H3 clock. H3 has a period equal to twice CLKIN.

S

S

S
EMUO-EMU2 3

EMU3 1

EMU41SHZ 1

EMUS, EMU8 2

RSVO-RSV10 11

Locator 1

t I = input, 0 = output, Z = high-impedance state
$ S = SHZ active, H = HOLD active, R = RESET active
5 Follow the connections specified for the resewed terminals. Use 18-kR-22-kR pullup resistors for best results. All 5-V supply terminals must

be connected to a common supply plane, and all ground terminals must be connected to a common ground plane.

I

012

I

NC

I

NC

Resewed. Use pullup resistors to 5 V.

Resewed

Shutdown high impedance. When active, ~ M U 4 I m s h u t s down the SMJ320C30
and places all terminals in the high-impedance state. E M U ~ I ~ is used for
board-level testing to ensure that no dual drive conditions occur. CAUTION: A low
on =corrupts SMJ320C30 memory and register contents. Reset the device with -
SHZ high to restore it to a known operating condition.

Resewed

Resewed. Use pullup resistors to 5 V.

Resewed

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994

SMJ320C31 Terminal Functions

TERMINAL

QTY
DESCRIPTION

PRIMARY BUS INTERFACE

CONDITIONS 1
WHEN

D31-DO 32 1 I /O/Z 132-bit data port I S H R

A23-A0 24

R / m

O/Z

-
STRB 1

-
RDY 1

-
HOLD 1

-
HOLDA

O/Z

I

I

External access strobe

Ready. RDY indicates that the external device is prepared for a transaction
completion.
-

Hold. W h e n L D is a logic low, any ongoing transaction is completed. A23-AO,
D31 -DO, STRB, and R/W are in the high-impedance state and all transactions over
the primary bus interface are held until HOLD becomes a logic high or the NOHOLD
bit of the orimaw-bus-control reoister beina set.

CONTROL SIGNALS

24-bit address port

Readlwrite. R/Wis high when aread is performed and lowwhen a write is performed
over the parallel Interface.

S H

OIZ

-
IACK

M C B L / ~ 1

S H R

S H R

Reset. When -is a logic low, the device is in the reset condition. When RESET
becomes a logic high, execution begins from the location specified by the reset vector.

External interrupts

-
RESET 1
--
iNT3-INTO 4

-
SHZ 1

XF1 , XFO

. ,

Hold acknowledge. =is generated in response to a logic low on m. =
indicates that A23-AO, D31 -DO, m, and R* in the high-impedance state
and thaeansact ions over the bus are held. HOLDA is high in response to a logic
high of HOLD or the NOHOLD bit of the primary-bus-control register being set.

I

I

OIZ

I

SERIAL PORT 0 SIGNALS

I FSXO

S

Interrupt acknowledge. lACK is set to a logic high by the IACK instruction. This signal
can be used to indicate the beginning or end of an interrupt-service routine.

Microcomouter boot loader/microorocessor mode select

I

CLKRO

CLKXO ,
DRO 1

DXO 1

FSRO

Frame synchronization pulse for transmit. The FSXO pulse initiates the transmit data
orocess over DXO.

-

Shutdown high impedance. When active, SHZ shuts down the SMJ320C31 and
places all terminals in the high-impedance state. SHZ is used for board-level testing
to ensure that no dual drive conditions occur. CAUTION: A low on SHZ corrupts
SMJ320C31 memoryand registercontents. Resetthedevice w i t h w h i g h to restore
it to a known operating condition.

External flags. XF1 and XFO are used as general-purpose i/Os or to support
interlocked processor instruction.

t I =input, 0 =output, Z = high-impedance state * S = SHZ active, H = HOLD active. R = RESET active

I,OlZ

IIOIZ

I/O/Z

I/O/Z

POST OFFICE BOX 1443 HOUSTON. TEXAS 77251-1443

Serial port 0 receive clock. CLKRO is the serial shift clock for the serial
port 0 receiver.

Serial port 0 transmit clock. CLKXO is the serial shift clock for the serial
port 0 transmitter,

Data receive. Serial port 0 receives serial data via DRO.

Data transmit output. Serial port 0 transmits serial data on DXO.

Frame synchronization pulse for receive. The FSRO pulse initiates the receive data
process over DRO.

S R

S R

S R

S R

S R

POST OFFICE BOX 1443 ' HOUSTON, TEXAS 77251-1443

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994

SMJ320C31 Terminal Functions (Continued)
CONDITIONS

WHEN
SIGNAL IS Z TYPE*

DESCRIPTION

TIMER SIGNALS

Tmer clock 0. As an input, TCLKO is used by timer 0 to count external pulses. As
an output, TCLKO output pulses generated by timer 0.

nmer clock 1. As an input, TCLKO is used by timer 1 to count external pulses. As
an output, TCLKl outputs pulses generated by timer 1.

TERMINAL

NAME Q M

TCLKO ,
TCLK1

M P E ~

I/O/Z

IIOIZ

SUPPLY AND OSCILLATOR SIGNALS

H I 1

H3 1

VDD 20

VSS 20

X I

X2lCLKIN 1

 RESERVED^
EMU2-EMU0 3 1 I I Resewed. Use pullup resistors to 5 V. I
EMU3 1 I 012 (~ e s e w e d I S 1
t I = input, 0 = output, Z = high-impedance state * S = SHZ active, H = HOLD active, R = RESET active
5 Recommended decoupling capacitor value is 0.1 pF.
7 Follow the connections specified for the resewed terminals. Use 18-kR-22-kR pullup resistors for best results. All 5-V supply terminals must
be connected to a common supply plane, and all ground terminals must be connected to a common ground plane.

OIZ

012
1

1

O/Z

I

External H I clock. H1 has a period equal to twice CLKIN.

External H3 clock. H3 has a period equal to twice CLKIN.

5-V supply. All must be connected to a common supply plane.5

Ground. All grounds must be connected to a common ground plane.

Output from the internal crystal oscillator. If a crystal is not used, X1 should be left
unconnected.

Internal oscillator input from a crystal or a clock

SM J320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994

absolute maximum ratingst
Supply voltage range, VCC (see Note 8) . -0.3 V to 7 V
lnputvoltagerange,V~ . -0 .3Vto7V
Output voltage range, Vo . -0.3 V to 7 V
Continuous power dissipation (see Note 9) . 3.1 5 W
Minimum free-air operating temperature, TA . - 55°C
Maximum operating case temperature, TC . 125°C
Storagetemperaturerange . -65"CtoI5OoC

t Stresses beyond those listed under 'absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under 'recommended operating conditions" is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 8. All voltage values are with respect to VSS.
9. Actual operating power is less. This value was obtained under specially produced worst-case testconditions, which are not sustained

during normal device operation. These conditions consist of continuous parallel writes of a checkerboard pattern to both primary and
extension buses at the maximum rate possible. See normal (Icc) current specification in the electrical characteristics table and also
read Calculation of TMS320C30 Power Dissipation Application Repod.

recommended operating conditions (see Note 10)

I MIN NOMS MAX I UNIT I

VDD Supply voltage V

'320631 -27
'320C31- 33 4.5 5.5

1 VIL Low-level input volage 1 -0.38 0.0- 1--v l

........

VSS Supply voltage (CVSS, etc.)

V ~ H High-level input voltage

VTH High-level i n ~ u t voltaae for CLKlN

POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443

0

2.1 VDD + 0.38

3 ~ n n + 0 . 3 6

IOH High-level output current

IOL Low-level output current

TA Operating free-air temperature

TC Operating case temperature

V

V

V

*All nominal values are at VDD = 5 V, TA = 25°C.
6 These values are derived from characterization and not tested.
NOTE 10: All input and output voltage levels are l T L compatible.

- 300

2

- 55

125

m A

OC

"C

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 - RNISED SEPTEMBER 1994

electrical characteristics over recommended ranges of supply voltage (unless otherwise noted)
(see Note 10)

IZ High-impedance current I VDD =MAX I + 2 0 (pA

UNIT

V

V

V

ICC Supply current

PARAMETER

VOH High-level output voltage

11 Input current

Ilp Input current

IIC l n ~ u t current /W/CLKIN\

TEST CONDITIONS~

VDD = MIN, IOH = MAX

VDD = MIN, IOL = MAX

Vnn = MIN, In1 = MAX
VOL Low-level output voltage

MIN TYPS MAX

2.4 3

0.65

0.3 0.6

For XA12-XAO

All others

V l= VSS to VDD
Inputs with internal pullups (see Note 11)

VI = Vcc to V r r

TA = 2VC, VDD = MAX
~ (C I) = h41N
(see Note 12)

t For conditions shown as MINIMAX, use the appropriate value specified in recommended operating conditions.
*All typical values are at VDD = 5 V, TA = 25°C.
§These values are derived from characterization but not tested.
TThese values are derived by design but not tested.
NOTES: 10. All input and output voltage levels are l T L compatible.

11. Terminals with Internal pullup devices: INTO-INT3, MC/m, RSVO-RSV10. Although RSVO-RSV10 have internal pullup devices,
external pullups should be used on each terminal as identified in the Terminal Functions tables.

12. Actual operating current is less than this mawimum value. This value was obtained under specially produced worst-case test
conditions, which are not sustained during normal device operation. These conditions consist of continuous parallel writes of a
checkerboard pattern to both primary and expansion buses at the maximum rate possible. See Calculation of TMS320C30 Power
Dissipation Application Report.

Co Output capacitance I I 20n 1 pF

POST OFFICE BOX 1443 HOUSTON. TEXAS 77251-1443

+ I 0

-400 20

+ 50

'320C31-33

'320C30 - 28

'32OC31-27

C, XZICLKIN capacitance

pA

PA

uA

25a I pF

150 325

175 500

125 250

mA

SM J320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994

PARAMETER MEASUREMENT INFORMATION

Tester Pin
Electronics

Output
Under
Test

Where: IOL = 2 mA (all outputs)
IOH = 300 pA (all outputs)
VLOAD = 2.1 5 V
CT = 80-pF typical loadcircuit capacitance

Figure 1. Test Load Circuit

slgnal transition levels

TTL-level outputs are driven to a minimum logic-high level of 2.4 V and to a maximum logic-low level of 0.6 V.
Output transition times are specified as follows:

For a high-to-low transition on a TTL-compatible output signal, the level at which the output is said to be
no longer high is 2 V, and the level at which the output is said to be low is 1 V.

For a low-to-high transition, the level at which the output is said to be no longer low is 1 V, and the level at
which the output is said to be high is 2 V.

Figure 2.lTL-Level Outputs

Transition times for TTL-compatible inputs are specified as follows:

For a high-to-low transition on an input signal, the level at which the input is said to be no longer high is
2.1 V, and the level at which the input is said to be low is 0.8 V.

For a low-to-high transition on an input signal, the level at which the input is said to be no longer low is
0.8 V, and the level at which the input is said to be high is 2.1 V.

Figure 3.lTL-Level Inputs

POST OFFICE BOX 1443 ' HOUSTON, TEXAS 77251-1443

SM J320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1984

PARAMETER MEASUREMENT INFORMATION

tlming parameter symbology

Timing parameter symbols used herein were created in accordance with JEDEC Standard 100-A. In order to
shorten the symbols, some of the terminal names and other related terminology have been abbreviated as
follows, unless otherwise noted:

INT includes m-m
(M)S in symbols and (M)STRB in description includes STRB and MSTRB
M A includes AZ3-A0 and -12-XAO
M D includes D31 -DO and XD13-XDO
M R W in symbols and (X) R m description includes RIW and XRIW
MRDY includes RDY and XRDY

I'STRUMENTS
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994

timing parameters for CLKIN, HI, and H3 (see Note 10)

$These values are derived from characterization but not tested.
NOTES: 10. All input and output voltage levels are 7TL compatible.

13. Rise and fall times, assuming a 35 - 65% duty cycle, are incorporated within this specification (see Figure 4).
14. p = ~ (c I)

WICLKIN
(1.5 V)

I I
P 2 - H

Figure 4. X2lCLKIN Timing

Figure 5. HllH3 Timing

INSTRUMENTS
POSTOFFICE BOX 1443 HOUSTON, TDVIS 77251-1443

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

Temperature

Figure 6. CLKlN to H I 1H3 as a Function of Temperature

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1984

SMJ320C30-33
4.5 V 5 VDD r 5.5 V

POST OFFICE BOX 1443 ' HOUSTON, TEXAS 77251-1443

10

9-

8-

f .--
0
5 8-
E
B =-I

9 '-
0 3-

2-

1 -

0 ,

-
5.5 v I - -

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 - RNISED SEPTEMBER 1994

memory-read-cycle and memory-write-cycle timing ((M)STRB = 0) (see Figures 7 and 8)

POST OFFICE BOX 1443 ' HOUSTON. TEXAS 77251-1 443

NO.

11

12

' 13.1

13.2

14.1

14.2

15.1

15.2

, 16
17.1

17.2

l8

20

21

22'1

22'2

a
t These * These values are derived from characterization but not tested.

~[H~L-(M)SLI Delaytime, H1 lowto(M)STRBlow

Delay time, H I low to (M)STRB
b[HlL-(M)SH] high

~ (H ~ H - R W L) Delay time, H1 h i g h t o ~ l W 1 0 ~

~~H~H-(X)RWLI Delay time, H1 high to MRIWIOW

b(H1 L-A) Delay time, H I low to A valid

~ ~ H ~ L - M A I Delay time, H I low to M A valid

Setup time, D valid before H I low
~SU(D)R (read)

Setup time, M D before H I low
~SU(XD)R (read)

~~[MDIR Hold time, (X)D after H I low (read)

~SU(RDY) Setup time, RDY before H I high

~SU(XRDY) Setup time, (X)RDY before H I high

t h l M R ~ ~ Hold time, (X)RDY afler H1 high

Delay time, H I high to (X)R/W
b[H1 H-(X)RWHl high (write)

~V [MD~W Valid time, (X)D after H I low (write)

Hold time, M D after H I high
~~[(X)D]W (write)

Delay time, H I high to A valid on
b(H1 H-A) back-to-back write cycles (write)

Delay time, HI high to (X)Avalid on
b[H1 H-(X)A] back-to-back write cycles (write)

b [~ - M R D V Delay time, (X)RDY from A valid

values are derived by design but not tested.

'320C30-33
,320C31-33

MIN MAX

0 t 10

0 t 10

0 t 10

0 t 15

07 14

0 t 10

16

16

0 t

8

9

0

10

20

0 t

16

25

8*

'32OC31-27

MIN MAX
0 t 10

O* 10

O* 10
-

O* 16
-

18

1

0 t

10
-

0

12

20

0t

22

-

6*

'32OC30-28

MIN MAX

0 t 10

0 t 10

0 t 10

0 t 17

O* 16

0 t 13

19

20

0 t

10

10

0

12

20

0 t

22

32

8*

'32OC31-40

MIN MAX

0 t 6

0 t 6

0 t 9
-

0 t 10
-

14

-

0 t

6
-

0

9

17

0 t

15

-
7*

UNIT

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994

Figure 7. Memory-Read-Cycle Timing ((M)STRB = 0)

Figure 8. Memory-Write-Cycle Timing ((M)STRB = 0)

POST OFFICE BOX 1443 HOUSTON. TEXAS 772511443

SM J320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994

memory-read-cycle timing (IOSTRB = 0, SMJ320C30 only)

Figure 9. SMJ320C30 Memory-Read-Cycle Timing (m = 0)

NO.

27

28

29

30

31

32

33

34

POST OFFICE BOX 1443 HOUSTON. TU(AS 77251-1443

t These values are derived by design but not tested.
$These values are derived from characterization but not tested.

~ ~

~ (H~H-IOSL) Delay time, H I high to low

~ (H~H- IOSH) Delay time, H1 high to m h i g h

~[H~L-MRWHI Delay time, H1 low to M R / W high

~ ~ H ~ L - M A I Delay time, H1 low to M A valid

~ S U ~ M D ~ R Setup time, O D before H I high

thlMD]R Hold time. O D afler H I high

~SU[MRDYI Setup time, (X)RDY before H1 high

~~[MRDYI Hold time, (X)RDY after H1 high

'32OC30-28

MIN MAX

0 t 11

0 t 10

0 t 11

12

15

O*

10

0

'320C30-33

MIN MAX

0 t 10

0 t 10

0 t 10

0 t 10

15

O*

9

0

UNIT

ns

ns

ns

ns

ns

ns

ns

ns

SM J320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1694

Figure 10. SMJ320C30 Memory-Write-Cycle Timing (IOSTRB = 0)

memory-wrlte-cycle timing (IOSTRB = 0, SMJ320C30 only)

POST OFFICE BOX 1443 ' HOUSTON. TEXAS 77251-1443

UNIT

ns

ns

n8

t These values are derived by design but not tested.

'320C30-33

MIN MAX

0 t 15

30

0

'320C30-28

MIN MAX

0 t 15

30

0

NO.

35

36

37

t , j (~ l L-XRWL) Delay time, H I low to XRIW low

t V [m ~ 1 w Valid time, O D after H1 high

t h [(~) ~] w Hold time, O D after H I low

SM J320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994

timing for XFO and XF1 when executing LDFl or LDll

Fetch
I LDFl or LDll I Decode I Read I Execute I

NO.

38

39

40

-
ORDY I

I
I
I

3 s - h rt

XFO 39- h-
I I

M- 40

XF1

Figure 11. Timing for XFO and XF1 When Executing LDFl or LDll

~(H~H-XFOL) Delay time, H I high to XFO low

kuO(F1) Setup time, XF1 valid before H I low

th(XF1) Hold time, XF1 after H I low

IN~TRUMENTS
POSTOFFICE BOX 1443 HOUSTON, TEXAS 77251-1443

'32OC31-27

MIN MAX

19

13

0

'32OC30-28

MIN MAX

15

15

0

'320C30-33
,320C3133

MIN MAX

15

12

0

'320C31-40

MIN MAX

13

9

0

UNIT

ns
ns

ns

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1001 -REVISED SEPTEMBER 1094

timing for XFO when executing a STFl or STll
'320C30 - 33

'320C30-28 ,320C31 -33
'320C31-40

MIN MAX MIN MAX MIN MAX
NO.

41

-
M R D Y

XFO

Figure 1. Timing for XFO When Executing a STFl or STll

k~u?u.ucnu\ Delav time. HI hiah to XFO hiah

POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443

'320C31-27

MIN MAX

19

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994

timing for XFO and XF1 when executing SlGl

Fetch I SlGl I Decode I Read I Execute I
H3

XFO

XF1

Figure 2. Timing for XFO and XF1 When Executing SlGl

timing for loading XF register when configured as an output

MIN MAX I MIN M N I MIN MAX 1
45 I t V (~ j ~ . x ~ Valid time, H3 high to XF valid 20 1 15 (131 ns

'32OC31-27

Fetch Load
I lnstructlon I Decode I Read I Execute I

H3

OUTXF Bit

UNIT I '320C30-28

XFx

Figure 3. Timing for Loading XF Register When Configured as an Output

'320C30-33
,320C31 *33

POST OFFICE aox 1 ~ 3 HOUSTON, EMS 7 7 2 5 1 - 1 ~ 3

'32OC31-40

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1881 -REVISED SEPTEMBER 1994

change of XF from output to lnput mode

Buffen Go Value on
I Execute I I From Output 1 Synchronlzer I Termlnal I I Load of IOF)] to Input I Delay I Seen In IOF 1

I

NO.

46

47

48

XFx

Data
Sampled

t These values are derived from characterization but not tested.

~~(H~H-XFOI) H O I ~ time, XF after HI high

tsu ixn Setup time, XF before H1 low

t h ~ n Hold time, XF after H1 low

~ ~ I O X F X represents either bit 1 or bit 5 of the IOF register, and INXFx represents either bit 3 or bit 7 of the IOF register
depending on whether XFO or XF1, respectively, is being affected.

Figure 4. Change of XFx From Output to lnput Mode

'320C31-27

MIN MAX

20t

12

0

POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443

'320C30-28

MIN MAX

20t

12

0

'32OC30-33
,320C31 -33

MIN MAX

157

12

0

'320C31-40

MIN MAX

13t

9

0

UNIT

ns

r)8

ns

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994

change of XFx from input to output mode

Execution of 1 Load of IOF I

NO.

49

L
ti/OXFx represents either bit 1 or bit 5 of the IOF register, and INXFx represents either bit 3 or bit 7 of the IOF register

depending on whether XFO or XF1, respectively, is being affected.

Figure 5. Change of XF From Input to Output Mode

Delay time, H3 high to XF switching
b(H3H-xFIO) from input to output

POST OFFCE BOX 1 443 HOUSTON, ' E M S 77251-1443

'320C31-27

MIN MAX

20

'32OC30-28

MIN MAX

20

'32OC30-33
,320C31

MIN MAX

20

'32OC31-40

MIN MAX

17

UNIT

ns

SM J320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994

reset timing

RESET is an asynchronous input that can be asserted at any time during a clock cycle. If the specified timings
are met, the exact sequence shown in Figure 17 occurs; otherwise, an additional delay of one clock cycle may
occur. R/W and XR/W are in the high-impedance state during reset and can be provided with a resistive pullup,
nominally 18 kR to 22 kQ, to prevent spurious writes from occurring. The asynchronous reset signals include
XFOI1, CLKXOI1, DXO/l, FSXOI1, CLKRO/l , DRO/l, FSRO/1 , and TCLKOI1 . HOLD is an asynchronous input and
can be asserted during reset.

Resetting the device initializes the primary- and expansion-bus control registers to seven software wait states
and, therefore, results in slow external accesses until these register are initialized.

% TEXAS
INSTRUMENTS

POSTOFFICE SOX 1443 HOUSTON, E X A S 77251-1443 €29

UNIT

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

*These values are derived by design but not tested.
See NO TAG for temperature dependence for the 33-MHz SMJ320C30 and SMJ320C31.

'320C31.40

MIN MAX

PS

14

14

9

14

14

15t

9 t

9 t

9 t

21t

'320C30-33
,320C31 - .
MIN MAX

,,t

14

14

10

14

14

18t

10t

r o t

1 o t

25t

'32OC31-27

MIN MAX

pt

14

14

13

14

14

19t

12t

l o t

12t

25t

'32OC30-28

MIN MAX

pt

la

15

20t

12t

l o t

12t

25t

reset timing [P = t,(cl)]

NO.

50

51

52

53

54

55

56

57

58

59

60

t These

~ e t u p t i m e , m b e f o r e
~SU(RESET) CLKlN low

Delay time, CLKlN high to
~(CLKINH-H~H) H I highs

Delay time, CLKlN high to
~(CLKINH-HIL) HI low§

Setup time. RESET high

t s u (~ ~ s ~ ~ ~ - ~ l ~) beforeHl low after 10 H1
clock cycles

Delay time, CLKIN high to
b(CLKINH-H3L) H3 lows

Delay time, CLKlN high to
~(CLKINH-H3H) H3 highs

H I high to O D high-
bls(H1 H-XD) impedance state

H3 high to M A high-
bis(H3H-XA) impedance state

Delay time, H3 high to
b(H3H-C0NTR0LH) control signals high

Delay time, H I high to
b(H1 H-IACKH) - IACK high

-
RESET low to
asynchronously reset

~~~(RESETL-ASYNCH) signals to high-impedance 
state 

values are derived from characterization but not tested. 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

I I - 
RESET 1 I " /r 

J 53 

H l  

H3 
I 
I 
I I 

000 I I 
(see Note A) I -. I 5 5 4  It $+ 57 I 

4 4  

WA I 8 8 

(see Notes A 
I 
I 

and 6) I 
I I 

Control Signals 
(see Note C) 

NOTES: A. Reset vector is fetched three times with 7 software wait states each. 
B. (X)A includes A23-AO, XA12-XAO, and ( X ) R / ~ .  
C. Control signals include m, m, and IOSTRB. 
D. Asynchronously reset signalsincludeXF1, XFO, CLKXO, DXO, FSXO, CLKRO, DRO, FSRO, CLKX1, DX1, FSX1, CLKRl , DRI, FSR1, 

TCLKO, and TCLK1. 

Figure 6. Reset Timing 

POST OFFICE BOX 1443 HOUSTON. TEXAS 77251-1443 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

once. 
2. INT3-INTO are asynchronous inputs and can be asserted at any point during a clock cycle. The SMJ320C3x interrupts are level 

sensitive, not edge sensitive, Interrupts are detected on the falling edge of HI .  For the processor to recognize only one interrupt on 
a given input, an interrupt pulse must be set up and held to a minimum of one H I  falling edge and no more than two HI falling edges. 
The SMJ320C3x can accept an interrupt from the same source every two H l  clock cycles. If the specified timings are met, the exact 
sequence shown occurs; othemise, an additional delay of one clock cycle may occur. 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

-- 
INT3-INTO response timing [Q = tC(H)] 

Reset o r  
Interrupt Fetch First 
Vector lnstructlon of 

I Read I I Sewlce Routine I 

UNIT 

ns 

ns 

Vector Address 
1 I 

Addr 

t These values derived from characterization but not tested. 
NOTES: 1, Interrupt pulse duration must be at least 1 Q wide to assure it is seen. It must be less than 2Q wide to assure B is responded to only 

'32OC31-40 

MIN MAX 

13 

Q < 2 ~ t  

-- 

Data 

'32OC30-33 
,320C31 -33 

MIN MAX 

15 

Q < 2 ~ t  

1 

Figure 7. m-INTO Response Tlming 

'32OC31-27 

MIN MAX 

15 

Q < 2 a  

POST OFFICE BOX 1443 HOUSTON. TEXAS 77251-1443 

'32OC30-28 

MIN MAX 

15 

Q < 2Qt 

NO. 

61 

62 

t 

I I 

-- 
Setup time, lNT3-INTO 

~SU(INT) before H I  low 

Pulse duration, m-m, :ir$ot85 and 2) to assure only one interrupt 
seen 

INT3-INTO I 
1 lnstructlon I 

Flag I 
I I Address 7 1 

I 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

interrupt-acknowledge (m) timing 

Fetch IACK IACK 
) lnstructlon I 1 Data Read I I 

NO. 

63 

l 
l e e 4  

- 
IACK 

Addr 

~ ( H ~ H - I A C K L )  Delay time, H I  high to iE% low 

Data 

64 I ~ ( H ~ H - I A C K H )  Delay time, H I  high to lACK high 

Figure 8. Interrupt-Acknowledge lACK Timing 

'32OC30-28 

MIN MAX 

12 

POSTOFFICE BOX 1443 HOUSTON, TEXAS 77251-1443 

12 

'320631 -27 

MIN MAX 

12 

12 

'320C30-33 
,320C31 

MIN MAX 

10 

10 

'320C31-40 

MIN MAX 

9 

UNIT 

ns 

9 ns 





SMJ320C3X 
DIGITAL SIGNAL PROCESSOR 

POST OFFICE BOX 1443 HOUSTON. TEXAS 77251-1 443 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUSO14A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

HI  

C L W R  

DX 

DR 

FSR 

FSX (lnt) 

FSX (ext) 

NOTES: A. Timing diagrams show operations with the serial-port global-control register bits CLKXP = CLKRP = FSXP = FSRP = 0. 
B. These timings are valid for all serial port modes, including handshake, except where otherwise indicated. For afunctional description 

of serial port operation, refer to the TMS320C3x User's Guide. 
C. liming diagrams depend upon the length of the serial-port word, where n = 8. 16, 24, or 32 bits, respectively. 

Figure 1. Serial-Port Timing, Fixed-Data-Rate Mode 

CLKXIR A \ / \ ;; A \ 
I 

FSX (lnt) I $I 
I I 

I 
FSX (ext) I 

--y u- 79 

DX 811 n - 2 

FSR 

NOTES: A. Timing diagrams show operations with the serial-port global-control register bits CLKXP = CLKRP = FSXP = FSRP = 0. 
B. These timings are valid for all serial-port modes, including handshake, except where otherwise indicated. 
C. Timings not expressly specified for variable-data-rate mode are the same as those for futed-data-rate mode. 
D. Timing diagrams depend upon the length of the serial-port word, where n = 8, 16, 24, or 32 bits, respectively. 

Figure 2. Serial-Port Timing, Variable-Data-Rate Mode 

WSTOFFlCE BOX 1443 HOUSTON. TEXAS 77251-1443 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUSOl4A- FEBRUARY 1991 - RNISED SEPTEMBER 1994 -- 

NO. 

80 

81 

82 

83 

84 

85 

86 

" 

89 

t These 
*These values are derived from characterization but not tested. 
NOTE 1: HOLD is an asynchronous input and can be asserted at any point during a clock cycle. if the specified timings are met, the exact 

sequence shown in Figure 3 occurs; otherwise, an additional delay of one clock cycle can occur. The NOHOLD bit of the 
primary-buscontrol register (refer to the TMS320C3x User's Guide) overrides the signal. When this bit is set, the device comes 
out of hold and prevents future hold cycles from occurring. 

HOLDIHOLDA timing (see Note 1) 

Setup time, 
tsu(HOLD) before H1 low 

Valid time, after 
~(HOLDA) Hl low 

Pulse duration, HOLD 
~W(HOLD) 

Pulse duration, 
tw(H0LDA) 10, 

Delay time, H I  low to 
h(H1L-SH)H STRB high for a HOLD 

Disable time, H1 low to 
b i ~ ( H l L - ~ )  high impedance 

Enable low to 
bn(H1 L-S) STRB active 

Disable time* low to 
bis(HIL-RW) R / m  high impedance 

Enable time, H1 low to 
bn(H1 L-RW) R/W active 

Disable time, H I  low to 
t j i s ( ~ l  L-A) address high 

impedance 

Enable time, H I  low to 
L-A) address valid 

Disabletime, '1 high '0 
H-D) data high impedance 

values are derived by design but not tested. 

'32OC30-28 

MIN MAX 

15 

0t 

&(H) 

'C(H) -5* 

o t  l o *  

o t  l o$  

0 t  

o t  l o $  

o t  l o $  

o t  15$ 

o t  15$ 

o t  15$ 

'320C31-27 

MIN MAX 

15 

Ot 

*(HI 

'C(H)-~* 

~t IO* 

o t  l o *  

o t  l o t  

o t  l o$  

o t  l o$  

o t  13$ 

o t  15* 

o t  15$ 

'320C30-33 
B320C31 -33 

MIN MAX 

15 

Ot 

w-0 

'c(H)-~* 

~t lo$  

~t l o *  

o t  

o t  

~t l o $  

0 t  l o $  

O+ 15$ 

o t  15$ 

'320'231 -40 

MIN MAX 

13 

0$ 9 

*(H) 

'C(H)-~* 

~t 9$ 

~t 9$ 

o t  9$ 

o t  9$ 

~t 9$ 

0 t  9$ 

~t 

o t  12$ 

UNIT 

na 

na 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

1 3 $ n s  

ns 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1981 -REVISED SEPTEMBER $694 

- 
HOLDA 

- 
STRB I 1 %  

I I I 
I 9-w- E7 *m , , 

D Wrlte Data 

NOTE A: HOU)A goes low in response to going low and continues to remain low through one HI cycle after returns to high. 

Figure 3. Timing 

POSTOFFICE BOX 1443 ' HOUSTON. TULI\S 77251-143 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUSO14A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

peripheral-terminal general-purpose I10 timing (see Note 2) 

NOTE 2: Peripheralterminals include CLKXOI1, CLKROI1, DXOI1, DRO11, FSXOI1, FSROIl, andTCLKO11. The modes ofthese terminals are 
defined by the contents of internal control registen associated with each peripheral. 

HI  

Perlpheral 
Termlnal 

Figure 4. Peripheral-Terminal General-Purpose I10 Timing 

%? TEXAS 
E-38 

INSTRUMENTS 
POST OFFICE BOX 1443 ' HWSTON. TEXAS 77251-1443 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

change of perlpherai terminal from general-purpose output to lnput mode 

Executa Store 
of Perlpheml 

Control 
Reglster 

UNIT NO. 

95 

96 

97 

VO 
Control Blt 

Peripheral 
Termlnal 

Data Btt 

320C31-27 

MIN MAX 

t These values are derived by desion but not tested. 

th(H3H) Hold time after H1 high 

t s u ( ~ p ~ o ~ l  L) Setup time, peripheral terminal before H1 low 

t h ( ~ p 1 0 ~ 1 ~ )  Hold time, peripheral terminal after H1 low 

Data Sampled \ /::: 

Value on 
Tennlnal Sean In 

Par lphml 
Control Raglater 

Buffem Go 
From Output to 

lnput 

Figure 5. Change of Peripheral Terminal From General-Purpose Output to lnput Mode 

'32OC30-33 
,320C31 -33 

MIN MAX ...... 

15t 

13 

0 

Synchronizer Delay 

INSTRUMENTS 
WSTOFFlCE BOX 1443 ' HOUSTON. TEXAS 77251-1443 

'32OC31-40 

MIN MAX .... ~ 

15t 

12 

0 

13t 

9 

0 

ns 

ns 

ns 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

Execution of Store of 
Peripheral Control 

Register 

SGUSO14A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

change of peripheral terminal from general-purpose input to output mode 

I 
I 

I 
I10 

Control I I 
Blt 1 

I 
J 9a 

Perlpheral 
Termlnal 

Figure 6. Change of Peripheral Termlnal From General-Purpose lnput to Output Mode 

NO. 

'* 

IN~TRUMENT~ 
POSTOFFICE BOX 1443 ' HOUSTON, TEXAS 77251-1443 

Delay time, HI high to peripheral terminal switching 
b(GPIOH1H) from input to output 

'32OC31-27 

MIN MAX 

15 

'320C30 -33 
,320C31 

MIN MAX 

15 

'32OC31-40 

MIN MAX 

13 

UNIT 

ns 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

tlmlna parameters for timer terminal 

Setup time, 
ITCLKext l  I 5  

before H1 lowt 

- .  

UNIT 

100 

101 

'320'231 -27 I '32OC31-40 
NO. UNIT 

MIN MAX MIN MAX 

'320C30-33 
'320C31-33 

MIN MAX 
NO. 

103 

'320C30-28 

MIN MAX 

Hold time, 
~~(TCLK-HI L) TCLK ext after 

H l  lowt 

Delay lime, HI  
L ~ ~ c L K - H ~ H )  high to TCLK 

I I '  in1 valid I I I I I 

Pulse duration, 
twvCLK) TCLK 

high/lowt 

99 

100 

i 

TCLK ext 

TCLK int 

TCLK ext 

TCLKint 

Setup time, 
~UCTCLK-H~L) TCwext  

before H I  iowt 

Hold time, 
t h ( ~ c ~ ~ . ~ l  L) TCLK ext afier 

H l  lowt 

NOTE A. Period and polarity of valid logic level are specified by contents of internal control registers. 

Figure 7. Timer-Terminal Timing 

- - 

0 

15 

TCLK ext 1 k(H) 2.6' j k ( ~ )  x 2.6* ns 

TCLK int 1 t c ( ~ )  x 2 k ( ~ )  x 232* 1 k(H) x 2 k ( ~ )  x 232* I ns 
lo2 

103 

POST OFFICE BOX 1443 HOUSTON. TEXAS 77251-1443 

k ( ~ )  + lo *  

[ ~ ( T c L K ) / ~ ] - ~  [k(T~LK)/21+5 

TCLK ext 

TCLK ext 

- -  - - 

cycle time, 
kCrcLK) T C L K ~  

0 

12 

t Tlmlng parameters 99 and 100 are applicable for a synchronous input cl- 102 and 103 are applicable for an synchronous 
input clock. 

*Assured by design but not tested 

Pulse duration, 
t w ~ c ~ ~  TCLK 

high/lowt 

ns 

ns 

k(H) + 12* 

[k(TCLK)/21-15 [k(Tcu<)/21+5 

15 

0 

ns 

"s 

TCLK ext 

TCLK int 

10 

0 

ne 

ns 

k ( ~ )  + 12* 

[ ~ ( T C L K ) / ~ ] - I ~  [ ~ ( T C L K ) / ~ ] + ~  

k ( ~ )  + 12* 

[k(T~LtQ/216 [~(TcLK) /21+5 

ns 

ns 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

- 
timing parameters for SHZ [P = tc(c1)] 

- I - ,  

1 I 
. 

I I I I I I 
t These values are derived from characterization but not tested. 

JIW L I I I I ~ ,  P"L I"** LU 5111 u, I,U 

- impedance? 
I 

Enable time, SHZ high to all 0,110 

All 110s A , = - = -  

$ Enabling SHZ destroys SMJ320C3x register and memory contents. Assert SHZ and reset the SMJ320C3x to restore it to a known condition. 

'32OC30-28 -.... 
MIN  MAX^ 1 MlN  MAX^ 1 MlN  MAX^ 1 MIN  MAX^ ( 

NO. 

Figure 8. Timing for SHZ 

- 
0 3 P t 1 5  

2p 

POST OFFICE BOX 1443 HOUSTON, EXAS 77251-1443 

104 
~ i ~ ~ p ~  A:-- OUT #*...a- ,.w n 0 ,A I I I I 

bis(SHZ) hiah, 0 3 P t 1 5  

0 2P 

0 3P+15 

0 2P 

0 3P+15 

0 2P 

ns 

ns 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

SMJ320C30 part order Information 

SMJ 320 C 30 GB M 28 

PROCESSING 
LEVEL 

Clase B 

Std 

DESC SMD 

Class B 

Std 

DESC SMD 

Class B 

Std 

DESC SMD 

Class B 

Std 

DESC SMD 

Figure 9. SMJ320C30 Device Nomenclature 

PACKAGE TYPE 

Ceramic 181-pin PGA 

Ceramic 181-pin PGA 

Ceramic 181-pin PGA 

Ceramic 181-pin PGA 

Ceramic 181-pin PGA 

Ceramic 181-pin PGA 

1g6-pin quad with 
nonconductive tie bar 

196-pin quad with 
nonconductive tie bar 

Ceramic 196-pin quad flatpack with 
nonconductive tie bar 

nonconductive 196-pin tie quad bar 
with 

Ceramic nonconductive 196-pin tie quad bar 
with 

1g6-pin quad 'Iatpack with 
nonconductive tie bar 

SPEED RANGE 
28 = 28 MHz 

SM = Standard Processing 33 = 33MHz 

TEMPERATURE RANGE 
M = - 55°C to 125°C 

DEVICE FAMILY L = 0°C to 70% 
320 = SMJ320 Family 

PACKAGE TYPE 
GB = Pin Grid Array (PGA) 

TECHNOLOGY HFG = 196-Pin Quad Flatpack with a 

POST OFFICE BOX 1443 HOUSTON. TEXAS 772511443 

OPERATING 
FREQUENCY 

28 MHz 

28 MHz 

28 MHz 

33 MHz 

33 MHz 

33 MHz 

28 MHz 

28 MHz 

28 MHz 

33 MHz 

33 MHz 

33 MHz 

C = CMOS 

POWER 
SUPPLY 

5 V + 5% 

5 V + 5% 

5 V + 5% 

5 V t 10% 

5 V t 10% 

5 V + 10% 

5 V + 5% 

5 V + 5% 

5 V + 5% 

5 V t 10% 

5 V + 10% 

5 V + 10% 

DEVICE 

SMJ320C30GBM28 

SM320C30GBM28 

5962-9052601MXA 

SMJ320C30GBM33 

SM320C30GBM33 

5962-9052803MXA 

SMJ320C30HFGM28 

SM320C30HFGM28 

5962-9052601 MUA 

SMJ320C30HFGM33 

SM320C30HFGM33 

5962-9052603MUA 

nonconductive tie bar 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8.pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0,8-pm CMOS 

DEVICE 



SMJ 320 C 

I I 

SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 - RNISED SEPTEMBER 1994 

SMJ320C31 part order information 

PREFIX 
SMJ = 883 Class B 
SM = Standard Processing 

DEVICE 

SMJ320C31GFAM27 

SM320C31GFAM27 

SMJ320C31GFAM33 

SM320C31GFAM33 

SMJ320C31GFAM40 

SM320C31GFAM40 

SMJ320C31HFGM27 

SM320C31HFGM27 

SMJ320C31 HFGM33 

SM320C31 HFGM33 

SMJ320C31HFGM40 

SM320C31HFGM40 

5962-9205801MXA 

5962-9205801MYA 

5962-9205802MXA 

5962-9205802MYA 

DEVICE FAMILY A 
320 = SMJ320 Family 

TECHNOLOGY I 
C = CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-vm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-vm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

0.8-pm CMOS 

31 GFA M 27 

L SPEEDRANGE 
27 = 27 MHz 
33 = 33 MHz 
40 = 40 MHz 

POWER 
SUPPLY 

5 V t 10% 

5 V t 10% 

5 V t 10% 

5 V t 10% 

5 V t 5% 

5 V t 5% 

5 V t 10% 

5 V t 10% 

5 V + 10% 

5 V t 10% 

5 V + 5% 

5 V t 5% 

5 V t 10% 

5 V t 10% 

5 V + 10% 

5 V t 10% 

TEMPERATURE RANGE 
M = - 55°C to125"C 
L = O°C to 70°C - PACKAGE TYPE 

GFA = 141 -Pin Staggered Pin Grid Array 
HFG = 196-Pin Quad Flatpack with a 

nonconductive tie bar 

OPERATING 
FREQUENCY 

27 MHz 

27 MHz 

33 MHz 

33 MHz 

40 MHz 

40 MHz 

27 MHz 

27 MHz 

33 MHz 

33 MHz 

40 MHz 

40 MHz 

27 MHz 

27 MHz 

33 MHz 

33 MHz 

DEVICE I 
Figure 10. SMJ320C31 Device Nomenclature 

PACKAGE TYPE 

Ceramic 141-pin staggered PGA 

Ceramic 141-pin staggered PGA 

Ceramic 141-pin staggered PGA 

Ceramic 141-pin staggered PGA 

Ceramic 141-pin staggered PGA 

Ceramic 141 -pin staggered PGA 

Ceramic 132-pin quad flatpack with a 
nonconductive tie bar 

Ceramic 132-pin quad flatpack with a 
nonconductive tie bar 

132-pin quad flatpack with a 
nonconductive tie bar 

132-pin quad flatpack with a 
nonconductive tie bar 

Ceramic 132-pin quad with a 
nonconductive tie bar 

Ceramic 132-pin quad flatpack with a 
nonconductive tie bar 

141-pin CPGA 

132-PIN CQFP 

141-pin CPGA 
- - 

132-PIN CQFP 

WSTOFFICE BOX 1443 HOUSTW, TD(AS 77'251-144 

PROCESSING 
LEVEL 

Class B 

Std 

Class B 
Std 

Class B 
Std 

Class B 

Std 

Class B 

Std 

Class B 

Std 

DESC SMD 

DESC SMD 

DESC SMD 

DESC SMD 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1091 -REVISED SEPTEMBER 1894 

MECHANICAL DATA 

SMJ320C30 HFG 196-lead ceramic quad flat pack with a nonconductive tie bar 

p : : P 1 
0,51 (0.020) 

MAX 

I I 

Y 
T v 

0,76 (0.030) 
0 33 (0 01 3) 3,30 

196. - TYP 
0,18 (0.007) (0.1 30) 

MAX 

Thermal Rerlatance Characterlrtlcr 
7 

0,20 (0.008) R ~ A  28.9 
0,lO (0.004) ' ' - 

0,30 (0.012) * 
0,65 (0.025) TYP 4-b- 2,67 (0.105) MAX 

0,15 (0.006) 

Cerarnlc Detall A (at braze pada) 

Detall B 

ALL LINEAR DIMENSIONSARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

TEXAS 
IN~TRUMENT~ 

W S T  OFFICE BOX 1443 HOUSTON, EXAS 77261-1443 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

SMJ320C30 196-lead ceramic quad flatpack (HU suffix) 
r 

RECOMMENDED FINAL LEAD-FORM DIMENSIONS FOR BOARD MOUNT 

I I 

30,48 (1.200) BSC 

0,25 (0.010) MIN Radius 

With Lead Flnlsh 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

NOTES: A. TI does not offer MIL-SPEC part in formed lead configuration. 
0. Lead forming should be performed at customer's facility or subcontracted. 

POST OFFICE BOX 1443 ' HOUSTON, 'TEXAS 77251-1443 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

2,54 (0.100) TYP--)( BOlTOM VIEW 

SQUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1894 

MECHANICAL DATA 

SMJ320C30 181-pln ceramlc grld array (GB suffix) 
TOP VIEW 

Index Cornsr 2 

r' 
Pln A1 

Corner lndlcaty 

40,4 (1.590) 
37,6 (1.480) 

1 

ALL 

- 
0 0000000000000 0 
00000000000000 0 
0 0000000000000 0 
0 000 0 000 0 
0 000 000 0 
0 000 000 0 
00000 0000 0 
0 000 Extra pin 0 0 0 0 
0000 6 000 0 
00000 0 000 0 
0 0000000000000 0 
000@@0000000000 2,54 (0.1 00) TYP 

@ @ @ @ @ @ @ @ @ @ @ @ @  0 
0000000000000 

1 2 3  4 5 6  7 8 91011121314  

4,70 (0.1 85) 

1,40 (0.055) 
1,14 (0.045) 

7 (0.050) NOM 
IA (4 Places) 

%a 
\ 

Dm$ 

-- ii' 
,&I v s s o ,  

VDD 
/ 

.INEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

Thermal Reslstancr Characterlstla 

POST OFFICE BOX 1443 . HOUSTON, TEXAS 77261-1443 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

MECHANICAL DATA 

SMJ320C30 244-pin TAB frame (PG5) socket, 203 OLBIILB 0.25-mm OLB pitch 

NOTES: A. Lead pitch in OLB windows is 250 pm. 
B. OLE lead width is 100 pm + 20 pm. 
C. Dimensions reference centerline to outside edge of lead. 
D. P0.25 t 0.01 x 49 = 12.25 + 0.02. 

- - -  

POST OFFICE BOX 1443 HOUSTON. TEXAS 77251-1443 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 19M 

MECHANICAL DATA 

SMJ320C30 TAB (PG5) 244-pin socket, 203 OLBIILB 0.25-mm OLB pitch (continued) 
I 1 

-- - 

POST OFFICE BOX 1443 HOUSTON. TEXAS 77261-1443 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

SMJ320C30 (rev 5) Inner Lead Bond lntormatlon tor TAB 
(tape automated bonding) 

203 Dle Slde Number 4 153 

Pad Number One - 1 

Dle Slde Number 1 Dle Slde Number 3 

Zero-Zero 
(orlgln) 

51 Dle Side Number 2 102 

Dle Dealgnator 

Figure 11. SMJ320C30 Die Numbering Format 
(Reference Table 1) 

The inner lead bond (ILB) pitch for the TAB leadframe is the same as the die bond pad pitch. Table 1 provides 
a reference for the following: 

A. The TAB lead numbers. The TAB lead numbers are the same as the die bond pad numbers. 

B. The "230 signal identities in relation to the pad numbers 

C. Which signal functions fan out to more than one test pad location. (There are 203 bond pad locations, 
203 TAB leads, and 244 test pad locations.) 

D. The 'C30 X,Y coordinates, where bond pad 51 serves as the origin (0,O) 

E. The ILB pitch for the TAB leadframe 

In addition, the following notes are significant: 

F. X,Y coordinate data is in microns. 

G. Coordinate origin is at 0,O (center of bond pad 51). 

H. Average pitch is 186 microns (7.33 mils). 

I. Smallest pitch value is 1568 microns (6.173 mils). 

J. The active silicon dimensions are 10224,OO pm x 11032,OO pm (402.52 mils x 434.33 mils). 

K. The die size is approximately 10337,80 pm x 11150,6 pm (409.00 mils x 439.00 mils). 

L. Distance from diced silicon to polyimide support ring is 1016,O pm (40 mils). 

M. Bond pad dimensions are 115,OO pm x 115,OO pm, 

N. Center of bond pad to edge of die rangesfrom 180 pm-220 pm (7.1 mils-8.6 mils). The rangeof 40 pm 
exists since the dicing process will result in some tolerance. Due to the consistency and precision of the 
bond pad locations in reference to each other, the center of bond pad 51 was chosen as the origin. 

E-50 POST OFFICE BOX 1-3 HOUSTON, TEXAS 77251-1443 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

Table 1. SMJ320C30 Dle PadITab Lead lnformatlon : rev 5 (0,8 pm) 

POSTOFFICE BOX 1443 ' HOUSTON. TEXAS 77251-1443 

C30 DIE 
BOND PAD 
LOCATIONS 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

DlVTAB 
BOND PAD 
IDENTIN 

PDVDD 
PDVDD 

DRO 
FSRO 

CLKRO 
CLKXO 
FSXO 
DXO 

TCLKO 
TCLK1 
EMU6 
XDO 
XD1 
XD2 

IODVDD 
IODVDD 

XD3 
XD4 
XD5 
XD6 
XD7 
XD8 
XD9 

XDlO 
VDD 
VDD 
VSS 
VSS 
XDl l  
XD12 
XD13 
XD14 
XD15 
XD16 
XD17 
XD18 
XD19 
XD20 
XD21 
XD22 
XD23 
XD24 
XD25 
XD26 
XD27 
XD28 
XD29 
XD30 

IODVDD 
IODVDD 

DIE SIDE #1 

X COORDINATE OF 
THE DIE 'OND PAD 

- 423.80 

- 

TAB C30 
TEST PAD 

LOCATIONS 

1 - 2  
3,4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

17,18 
19,20 

21 
22 
23 
24 
25 
26 
27 
28 

29,30 
31,32 

33, 34, 35 
36,37 

36 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 

58,59 
60,61 

Y COORDINATE OF 
THE DIE 'OND PAD 

9563.00 
9367.80 
9199.20 
9007.20 
6623.20 
8631.20 
8447.20 
8255.20 
8071.20 
7879.20 
7695.20 
7503.20 
7319.20 
7127.20 
6947.00 
6751.80 
6853.20 
6399.20 
6207.20 
6023.20 
5831.20 
5647.20 
5455.20 
5271.20 
5083.00 
4887.80 
4731.00 
4535.80 
4367.20 
4183.20 
3991.20 
3807.20 
361 5.20 
3431.20 
3239.20 
3055.20 
2863.20 
2679.20 
2487.20 
2303.20 
2111.20 
1927.20 
1735.20 
1551.20 
1359.20 
1175.20 
983.20 
799.20 
619.00 
423.80 

PITCH OF LEAD (#, Y) 
REFERENCE 

BOND PADS 

195.20 (1,2) 
168.60 (2,3) 
192.00 (3,4) 
184.00 (43) 
192.00 (5,6) 
184.00 (67) 
192.00 (73) 
184.00 (8,9) 

192.00 (9,lO) 
184.00 (10,ll) 
192.00 (11,12) 
184.00 (1 2,13) 
192.00 (13,14) 
180.20 (14,15) 
195.20 (15,16) 
168.60 (16,17) 
184.00 (17,18) 
192.00 (18,19) 
184.00 (19,ZO) 
192.00 (20,21) 
184.00 (21,22) 
192.00 (22,23) 
184.00 (23,24) 
l a . 2 0  (24,25) 
195.20 (2.526) 
156.80 (26,27) 
195.20 (2728) 
168.60 (2829) 
184.00 (29,30) 
192.00 (30,31) 
1 84.00 (31,32) 
192.00 (32,33) 
184.00 (33,34) 
192.00 (34,35) 
184.00 (35,36) 
192.00 (36,37) 
184.00 (37,38) 
192.00 (38,39) 
184.00 (39,40) 
192.00 (40,41) 
184.00 (41,42) 
192.00 (42,43) 
184.00 (43,44) 
192.00 (44,45) 
184.00 (4546) 
192.00 (46,47) 
184.00 (47,48) 
180.20 (48,49) 
195.20 (4950) 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

Table 1. SMJ320C30 Die PadlTab Lead Information : rev 5 (0.8 pm) (Contlnued) 

E-52 POST OFFICE BOX 1443 HOUSTON. TEXAS 77261-1 443 

C30 DIE 
BOND PAD 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 

DlVTAB 
BOND PAD 
lDENTm 

DVSS 
DVss 
CVSS 
CVSS 
XD31 
A23 
A22 
A21 
A20 
A19 
A1 8 
A17 
A1 6 
A1 5 
A14 

A D V ~ ~  
ADVDD 

A1 3 
A12 
A1 1 
A1 0 
A9 
A8 
A7 
A6 

VDD 
VDD 
VSS 
"SS 
A5 
A4 
A3 
A2 
A1 
A0 

EMU0 
EMU1 
EMU2 
EMU3 
EMU4 
M C I ~  
XA12 
XA11 
XAI 0 
XA9 
XA8 
XA7 
XA6 
~VSS 
~VSS 
DVSS 
DVss 

TAB C30 
TEST PAD 

62,63 
64 

65,66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 

79,80 
81 
82 
83 
84 
85 
86 
87 
88 
89 

90,91 
92,93 
94,95 
96,97 

98 
99 
1 00 
101 
102 
103 
104 
105 
106 
107 
106 
109 
110 
111 
112 
113 
114 
115 
116 

117, 118 
119 

120,121 
122 

DIE SIDE m 

X COORDINATE OF 
THE DIE BOND PAD 

0.00 
195.2 

374.80 
570.00 
746.60 
936.60 

1138.60 
1338.60 
1530.60 
1730.60 
1922.60 
2122.80 
2322.60 
2514.36 
2902.80 
271 4.60 
2902.80 
3098.00 
3274.60 
3474.60 
3666.60 
3866.60 
4258.60 
4458.60 
4650.60 
4846.80 
5042.00 
5214.80 
2410.00 
5578.60 
5776.60 
5970.60 
6170.60 
6370.60 
6562.60 
6774.80 
6990.80 
7198.80 
7402.60 
7606.80 
7822.80 
8026.60 
8218.60 
841 8.60 
8610.60 
881 0.60 
9010.60 
9202.60 
9398.80 
9594.00 
9756.80 
9954.00 

Y COORDINATE OF 
THE DIE BOND PAD 

0.00 

PITCH OF W D  (#, #) 
REFERENCE DIE 

BOND PADS 
195.20 (51, 52) 
179.60 (52, 53) 
195.~1(53,54) 
176.60 (54, 55) 
192.00 (55,58) 
200.00 (56,57) 
200.00 (57,58) 
192.00 (58, 59) 
200.00 (59,60) 
192.00 (60, 61) 
200.00 (61,62) 
200.00 (62,63) 
192.00 (63, 64) 
200.00 (64, 65) 
188.20 (65, 66) 
195.20 (66, 67) 
176.60 (67, 68) 
200.00 (68, 69) 
192.00 (69, 70) 
200.00 (70,71) 
200.00 (71,72) 
192.00 (72, 73) 
200.00 (73,74) 
192.00 (74, 75) 
196.20 (75, 76) 
195.20 (76, n) 
172.80 (77, 78) 
195.20 (78, 79) 
168.60 (79, 80) 
200.00 (80, 81) 
192.00 (81,62) 
200.00 (82, 83) 
200.00 (83,84) 
192.00 (84,85) 
212.20 (85,86) 
21 6.00 (86,87) 
206.00 (87,88) 
203.80 (88, 89) 
204.20 (89, 90) 
216.00 (90,91) 
203.60 (91,92) 
192.00 (92, 93) 
200.00 (93,94) 
192.00 (94,95) 
200.00 (95,96) 
200.00 (96, 97) 
192.00 (97, 98) 
196.20 (98,99) 
195.20 (99, 100) 
164.80 (100, 101) 
195.20 (101, 102) 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

SQUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

Table 1. SMJ320C30 Die PadITab Lead Information : rev 5 (0.8 pm) (Continued) 

POST OFFICE BOX I443 HOUSTON. TEXAS 77251-1443 

C30 DIE 
BOND PAD 

LOCATIONS 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 

Y COORDINATE OF 
THE DIE BOND PAD 

430.60 
625.80 
764.40 
986.40 

1170.40 
1362.40 
1546.40 
1738.40 
1922.40 
2114.40 
2298.40 
2490.40 
2674.40 
2866.40 
3046.80 
3241.80 
3410.40 
3594.40 
3786.40 
3970.40 
4162.40 
4346.40 
4538.40 
4722.40 
4910.60 
5105.80 
5262.60 
5457.80 
5626.40 
5810.40 
6002.40 
6186.40 
6378.40 
6562.40 
8754.40 
6938.40 
7130.40 
7314.40 
7506.40 
7690.40 
7882.40 
8066.40 
6258.40 
8442.40 
8634.40 
8818.40 
9010.40 
9194.40 
9374.60 
9569.80 

PITCH OF LEAD (#, #) 
REFERENCE WHICH DIE 

BOND PADS 
195.20 (103,104) 
168.60 (104,105) 
192.00 (105,106) 
184.00 (106,107) 
192.00 (1 07,108) 
184.00 (108,109) 
192.00 (109,110) 
184.00 (110,111) 
192.00 (111,112) 
184.00 (112.113) 
192.00 (113,114) 
184.00 (114,115) 
192.00 (115,116) 
180.20 (116,117) 
195.20 (117,118) 
168.60 (118,119) 
184.00 (119,120) 
192.00 (120,121) 
184.00 (121,122) 
192.00 (122,123) 
184.00 (123,124) 
192.00 (1 24,125) 
184.00 (125,128) 
188.20 (126.127) 
195.20 (127,128) 
156.80 (128,129) 
195.20 (1 29,130) 
168.60 (130,131) 
184.00 (131,132) 
192.00 (132,133) 
184.00 (133,134) 
192.00 (134,135) 
184.00 (135,136) 
192.00 (136,137) 
184.00 (1 37,138) 
192.00 (138,139) 
184.00 (139,140) 
192.00 (140,141) 
184.00 (141,142) 
192.00 (142,143) 
184.00 (143,144) 
192.00 (144,145) 
184.00 (145,146) 
192.00 (146,147) 
184.00 (147,148) 
192.00 (148,149) 
184.00 (149,150) 
180.20 (150,151) 
195.20 (151,152) 

DlERAB 
BOND PAD 
IDENTITY 

ADVDD 
ADVDD 

XA5 
XA4 
XA3 
XA2 
XA1 
XAO 
D31 
D30 
D29 
D28 
D27 
D26 

DDVDD 
DDVDD 

D25 
D24 
D23 
D22 
D21 
D20 
D l 9  
D l 8  

V~~ 
VDD 
v~~ 
v~~ 
D l 7  
D l 6  
D l  5 
D l  4 
D l  3 
D l2  
Dl1 
D l0  
D9 
D8 
D7 
D6 
D5 
D4 
03 
D2 
D 1 
DO 
H 1 
H3 

DDVDD 
DDVDD 

TAB C30 
TEST PAD 

LOCATIONS 
123,124 
125,126 

127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 

139,140 
141,142 

1 43 
144 
145 
146 
147 
148 
149 
150 

151, 152 
153,154,155 

156,157 
158,159 

160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 

180,181 
182,183 

DIE SIDE 13 

X COORDINATE OF 
THE DIE BOND PAD 

10377.80 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 - RNISED SEPTEMBER 1994 

Table 1. SMJ320C30 Die PadITab Lead Information : rev 5 (0.8 pm) (Continued) 

POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443 

C30 DIE 
BOND PAD 
LOCATIONS 

153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
166 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 

TAB C30 
TEST PAD 

LOCATIONS 

184 
185, 186 

187 
188,189 

190 
191 

192,193 
194 
195 
196 
197 
196 
199 
200 
201 
202 

203,204 
205 
206 
207 
208 
209 
210 
211 
212 

213,214 
215.216 
217,218 
21 9,220 

221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 

241.242 
243,244 

BOND PAD 
IDENTITY 

DVSS 
D ~ S S  
CVSS 
~ V S S  

XyCLKIN 
X1 

VSUPS 
VBBP 
EMU5 
XRDY 

MSTRB 
IOSTRB 
XRW - 

HOLDA - 
HOUI 

MDVDD 
M-D 

RDY - 
STRB 
Rim - 

RESET 
XF1 
XFO - 
IACK - 
INTO 

VDD 
VDD 
v~~ 
VSS - 
INTl - 
INT2 - 
INT3 

RSVO 
RSVl 
RSV2 
RSV3 
RSV4 
RSV5 
RSV6 
RSV7 
RSV6 
RSV9 
RSVl 0 
DR1 
FSR1 

CLKRl 
CLKXl 
FSXI 
DX1 

D v ~ ~  
DVSS 

DIE SIDE 14 

X COORDINATE OF 
THE DIE BOND PAD 

9947.20 
9752.00 
9587.20 
9392.00 
921 7.00 
9043.80 
8696.00 
8535.40 
7935.40 
7739.40 
7551.40 
7359.40 
7175.40 
6991.40 
6795.20 
6611.20 
641 6.00 
6243.20 
6055.40 
5863.40 
5667.20 
5479.40 
5295.40 
5111.40 
4915.20 
4731.20 
4536.00 
4371.20 
4176.00 
4003.20 
3803.20 
3603.20 
3403.20 
3203.20 
3003.20 
2795.20 
2595.20 
2407.40 
2223.40 
2039.40 
1855.40 
1671.40 
1479.40 
1295.40 
1111.40 
927.40 
743.40 
559.40 
375.40 
195.20 

0.00 

Y COORDINATE OF 
THE DIE BOND PAD 

9986.60 
9986.80 

9993.60 

PITCH OF LEAD (#, Y) 
REFERENCE WHICH DIE 

BOND PADS 

195.20 (153,154) 
164.80 (1 54,155) 
195.20 (1 55,156) 
175.00 (1 56,157) 
173.20 (1 57,158) 
347.60 (1 58,159) 
160.60 (159,160) 
600.00 (1 60,161) 
196.00 (161,162) 
188.00 (162,163) 
192.00 (163,164) 
184.00 (164,165) 
184.00 (1 65,166) 
196.20 (1 66,167) 
184.00 (1 67,168) 
195.20 (1 68,169) 
172.80 (1 69,170) 
167.80 (170,171) 
192.00 (171,172) 
196.20 (172,173) 
187.80 (1 73,174) 
1 64. 00 (1 74,175) 
184.00 (1 7.51 76) 
196.20 (176,in) 
184.00 (1 77,178) 
195.20 (1 78,179) 
164.80 (1 79,180) 
195.20 (180,181) 
172.80 (181,182) 
200.00 (1 82,183) 
200.00 (1 83,184) 
200.00 (1 84,165) 
200.00 (165,186) 
200.00 (186,187) 
208.00 (1 87,188) 
200.00 (1 88,189) 
187.80 (1 89,190) 
184.00 (190,191) 
184.00 (191,192) 
184.00 (1 92,193) 
164.00 (193,194) 
192.00 (1 94,195) 
184.00 (1 951 96) 
184.00 (1 96,197) 
184.00 (1 97,198) 
184.00 (198,199) 
184.00 (1 99,200) 
184.00 (200,201) 
180.20 (201,202) 
195.20 (202,203) 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SQUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

MECHANICAL DATA 

SMJ320C31 132-lead nonconductive ceramic tie bar (HFG suffix) 

Pln 1 lndlcator 

Detail A (at braze pads) 

tall B 

Thermal Reslstance Characterlstlc 

I Detail B 

I ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

MECHANICAL DATA 

SMJ320C31 132-Lead ceramic quad flatpack (HU suffix) 

RECOMMENDED FINAL LEAD-FORM DIMENSIONS FOR BOARD MOUNT 

3,96 (0.1 56) MAX 

0,25 (0.010) MIN Radlur 

Wlth Lead Flnlsh 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

NOTES: A. TI does not offer MIL-SPEC part in formed lead configuration. 
B. Lead forming should be performed at customer's facility or subcontracted. 

INSTRUMENTS 
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1691 -REVISED SEPTEMBER 1884 

MECHANICAL DATA 
SMJ320C31 141-pin ceramic pin grid array (GFA suffix) 

Pln A1 

A \ 

C 
lndlcator 

27,43 (1 .OW) 
26,42 (1.040) 

/ 

TOP VIEW 

Thermal Rerlrtancr Chmctet lr t lo 

22,es (0.~00) 
REF 

Index Corner 
(0.020) REF x 45" 1 Place 

TYP 

' 3 Placer 

I ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

MECHANICAL DATA 

SMJ320C31 244-pin TAB frame (PG2) socket, 132 OLBIILB 0.30-mm OLB pitch 

NOTES: A. Lead pitch in OLB windows is 300 pm. 
B. OLB lead width is 120 pm 3 0  km. 
C. Dimensions reference centerline to outside edge of lead. 
D. P0.30 * 0.01 x 32 = 9.60 i 0.02. 

POSTOFFICE BOX 1443 HOUSTON. T E M S  77251-1443 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SQUS014A- FEBRUARY 1901 -REVISED SEPTEMBER 1884 

MECHANICAL DATA 

SMJ320C31 TAB (PG2) 244-pln socket, 132 OLBIILB 0.30-mm OLB pltch (contlnued) 
I 1 -------- 

OLB 

--, i 

(25 mll) I 

DIE 

POST OFFICE BOX 1443 ' HOUSTW, EXAS 77251-1443 



SM J320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

SMJ320C31 inner Lead Bond lnformatlon for TAB 
(tape automated bondlng) 

132 Die Slde Number 4 100 

Pad Number One - 1 

Die Slde Number 1 Dle Side Number 3 

Zero-Zero 
(origin) 

34 Die Slde Number 2 66 

Dle Designator 

Figure 12. SMJ320C31 Dle Numberlng Format 
(Reference Table 2) 

The inner lead bond (ILB) pitch for the TAB leadframe is the same as the die bond pad pitch. Table 2 provides 
a reference for the following: 

A. The TAB lead numbers. The TAB lead numbers are the same as the die bond pad numbers. 

B. The 'C31 signal identities in relation to the pad numbers 

C. Which signal functions fan out to more than one test pad location. (There are 132 bond pad locations, 
132 TAB leads, and 244 test pad locations.) 

D. The 'C31 X,Y coordinates, where bond pad 34 serves as the origin (0,O) 

E. The ILB pitch for the TAB leadframe 

In addition, the following notes are significant: 

F. X,Y coordinate data is in microns. 

G. Coordinate origin is at 0,O (center of bond pad 34). 

H. Average pitch is 233 microns (1 1.2 mils). 

I. Smallest pitch value is 179,6 microns (7.07 mils). 

J. The active silicon dimensions are 1021 5,20 pm x 10324,OO pm (402.1 7 mils x 406.46 mils). 

K. The die size is approximately 10490,20 pm x 10566,40 pm (41 3.00 mils x 41 6.00 mils). 

L. Distance from diced silicon to polyimide support ring is 889,O pm (35 mils). 

POST OFFICE BOX 1 W HOUSTON. TEXAS 77251-1443 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1094 

Table 2. SMJ320C31 Die Pad /TAB Lead Information : rev 2.0 (0.8 pm) 

POST OFFICE BOX 1443 ' HWSTON. TEXAS 77261-1443 

PITCH OF LEAD (#, C )  
REFERENCE WHICH DIE 

BOND PADS 

314.20 (1,2) 
279.80 (2,3) 
278.80 (3,4) 
270.00 (4,5) 
283.80 (5,6) 
372.20 (8,7) 
270.40 (7,8) 
303.20 (8,s) 
300.80 (9,lO) 
240.00 (10,ll) 
342.80 (1 1,12) 
203.00 (12,131 
285.60 (13,14) 
330.80 (1 4,15) 
180.40 (15,18) 
397.40 (16,17) 
282.00 (1 7,18) 
338.00 (18,lS) 
180.40 (19.20) 
322.60 (20,21) 
277.40 (21 , a )  
295.60 (22,23) 
276.20 (23,24) 
290.20 (24,25) 
267.00 (2526) 
284.80 (28.27) 
346.60 (27,28) 
278.00 (28,29) 
278.20 (29,30) 
282.80 (30,31) 
273.80 (31,32) 
274.20 (32,33) 

Y COORDINATE OF 
THE CENTER OF 

BOND PAD 

9649.40 
9335.20 
9055.80 
8776.80 
8508.80 
8223.20 
7851.00 
7580.60 
7277.40 
6976.80 
6736.60 
6394.00 
8191.00 
5895.40 
5564.60 
5984.20 
4986.80 
4704.80 
4366.80 
4186.40 
3883.80 
3586.40 
3290.80 
301 4.60 
2724.40 
2457.40 
2172.80 
1826.00 
1550.00 
1271.80 
989.00 
715.20 
441 .OO 

DIE SIDE # I  

X COORDINATE OF 
THE CENTER OF 

BOND PAD 

- 484.80 

C31 DIE 
BOND PAD 
LOCATIONS 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
18 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

DIE/TAB 
BOND PAD 
IDENTITY 

SUBS 
SHZ 
DVSS 
TCLKO 
PVDD 
TCLKI 
EMU3 
EMU0 
EMU1 
EMU2 

MCBLJMP 
CVSS 
A23 
A22 

VDDL 
VDDL 
A21 
A20 

VSSL 
DVSS 
AI 9 

AVDD 
A18 
A1 7 
A1 6 
A1 5 
A14 
A1 3 
A1 2 
A1 1 

AVDD 
A10 

CVSS 

TAB C31 
TEST PAD 

LOCATIONS 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

Table 2. SMJ320C31 Die Pad /TAB Lead Information : rev 2.0 (0.8 pm) (Continued) 

INSTRUMENTS 
WST OFFICE BOX 1443 HOUSTON, EXAS 77251-1443 

C31 DIE 
BOND PAD 

LOCATIONS 

34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
86 

TAB C31 
TEST PAD 

LOCATIONS 

DIEITAB 
BOND PAD 
IDENTITY 

A9 
~ S S  

A8 
A7 
A6 
A5 

AVDD 
A4 
A3 
A2 
A1 
A0 

CVSS 
D31 

VDDL 
VDDL 
D30 

VSSL 
VSSL 
DVSS 
D29 
D26 

DVDD 
D27 
~VSS 
D26 
D25 
D24 
D23 
D22 
D2 1 

DVDD 
D20 

DIE SIDE m 
X COORDINATE OF 

THE CENTER OF 
BOND PAD 

0.00 
300.00 
569.20 
843.80 

11 37.00 
1415.60 
1710.80 
1974.00 
2251.40 
2536.40 
2809.80 
3108.20 
3406.00 
3662.80 
3983.60 
4164.00 
4457.80 
4821.40 
5001.40 
5316.80 
5594.60 
5673.20 
6193.40 
6543.20 
6796.40 
71 02.20 
7374.40 
7659.60 
7947.40 
8237.80 
8496.60 
8788.20 
9012.40 

Y COORDINATE OF 
THECENTEROF 

BOND PAD 

PITCH OF LEAD (1, # ) 
REFERENCE WHICH DIE 

BOND PADS 

300.00 (34, 35) 
269.20 (35,36) 
274.60 (36, 37) 
293.20 (37,38) 
278.60 (38, 39) 
295.20 (39,40) 
263.20 (40,41) 
277.40 (41,42) 
285.00 (42, 43) 
273.40 (43,44) 
298.40 (44,45) 
297.80 (45,46) 
256.80 (46,47) 
320.60 (47,46) 
160.40 (48,49) 
293.60 (49, 50) 
180.00 (51, 52) 
315.40 (52,53) 
278.00 (53, 54) 
278.40 (54, 55) 
320.20 (55, 56) 
349.80 (56, 57) 
253.20 (57, 56) 
305.80 (58, 59) 
272.20 (59, 60) 
285.20 (60,81) 
287.80 (61, 62) 
290.40 (62, 63) 
258.80 (63,64) 
291.60 (64,65) 
224.20 (65,66) 

. 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

Table 2. SMJ320C31 Dle Pad /TAB Lead Information : rev 2.0 (0.8 pm) (Continued) 

PITCH OF LEAD (U, U )  
REFERENCE WHICH DIE 

BOND PADS 

352.80 (87,88) 
280.80 (70,71) 
272.00 (69, 70) 
268.80 (70,71) 
243.20 (71,72) 
375.80 (72, 73) 
212.40 (73,74) 
314.00 (74,75) 
207.60 (75,76) 
400.80 (7677) 
214.60 (77,78) 
288.80 (78, 79) 
293.60 (79, 80) 
343.40 (80,81) 
179.60 (81,82) 
315.40 (82, 83) 
281.60 (83,84) 
285.20 (84, 85) 
340.00 (85,86) 
180.40 (88,87) 
289.80 (87, 88) 
288.40 (88,89) 
297.80 (89,90) 
267.00 (90,91) 
280.80 (91,92) 
282.40 (92, 93) 
284.80 (93, 94) 
278.00 (94,95) 
285.60 (95,96) 
290.40 (98, 97) 
274.40 (97,98) 
377.20 (98,gg) 

Y COORDINATE OF 
THECENTEROF 

BOND PAD 

508.80 
861.20 
1142.00 
1414.00 
1682.80 
1926.00 
2301.80 
2514.00 
2828.00 
3035.60 
3438.20 
3650.80 
3919.60 
4213.20 
4558.60 
4738.20 
5051.80 
5333.20 
5818.40 
5958.40 
81 38.80 
6428.40 
6714.80 
701 2.60 
7279.60 
7560.40 
7842.80 
81 27.60 
8403.60 
8689.20 
8979.60 
9254.00 
9631.20 

DIE SIDE #3 

X COORDINATE OF 
THE CENTER OF 

BOND PAD 

9780.40 

TAB C31 
TEST PAD 

LOCATIONS 

C31 DIE 
BOND PAD 
LOCATIONS 

87 
68 
89 
70 
71 
72 
73 
74 
75 
78 
77 
78 
79 
80 
81 
82 
83 
84 
85 
88 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

DIEITAB 
BOND PAD 
IDENTITY 

DVSS 
D l9  
D l  8 
D l  7 
D l6  
D l  5 

CVSS 
D l4  

DVDD 
D l  3 
~VSS 
D l  2 
Dl1 
D l0  

VDDL 
VDDL 

D9 
D8 

DVSS 
VSSL 
VSSL 

D7 
D8 

DVDD 
D5 
D4 
D3 
02 
D l  
DO 
H 1 
H3 

DVDD 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 -REVISED SEPTEMBER 1994 

Table 2. SMJ320C31 Die Pad /TAB Lead Information : rev 2.0 (0.8 pm) (Continued) 

INSTRUMENTS 
POST OFFICE BOX 1443 ' HOUSTON TWAS 77261-1443 

C31 DIE 
BOND PAD 
LOCATIONS 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
118 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 

DIEITAB 
BOND PAD 
IDENTITY 

DVSS 
CVSS 
~VSS 

X21CLKIN 
XI 

HoLDA - 
HOLD 

CVDD 
RDY 
STRB 
R/W 

RESET 
XFO 

CVDD 
XF1 - 
IACK 
INTO 

DVSS 
VSSL 
INTI 

VDDL 
VDDL 
INT2 
INT3 
DRO 

CVSS 
FSRO 

CLKRO 
CLKXO 

lVSS 
FSXO 
PVDD 
DXO 

TAB C31 
TEST PAD 

LOCATIONS 

DIE SIDE #4 

X COORDINATE OF 
THE CENTER OF 

BOND PAD 

9032.60 
8822.20 
8543.20 
8240.40 
8054.20 
7742.80 
7460.00 
7167.00 
6736.00 
6459.20 
6191.20 
5896.00 
5617.60 
5351 .OO 
5060.00 
4784.80 
4504.00 
4279.20 
3998.80 
3672.00 
3330.60 
3150.20 
2826.40 
2546.60 
2280.20 
1970.20 
1699.40 
1423.80 
11 43.20 
862.80 
601.40 
288.60 
-5.60 

Y COORDINATE OF 
THECENTEROF 

BOND PAD 

10074.00 

PITCH OF LEAD (#, I )  
REFERENCE WHICH DIE 

BOND PADS 

210.40 (100. 101) 
280.00 (101,102) 
301.80 (102, 103) 
186.20 (103,104) 
311.40 (104,105) 
282.80 (105,106) 
293.W (108,107) 
431.00 (107,108) 
278.80 (108, 109) 
266.00 (109,110) 
295.20 (110,111) 
278.40 (111, 112) 
268.60 (1 12, 11 3) 
281.00(113, 114) 
275.20 (114, 115) 
280.80 (115, 116) 
224.80 (116,117) 
280.40 (117, 118) 
328.80 (118,119) 
341.40 (119,120) 
180.40 (120, 121) 
323.80 (121, 122) 
279.80 (122, 123) 
268.40 (123, 124) 
310.00 (124, 125) 
270.80 (125, 126) 
275.60 (128, 127) 
280.60 (127, 128) 
280.40 (128,129) 
261.40 (129, 130) 
312.80 (130, 131) 
294.20 (1 31,132) 



Analog Interface Peripherals and 
ADDlications 

Texas Instruments (TI) offers many products for total system solutions, includ- 
ing memory options, data acquisition, and analog inputloutput devices. This 
appendix describes a variety of devices that interface directly to the TMS320 
DSPs in rapidly expanding applications. 

Major topics discussed in this appendix are listed below. 

Topic Page 



Multimedia Applications 

F.1 Multimedia Applications 

Multimedia integrates different media through a centralized computer. These 
media can be visual or audio and can be input to or output from the central 
computer via a number of technologies. The technologies can be digital-based 
or analog-based (such as audio or video tape recorders). The integration and 
interaction of media enhance the transfer of information and can accommo- 
date both analysis of problems and synthesis of solutions. 

Figure F-1 shows both the central role of the multimedia computer and the 
multimedia system's ability to integrate the various media to optimize informa- 
tion flow and processing. 

Figure F- 1. System Block Diagram 

1 T  
Music Input 

(MIDI) > Slides and Printing 

F.1.1 System Design Considerations 

Multimedia systems can include various grades of audio and video quality. The 
most popular video standard currently used (VGA) covers 640 x 480 pixels 
with 1, 2, 4, and 8-bit memory-mapped color. Also, 24-bit true color is sup- 
ported, and 1024 x 768 (beyond VGA) resolution has emerged. There are two 
grades of audio. The lower grade accommodates 11.25-kHz sampling for 8-bit 
monaural systems, while the higher grade accommodates 44.1 -kHz sampling 
for 16-bit stereo. 

Audio specifications include a musical instrument digital interface (MIDI) with 
compression capability, which is based on keystroke encoding, and an input1 
output port with a three-disc voice synthesizer. In the media control area, video 
disc, CD audio, and CD ROM player interfaces are included. Figure F-2 
shows a multimedia subsystem. 



Multimedia A~~l icat ions 

TheTLC32047 wide-band analog interface circuit (AIC) is well suited for multi- 
media applications because it features wide-band audio and up to 25-kHz 
sampling rates. The TLC32047 is a complete analog-to-digital and digital-to- 
analog interface system for the TMS320 DSPs. The nominal bandwidths of the 
filters accommodate 11.4 kHz, and this bandwidth is programmable. The 
application circuit shown in Figure F-2 handles both speech encoding and 
modem communication functions, which are associated with multimedia appli- 
cations. 

Figure F-2. Multimedia Speech Encoding and Modem Communication 
VOCODER (Speech Analysis) 
r--------- 1 

9600-bps Modem (V.32 bis) 
r--------- 1 

L ------- -J t TMS320 DSPI 
TLC32047 
Interface i- 1 -------' 

I TLC32047 TMS320 TMS320 I TMS320 TLC32047 I 
I I I 

Controller il 

DSP I 
t+. 

Figure F-3 shows the interfacing of the TMS320C25 DSP to the TLC32047 
AIC, which constitutes a building block of the 9600-bpsV.32 bis modem shown 
in Figure F-2. 

Figure F-3. TMS320C25 to TLC3204 7 lnterface 

I I I I I 
-- 

DSP 
EncrypV 
Decrypt 

Analog Interface Peripherals and Applications F-3 

7 DSP AIC I D M  

_)+ ti- 

TMS320C25 TLC32047 

HYB Phone 
Line 

CLKOUT 

FSX 

DX 

FSR 

DR 

CLKR SHIFT CLK VDD 

CLKX 

DGTL GND 

4 , 

+ 
. > 
---4- 

4 

MSTR CLK Vcc+ 5 V 
- 
FSX REF . .  I/ pF 0.2 p~ ~ e r .  7y 

DX ANLG GND - 4 I - 
- 
FSR BAT 42 

DR VCC- 



Multimedia Applications 

F.1.2 Multimedia-Related Devices 
As shown in Table F-1 and Table F-2, TI provides a complete array of analog 
and graphics interface devices. These devices support the TMS320 DSPs for 
complete multimedia solutions. 

Table F- 1, Data Converter ICs 
- -- 

Device Descrlptlon 

- - -  

Resolution conversion 
110 (Bits) CLK Rate Appllcatlon 

-- - 

TLC320AC01 Analog interface (5 V only) Serial 14 43.2 kHz Portable modem and 
speech, multimedia 

TLC32047 Analog interface Serial 14 25 kHz Speech, modem, and 
(1 1.4 kHz BW) (AIC) multimedia 

TLC32046 Analog interface (AIC) Serial 14 25 kHz Speech and modems 

TLC32044 Analog interface (A1 C) Serial 14 19.2 kHz Speech and modems 

TLC32040 Analog interface (AIC) Serial 14 19.2 kHz Speech and modems 

TLC3407516 Video palette Parallel Triple 8 135 MHz Graphics 

TLC34058 Video palette 

TLC5502/3 Flash ADC 

TLC5602 Video DAC 

TLC5501 Flash ADC 

TLC5601 Video DAC 

TLC1550/1 ADC 

Parallel Triple 8 135 MHz Graphics 

Parallel 8 20 MHz Video 

Parallel 8 20 MHz Video 

Parallel 6 20 MHz Video 

Parallel 6 20 MHz Video 

Parallel 10 150 kHz Servo ctrl / speech 

TLC32071 Analog interface (AIC) Parallel 8 1 MHz Servo ctrl / disk drive 

TMS5701314 Dual audio DAC t digital Serial 1611 8 32, 37.8, Digital audio 
filter 44.1, 48 kHz 

- - -  - - - 

Table F-2. Switched-Capacitor Filter ICs 
Device Function Order Roll-Off Power Out Power Down 

TLC2470 Differential audio filter amplifier 4 5 kHz 500 mW Yes 

TLC2471 Differential audio filter amplifier 4 3.5 kHz 500mW Yes 

TLC10120 General-purpose dual filter 2 CLK + 50 NIA No 
CLK + 100 

TLC04114 Low pass, Butterworth filter 4 CLK + 50 NIA No 
CLK + 100 

For application assistance or additional information, please call TI Linear 
Applications at (21 4) 997-3772. 



Telecommunications Applications 

F.2 Telecommunications Applications 

The TI linear product line focuses on three primary telecommunications appli- 
cation areas: 

IJ Subscriber instruments (telephones, modems, etc.) 

includes the TCM508x DTMF tone encoder family, the TCM15Ox tone 
ringer family, the TCM1520 ring detector, and the TCM3105 FSK modem. 

a Central office line card products 

Includes the TCM29Cxx combo (combined FCM filter plus codec) family, 
the TCM420x subscriber line control circuit family, and the TCM1030160 
line card transient protector. 

0 Personal communications products 

Includes the TCM320AC3x family of 5-volt voice-band audio processors 
(VBAP). 

TI continues to develop new telecom integrated circuits, such as a high-perfor- 
mance three-volt combo family for personal communications applications and 
an RF power amplifier family for hand-held and mobile cellular phones. 

System Design Considerations. The size, network complexity, and com- 
patibility requirements of telecommunications central office systems create 
demanding performance requirements. Combo voice-band filter performance 
is typically t 0.1 5 dB in the passband. Idle channel noise must be on the order 
of 15 dBrnc0. Gain tracking (S/Q) and distortion must also meet stringent re- 
quirements. The key parameters for a SLlC device are gain, longitudinal bal- 
ance, and return loss. 

Analog Inferface Peripherals and Applications F-5 



Telecommunications A~~licat ions 

Figure F-4. Typical DSP/Combo Interface 

Codec 
IN 

Codec 
OUT 

The TCM320AC36 combo interfaces directly to the TMS320C25 serial port 
with a minimum of external components, as shown in Figure F-4. Half of hex 
inverter U3 and crystal Y1 form an oscillator that provides clock timing to the 
TCM320AC36. The synchronous four-bit counters U1 and U2 generate an 
8-kHz frame sync signal. DCLKR on the TCM320AC36 is connected to VDD, 
placing the combo in fixed data-rate mode. Two 20-kQ resistors connected to 
ANLGIN and MIC-GS set the gain of the analog input amplifier to 1. The timing 
is shown in Figure F-5. 



Telecommunications ADDli~ations 

Figure F-5.OSP/Combo lnterface Timing 

CLKWCLKX 

FSWFSR 

DRIDOUT Bit 3 

MSB LSB 

DWPCMIN 
Transmit 
Timing 

MSB LSB 

Telecommunlcatlons-Related Devlces. Data sheets for the devices in 
Table F-3 on page F-8 are contained in the 1991 Telecommunications Cir- 
cuits Databook (literature number SCTDOOl 0). To request your copy, contact 
your nearest TI field sales office or call the Literature Response Center at (800) 
477-8924. 

Analog Interface Peripherals and Applications F-7 



Telecommunications Ao~lications 

Table F-3. Telecom Devices 

Coding Clock Rates 
Devlce Number Law M H Z ~  # of Bits Comments 

TCM29C13 A and P 1.544, 1.536, 2.048 8 C.O. and PBX line cards 

TCM29C14 A and p 1.544, 1.536, 2.048 8 Includes 8th-bit signal 

TCM29C16 CI 2.048 8 16-pin package 

8 16-pin package 

8 Low-cost DSP interface 

TCM29Ci 9 P 4.536 8 Low-cost DSP interface 

TCM29C23 A and p Up to 4.096 8 Extended frequency range 

TCM29C26 A and p Up to 4.096 8 Low-power TCM29C23 

TCM320AC36 CI and Linear Up to 4.096 8 and 13 Single voltage (t5) VBAP 

TCM320AC37 A and Linear Up to 4.096 8 and 13 Single voltage (t5) VBAP 

TCM320AC38 p and Linear Up to 4.096 8 and 13 Single voltage ( 4 )  GSM 

TCM320AC39 A and Linear Up to 4.096 8 and 13 Single voltage (t5) GSM 

1.544, 1.536,2.048 8 National Semiconductor 
second source 

1.544, 1.536,2.048 8 National Semiconductor 
second source 

TLC320AC01 Linear 43.2 kHz 14 5-volt-only analog interface 

TLC32040/1 Linear Up to 19.2-kHz sampling 14 For high-dynamic linearity 

TLC3204415 Linear Up to 19.2-kHz sampling 14 For high-dynamic linearity 

TLC32046 Linear Up to 25-kHz sampling 14 For high-dynamic linearity 

TLC32047 Linear Up to 25-kHz sampling 14 For high-dynamic linearity 

Translent Suppressor 

TCM 1 030 Transient suppressor for SLIC-based line card (30 A max) 

TCM1060 Transient suppressor for SLIC-based line card (60 A max) 

7 Unless otherwise noted 



Telecommunications A~~l icat ions 

Table F 4  is a list of switched-capacitor filter ICs. 

Table F-4. Switched-Capacitor Filter ICs 

Device Function Order Roll-Off Power Out Power Down - - . ~ -  

TLC2470 Differential audio filter amplifier 4 5 kHz 500 mW Yes 

TLC2471 Differential audio filter amplifier 4 3.5 kHz 500 mW Yes 

TLC10120 General-purpose dual filter 2 CLK+ 50 NIA No 
CLK + 100 

TLC04114 Low pass, Butterworth filter 4 CLK + 50 N/A No 
CLK + 100 

For further information on these telecommunications products, please call 
(21 4) 997-3772. 

Figure F-6 and Figure F-7 show telecom applications. 

Figure F-6. General Telecom Applications 

TCM320AC3X VBAP Combo 

TCM29C13 Combo 
TP3054 Combo 
TCM1060130 Transient Suppressors 
TCM9050151 HVLIIHCombo 
DSP/Memory/Logic 

TCM1520 I 
TCM5089 
TCM3 105 

Phones m Phones B TMS320xx DSP I rn 

TCM291 x Combo TCM29Cxx Combo 

Analog Interface Peripherals and Applications F-9 



Telecommunications Applications 

Figure F-7. Generic Telecom Applications 

TLC320AC01 

ADC and DAC 

Fine Tune f 
Echo-Cancel 

I 

t 
ADC 

RS-232 Serial TMS320C25 and 
110 DAC 

bnt ro l  : 1 Receiver 4- 
TLC320AC01 



Dedicated Speech Synthesis Applications 

F.3 Dedicated Speech Synthesis Applications 

For dedicated speech synthesis applications, TI offers a family of dedicated 
speech synthesizer chips. This speech technology has been used in a wide 
range of products, including games, toys, burglar alarms, fire alarms, autorno- 
biles, airplanes, answering machines, voice mail, industrial control machines, 
office machines, advertisements, novelty items, exercise machines, and 
learning aids. 

Dedicated speech synthesis chips are a good alternative for low-cost applica- 
tions. The speech synthesis technology provided by the dedicated chips is ei- 
ther linear-predictive coding (LPC) or continuously variable slope delta modu- 
lation (CVSD). Table F-5 shows the characteristics of the TI voice synthesiz- 
ers. 

Table F-5. TI Voice Synthesizers 

On-Chip 
Synthesis Memory External Data Rate 

Device Microprocessor Method I/O Pins (Bits) Memory (BItslSec) 

TSP50C4x &bit LPG10 20132 64K/128K VROM 1200-2400 

TSP50Cl x 8-bit LPG1 2 10 64W128K VROM 1200-2400 

TSP53C30 8-bit LPG10 20 NIA From host FP 1200-2400 

TSP50C20 8-bit LPG10 32 NIA EPROM 1200-2400 

TMS3477 NIA CVSD 2 None DRAM 16K32K 

In addition to the speech synthesizers, TI has low-cost memories that are ideal 
for use with these chips. TI can also be of assistance in developing and pro- 
cessing the speech data that is used in these speech synthesis systems. 
Table F-6 shows speech memory devices of different capabilities. Additional- 
ly, audio filters are outlined in Table F-7. 

Analog Interface Peripherals and Applications F-11 



Dedicated S~eech Svnthesis A~~lications 

Table F-6. Speech Memories 

TSP6OCxx Famlly of Speech ROMs 

Famlly Slze No. of Pins Interface For use with: 
-- 

TSP60C18 256K 16 Parallel 4-bit TSP50Clx 

TSP60C19 256K 16 Serial TSP50C4x 

TSP60C80 1M 28 Serial TSP50C4x 

TSP60C81 1M 28 Parallel 4-bit TSP50Clx 

Table F-7. Switched-Capacitor Filter ICs 
Device Function Order Roll-Off Power Out Power Down 

TLC2470 Differential audio filter amplifier 4 5 kHz 500 mW Yes 

TLC2471 Differential audio filter amplifier 4 3.5 kHz 500 mW Yes 

TLC10120 General-purpose dual filter 

TLC04114 Low pass, Butterworth filter 

2 CLK+ 50 NIA 
CLK c 100 



Dedicated Speech Synthesis Applications 

Table F-8 lists some of Tl's speech synthesis development tools. 

Table F-8. Speech Synthesis Development Tools 

Name Definition 

(a) Software 

EVM Code develo~ment tool 

(b) Speech 

SAB Speech audition board 

SD85000 PC-based speech analysis system 

(c) System 

SEB System emulator board 

SEB6OCxx System emulator boards for speech memories 

For further information, call Linear Applications at (21 4) 997-3772. 

Analog Interface Peripherals and Applications F-13 



Servo ContrWDisk Drive Applications 

F.4 Servo ControlIDisk Drive Applications 

In the past, most servo control systems used only analog circuitry. However, 
the growth of digital signal processing (DSP) has made digital control theory 
a reality. Figure F-8 is a block diagram of a genericdigital control system using 
a DSP, along with an analog-to-digital converter (ADC) and a digital-to-analog 
converter (DAC) . 

Figure F-8. Generic Servo Control Loop 

In a DSP-based control system, the control algorithm is implemented via soft- 
ware. No component aging or temperature drift is associated with digital con- 
trol systems. Additionally, sophisticated algorithms can be implemented and 
easily modified to upgrade system performance. 

e(n) TMS1PO-Based 
Digital Controller 

System Design Considerations 

TMS320 DSPs have facilitated the development of high-speed digital servo 
control for disk drive and industrial control applications. In recent years, disk 
drives have increased storage capacity from 5 megabytes to over 1 gigabyte. 
This equates to a 23,900 percent growth in capacity. To accommodate these 
increasingly higher densities, the data on the servo platters, whether servo-po- 
sitioning or actual storage information, must be converted to digital electronic 
signals at increasingly closer points in relation to the platter pick-off point. The 
ADC must have increasingly higher conversion rates and greater resolution 
to accommodate the increasing bandwidth requirements of higher storage 
densities. In addition, the ADC conversion rates must increase to accommo- 
date the shorter data retrieval access time. 

%E U(t' 
Plant + Y 0) 

7 
Ah 

r 

-*+ 
sensor - 



Servo Control!sk Drive Applications 

Figure F-9 is a block diagram of a disk drive control system. 

Figure F-9. Disk Drive Control System Block Diagram 

SCSl 
Data 

To 6 . 2  RAM Buffer and Control Data /-- 
Host Interface Buffer 4-b 4-k Separator Data Sequencer 

Control m 

\ [\ 

Table F-9 lists analogldigital interface devices used for servo control. 

I 

Analog Interface Peripherals and Applications F-15 

Disk Controller Drive Motor 

TMS320C14 
-+t EPROM 

TMS2764 

1T t 
Address 
Decode 

I Control 
Control 

/- 
\ 

- 
- 

TLC32071 ~=2rb To!r !;fads 
SN74LS393 Frorn Spindle 

Motor 

\7 

Servo 
Demodulator 

L 
v 

Disk Head 
Select 



Servo ControVDisk Drive Applications 

Table F-9. Control-Related Devices 

Function Devlce Blts Speed Channels Interface 

ADC TLC1550 

TLC1551 

TLC5502J3 

TLC0820 

TLC1225 

TLC1558 

TLC 1 543 

TLC1549 

DAC TLC7524 

TLC7628 

TLC5602 

AIC TLC32071 8 (ADC) 

50 ns (flash) 

1.5 ps 

21 ps 

9 MHz 

9 MHz 

30 MHz 

1 vs 
9 MHz 

1 (Diff.) 

8 

11 

(Dual) 

Parallel 

Parallel 

Parallel 

Parallel 

Parallel 

Parallel 

Serial 

Serial 

Parallel 

Parallel 

Parallel 

Parallel 

Figure F-10 shows the interfacing of the TMS320C14 and the TLC32071. 

Figure F-1 0. TMS320C 14-TLC32071 Interface 
f 

- 
DSD7  - CSCNTRL - 
1 Address Demde Logic = A1 WE - 

DEN - - RESET 

- 
DEN - 

TMS320C14 TLC32071 

For further information on these servo control products, please call TI Linear 
Applications at (21 4) 997-3772. 



Modem ADDli~ati0nS 

F.5 Modem Applications 

High-speed modems (9,600 bps and above) require a great deal of analog sig- 
nal processing in addition to digital signal processing. Designing both high- 
speed capabilities and slower fall-back modes poses significant engineering 
challenges. TI offers a number of analog front-end (AFE) circuits to support 
various high-speed modem standards. 

The TLC32040, TLC32044, TLC32046, TLC32047, and TLC320AC01 AlCs 
are especially suited for modem applications by the integration of an input mul- 
tiplexer, switched capacitor filters, high resolution 14-bit ADC and DAC, afour- 
mode serial port, and control and timing logic. These converters feature ad- 
justable parameters, such as filtering characteristics, sampling rates, gain se- 
lection, (sin x ) / ~  correction (TLC32044, TLC32046, and TLC32047 only), and 
phase adjustment. All of these parameters are software-programmable, mak- 
ing the AIC suitable for a variety of applications. Table F-10 has the descrip- 
tion and characteristics of these devices. 

Table F-10. Modem A FE Data Converters 

Device Description 
Resolution Conversion 

Yo (Bits) Rate 

TLC32040 Analog interface chip (AIC) Serial 14 19.2 kHz 

TLC32041 AIC without on-board VREF Serial 14 19.2 kHz 

TLC32044 Telephone speedlmodem AIC Serial 14 19.2 kHz 

TLC32045 Low-cost version of the TLC32044 Serial 14 19.2 kHz 

TLC32046 Wide-band AIC Serial 14 25 kHz 

TLC32047 AIC with 11.4-kHz BW Serial 14 25 kHz 

TLC320AC01 5-volt-only AIC Serial 14 43.2 kHz 

TCM29C18 Companding codeclfilter PCM 8 8 kHz 

TCM29C23 Companding codeclfilter PCM 8 16 kHz 

TCM29C26 Low-power codeclfilter PCM 8 16 kHz 

TCM320AC36 Single-supply codeclfilter PCM and 8 
Linear 

25 kHz 

Analog Interface Peripherals and Applications F-17 



Modem Applications 

The AIC interfaces directly with serial-input TMS320 DSPs, which execute the 
modem's high-speed encoding and decoding algorithms. The TLC320C4x 
family performs level-shifting, filtering, and AJD and D/A data conversion. The 
DSP's software-programmable features provide the flexibility required for mo- 
dem operations and make it possible to modify and upgrade systems easily. 
Under DSP control, the AIC's sampling rates permit designers to include fall- 
back modes without additional analog hardware in most cases. Phase adjust- 
ments can be made in real time so that the AJD and D/A conversions can be 
synchronized with the upcoming signal. In addition, the chip has a built-in loop- 
back feature to support modem self-test requirements. 

For further information or application assistance, please call TI Linear Applica- 
tions at (21 4) 997-3772. 

Figure F-11 shows a V.32 bis modem implementation using the TMS320C25 
and a TLC320AC01. The upper TMS320C25 performs echo cancellation and 
transmit data functions, while the lower TMS320C25 performs receive data 
and timing recovery functions. The echo canceler simulates the telephone 
channel and generates an estimated echo of the transmit data signal. 

Figure F-11. High-Speed K32 Bis and Multistandard Modem With the TLC320AC01 AIC 
TLC320AC01 + 

ADC and DAC 

The TLC320AC01 performs the following functions: 

Upper TLC320AC01 DIA Path 

Converts the estimated echo, as computed by the upper TMS320C25, into 
an analog signal, which is subtracted from the receive signal 

0 Upper TLC320AC01 AJD Path 

Converts the residual echo to a digital signal for purposes of monitoring 
the residual echo and continuously training the echo canceler for optimum 
performance. The converted signal is sent to the upper TMS320C25. 

L 

Fine Tune lf 

TT 

yr Ah Echo-Cancel 

TMS320C25/C5X 

+ 

Serial RS-232 
I10 

control 

D 
A 
A 

Echo Canceler 

.+) Telephone 
Line 

TLC320AC01 

ADC 
and 
D AC 

t 



Modem Applications 

Q Lower TLC320AC01 DIA Path 

Converts the upper TMS320C25 transmit output to an analog signal, per- 
forms a smoothing filter function, and drives the DAC 

Q Lower TLC320AC01 AID Path 

Converts the echo-free receive signal to a digital signal, which is sent to 
the lower TMS320C25 to be decoded 

Note: Modem Functions 

Figure F-11 is for illustration only. In reality, one singleTMS320C5x DSP can 
implement high-speed modem functions. 

1 I 

Analog Interface Peripherals and Applications F-19 



Advanced Digital Electronics Applications for Consumers 

F.6 Advanced Digital Electronics Applications for Consumers 

With the extensive use of the TMS320 DSPs in consumer electronics, much 
electromechanical control and signal processing can be done in the digital do- 
main. Digital systems generally require some form of analog interface, usually 
in the form of high-performance ADCs and DACs. Figure F-12 shows the gen- 
eral performance requirements for a variety of applications. 

Figure F-12. Applications Performance Requirements 

I I I I I I I I b Bits 
4 5 6 7 8 9 10 

Performance/Application 

Instrumentation 

Advanced Television System Design Considerations. Advanced 
Digital Television (ADTV) is a technology that uses DSP to enhance video and 
audio presentations and to reduce noise and ghosting. Because of these DSP 
techniques, a variety of features can be implemented, including frame store, 
picture-in-picture, improved sound quality, and zoom. The bandwidth require- 
ments remain at the existing six-MHz television allocation. From the intermedi- 
ate frequency (IF) output, the video signal is converted by an eight-bit video 
ADC. The digital output can be processed in the digital domain to provide noise 
reduction, interpolation or averaging for digitally increased sharpness, and 
higher quality audio. The DSP digital output is converted back to analog by a 
video DAC, as shown in Figure F-13. 

H D N  

Broadcasting 
- 

A D N  

DVTR 



Advanced Digital Electronics Applications for Consumers 

Figure F- 13. Video Signal Processing Basic System 

Video casette recorders (VCRs), compact disc (CD) and digital audio tape 
(DAT) players, and personal computers (PCs) are a few of the products that 
have taken a major position in the marketplace in recent years. The audio 
channels for compact disc and DAT require 16-bit A/D resolution to meet the 
distortion and noise standards. See Figure F-14 for a block diagram of a typi- 
cal digital audio system. 

I I 

Figure F-14. Typical Digital Audio Implementation 

System 
Controller 

Field 
Memory 

Analog Interface Peripherals and Applications F-21 

Clock 
Generator 

- 

384fs - Third 
Overtone 

Circuit 

IV AL 1r 
1 0241s 

1 28fs - Oscillator 

TMS57001 
Digital Audio 

Sound 
Processor 

Power 
Analog 

Amplifier 

L 

Analog 
Output 

R 

, lfs 

Data TMS5701314 Dual 16/18 
Bit DAC+ Digital Filter 

L 

PWM 

R - 



Advanced Digital Electronics Applications for Consumers 

The motion and motor control systems usually use 8- to 1 0-bit ADCs for the 
lower frequency servo loop. Tape or disk systems use motor or motion control 
for proper positioning of the record or playback heads. With the storage me- 
dium compressing data into an increasingly smaller physical size, the position- 
ing systems require more precision. 

The audio processing becomes more demanding as higher fidelity is required. 
Better fidelity translates into lower noise and distortion in the output signal. 

The TMS57013DW/57014DW one-bit DACs include an eight-times-over sam- 
pling digital filter designed for digital audio systems, such as compact disk 
players (CDPs), DATs, compact disks interactive (CDls), laser disk players 
(LDPs), digital amplifiers, and car stereos. They are also suitable for all sys- 
tems that include digital sound processing like TVs, VCRs, musical instru- 
ments, multimedia, etc. 

The converters have dual channels so that the right and left stereo signals can 
be transformed into analog signals with only one chip. There are some func- 
tions that allow the customers to select the conditions according to their appli- 
cations, such as muting, attenuation, de-emphasis, and zero data detection. 
These functions are controlled by external 16-bit serial data from a controller 
like a microcomputer. 

The TMS5703DW/57014DW adopt 129-tap finite impulse response (FIR) filter 
and third-order A Z modulation to get-75-dB stop band attenuation and 96-dB 
signal noise ratio (SNR). The output is pulse width modulation (PWM) wave, 
which facilitates analog signals through a low-pass filter. 

Table F-11 lists TI products for analog interfacing to digital systems. 



Advanced Diaital Electronics Aoolications for Consumers 

Table F- 1 1. Audio/Wdeo Analog/Digital Interface Devices 

Functlon Devlce Bits S ~ e e d  Channels Interface 

Dual audio DAC + digital filter TMS5701314 1611 8 32, 37.8, 2 Serial 
44.1, 48 kHz 

Analog interface TLC32071 
A/D 8 2 CIS 8 Parallel 
DIA 8 15 ps 1 Parallel 

TLC1225 12 12 ps 1 Parallel 

N D  TLC1550 10 6 CIS 1 Parallel 

Video DIA TLC5602 8 50 ns 1 Parallel 

Video D/A TL5602 8 50 ns 1 Parallel 

Triple video DIA TL5632 8 16 ns 3 Parallel 

Triple flash N D  TLC5703 8 70 ns 3 Parallel 

Flash N D  TLC5503 8 100 ns 1 Parallel 

Flash N D  TLC5502 8 50 ns 1 Parallel 

For further information or application assistance, please call TI Linear Applica- 
tions at (21 4) 997-3772. 

Analog Interface Peripherals and Applications F-23 



Boot Loader Source Code 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C31BOOT - TMS320C31 BOOT LOADER PROGRAM 

* (C) COPYRIGHT TEXAS INSTRUMENTS INC., 1990 
* 
* NOTE: 1. AFTER DEVICE RESET, THE PROGRAM IS SET TO WAIT FOR 

THE EXTERNAL INTERRUPTS. THE FUNCTION SELECTION OF 
* THE EXTERNAL INTERRUPTS IS AS FOLLOWS: 
* 
* INTERRUPT PIN I FUNCTION 
* I 
* 0 I EPROM boot loader from lOOOH 
* I 
* 1 I EPROM boot loader from 400000H 
* I 
* 2 I EPROM boot loader from FFFOOOH 
* I 
* 3 I Serial port 0 boot loader 
* 
* 
* 2 .  THE EPROM BOOT LOADER LOADS WORD, HALFWORD, OR BYTE- 
* WIDE PROGRAMS TO SPECIFIED LOCATIONS. THE 
* 8 LSBs OF FIRST MEMORY SPECIFY THE MEMORY WIDTH OF 
* THE EPROM. IF THE HALFWORD OR BYTE-WIDE PROGRAM IS 

SELECTED, THE LSBs ARE LOADED FIRST, FOLLOWED BY THE MSBs. 
* THE FOLLOWING WORD CONTAINS THE CONTROL WORD FOR 

THE LOCAL MEMORY REGISTER. THE PROGRAM BLOCKS FOLLOW. 
4 THE FIRST TWO WORDS OF EACH PROGRAM BLOCK CONTAIN 
* THE BLOCK SIZE AND MEMORY ADDRESS TO BE LOADED INTO. 
* WHEN THE ZERO BLOCK SIZE IS READ, THE PROGRAM BLOCK 
4‘ LOADING IS TERMINATED. THE PC WILL BRANCH TO THE 
* STARTING ADDRESS OF THE FIRST PROGRAM BLOCK. 
* 

3. IF SERIAL PORT 0 IS SELECTED FOR BOOT LOADING, THE 
* PROCESSOR WILL WAIT FOR THE INTERRUPT FROM THE 
* RECEIVE SERIAL PORT 0 AND PERFORM THE DOWNLOAD. 
* AS WITH THE EPROM LOADER, PROGRAMS CAN BE LOADED 
* INTO DIFFERENT MEMORY BLOCKS. THE FIRST TWO WORDS OF EACH 

PROGRAM BLOCK CONTAIN THE BLOCK SIZE AND MEMORY ADDRESS 
* TO BE LOADED INTO. WHEN THE ZERO BLOCK SIZE IS READ, 
* PROGRAM BLOCK LOADING IS TERMINATED. IN OTHER WORDS, 
* IN ORDER TO TERMINATE THE PROGRAM BLOCK LOADING, 

A ZERO HAS TO BE ADDED AT THE END OF THE PROGRAM BLOCK. 
* AFTER THE BOOT LOADING IS COMPLETED, THE PC WILL BRANCH 
* TO THE STARTING ADDRESS OF THE FIRST PROGRAM BLOCK. 
* 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



Boot Loader Source Code 

reset 
into 
int 1 
int2 
int3 
xintO 
rintO 

tint0 
tint1 
dint 

.global check 

.sect "vectors" 

.word check 

.word 809FClh 

.word 809FC2h 

.word 809FC3h 

.word 809FC4h 

.word 809FC5h 

.word 809FC6h 

.word 809FC7h 

.word 809FC8h 

.word 809FC9h 

.word 809FCAh 

.word 809FCBh 

.word 809FCCh 

.word 809FCDh 

.word 809FCEh 

.word 809FCFh 

.word 809FDOh 

.word 809FDlh 

.word 809FD2h 

.word 809FD3h 

.word 809FD4h 

.word 809FD5h 

.word 809FD6h 

.word 809FD7h 

.word 809FD8h 

.word 809FD9h 

.word 8 0 9FDAh 

.word 809FDBh 

.word 809FDCh 

.word 809FDDh 

.word 809FDEh 

.word 809FDFh 

.word 

.word 

.word 

.word . word 

.word 

.word 

.word 

.word 

.word 

.word 

Boot Loader Source Code 



Boot Loader Source Code 

check: 

intloop 

LDI 4040h,ARO ; load peripheral mem. map 
LSH 9 ,ARO ; start addr. 808000h 
LDI 404Ch,SP ; initialize stack pointer to 
LSH 9,SP ; ram0 addr. 809800h 
LDI 0,RO ; set start address flag off 

TSTB 8, IF ; test for ext int3 
BN Z serial ; on int3 go to serial 

LDI 8,ARl ; load OOlOOOh / 2*9 -> AR1 
TSTB 1, IF ; test for into 
BN Z eprom-load ; branch to eprom-load if into = 1 

LDI 2000h,ARl ; load 400000h / 2*9 -> AR1 
TSTB 2, IF ; test for intl 
BN Z eprom-load ; branch to eprom-load if intl = 1 

LDI 7FF8h1AR1 ; load FFFOOOh / 2*9 -> AR1 
TSTB 4,IF ; test for int2 
BZ intloop ; if no intX go to intloop 

eprorn-load LSH 9,ARl ; eprom address = AR1 * 2*9 
LDI *ARl++(l),Rl ; load eprom mem. width 

LDI sub_w,AR3 ; full-word size subroutine 
; address -> AR3 

LSH 26,Rl ; test bit 5 of mem. width word 
BN load0 ; if '1' start PGM loading 

; (32 bits width) 



Boot Loader Source Code 

NOP 
LDI 

jump last half word from mem. word 
half word size subroutine 
address -> AR3 
test bit 4 of mem. width word 
if '1' start PGM loading 
(16 bits width) 

LSH 
BN 

byte size subroutine address -> AR3 
jump last 2 bytes from mem. word 

LDI 
ADDI 

C ALLU load new word 
according to mem. width 
set primary bus control 

load new word according to 
mem. width 
set block size for repeat loop 
if 0 block size start PGM 

CALLU 

LDI 
CMPI 
B Z 
SUBI block size -1 

load new word according to 
mem. width 
set destination address 
test start address loaded flag 
load start address if flag off 
set start & dest. address flag on 
sub address with loop 

C ALLU 

LDI 
LDI 
LDIZ 
LDI 
SUBI 

load new word according to 
mem. width 
set dest. address flag off 
sub address without loop 
jump to load a new block 
when loop completed 

LDI 
ADDI 
BR 

. space 
serial words subroutine 
address -> AR3 
R1 = OOOOlllh 
set CLKRIDRIFSR as serial port pins 

serial LDI sub-s , AR3 i 

I 

lllh,Rl i 
RlI*+AR0(43h) ; 
OA30h1R2 
16,R2 i 
RZ1*+AR0(40h) ; 

I 

load2 I 

LDI 
ST1 
LDI 
LSH 
ST1 

R2 = A300000h 
set serial port global 
ctrl. register 
jump to load 1st block 

. space 
load-s i 
2Oh,IF 
sub-s i 
OFDFh, IF i 

PGM load loop loop-s 
sub-s 

RPTB 
TSTB 
BZ 
AND 

wait for receive buffer full 
reset interrupt flag 

Boot Loader Source Code G-5 



Boot Loader Source Code 

load-s 
end-s 

LDI *+AR0(4Ch),R1 
LDI R0,RO ; test load address flag 
BNN end-s 
ST1 Rl,*AR4++(1) ; store new word to dest. address 
RETSU ; return from subroutine 

loop-h RPTB 
sub-h LDI 

AND 
LDI 
LSH 
OR 
LDI 
BNN 
ST1 
RETSU 

load-h 
end-h 

load-h ; PGM load loop 
*ARl++(l),Rl ; load LSB half word 
OFFFFh, R1 
*ARl++(l),R2 ; load MSB half word 
16,R2 
R2 ,R1 ; R1 = a new 32-bit word 
RO , RO ; test load address flag 
end-h 
Rl,*AR4++(1) ; store new word to dest. address 

; return from subroutine 

loop-w 
sub-w 

load-w 
end-w 

loop-b 
sub-b 

load-b 
end-b 

RPTB load-w ; PGM load loop 
LD I *ARl++(l),Rl ; read a new 32-bit word 
LDI RO , RO ; test load address flag 
BNN end-w 
ST1 Rl,*AR4++(1) ; store new word to dest. address 
RETSU ; return from subroutine 

RPTB 
LDI 
AND 
LDI 
AND 
LSH 
OR 
LDI 
AND 
LSH 
OR 
LDI 

OR 
LDI 
BNN 
ST1 
RETSU 

load-b 
*ARl++(l),Rl 
OFFh,Rl 
*ARl++(l),R2 
OFFh,R2 
8,R2 
R2, R1 
*ARl++(l),R2 
OFFh, R2 
16,R2 
R2, R1 
*ARl++(l),R2 
LSH 24 ,R2 
R2,Rl 
RO , RO 
end-b 
Rl,*AR4++(1) 

; PGM load loop 

; load 1st byte ( LSB ) 

; load 2nd byte 

; load 3rd byte 
; load 4th byte ( MSB ) 

; R1 = a new 32-bit word 
; test load address flag 

; store new word to dest. address 
; return from subroutine 



12-pin emulator connector, dimensions 12-45 
12-pin header, MPSD 12-39 to 12-40 

A-law 
compression 11 -56 
expansion 11 -57 

A/D converter interface 12-1 9 to 12-22 
A/D inputloutput system 1 2-32 to 12-35 
abbreviations 10-1 4 to 10-1 5 
ABSF and STF instructions 

(parallel) 10-23 to 10-24 
ABSF instruction 10-22 
ABSl and ST1 instructions (parallel) 10-27 to 10-28 
ABSl instruction 10-25 to 10-26 
absolute value of floating-point instruction 10-22 
absolute value of integer instruction 10-25 
adaptive filters 11 -67 
ADC F-23 
add floating-point instruction 10-32 

3-operand instruction 10-33 
add integer instruction 10-37 

3-operand instruction 10-38 
add integer with carry instruction 10-29 

3-operand instruction 10-30 
ADDC instruction 10-29 
ADDC3 instruction 10-30 to 10-31 
ADDF instruction 10-32 
ADDF3 and MPYF3 instructions 

(parallel) 10-1 19 to 10-1 21 
ADDF3 and STF instructions 

(parallel) 10-35 to 10-36 
ADDF3 instruction 10-33 to 10-34 
ADD1 instruction 10-37 

ADD13 and MPY13 instructions 
(parallel) 10-1 30 to 10-1 32 

ADD13 and ST1 instructions 
(parallel) 10-40 to 10-41 

ADD13 instruction 10-38 to 10-39 
addition example 11 -39 
address space segmentation 12-1 1 
addressing 5-1 to 5-34 

bit-reversed 5-29 to 5-30 
FFT algorithms 5-29 to 5-30 

circular 5-24 to 5-28 
algorithm 5-26 
buffer 5-24 to 5-28 
operation 5-27 

modes 
conditional branch 2- 16, 5-23 
general 5- 19 to 5-20 
groups 5- 19 to 5-23 
long-immediate 2- 16 
parallel 2- 16, 5-2 1 to 5-22 
three-operand 2- 16, 5-20 to 5-2 1 

types 5-2 to 5-1 8 
direct 5-4 
indirect 5-5 to 5- 16 
long-immediate 5- 17 
PC-relative 5- 1 7 to 5- 18 
register 5-3 
short-immediate 5- 16 to 5- 17 
used in addressing modes 5-2 to 5- 18 

ADTV F-20 
advanced interface design 12-1 
algorithm partitioning D-4 
analog interface circuit (AIC) 12-32 to 12-35 
analog interface peripherals and applications 

F-1 to F-24 
dedicated speech synthesis F-11 to F-13 
digital electronics for consumers F-20 to F-24 



analog interface peripherals and applications assembler/linker 8-2 . . 
(continued) 
modem F-17 to F-19 
multimedia F-2 to F-4 

multimedia-related devices F-4 
system design considerations F-2 to F-3 

servo controlldisk drive F-14 to F-16 
telecommunications F-5 to F-10 

AND instruction 1 0-42 
AND3 and ST1 instructions 

(parallel) 10-45 to 10-46 
AND3 instruction 10-43 to 10-44 
ANDing of the ready signals 12-1 0 
ANDN instruction 10-47 
ANDN3 instruction 10-48 to 10-49 
application-oriented operations 11 -53 to 11 -1 30 

adaptive filters 11 -67 
companding 11 -53 to 11 -57 
fast Fourier transforms (FFT) 11 -73 to 11 -1 25 
FIR filters 11 -58 to 11 -60 
llR filters 11 -60 to 11 -66 
lattice filters 11 -1 25 to 11 -1 31 
matrix-vector multiplication 11 -70 to 11 -73 

applications, general listing 1-1 0 
architecture 2-2 

block diagram 2-3 
introduction 2-2 
overview 2-1 

arithmetic 
logic unit (ALU) 2-6 
operations 11 -23 to 11 -52 

bit manipulation 11 -23 to 11 -24 
bit-reversed addressing 11 -25 to 11 -26 
block moves 11 -25 
extended-precision arithmetic 11 -38 to 11 -4 1 
floating-point format conversion 

11-42tO 11-52 
integer and floating-point division 

11-26t0 11-33 
square root 11 -34 

arithmetic shift instruction 10-50 
3-operand instruction 10-52 

ASH instruction 10-50 to 10-51 
ASH3 and ST1 instructions 

(parallel) 10-54 to 10-55 
ASH3 instruction 10-52 to 10-53 
assembler syntax expression, example 10-19 
assembler syntax, optional 10-1 6 to 10-1 8 

assembly language 
condition codes and flags 10-1 0 to 10-1 3 
individual instructions 10-1 4 to 10-21 0 

example 10- 19 to 10-2 1 
general information 10- 14 to 10- 18 
optional assembler syntaxes 10- 16 to 10- 18 
symbols and abbreviations 10- 14 to 10- 15 

instruction set 10-2 to 10-9 
illegal instructions 10-9 
interlocked operations instructions 10-6 
load-and-store instructions 10-2 
low-power control instructions 10-5 
parallel operations instructions 10-7 to 10-8 
program control instructions 10-5 
three-operand instructions 10-4 
two-operand instructions 10-3 

assembly language instructions 10-1 to 10-1 8 
ABSF and STF instructions (parallel) 

10-23 to 10-24 
ABSF instruction 10-22 
ABSl and ST1 instructions (parallel) 

10-27 to 10-28 
ABSl instruction 10-25 to 10-26 
absolute value of floating-point 10-22 
absolute value of integer 10-25 to 10-26 
add floating-point 10-32 

3-operand instruction 10-33 to 10-34 
add integer 10-37 

3-operand instruction 10-38 to 10-39 
add integer with carry 10-29 

3-operand instruction 10-30 to 10-31 
ADDC instruction 10-29 
ADDC3 instruction 10-30 to 10-31 
ADDF instruction 10-32 
ADDF3 and MPYF3 instructions (parallel) 

10-119 to 10-121 
ADDF3 and STF instructions (parallel) 

10-35 to 10-36 
ADDF3 instruction 10-33 to 10-34 
ADD1 instruction 10-37 
ADD13 and MPY13 instructions (parallel) 

10-1 30 to 10-1 32 
ADD13 and ST1 instructions (parallel) 

10-40 to 10-41 
ADD13 instruction 10-38 to 10-39 
AND instruction 10-42 
AND3 and ST1 instructions (parallel) 

10-45 to 10-46 
AND3 instruction 1 0-43 to 10-44 



Index 

assembly language instructions (continued) 
ANDN instruction 10-47 
ANDN3 instruction 10-48 to 10-49 
arithmetic shift 10-50 to 10-51 

3-operand instruction 10-52 to 10-53 
ASH instruction 10-50 to 10-51 
ASH3 and ST1 instructions (parallel) 

10-54 to 10-55 
ASH3 instruction 10-52 to 10-53 
Bcond instruction 10-56 to 10-57 
BcondD instruction 10-58 to 10-59 
bitwise exclusive-OR 10-206 

3-operand instruction 10-207 to 10-208 
bitwise logical-AND 10-42 

3-operand instruction 10-43 to 10-44 
bitwise logical-AND with complement 10-47 

3-operand instruction 10-48 to 10-49 
bi i ise logical-complement 10-1 48 
bitwise logical-OR 10- 151 

3-operand instruction 10- 152 to 10- 153 
BR instruction 10-60 
branch conditionally (delayed) 10-58 to 10-59 
branch conditionally (standard) 10-56 to 10-57 
branch unconditionally (delayed) 10-61 
branch unconditionally (standard) 10-60 
BRD instruction 10-61 
CALL instruction 10-62 
call subroutine 10-62 
call subroutine conditionally 10-63 to 10-64 
CALLcond instruction 10-63 to 10-64 
categories 

illegal 10-9 
interlocked operation 10-6 
load and store 10-2 
low-power control 10-5 
parallel operation 107 to 10-8 
program control 10-5 
three-operand 10-4 
two-operand 10-3 

CMPF instruction 10-65 
CMPF3 instruction 10-66 to 10-67 
CMPl instruction 10-68 
CMP13 instruction 10-69 to 10-70 
compare floating-point 10-65 

3-operand instruction 10-66 to 10-67 
compare integer 10-68 

3-operand instruction 10-69 to 10-70 
condition codes 10-1 0 to 10-1 3 
condition for execution 10-1 0 to 10-1 3 
DBcond instruction 10-71 to 10-72 

assembly language instructions (continued) 
DBcondD instruction 10-73 to 10-74 
decrement and branch conditionally 

delayed 10- 73 to 10- 74 
standard 10-71 to 10-72 

example instruction 10-1 9 to 10-21 
FIX and ST1 instructions (parallel) 

10-77 to 10-78 
FIX instruction 10-75 to 10-76 
FLOAT and STF instructions (parallel) 

10-80 to 1 0-81 
FLOAT instruction 10-79 
floating-point-to-integer conversion 

10-75 to 10-76 
IACK instruction 10-82 
IDLE instruction 10-83 
idle until interrupt 10-83 
IDLE2 instruction 1 0-84 to 10-85 
individual instructions 10-1 4 to 10-21 0 
integer to floating-point conversion 10-79 
interrupt acknowledge 10-82 
LDE instruction 10-86 
LDF and LDF instructions (parallel) 

10-91 to 10-92 
LDF and STF instructions (parallel) 

10-93 to 10-94 
LDF instruction 10-87 
LDFcond instruction 10-88 to 10-89 
LDFl instruction 10-90 
LDI and LDI instructions (parallel) 

10-100 to 10-101 
LDI and ST1 instructions (parallel) 

10-102 to 10-103 
LDI instruction 10-95 to 10-96 
LDlcond instruction 10-97 to 10-98 
LDll instruction 10-99 
LDM instruction 10-1 04 
LDP instruction 10-1 05 
load data page pointer 10-1 05 
load floating-point 10-87 

interlocked 10-90 
load floating-point conditionally 10-88 to 10-89 
load floating-point exponent 10-86 
load floating-point mantissa 10-1 04 
load integer 10-95 to 10-96 

interlocked 10-99 
load integer conditionally 10-97 to 10-98 
logical shift 10-1 07 to 10-1 08 

3-operand instruction 10- 109 to 10- 1 1 1 
LOPOWER instruction 10-1 06 



assembly language instructions (continued) 
low-power idle 10-84 to 10-85 
LSH instruction 10-1 07 to 10-1 08 
LSH3 and ST1 instructions (parallel) 

10-112 to 10-114 
LSH3 instruction 10-109 to 10-111 
MAXSPEED instruction 10-1 15 
MPYF instruction 10-1 16 
MPYF3 and ADDF3 instructions (parallel) 

10-119t0 10-121 
MPYF3 and STF instructions (parallel) 

10-122 to 10-123 
MPYF3 and SUBF3 instructions (parallel) 

10-124 to 10-126 
MPYF3 instruction 10-11 7 to 10-1 18 
MPYl instruction 10-1 27 
MPY13 and ADD13 instructions (parallel) 

10-130t0 10-132 
MPY13 and ST1 instructions (parallel) 

10-133 to 10-134 
MPY13 and SUB13 instructions (parallel) 

10-135 to 10-137 
MPY13 instruction 10-1 28 to 10-129 
multiply floating-point 10-1 16 

3-operand instruction 10- 11 7 to 10- 118 
multiply integer 3-operand instruction 

10-1 28 to 10-1 29 
multiply integer instruction 10-1 27 
negative floating-point 10-1 39 
negative integer 10-1 42 
negative integer with borrow 10-1 38 
NEGB instruction 10-1 38 
NEGF and STF instructions (parallel) 

10-1 40 to 10-1 41 
NEGF instruction 10-1 39 
NEGI and ST1 instructions (parallel) 

10-1 43 to 10-1 44 
NEGI instruction 10-1 42 
no operation 1 0-1 45 
NOP instruction 10-145 
NORM instruction 10-1 46 to 10-1 47 
normalize 10-1 46 to 10-1 47 
NOT and ST1 instructions (parallel) 

10-1 49 to 10-1 50 
NOT instruction 10-1 48 
OR instruction 10-1 51 
OR3 and ST1 instructions (parallel) 

10-1 54 to 10-1 55 
OR3 instruction 10-1 52 to 10-1 53 

assembly language instructions (continued) 
parallel ABSF and STF instructions 

10-23 to 10-24 
parallel ABSl and ST1 instructions 

10-27 to 10-28 
parallel ADDF3 and MPYF3 instructions 

10-119t0 10-121 
parallel ADDF3 and STF instructions 

1 0-35 to 10-36 
parallel ADD13 and MPY13 instructions 

10-1 30 to 10-1 32 
parallel ADD13 and ST1 instructions 

10-40 to 10-41 
parallel AND3 and ST1 instructions 

1 0-45 to 10-46 
parallel ASH3 and ST1 instructions 

10-54 to 10-55 
parallel FIX and ST1 instructions 10-77 to 10-78 
parallel FLOAT and STF instructions 

10-80 to 10-81 
parallel instructions advantages 11 -1 32 
parallel LDF and LDF instructions 

10-91 to 10-92 
parallel LDF and STF instructions 

10-93 to 10-94 
parallel LDI and LDI instructions 

10-1 00 to 10-1 01 
parallel LDI and ST1 instructions 

10-1 02 to 10-1 03 
parallel LSH3 and ST1 instructions 

10-112 to 10-114 
parallel MPYF3 and ADDF3 instructions 

10-119 to 10-121 
parallel MPYF3 and STF instructions 

10-1 22 to 10-1 23 
parallel MPYF3 and SUBF3 instructions 

10-1 24 to 10-1 26 
parallel MPY13 and ADD13 instructions 

1 0-1 30 to 10-1 32 
parallel MPY13 and ST1 instructions 

10-1 33 to 10-1 34 
parallel MPY13 and SUB13 instructions 

10-1 35 to 10-1 37 
parallel NEGF and STF instructions 

10-1 40 to 10-1 41 
parallel NEGI and ST1 instructions 

10-143 to 10-144 
parallel NOT and ST1 instructions 

10-1 49 to 10-1 50 



assembly language instructions (continued) 
parallel OR3 and ST1 

instructions 10-1 54 to 10-1 55 
parallel STF and ABSF instructions 

10-23 to 10-24 
parallel STF and ADDF3 instructions 

10-35 to 10-36 
parallel STF and FLOAT instructions 

10-80 to 10-81 
parallel STF and LDF instructions 

10-93 to 10-94 
parallel STF and MPYF3 instructions 

10-122 to 10-123 
parallel STF and NEGF instructions 

10-140 to 10-141 
parallel STF and STF instructions 

10-1 76 to 10-1 77, 10-1 80 to 10-1 81 
parallel STF and SUBF3 instructions 

10-1 90 to 10-1 91 
parallel ST1 and ABSl instructions 

10-27 to 1 0-28 
parallel ST1 and ADD13 instructions 

1 0-40 to 1 0-41 
parallel ST1 and AND3 instructions 

10-45 to 10-46 
parallel ST1 and ASH3 instructions 

1 0-54 to 1 0-55 
parallel ST1 and FIX instructions 10-77 to 10-78 
parallel ST1 and LDI instructions 

10-102 to 10-103 
parallel ST1 and LSH3 instructions 

10-112 to 10-114 
parallel ST1 and MPY13 instructions 

10-1 33 to 10-1 34 
parallel ST1 and NEGl instructions 

10-143 to 10-144 
parallel ST1 and NOT instructions 

10-1 49 to 10-1 50 
parallel ST1 and OR3 instructions 

10-1 54 to 10-1 55 
parallel ST1 and SUB13 instructions 

10-1 95 to 10-1 96 
parallel ST1 and XOR3 instructions 

10-209 to 10-21 0 
parallel SUBF3 and MPYF3 instructions 

10-1 24 to 10-1 26 
parallel SUBF3 and STF instructions 

10-1 90 to 10-1 91 
parallel SUB13 and MPY13 instructions 

10-1 35 to 10-1 37 

assembly language instructions (continued) 
parallel SUB13 and ST1 instructions 

10-195 to 10-196 
parallel XOR3 and ST1 instructions 

10-209 to 10-21 0 
POP floating-point 10-1 57 
POP integer instruction 10-1 56 
POPF instruction 10-1 57 
PUSH floating-point 10-1 59 
PUSH integer instruction 10-1 58 
PUSHF instruction 10-1 59 
register syntax 10-1 8 
repeat block 10-1 70 
repeat single 10-1 71 to 10-1 72 
restore clock to regular speed 10-1 15 
RETlcond instruction 10-1 60 to 10-1 61 
return from subroutine conditionally 10-1 62 
RETScond instruction 10- 162 
return from interrupt conditionally 

10-1 60 to 10-1 61 
RND instruction 10-163 to 10-164 
ROL instruction 10-1 65 
ROLC instruction 10-1 66 to 10-1 67 
ROR instruction 10-1 68 
RORC instruction 10-1 69 
rotate 

lei? 10-165 
lei? through carry 10- 166 to 10- 167 
right 10- 168 
right through carry 10- 169 

round floating-point 10-1 63 to 10-1 64 
RPTB instruction 10-1 70 
RPTS instruction 10-1 71 to 10-1 72 
SlGl instruction 10-1 73 
signal, interlocked 10-1 73 
software interrupt 10-200 
STF and ABSF instructions (parallel) 

10-23 to 10-24 
STF and ADDF3 instructions (parallel) 

10-35 to 10-36 
STF and FLOAT instructions (parallel) 

10-80 to 10-81 
STF and LDF instructions (parallel) 

10-93 to 10-94 
STF and MPYF3 instructions (parallel) 

10-122 to 10-123 
STF and NEGF instructions (parallel) 

10-1 40 to 10-1 41 
STF and STF instructions (parallel) 

10-1 76 to 10-1 77 

Indexd 



Index 

assembly language instructions (continued) 
STF and SUBF3 instructions (parallel) 

10-190 to 10-191 
STF instruction 10-1 74 
STFl instruction 10-1 75 
ST1 and ABSl instructions (parallel) 

10-27 to 10-28 
ST1 and ADD13 instructions (parallel) 

1 0-40 to 1 0-41 
ST1 and AND3 instructions (parallel) 

10-45 to 10-46 
ST1 and ASH3 instructions (parallel) 

10-54 to 10-55 
ST1 and FIX instructions (parallel) 

10-77 to 10-78 
ST1 and LDI instructions (parallel) 

10-102 to 10-103 
ST1 and LSH3 instructions (parallel) 

10-112 to 10-114 
ST1 and MPY13 instructions (parallel) 

10-1 33 to 10-1 34 
ST1 and NEGl instructions (parallel) 

10-143 to 10-144 
ST1 and NOT instructions (parallel) 

10-1 49 to 10-1 50 
ST1 and OR3 instructions (parallel) 

10-154 to 10-155 
ST1 and ST1 instructions (parallel) 

10-1 80 to 10-1 81 
ST1 and SUB13 instructions (parallel) 

10-1 95 to 10-1 96 
ST1 and XOR3 instructions (parallel) 

10-209 to 10-21 0 
ST1 instruction 10-1 78 
STll instruction 10-1 79 
store floating-point 10-1 74 
store floating-point, interlocked 10-1 75 
store integer 10-1 78 
store integer, interlocked 10-1 79 
SUBB instruction 10-1 82 
SUBB3 instruction 10-1 83 to 10-1 84 
SUBC instruction 10-1 85 to 10-1 86 

integer division 11 -27 to 11 -30 
SUBF instruction 10-1 87 
SUBF3 and MPYF3 instructions (parallel) 

10-1 24 to 10-1 26 
SUBF3 and STF instructions (parallel) 

10-190 to 10-191 
SUBF3 instruction 10-1 88 to 10-1 89 
SUB1 instruction 10-1 92 

assembly language instructions (continued) 
SUB13 and MPY13 instructions (parallel) 

10-135 to 10-137 
SUB13 and ST1 instructions (parallel) 

10-195 to 10-196 
SUB13 instruction 10-193 to 10-194 
SUBRB instruction 10-1 97 
SUBRF instruction 10-198 
SUBRl instruction 10-1 99 
subtract floating-point 10-1 87 

3-operand instruction 10- 188 to 10- 189 
subtract integer 10-1 92 

3-operand instruction 10- 193 to 10- 194 
subtract integer conditionally 10-1 85 to 10-1 86 
subtract integer with borrow 10-1 82 

3-operand instruction 10- 183 to 10- 184 
subtract reverse floating-point 10-1 98 
subtract reverse integer 10-1 99 
subtract reverse integer with borrow 10-1 97 
SWI instruction 10-200 
symbols used to define 10-1 5 to 10-18 
syntax options 10-1 6 to 10-1 8 
test bit fields 10-203 

3-operand instruction 10-204 to 10-205 
trap conditionally 10-201 to 10-202 
TRAPcond instruction 10-201 to 10-202 
TSTB instruction 10-203 
TSTB3 instruction 10-204 to 10-205 
XOR instruction 10-206 
XOR3 and ST1 instructions (parallel) 

10-209 to 10-21 0 
XOR3 instruction 10-207 to 10-208 

auxiliary (ARO-AR7) registers 3-3 
auxiliary register ALUs 2-6 
auxiliary register arithmetic units (ARAUs) 5-5 

bank switching 
external bus 12-13 to 12-18 
programmable 7-30 to 7-32 

bank switching techniques 12-1 3 to 12-1 9 
Bcond instruction 10-56 to 10-57 
BcondD instruction 1 0-58 to 10-59 
biquad 11-60 
bit manipulation 11 -23 to 11 -24 
bit-reversed addressing 5-29 to 5-30, 11 -25 

FFT algorithms 5-29 to 5-30 



Index 

bitwise exclusive-OR instruction 10-206 
3-operand instruction 10-207 

bitwise logical-complement instruction 10-1 48 
bitwise logical-AND instruction 10-42 

3-operand instruction 10-43 
b i i i se  logical-ANDN instruction 10-47 

3-operand instruction 10-48 
bi i ise logical-OR instruction 10-1 51 

3-operand instruction 10- 152 
block 

moves 11-25 
repeat 11 -1 8 
repeat modes 6-2 to 6-7 

control bits 6-3 
nested block repeats 6-7 
operation 6-3 to 6-4 
RC register value 6-6 to 6-7 
restrictions 6-6 
RPTB instruction 6-4 to 6-5 
RPTS instruction 6-5 

repeat registers (RC, RE, RS) 3-1 1, 6-2 
size (BK) register 3-4 

block diagram 
architectural 2-3 
functional 1-5 

boot loader 3-26 
external memory loading 3-30 
interrupt and trap vector mapping 3-33 
invoking 3-26 
mode selection 3-29 
operations 3-26 
precautions 3-35 
serial-port loading 3-33 

boot loader source code G-1 to G-6 
BR instruction 10-60 
branch conflicts 9-4 to 9-6 
branch unconditionally (delayed) instruction 

10-58, 10-61 
branch unconditionally (standard) instruction 

10-56, 10-60 
branches 6-8 

delayed 6-8 to 6-9, 11 -1 7 
BRD instruction 10-61 
breakdown of numbers B-9 to 8-10 
buffered signals 12-43 

MPSD 12-42 
buffering 12-41 

bulletin board service (BBS) B-5 to B-6 
bus operation 7-1 to 7-32 

external 2-26 
internal 2-22 

buses 
DMA 2-22 
program 2-22 

busy-waiting example 6-1 4 
byte-wide configured memory 3-31 

C (HLL) routines 11 -131 to 11-134 
C compiler 8-2 
'C30, memory maps 2-14 
'C30 power dissipation D-1 to D-32 

FFT assembly code D-30 to D-32 
photo of lDD for FFT D-29 
summary D-28 

'C3 1 
memory maps 2-1 5 
interrupt and trap memory maps 3-34 
reserved memory locations 2-31 

' C ~ X  DSPS 1-2 
cache 

architecture 3-21 to 3-23 
control bits 3-24 

cache clear bit (CC) 3-24 
cache enable bit (CE) 3-24 
cache freeze bit (C9 3-25 

hit 3-23 
instruction 2-12 
memory 2-1 I, 3-21 

algorithm 3-23 to 3-24 
architecture 3-2 1 
instruction 3-21 

miss 3-23 
segment 3-24 
word 3-23 

CALL instruction 6-1 0, 10-62 
call subroutine conditionally instruction 10-63 
call subroutine instruction 10-62 
CAUcond instruction 6-1 0, 10-63 to 10-64 
calls 6-1 0 to 6-1 1 
carry flag 1 0-1 2 
cautions x 
C-callable routines 11 -1 31 



central processing unit 2-4 
block diagram 2-5 
registers 2-8 

circular addressing 5-24 to 5-28 
algorithm 5-26 
circular buffer 5-24 
FIR filters 5-28, 11 -58 
operation 5-27 

clkout 8-21, 8-22 

CLKR pins 8-20 

CLKXpins 8-19 

clock mode 
timer interrupt 8-1 1 
timer pulse generator 8-8 to 8-9 

clock oscillator circuitry 12-27 to 12-29 
clocking of memory accesses 9-23 to 9-30 

data loads and stores 9-24 to 9-30 
program fetches 9-23 

CMPF instruction 10-65 
CMPF3 instruction 10-66 to 10-67 

CMPl instruction 10-68 
CMP13 instruction 10-69 to 10-70 

COMBO F-6 

companding 11 -53 to 11 -57 
compare floating-point instruction 10-65 

3-operand instruction 10-66 

compare integer instruction 10-68 
3-operand instruction 10-69 

compiler 8-2 

compression 
A-law 11-56 
U-law 11 -54 

computed GOT0 11 -22 

condition codes and flags 10-1 0 to 10-1 3 
condition flags 10-1 0 to 10-1 3 

floating-point underflow 10-1 1 
latched floating-point underflow 10-1 1 
latched overflow 10-1 1 
negative 10-1 1 
overflow 10-1 2 
zero 10-11 

conditional-branch addressing modes 2-16, 5-23 

conditional delayed branches 6-8 
compare instructions 6-8 
extended-precision registers 6-8 

connector 
dimensions, mechanical 12-43 to 12-45 
12-pin header 12-39 

consumer electronics F-20 to F-24 

context switching 11 -1 1 to 11 -1 5 
context restore for 'C3x 11 -1 4 to 11 -1 6 
context save for 'C3x 11 -1 2 to 1 1 -1 3 

control registers, external interface 7-2 to 7-5 
expansion bus 7-5 to 7-6 
primary bus 7-3 to 7-4 

conversion 
floating-point to integer 4-22 to 4-23 
integer to floating-point 4-24 
time to frequency domain (FFTs) 

11-73 to 11-125 

counter 
example 6-14 
register (timer) 8-3, 8-8 

CPU 2-4 to 2-10 
block diagram 2-5 
general 2-4 
interrupt 

DMA interaction 6-30 
latency 6-30 
processing cycle 6-29 

interrupt flag register (If) 3-9 
register file 2-7, 3-2 to 3-12 
registers 2-7 to 2-1 0, 3-2 to 3-1 2 

auxiliary (ARO-AR7) 2-8, 3-3 
block repeat (RS, RE) 3- 11 
block size (BK) 2-9, 3-4 
CPU/DMA interrupt enable (IE) 3-7 
data-page pointer (DP) 2-9, 3-4 
extended precision (RO-R7) 2-8, 3-3 
I/O flag (109 2-9,3-10 
index (IR 1, IRO) 2-9,3-4 
interrupt enable (IE) 2-9, 3-7 
interrupt flag (If) 2-9, 3-9 
list of 3-2 
program counter (PC) 2- 10, 2-22, 3- 11 
repeat count (RC) 2- 10,3- 11, 6-2 
repeat end address (RE) 2- 10, 3- 11, 6-2 
repeat start address (RS) 2- 10, 3- 11, 6-2 
reserved bits 3- 12 
status register (ST) 2-9, 3-4, 10- 11 
system stack pointer (SP) 2-9, 3-4 

transfer, with serial-port transmit polling 
8-38 to 8-39 



current calculations D-26 to D-27 
average 0-27 
data output D-26 to D-27 
processing D-26 

DIA converter interface 12-23 to 12-26 
DIA inputloutput system 12-32 to 12-35 
DAC F-23 
data 

converters F- 1 7 
loads and stores 9-24 to 9-29 

operations with parallel stores 9-27 to 9-29 
parallel multiplies and adds 9-29 
three-operand instructions 9-24 to 9-27 
two-operand instructions 9-24 

data formats 4-1 to 4-24 
floating-point formats 4-4 to 4-9 

conversion between formats 4-8 to 4-9 
extended-precision 4-6 to 4-7 
short 4-4 to 4-5 
single-precision 4-6 

floating-point to integer conversion 4-22 to 4-23 
floating-point addition and subtraction 

4-14t04-17 
floating-point multiplication 4-10 to 4-13 
integer formats 4-2 

short 4-2 
single-precision 4-2 to 4-3 

integer to floating-point conversion 4-24 
normalization using NORM 4-18 to 4-19 
rounding with RND 4-20 to 4-21 
unsigned-integer formats 4-3 

short 4-3 
single-precision 4-3 to 4-4 

data-page pointer (DP) register 2-9, 3-4 
data-rate timing operation 

fixed 8-30 
burst mode 8-30 
continuous mode 8-30 

variable 8-34 
burst mode 8-34 
continuous mode 8-35 

data-receive register 8-24 
data-transmit register 8-23, 8-27, 8-30, 8-32 
DBcond instruction 10-71 to 10-72 
DBcondD instruction 10-73 to 10-74 

debugger B-3 
decode unit 9-2 
decrement and branch conditionally (delayed) 

instruction 10-73 
decrement and branch conditionally (standard) 

instruction 10-71 
delayed branches 6-8 to 6-9, 11 -1 7 

advantages 1 1 -1 32 
conditional 6-8 
incorrectly placed 6-6 

dependencies D-2 to 0-3 
dequeue (stacks) 5-31,5-33 
development support B-1 to B-1 0 

tools B-2 to B-6 
bulletin board service B-5 to B-6 
code generation tools 6-2 

assemblerllinker 8-2 
C compiler 8-2 
compiler 8-2 
linker 8-2 

digital filter design package 8-2 
documentation B-5 
hotline B-5 
literature B-5 
seminars B-6 
system integration and debug 

tools B-3 to B-4 
debugger 8-3 
emulation porting kit (EPK) 8-4 to B-5 
emulator 8-3 
evaluation module (EVM) 8-3 
simulator 8-3 
XDS510 emulator 8-3 

technical training organization (7TO) work- 
shop B-6 

third patties 8-4 
workshops B-6 

device sufFixes 8-9 to 8-1 0 
diagnostic applications f 2-45 to 12-46 
digital audio F-21 
digital electronics F-20 to F-24 
digital filter design package 8-2 
dimensions, 12-pin emulator connector 

12-43 to 12-45 
direct 

addressing 5-4 
memory access 2-29 

disabled interrupts by branch 6-8 
displacements 5-5 



Index 

dissipation, power D-1 to D-32 
algoriihm partitioning D-4 
dependencies D-2 to D-3 
FFT assembly code D-30 to D-32 
photo of IDD for FFT D-29 
power requirements D-2 
power supply current requirements D-2 
test setup description D-4 to D-5 

divide clock by 16 instruction 10-1 06 

division 11 -26 to 11 -33 
floating-point 11 -31 to 11 -33 

DMA 
architecture 2-29 
block moves 8-43, 11 -25 
buses 2-22 
channel 9-2 
channel synchronization 8-54 to 8-56 
controller 2-22, 8-43 to 8-64 

block diagram 2-29 
destination register 8-49 to 8-53 
destination/source address register 8-47 
general 2-29 
initialization reconfiguration 8-57 
interrupt 8-56 

CPU interaction 6-30 
processing cycle 6-29 

interrupt-enable register 8-47 to 8-49 
maximum transfer rates 8-53 
memory transfer 8-49 to 8-53 
memory-mapped registers 8-43 
programming hints 8-57 to 8-58 
setup and use examples 8-58 to 8-64 
source register 8-49 to 8-53 
synchronization of channels 8-54 to 8-56 
timing 

expansion bus destination 8-52 
on-chip destination 8-50 
primary bus destination 8-51 

transfer-counter register 8-47 

documentation v, vii, 8-5 

DR pins 8-20 

dry pack C-7 

dummy fetch 9-4 

DX pins 8-19 

electrical 
characteristics 

pinout and pin assignments 13-2 to 13-15 
signal descriptions 13- 16 to 13-24 
signal transition levels 13-29 
summary 0-28 

specifications 1 3-25 to 13-28 

emulation porting kit (EPK) 8-4 to 8-5 

emulator 8-3 
connection to target system 12-41 to 12-43 

MPSD mechanical dimensions 
12-43 to 12-45 

connector, mechanical dimensions 
12-43 to 12-45 

MPSD connector, 12-pin header 
12-39 to 12-40 

pod interface 12-40 
signal buffering 12-41 

emulator cable, signal timing, MPSD 
1 2-40 to 1 2-41 

emulator pod 
MPSD timings 12-41 
parameters 12-41 

evaluation module (EVM) 8-3 

event counters 8-2 

example circuit 12-1 3 to 12-46 

example instruction 10-1 9 to 10-21 

execute unit 9-2 

expansion 
A-law 11 -57 
bus. See expansion buses and external buses 
U-law 11-55 

expansion buses 7-2 
functional timing of operations 7-6 
I10 cycles 7-1 1 to 7-32 
programmable wait states 7-28 to 7-29 

expansion bus control register 7-5 to 7-6 

expansion bus interface 12-1 9 to 12-26 
AID converter 12-1 9 
DIA converter 12-23 
ready generation 12-9 to 12-1 3 

functions 12- 11 





floating point (continued) 
subtraction 4-14 to 4-1 7 

examples 4- 16 to 4- 18 
TMS320 to IEEE 11 -42 10 11 -52 
underflow 4-1 5 

floating-point-to-integer conversion instruction 
10-75 

floating-point underflow condition flag 10-1 1 
frame sync 8-32,8-33 
FSR pins 8-20 
FSX pins 8-19 
functional block diagram 1-5 

general addressing modes 2-1 6, 5-1 9 to 5-20 
general-purpose applications 1-4 
generation, TMS320C3x DSPs 1-2 
global memory 6-12, 6-15 
global-control register 8-2 

DMA 8-47 
register bits 8-45 to 8-47 

serial port 8-1 3,8-15 to 8-1 8 
bits summary 8- 15 to 8- 18 

timer 8-3 to 8-8 
register bits summary 8-4 to 8-6 

GOT0 11-22 

hardware applications 12-1 to 12-46 
expansion bus interface 12-1 9 to 12-26 

AlD converter 12- 19 to 12-22 
D/A converter 12-23 to 12-27 

low-power mode interrupt interface 
12-36 to 1 2-38 

primary bus interface 12-4 to 12-1 8 
bank switching techniques 12- 13 to 12- 19 
ready generation 12-9 to 12- 13 
zero-wait-state to static-RAMS 12-4 to 12-8 

serial-port interface 12-32 to 12-35 
system configuration options 12-2 to 12-3 

categories of interfaces 12-2 
typical block diagram 12-3 to 12-4 

system control functions 12-27 to 12-31 
clock oscillator circuitry 12-27 to 12-29 
reset signal generation 12-29 to 12-39 

hardware applications (continued) 
XDS target design 

considerations 12-39 to 12-46 
connections between emulator and target 

system 12-4 1 to 12-43 
diagnostic applications 12-45 to 1246 
mechanical dimensions for emulator 

connector 12-43 to 12-45 
MPSD emulator cable signal timing 

12-40 to 12-4 1 
MPSD emulator connector 12-39 to 12-40 

hardware control 6-1 
hardware reset 11 -2 
HDTV F-20 
header 

12-pin 12-39 
dimensions 

mechanical 12-43 to 12-45 
12-pin header 12-39 

signal descriptions, 12-pin header 12-39 
straight, unshrouded 12-39 

hints for assembly coding 11 -1 31 to 11 -1 32 
hotline 8-5 

I10 flags register ( l o g  3-10 
IACK instruction 6-29, 10-82 
IDLE instruction 10-83 
IDLE2 power management mode 6-36 to 6-37 
IDLE2 instruction 10-84 to 10-85, 12-36 to 12-38 
IE register bits summary, CPU register file 3-8 
IF register bits summary, CPU register file 3-9 
I10 flag register (IOF), CPU register file 3-10 
llR filters 11 -60 to 11 -66 
illegal instructions 10-9 
index (IR0,IRl) register 3-4 
indirect addressing 5-5 to 5-1 6 

ARAUS 5-5 
auxiliary register 5-5 
parallel addressing mode 5-22 
three-operand addressing mode 5-21 
with postdisplacement 5-1 0 
with postindex 5-1 4 to 5-17 
with predisplacement 5-8 to 5-1 0 
with preindex 5-12 to 5-14 



Index 

individual instructions 10-1 4 to 10-21 0 
example 10-1 9 to 10-21 
symbols and abbreviations 10-1 4 to 10-1 5 

initialization 
DMA 8-57 
processor 1 1 -2 to 11 -5 

input clock 12-27 

instruction 
cache 3-21 
memory 

three-operand reads 9-24 to 9-27 
two-operand accesses 9-24 

opcodes A-1 to A 6  
register (IR) 2-22 

instruction cache 2-12 

instruction set 10-22 to 10-21 0 
categories 10-2 
example instruction 10-1 9 to 10-21 
summary 

alphabetical 2- 1 7 to 2-2 1 
function listing 10-2 to 10-9 
table 2- 1 7 to 2-2 1 

instructions 
assembly language 10-1 to 10-1 8 
illegal 10-9 
interlocked operations 10-6 
load-and-store 10-2 
low-power control operations 10-5 
parallel operations 10-7 to 10-8 
program control 10-5 
three-operand 10-4 
two-operand 10-3 

INTO-INT3 signals 3-1 8, 3-1 9,6-24 

integer 
division 11 -26, 11 -27 to 11 -30 
format 4-2 

short integer 4-2 
signed 4-2 
single-precision integer 4-2 
unsigned 4-3 

integer-to-floating-point conversion 4-24 
instruction 10-79 

interfaces 
expansion bus 2-26, 12-1 9 to 12-26 

A/D converter interface 12- 19 to 12-22 
D/A converter 12-23 to 12-26 

low-power-mode interrupt 12-36 to 12-38 

interfaces (continued) 
primary bus 2-26, 12-4 to 12-1 8 

See also primary bus interface 
bank switching techniques 12- 13 to 12- 19 
ready generation 12-9 to 12- 13 
zero-wait-state to static RAMS 124 to 12-8 

serial port 12-32 to 12-35 
system control, clock circuitry 12-27 to 12-29 
types 12-2 

interlocked operations 6-12 to 6-17 
busy-waiting loop 6-1 4 
external flag pins (XFO, XF1) 6-12 
instructions 6-1 3 
loads and stores 6-1 2 
multiprocessor counter 6-1 4 

interlocked operations instructions 10-6 

internal 
bus operation 2-22 
clock 8-10 

internal circuitry current requirement D-5 to D-8 
internal bus operations 0-6 to D-9 
internal operations D-5 
quiescent D-5 

internal interrupts 6-23 

interrupt 6-23 to 6-35 
acknowledge instruction 10-82 
enable (IE) register 3-7 

bits summary 3-8 
flag (IF) register 3-9 

bits summary 3-9 

interrupts 2-26 
considerations ('C3x) 6-31 to 6-34 
context switching 11-11 to 11-15 

context restore for 'C3x 1 1 - 14 to 11 - 16 
contextsavefor9C3x 11-12to11-13 

control bits 6-26 to 6-27 
global control register 6-27 
interrupt enable register (IE) 6-26 
interrupt flag register (IF) 6-26 
status register (ST) 6-26 

CPUIDMA interaction 6-30 
DMA 8-56 
flag register behavior 6-27 
latency (CPU) 6-29 to 6-30 
prioritization and control 

6-25 to 6-26,6-34 to 6-35, 11 -1 6 
processing 6-27 to 6-30 



interrupts (continued) 
serial port 8-29 

receive timer 8-29 
receiver 8-29 
transmit timer 8-29 
transmitter 8-29 

service routines 11 -9 
example 11 - 16 

timer 8-2, 8-11 
vectors 3-1 8, 3-1 9, 6-35 

table 6-23 to 6-25 
inverse 11 -31 to 11 -33 
inverse lattice filter 11 -1 26 
IOF register bits summary, CPU register file 3-11 
IOSTRB signal 7-2, 7-6 

key features 
'C30 1-6 
'C31 1-8 

latched floating-point overflow and underflow 
condition flags 10-1 1 

lattice filters 11 -1 25 to 11 -1 30 
LDE instruction 10-86 
LDF and LDF instructions (parallel) 10-91 to 10-92 
LDF and STF instructions (parallel) 10-93 to 10-94 
LDF instruction 10-87 
LDFcond instruction 10-88 to 10-89 
LDFl instruction 10-90 
LDI and LDI instructions (parallel) 

10-100 to 10-101 
LDI and ST1 instructions (parallel) 

10-102 to 10-103 
LDI instruction 10-95 to 10-96 
LDlcond instruction 10-97 to 10-98 
LDll instruction 10-99 
LDM instruction 10-1 04 
LDP instruction 10-1 05 
linker 8-2 
literature v to viii 8-5 
LMS algorithm filters 11 -67 
load data page pointer instruction 10-1 05 

load floating-point conditional instruction 10-88 
load floating-point exponent instruction 10-86 
load floating-point mantissa instruction 10-1 04 
load floating-point interlocked instruction 10-87 
load integer conditionally instruction 10-97 
load integer instruction 10-95 
load integer, interlocked instruction 10-99 
load-and-store instructions 10-2 
loader mode selection 3-30 
logical operations 11 -23 to 11 -34 

bit manipulation 11 -23 to 11 -24 
bit-reversed addressing 1 1 -25 to 11 -26 
block moves 11 -25 
extended-precision arithmetic 11 -38 to 11 -41 
floating-point format conversion 11 -42 to 11 -52 
integer and floating-point division 

11-26 to 11-33 
square root 11 -34 

logical shift instruction 10-1 07 
3-operand instruction 10-1 09 

long-immediate addressing 2-1 6, 5-1 7 
looping 11 -1 8 to 11 -21 

block repeat 11 -1 8 to 11 -20 
single-instruction repeat 11 -20 to 11 -26 

LOPOWER instruction 10-1 06 
LOPOWER mode 6-38 
low-power control instructions 10-5 
low-power idle instruction 10-84 
low-power-mode interrupt interface 12-36 to 12-38 
low-power-mode wakeup example 

11-133 to 11-134 
LRU cache update 3-21 
LSH instruction 10-1 07 to 10-1 08 
LSH3 and ST1 instructions (parallel) 

10-112 to 10-114 
LSH3 instruction 10-1 09 to 10-1 11 

matrix-vector multiplication 11 -70 
MAXSPEED instruction 10-1 1 5 
memory 2-11,3-13, 3-21 

accesses (pipeline) clocking 9-23 to 9-29 
addressing modes 2-16 
cache 2-1 1,3-21, 11 -1 32 
See also cache 

DMA memory transfer 8-49 to 8-53 



memory (continued) 
general organization 2-1 1 
global 6-12, 6-15 
maps 2-13,3-13,3-17 

'C30 2-1 4,3- 15 
'C31 2-15,3-16 

microcomputer mode 3-1 3 
microprocessor mode 3-1 3 
pipeline conflicts 9-1 0 to 9-1 7 

execute only 9- 13 to 9- 15 
hold everything 9- 15 to 9- 1 7 
program fetch incomplete 9- 12 
program wait 9- 10 to 9- 13 
resolving 9-21 to 9-22 

quick access 11 -1 32 
memory addressing 

modes 2-16 
parallel multiplies and adds 9-29 
three-operand instructions 9-24 
two-operand instructions 9-24 

memory maps 
'C30 2-14, 3-15 
'C31 2-15,3-16 

memory organization, block diagram 2-1 2 
microcomputer mode 2-1 3,3-14,3-17 
microcomputer/boot loader mode 3-1 7 
microprocessor mode 2-13,3-13,3-17 
modem applications F-17 to F-19 
MPSD emulator 

buffered transmission signals 12-42 
cable signal timing 12-40 to 12-41 
connector 12-39 to 1 2-40 
no signal buffering 12-41 

MPYF instruction 9-4, 10-1 16 
MPYF3 and ADDF3 instructions (parallel) 

10-119t0 10-121 
MPYF3 and STF instructions (parallel) 

10-122 to 10-123 
MPYF3 and SUBF3 Instructions (parallel) 

10-124 to 10-126 
MPYF3 instruction 10-1 17 to 10-1 18 
MPYl instruction 10-127 
MPY13 and ADD13 instructions (parallel) 

10-130 to 10-132 
MPY13 and ST1 instructions (parallel) 

10-133 to 10-134 
MPY13 and SUB13 instructions (parallel) 

10-1 35 to 10-1 37 

MPYl3 instruction 10-1 28 to 10-1 29 
MSTRB signal 7-2,7-6 
multimedia applications F-2 to F-4 

multimedia-related devices F-4 
system design considerations F-2 to F-3 

multiple processors 6-1 2 
multiplication 

floating-point 4-1 0 
examples 4- 12 to 4- 14 
flowchart 4-11 

matrix-vector 11 -70 to 11 -73 
multiplier 2-6 
multiply floating-point instruction 10-1 16 

3-operand instruction 10-1 17 
multiply integer instruction 1 0-1 27 

3-operand instruction 10-1 28 
multiprocessor support 6-1 2 

negative condition flag 10-11 
negative floating-point instruction 10-1 39 
negative integer instruction 10-142 
negative integer with borrow instruction 10-1 38 
NEGB instruction 10-1 38 
NEGF and STF instructions (parallel) 

10-140 to 10-141 
NEGF instruction 10-1 39 
NEGl and STI instructions (parallel) 

10-143 to 10-144 
NEGl instruction 10-142 
nested block repeats 6-7 
no operation instruction 10-1 45 
NOP instruction 10-1 45 
NORM instruction 4-1 8 to 4-1 9,10-146 to 10-1 47 
normalization, floating-point value 4-1 4, 

4-1 8 to 4-1 9 
normalize instruction 10-1 46 
NOT and STI instructions (parallel) 

10-149 to 10-150 
NOT instruction 10-1 48 

operations with parallel stores 9-27 to 9-29 
optional assembler syntax 10-1 6 to 10-1 8 



Index 

options overview (system configuration) 12-2 
OR instruction 10-1 51 
OR3 and ST1 instructions (parallel) 

10-1 54 to 10-1 55 
OR3 instruction 10-1 52 to 10-1 53 
ordering information B-7 to B-10 
ORing of the ready signals 12-9 to 12-1 0 
output driver circuitry current 

requirement D-9 to D-17 
capacitive load dependence D-16 to D-18 
data dependency D-14 to D-16 
expansion bus D-13 to D-14 
primary bus D-10 to D-12 

output value formats 10-1 0 
overflow 4-1 5, 4-22 
overflow condition flag 10-1 2 

parallel ABSF and STF instructions 10-23 to 10-24 
parallel ABSl and ST1 instructions 10-27 to 10-28 
parallel ADDF3 and MPYF3 instructions 

10-119 to 10-121 
parallel ADDF3 and STF instructions 

10-35 to 10-36 
parallel ADD13 and MPY13 instructions 

10-1 30 to 10-1 32 
parallel ADD13 and ST1 instructions 10-40 to 10-41 
parallel addressing modes 2-16, 5-21 to 5-22 
parallel AND3 and ST1 instructions 10-45 to 10-46 
parallel ASH3 and ST1 instructions 10-54 to 10-55 
parallel bus 12-1 9 

See also expansion bus interface 

parallel FIX and ST1 instructions 10-77 to 10-78 
parallel FLOAT and STF instructions 

10-80 to 10-81 
parallel instruction set summary 2-23 to 2-24 
parallel instructions advantages 11 -1 32 
parallel LDF and LDF instructions 10-91 to 10-92 
parallel LDF and STF instructions 10-93 to 10-94 
parallel LDI and LDI instructions 10-1 00 to 10-1 01 
parallel LDI and ST1 instructions 10-1 02 to 10-1 03 
parallel LSH3 and ST1 instructions 

10-112 to 10-114 

parallel MPYF3 and ADDF3 instructions 
10-119 to 10-121 

parallel MPYF3 and STF instructions 
10-1 22 to 10-1 23 

parallel MPYF3 and SUBF3 instructions 
10-124 to 10-126 

parallel MPY13 and ADD13 instructions 
10-130t0 10-132 

parallel MPY13 and ST1 instructions 
10-1 33 to 10-1 34 

parallel MPY13 and SUB13 instructions 
10-1 35 to 10-1 37 

parallel multiplies and adds 9-29 
parallel NEGF and STF instructions 

10-1 40 to 10-1 41 
parallel NEGl and ST1 instructions 

10-1 43 to 10-1 44 
parallel NOT and ST1 instructions 

10-1 49 to 10-1 50 
parallel operations instructions 10-7 to 10-8 
parallel OR3 and ST1 instructions 

10-1 54 to 10-1 55 
parallel STF and ABSF instructions 10-23 to 10-24 
parallel STF and ADDF3 instructions 

10-35 to 10-36 
parallel STF and FLOAT instructions 

10-80 to 10-81 
parallel STF and LDF instructions 10-93 to 10-94 
parallel STF and MPYF3 instructions 

10-1 22 to 10-123 
parallel STF and NEGF instructions 

10-140 to 10-141 
parallel STF and STF instructions 

10-1 76 to 10-1 77 
parallel STF and SUBF3 instructions 

10-1 90 to 10-1 91 
parallel ST1 and ABSl instructions 10-27 to 10-28 
parallel ST1 and ADD13 instructions 10-40 to 10-41 
parallel ST1 and AND3 instructions 10-45 to 10-46 
parallel ST1 and ASH3 instructions 10-54 to 10-55 
parallel ST1 and FIX instructions 10-77 to 10-78 
parallel ST1 and LDl instructions 10-1 02 to 10-1 03 
parallel ST1 and LSH3 instructions 

10-112 to 10-114 
parallel ST1 and MPY13 instructions 

10-1 33 to 10-1 34 
parallel ST1 and NEGl instructions 

10-1 43 to 10-1 44 



parallel ST1 and NOT instructions 
10-1 49 to 10-1 50 

parallel ST1 and OR3 instructions 
10-1 54 to 10-1 55 

parallel ST1 and ST1 instructions 10-1 80 to 10-1 81 
parallel ST1 and SUB13 instructions 

10-195 to 10-196 
parallel ST1 and XOR3 instructions 

10-209 to 10-21 0 
parallel SUBF3 and MPYF3 instructions 

10-1 24 to 10-1 26 
parallel SUBF3 and STF instructions 

10-190 to 10-191 
parallel SUB13 and MPY13 instructions 

10-1 35 to 10-1 37 
parallel SUB13 and ST1 instructions 

10-195 to 10-196 
parallel XOR3 and ST1 instructions 

10-209 to 10-21 0 
part numbers B-7 to B-10 

breakdown of numbers B-9 to B-10 
device suffixes B-9 to B-1 0 
prefix designators B-8 to B-9 

part ordering B-1 to B-1 0 
PC-relative addressing 5-1 7 to 5-1 8 
period register (timer) 8-2, 8-8 
peripheral bus 2-27 

general architecture 2-27 
map 3-20 
peripherals on 

DMA controller 8-43 to 8-64 
serial port 2-28, 8- 13 to 8-42 
timers 2-28, 8-2 

register diagram 2-27 
peripheral modules, block diagram 2-27 
peripherals 2-27, 8-1 to 8-64 

DMA controller 8-43 to 8-64 
CPU/DMA interrupt enable register 

8-47 to 8-49 
destination- and source-address registers 

8-4 7 
global-control register 8-47 
hints for programming 8-57 to 8-58 
initialization/reconfiguration 8-57 
interrupts 8-56 
memory transfer operation 8-49 to 8-53 
programming examples 8-58 to 8-64 

peripherals, DMA controller (continued) 
synchronization of DMA channels 

8-54 to 8-56 
transfer-counter register 8-4 7 

serial ports 8-1 3 to 8-42 
data-transmit register 8-23 
data-receive register 8-24 
FSWDR/CLKR port control register 8-20 
FSWDWCLKX port control register 

8-18 to 8-19 
functional operation 8-30 to 8-36 
global-control register 8- 15 to 8- 18 
initialization/reconfiguration 8-36 
interrupt sources 8-29 
operation configurations 8-24 to 8-26 
receive/transmit timer control register 

8-21 to 8-22 
receivebransmit timer counter register 8-22 
receive/transmit timer period register 8-23 
timing 8-26 to 8-29 
TMS32OC3x interface examples 

8-36 to 8-46 
timers 8-2 to 8-1 2 

global-control register 8-3 to 8-8 
initialization/reconfiguration 8- 12 to 8- 15 
interrupts 8- 11 
operation modes 8- 10 to 8- 11 
period and counter registers 8-8 
pulse generation 8-8 to 8-9 

pin 
assignments 13-6, 13-7 
states at reset 6-1 9 

pinout and pin assignments 13-2 to 13-1 5 
PGA 13-2 to 1 3-7 
PQFP 

'C30 13-8 to 13- 11 
'C31 13-12 to 13-15 

pipeline 
conflicts 9-4 to 9-1 7 

avoiding 11 - 132 
delayed branches 9-6 
registers 9-7 to 9-9 
standard branches 9-4 to 9-6 

memory accesses clocking 9-23 to 9-30 
memory conflicts 9-1 0 to 9-1 7 

execute only 9- 13 to 9- 15 
hold everything 9- 15 to 9- 1 7 
program fetch incomplete 9- 12 
program wait 9- 10 to 9- 13 
resolving 9-21 to 9-22 



pipeline (continued) 
operation 9-1 to 9-30 

clocking of memory accesses 9-23 to 9-30 
data loads and stores 9-24 to 9-30 
program fetches 9-23 
branch conflicts 9-4 to 9-6 
memory conflicts 9-1 0 to 9-23 
register conflicts 9-7 to 9-9 

resolving memory conflicts 9-21 to 9-22 
resolving register conflicts 9-1 8 to 9-20 
structure 9-2 to 9-3 

pod interface, emulator 12-40 

POP floating-point instruction 10-1 57 

POP integer instruction 10-1 56 

POPF instruction 10-1 57 

power dissipation D-1 to D-32 
algorithm partitioning 0-4 
characteristics D-2 to D-4 
dependencies DQ to D-3 
FFT assembly code D-30 to D-32 
photo of IDD for FFT D-29 
power requirements D-2 
power supply current requirements D-2 
summary D-28 
test setup description D-4 to D-5 

power supply current requirements D-2 

PQFP reflow soldering precautions C-7 to C-8 

prefix designators B-8 to B-9 

primary bus 7-2 
See also external buses 
bus cycles 7-6 to 7-1 0 
control register 7-3 to 7-4 
functional timing of operations 7-6 
programmable bank switching 7-31 
programmable wait states 7-28 to 7-29 
ready generation, segmentation of address 

space 12-11 

primary bus interface 2-26, 12-4 to 12-1 8 
bank switching techniques 12-13 to 12-19 
ready generation 12-9 to 12-1 3 

ANDing of the ready signals 12- 10 
example circuit 12- 13 to 12-46 
external ready generation 12- 10 to 12- 11 
ORing of the ready signals 12-9 to 12- 10 
ready control logic 12- 11 to 12- 12 

zero-wait-state to static-RAMS 12-4 to 12-8 

processor initialization 11 -2 to 11 -5 

program 
buses 2-22 
counter (PC) 2-22,3-11 
fetches 9-23 
flow 6-1 

program control 11 -6 
computed GOTOs 11 -22 to 11 -23 
delayed branches 11 -1 7 
instructions 10-5 
interrupt service routines 11 -9 to 11 -1 6 

contextswitching 11-11 to 17-16 
example 1 1 - 16 
priority 11 - 16 

repeat modes 11 -1 8 to 11 -21 
block repeat 11 - 18 to 1 7-20 
single-instruction repeat 11 -20 to 11 -26 

software stack 11 -8 to 11 -9 
subroutines 11 -6 to 11 -8 

program fetch incomplete 9-1 2 

program flow control 6-1 to 6-38 
calls, traps, and returns 6-1 0 to 6-1 1 
delayed branches 6-8 to 6-9 
interlocked operations 6-1 2 to 6-1 7 
interrupts 6-23 to 6-35 

control bits 6-26 to 6-27 
CPU interrupt latency 6-30 
CPU/DMA interaction 6-30 
prioritization 6-25 to 6-26 
prioritization and control 6-34 to 6-36 
processing 6-27 to 6-30 
TMS320C30 considerations 6-32 to 6-34 
TMS320C3x considerations 6-3 1 to 6-32 
vector table 6-23 to 6-25 

repeat modes 6-2 to 6-7 
nested block repeats 6-7 to 6-23 
RC register value after repeat mode 

6-6 to 6-7 
repeat-mode control bits 6-3 
repeat-mode operation 6-3 to 6-4 
restrictions 6-6 
RPTB instruction 6-4 to 6-5 
RPTS instruction 6-5 

reset operation 6-1 8 to 6-22 
TMS320LC31 power management 

mode 6-36 to 6-38 
IDLE2 6-36 to 6-37 
LOPOWER 6-38 

program wait 9-1 0 to 9-1 3 



Index 

programmable 
bank switching 7-30 to 7-32 
wait states 7-28 to 7-29 

programming tips 11-131 to 11 -134 
C-callable routines 11 -1 31 
hints for assembly coding 11 -1 31 to 11 -1 32 
low-power mode wakeup example 

11-133 to 11-134 
pulse mode 

timer interrupt 8-1 1 
timer pulse generator 8-8 to 8-9 

PUSH floating-point instruction 10-1 59 
PUSH integer instruction 10-1 58 
PUSHF instruction 10-1 59 

quality C-1 to C-8 
queue (stacks) 5-31, 5-33 

RAM. See memory 
RC register value 6-6 to 6-7 
read unit 9-2 
ready control logic 12-1 1 to 12-1 2 
ready generation 12-9 to 1 2-1 3 

ANDing of the ready signals 12-1 0 
example circuit 12-1 3 to 12-46 
external ready generation 12-1 0 to 12-1 1 
functions 12-1 1 
ORing of the ready signals 12-9 to 12-1 0 
ready control logic 12-1 1 to 1 2-1 2 

receive shift register (RSR) 8-24 
receiveltransmit timer 

control register (serial port) 8-21 to 8-22 
counter register (serial port) 8-22 
period register (serial port) 8-23 

reflow soldering precautions C-7 to C-8 
register addressing 5-3 
register conflicts 9-7 to 9-9 
register file, CPU 2-7 
registers 

auxiliary (AR7-ARO) 3-3 
block size (BK) 2-9,3-4, 5-24 
buses 2-22 

registers (continued) 
conflicts (resolving) 9-1 8 to 9-20 
counter (timer) 8-8 
CPU interrupt flag (IF) 3-9 
CPUIDMA interrupt-enable (IE) 3-7, 

8-47 to 8-49 
data-page pointer (DP) 3-4 
destination, extended-precision registers 

(RO-R7) 6-8 
destination register (R7-RO) 

condition flags 10-20 
DMA 

destination and source address 8-47 
global-control register 8-47 
transfer-counter register 8-47 

extended precision ( R M 7 )  2-8,3-3 
FSFUDFUCLKR serial port control 8-20 
FSX/DX/CLKX serial port control 8-1 8 
functional groups 9-7 
I10 flag (IOF) 2-9,3-10 
index (IRO, IR1) 2-9,3-4 
interrupt enable (IE) 2-9 
interrupt flag (IF) 2-9,6-33 
maximum use 11 -1 32 
memory-mapped peripheral 3-20 
period (timer) 8-8 
program counter (PC) 2-10,2-22, 3-11 
receiveltransmit timer control 8-21 
repeat 

count (RC) 2- 10 
count address (RC) 6-2 
end address (RE) 2- 10, 6-2 
start address (RS) 2- 10, 6-2 

repeat mode operation 6-3 to 6-4 
reserved bits 3-1 2 
serial port 8-1 3 to 8-42 
serial port global-control 8-1 5 to 8-18 

bits summary 8- 15 to 8- 18 
status (ST) 3-4 
status register (ST) 2-9, 10-11 
system stack pointer (SP) 2-9, 3-4, 5-31 
timer global-control 8-3 

reliability C-1 to C-8 
stress testing CQ to C-6 

repeat 
count register (RC) 3-1 1, 6-2 
end address register (RE) 3-11, 6-2 
mode 6-2 to 6-7, 11 -1 8 to 11 -21 

block repeat 11 - 18 to 11 -20 



repeat, mode (continued) 
control bits 6-3 
maximum number of repeats 6-3 
nested block repeats 6-7 
operation 6-3 to 6-4 
RC register value 6-6 to 6-7 
restrictions 6-6 
RPTB instruction 6-4 to 6-5 
RPTS instruction 6-5 
single-instruction repeat 11 -20 to 11 -26 

start address register (RS) 3-11, 6-2 
repeat block instruction 10-1 70 
reserved area, unpredictable results 2-13 
reserved memory locations 

TMS320C3lI2-31 
reset 3-1 7 

operation 6-1 8 to 6-22 
pin states 6-1 9 
vectors 3-1 8, 3-1 9, 6-35 

RESET signal, generation 12-29 to 12-31 
resolving register conflicts 9-1 8 to 9-20 
restore clock to regular speed instruction 10-1 15 
RETlcond instruction 6-1 0, 10-1 60 to 10-1 61 
RETScond instruction 6-1 0, 10-1 62 
return from interrupt conditionally instruction 

10-1 60 
return from subroutine 6-1 0 
return from subroutine conditionally instruction 

10-1 62 
returns 6-1 0 to 6-11 

RINTO, RlNTl signals 3-1 8,3-19, 6-24 
RND instruction 10-163 to 10-164 
ROL instruction 10-1 65 
ROLC instruction 10-1 66 to 10-1 67 
ROM. See memory 
ROR instruction 10-1 68 
RORC instruction 10-1 69 
rotate left instruction 10-1 65 

rotate left through carry instruction 10-1 66 
rotate right instruction 10-1 68 

rotate right through carry instruction 10-169 
round floating-point instruction 10-1 63 
rounding of floating-point value 4-20 to 4-21 
RPTB instruction 6-4 to 6-5, 10-1 70 
RPTS instruction 6-5, 10-1 71 to 10-1 72 

scan paths, TBC emulation connections for 'C3x 
12-46 

segment start address (SSA) 3-21 
segmentation of address space 12-11 
semaphores 6-1 5 
seminars 8-6 

serial port 8-1 3 to 8-42 
clock 8-1 3, 8-27 

timer 8-37 
timing 8-26 to 8-29 

clock configurations 8-24 to 8-26 
continuous transmit and receive mode 8-28 
CPU transfer with transmit polling 8-38 to 8-39 
data-receive register 8-24 
data-transmit register 8-23 
fixed date-rate timing 8-30 

burst mode 8-30 
continuous mode 8-30 

frame sync 8-32, 8-33 
functional operation 8-30 to 8-36 
global-control register 8-1 3, 8-1 5 to 8-1 8 

bits summary 8- 15 to 8- 18 
handshake mode 8-1 6, 8-28 to 8-30, 8-37,8-38 

direct connect 8-29 
initialization reconfiguration 8-36 to 8-42 
interface 12-32 to 12-35 

handshake mode example 8-37 to 8-38 
serial N C  interface example 8-40 
serial N D  and DIA interface example 

8 4 0  to 8-46 
interrupt sources 8-29 

receive timer 8-29 
receiver 8-29 
transmit timer 8-29 
transmitter 8-29 

operation configurations 8-24 to 8-26 
port control register 

FSWDWCLKR 8-20 
FSWDFUCLKR bits summary 8-20 
FSX/DX/CLKX 8- 18 to 8- 19 
FSX/DX/CLKX bits summary 8- 19 

receivehransmit timer 
control register 8-2 1 to 8-22 
counter register 8-22 
period register 8-23 

registers 8-1 3, 8-42 
timing 8-26 to 8-29 



Index 

serial-port loading 3-33 
servo controlldisk drive applications F-14 to F-16 
servo control-related devices F-16 
short-immediate addressing 5-1 6 to 5-1 7 
SlGl instruction 10-1 73 
signal 

descriptions 13-1 6 to 13-24 
'C30 13-16t0 13-21 
'C3 1 13-22 to 13-29 

transition levels 13-29 
TTL-level inputs 13-29 to 13-30 
TTL-level outputs 13-29 

signal buffering for emulator connections 12-41 
signal descriptions 13-1 , 13-1 6 to 13-24 

pinout and pin assignments 13-2 to 13-1 5 
signal, interlocked instruction 10-1 73 

software applications, logical and arithmetic 
operations (continued) 

integer and floating-point division 
11-26t0 11-33 

square root 11 -34 
processor initialization 11 -2 
program control 11 -6 to 11 -22 

computed GOTOs 11 -22 to 11 -23 
delayed branches 11 - 1 7 
interrupt service routines 11 -9 to 11 - 16 
repeatmodes 11-l8to 11-27 
software stack 1 1-8 to 1 1-9 
subroutines 11 -6 to 11 -8 

programming tips 11 -1 31 to 11 -1 34 
C-callable routines 11 - 13 1 
hints for assembly coding 11 - 13 1 to 1 1 - 132 
low-power-mode wakeup example 

11-133 to 11-134 
signals 

12-pin header 12-39 
buffered 12-39, 12-43 
buffering for emulator connections 

12-41 to 12-43 
no buffering 12-41 
timing 12-40 to 12-41 

signed-precision, unsigned integer format 4-3 
simulator B-3 

single-instruction repeat 11 -20 to 11 -21 
single-precision 

floating-point format 4-6 
integer format 4-2 

1 6-bit-wide configured memory 3-32 
software applications 11 -1 to 11 -34 

application-oriented operations 11 -53 to 11 -67 
adaptive filters 1 1-67 
companding 11 -53 to 11 -57 
fast Fourier transforms (FFT) 

11-73 to 11-125 
FIR filters 11 -58 to 11 -60 
llR filters 1 7-60 to 11 -66 
lattice filters 11 - 125 to 1 1 - 13 1 
matrix-vector multiplication 17-70 to 11 -73 

logical and arithmetic operations 11 -23 to 11 -34 
bit manipulation 11 -23 to 11 -24 
bit-reversed addressing 11 -25 to 11-26 
block moves 11 -25 
extended-precision arithmetic 1 7-38 to 11 -4 1 
floating-point format conversion 

11-42 to 11-53 

software control 6-1 

software development tools B-2 to 8-6 
bulletin board service (BBS) 8-5 to B-6 
code generation tools 8-2 

assembler~linker 8-2 
C compiler 8-2 
compiler 8-2 
linker 8-2 

digital filter design package 8-2 
documentation 8-5 
hotline 8-5 
literature 8-5 
seminars B-6 
system integration and debug tools 8-3 to 8-4 

debugger 8-3 
emulation porting kit (EPW 8-4 to 8 -5  
emulator 8-3 
evaluation module (EVM) 8-3 
simulator 8-3 
XDS5 10 emulator 8-3 

technical training organization (TO) work- 
shop B-6 

third parties 8-4 
workshops B-6 

software interrupt instruction 10-200 

software stack 11 -8 to 11 -9 

soldering precautions C-7 to C-8 

speech 
encoding F-3 
memories F-12 
synthesis applications F-1 1 to F-13 



Index 

square root 11 -34 
stack, software 11 -8 to 11 -9 

pointer (SP) register 3-4, 5-31, 11 -8 to 11 -9 

stack management 5-31 to 5-34 
stack queues 5-33 
stacks 5-32 to 5-33 

growth 5-32 
implementation of high-to-low 5-32 
implementation of low-to-high 5-33 

standard branches 6-8 
status register (ST) 3-4, 10-1 1 

bits summary 3-6 
CPU register file 3-5 
global interrupt enable (GIE) bit 

'C30 interrupt considerations 6-32 
'C3x interrupt considerations 6-3 1 

STF and ABSF instructions (parallel) 
10-23 to 10-24 

STF and ADDF3 instructions (parallel) 
10-35 to 10-36 

STF and FLOAT instructions (parallel) 
10-80 to 10-81 

STF and LDF instructions (parallel) 10-93 to 10-94 
STF and MPYF3 instructions (parallel) 

1 0-1 22 to 1 0-1 23 
STF and NEGF instructions (parallel) 

10-1 40 to 10-1 41 
STF and STF instructions (parallel) 

10-176 to 10-177 
STF and SUBF3 instructions (parallel) 

10-1 90 to 10-1 91 
STF instruction 10-1 74 

STFl instruction 10-1 75 
ST1 and ABSl instructions (parallel) 10-27 to 10-28 
ST1 and ADD13 instructions (parallel) 

1 0-40 to 1 0-41 
ST1 and AND3 instructions (parallel) 

10-45 to 10-46 
ST1 and ASH3 instructions (parallel) 

10-54 to 10-55 
ST1 and FIX instructions (parallel) 10-77 to 10-78 
ST1 and LDI instructions (parallel) 

10-102 to 10-103 

ST1 and MPY13 instructions (parallel) 
10-133 to 10-134 

ST1 and NEGl instructions (parallel) 
10-143 to 10-144 

ST1 and NOT instructions (parallel) 
10-149 to 10-150 

ST1 and OR3 instructions (parallel) 
10-1 54 to 10-1 55 

ST1 and ST1 instructions (parallel) 
10-180 to 10-181 

ST1 and SUB13 instructions (parallel) 
10-1 95 to 10-1 96 

ST1 and XOR3 instructions (parallel) 
10-209 to 10-21 0 

ST1 instruction 10-1 78 
STll instruction 10-1 79 
store floating-point instruction 10-1 74 
store floating-point, interlocked instruction 10-1 75 
store integer instruction 10-1 78 
store integer, interlocked instruction 10-1 79 
STRB signal 7-2, 7-6 
stress testing C-2 to C-6 
style (manual) viii 
SUBB instruction 10-1 82 
SUBB3 instruction 10-1 83 to 10-1 84 
SUBC instruction 10-1 85 to 10-1 86 
SUBF instruction 10-1 87 
SUBF3 and MPYF3 instructions (parallel) 

10-1 24 to 10-1 26 
SUBF3 and STF instructions (parallel) 

10-1 90 to 10-1 91 
SUBF3 instruction 10-1 88 to 10-1 89 
SUB1 instruction 10-1 92 
SUB13 and MPY13 instructions (parallel) 

10-1 35 to 10-1 37 
SUB13 and ST1 instructions (parallel) 

10-195 to 10-196 
SUB13 instruction 10-1 93 to 10-1 94 
SUBRB instruction 10-1 97 
SUBRF instruction 10-1 98 
SUBRl instruction 10-199 
subroutines 

computed GOT0 11 -22 
context switching 11-11 to 11 -1 5 

ST1 and LSH3 instructions (parallel) 
10-112 to 10-114 

context restore for 'C3x 11 - 14 to 11 - 16 
context save for 'C3x 11 - 12 to 11 - 13 



subroutines (continued) 
interrupt priority 11 -1 6 to 11 -1 8 
program control 11 -6 to 11 -8 
runtime select 11 -20 to 11 -21 

subtract example 11 -39 
subtract floating-point instruction 10-1 87 

3-operand instruction 10-1 88 

subtract integer conditionally instruction 10-1 85 
subtract integer instruction 10-1 92 

3-operand instruction 10- 1 93 
subtract integer with borrow instruction 10-1 82 

Soperand instruction 10-1 83 
subtract reverse floating-point instruction 10-1 98 
subtract reverse integer instruction 10-1 99 
subtract reverse integer with borrow instruction 

10-1 97 
supply current calculations 0-26 to D-27 

average D-27 
data output D-26 to D-27 
experimental results D-27 
processing D-26 

SWI instruction 10-200 
symbols (used in manual) viii 
symbols and abbreviations 10-1 4 to 10-1 5 
synchronize two processors example 6-17 
syntaxes, assembler 10-1 6 to 10-1 8 
system 

control functions 12-27 to 12-31 
clock oscillator circuitry 12-27 to 12-29 
reset signal generation 12-29 to 12-3 1 

integration 2-32 
system configuration 

categories of interfaces 12-2 
options overview 12-2 to 12-3 
typical system block diagram 12-3 to 12-4 

system management 5-31 to 5-34 
system stack pointer 5-31 

target, system, connection 12-39 to 12-46 
target cable 12-39, 12-43 
target system, connection to emulator 

12-41 to 12-43 
technical assistance x 

technical training organization (TTO) workshop 
B-6 

telecommunications applications F-5 to F-10 
telecommunications-related devices F-7 
test bit fields instruction 10-203 

3-operand instruction 10-204 
test bus controller 12-45 
test load circuit 13-28 
test setup description D-4 to D-5 
third parties 8-4 
32-bit-wide configured memory 3-32 
three-operand addressing modes 2-16, 

5-20 to 5-21 
three-operand instructions 10-4 
timer 2-28 

control register 8-1 1 
receivebransmit 8-21 to 8-22 

counter register 8-8 
receivebransmit 8-22 

global-control register 8-3 to 8-8 
bits summary 8 4  to 8-6 

110 port configurations 8-1 0 
initialization/reconfiguration 8-1 2 to 8-1 5 
interrupts 8-1 1 
operation modes 8-1 0 to 8-11 
output generation examples 8-9 
period register 8-2, 8-8 

receivebransmit 8-23 
pulse generation 8-8 to 8-9 
registers 8-42 
timing figure 8-7 

timers 8-2 to 8-1 2 
counter 8-2 

timing 
external interface 7-6 to 7-27 

expansion bus l/O cycles 7- 1 1 to 7-32 
primary bus cycles 7-6 to 7- 10 

parameters 13-30 to 1 3-67 
changing the XF pin from an input to an 

output 13-44 
changing the XF pin from an output to an 

input 13-43 
data rate timing modes 13-55 to 13-60 
general-purpose l/O timing 13-63 to 13-65 

peripheral pin I10 modes 13-63 to 13-65 
peripheral pin I10 timing 1363 

interrupt acknowledge timing 13-54 
interrupt response timing 13-52 to 13-53 



timing, parameters (continued) 
loading when the XF pin is configured as an 

output 13-42 
memory readwrite timing 13-32 to 13-37 
reset timing 13-45 to 13-50 - 
SHZ pin timing 13-5 1 
timer pin timing 13-66 to 13-67 
XZICLKIN, H 1, and H3 13-30 to 13-3 1 
XFO and XF1 timing when executing LDFl or 

LDll 13-38 to 13-39 
XFO and XF1 timing when executing SlGl 

13-4 1 
XFO and XF1 timing when executing STFl or 

ST11 13-40 

TINTO, TINT1 signals 3-18, 3-19, 6-24 

TMS320 
DSP evolution 1-3 
family, general description 1-2 

TMS320C30 
FFT assembly code D-30 to D-32 
memory maps 2-1 4 
photo of IDD for FFT D-29 
power dissipation D-1 to D-32 
summary D-28 

TMS320C30 and TMS320C31 differences 2-30 
datalprogram bus differences 2-30 
development considerations 2-31 
effects on the IF and IE interrupt registers 2-31 
reserved memory locations 2-30 
serial-port differences 2-30 
user programldata ROM 2-31 

TMS320C31 
interrupt and trap memory maps 3-34 
memory maps 2-1 5 
reserved memory locations 2-31 

TMS320C3x block diagram 
architectural 2-3 
functional 1-5 

TMS320C3x family, general description 1-2 

TMS320C3x interfaces 12-1 

TMS320C3x 
serial-port interface examples 8-36 to 8-42 

TMS320LC31 power management 
modes 6-36 to 6-38 
IDLE2 6-36 to 6-37 
LOPOWER 6-38 

total supply current calculation D-18 to D-25 
average current D-22 
average current versus peak current D-22 
combining D-18 to D-19 
dependencies D-19 to D-20 
design equation D-21 to D-22 
peak current D-22 
thermal management considerations 

D-23 to D-25 
trap conditionally instruction 10-201 
trap vectors 3-1 8,3-19 
TRAPcond instruction 6-1 0, 10-201 to 10-202 
traps 3-17, 6-1 0 to 6-11 

interrupt considerations 
'C30 6-32 to 6-34 
' C ~ X  6-31 

TSTB instruction 10-203 
TSTB3 instruction 10-204 to 10-205 
two-operand instructions 10-3 

U-law compression 11 -54 
U-law expansion 11 -55 
underflow 4-1 4 
unsigned-integer format 4-3 

short 4-3 
single-precision 4-3 

user state management 5-31 

variable data-rate timing operation 8-34 
burst mode 8-34 
continuous mode 8-35 

vectors 
interrupts 3-1 7,6-35 
reset 3-1 7, 6-35 
trap 3-17 

video signal processing F-21 
voice synthesizers F-11 



Index 

wait states 
external bus 12-9 to 12-1 3 
programmable 7-28 to 7-29 
zero 1 2-4 to 12-8 

workshops B-6 

XDS, target design considerations 12-39 to 12-46 
connections between emulator and target 

system 12-41 to 12-43 
designing MPSD emulator connector 

12-39 to 12-40 
diagnostic applications 12-45 to 12-46 

XDS, target design considerations (continued) 
mechanical dimensions of emulator connector 

12-43 to 12-45 
MPSD emulator cable signal timing 

12-40 to 12-41 
XDS510 emulator 8-3 
XFO, XFl signals 2-26 
XINTO, XINTl signals 3-1 8,3-19, 6-24 
XOR instruction 10-206 
XOR3 and ST1 instructions (parallel) 

10-209 to 10-21 0 
XOR3 instruction 10-207 to 10-208 

zero condition flag 10-1 1 
zero-logic interconnect of 'C3x 6-1 6 
zero-overhead looping 6-2 
zero-wait-states 12-4 to 12-8 




	1994 Telecommunications Applications With the TMS320C5x DSPs.tif
	2558539-9721 revision J 199410 TMS320C3x User's Guide.tif
	SPRU011E 199701 TMS320 DSP Development Support Reference Guide.tif



